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Abstract. Additively manufactured intersections have the theoretical risk to contain 

hydrostatic tensile residual stresses, which cannot be stress relieved. The stresses in 

Ti-6Al-4V Wire + Arc Additively Manufactured (WAAM) intersections are lower 

compared to single pass walls and stresses in continuous walls are larger compared to 

discontinuous wall with otherwise identical geometry. Thermal stress relief was found 

to virtually eliminate them. 

Inter-pass rolling can yield the desired grain refinement, without having any noteworthy 

influence on the development of residual stresses. The strain measurement itself by 

neutron diffraction is facilitated by the refined microstructure, because the textured 

microstructure produces anisotropic peak intensity, not allowing Pawley refinement. 

The {1011} and {1013} hcp planes are the only ones that diffract consistently in three 

orthogonal directions. 
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1 Introduction 

Process residual stresses are one of the main challenges in additive manufacturing (AM). 

Consequences can include severe distortion or premature failure of the component, 

during manufacture or in service. Wire + Arc Additive Manufacturing (WAAM), as a high-

deposition-rate metal AM process, can be used for the manufacture of large meter-scale 

of medium complexity. It is especially appealing to the aero-space industry for producing 

structural components [1]. The alloy Ti-6Al-4V is probably the material to benefit most 

from the advantages of WAAM, due to commonly high material and processing costs 

and it is therefore the subject of this research. However, WAAM is especially prone to 

develop very large stresses, which is due to constrained cooling of each deposition, 

which prevents thermal contraction. The development is described elsewhere [2]–[5] 

and depending on the material, the residual stress can range from 60% to almost 100% 

of the materials’ yield value. Tensile residual stresses (σres) are constant along the wall 

height and are typically the largest in longitudinal direction (σxx), as shown in 

Figure 1 (a). 
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Figure 1: Typical residual stress profiles in WAAM and 
consequent distortion: (a) clamped residual stress profile; (b) 
out-of-plane distortion after unclamping and (c) redistributed 
and balanced residual stress profile after unclamping (adpt. from 
[4]). 
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Each layer adds additional material that develops the same tensile stress during 

constrained thermal shrinkage. These tensile stresses result in a bending moment across 

the cross-section. After unclamping, this causes the component to distort and the 

residual stresses σres to redistribute, as shown in Figure 1 (b) and (c). The resulting out-

of-plane distortion (DOoP) of a 400 mm-long Ti-6Al-4V wall for example can be as high as 

7 mm [6]. 

Several residual stress mitigation techniques exist [7], of which only a few come into 

consideration due to process constraints. Thermal techniques involve for example stress 

relief at elevated temperatures [8]. The temperature range of heat treatments for 

microstructural improvements [9], [10] or even hot-isostatic pressing [11], [12] typically 

exceed stress relieving temperatures and act therefore stress relieving by default. 

Mechanical techniques can be vibratory stress relief [13] and acoustic softening [14]. 

High-pressure rolling is a local mechanical tensioning technique, which is used to 

plastically strain a weld seam or an additive deposit to counteract the stresses. It has 

shown to be very effective for eliminating residual stress and distortion in butt-welds 

[15]–[18]. In additive manufacturing, when applied in an inter-pass manner, its effect is 

more limited, as the stress and distortion in straight titanium walls can only be reduced, 

but not eliminated entirely. The reason is the absence of lateral restraint, resulting in 

lateral deformation rather than longitudinal straining, which would eliminate the 

residual stresses [2]–[4]. Attempts to constrain the transverse deformation during 

rolling significantly improve the distortion and residual stress reduction [4], [6]. Even 

though lateral constraining can eliminate distortion, significant and unevenly distributed 

residual stresses can persist. Furthermore local restraining becomes inpractical at 

varying wall widths or intersections. Therefore it seems that only post-deposition 

thermal stress relieving of the final component can be utilized for reliable stress 

elimination in additively manufactured structures [8] and especially intersections. Even 

though inter-pass rolling has limited capability to control residual stresses in Ti-6Al-4V 

WAAM, it significantly improves the microstructure. When rolling is applied after each 

layer, it can eliminate texture [19], decreases prior-β grain and α-lath size [20] and 

thereby improves mechanical properties [21]. This is currently the main motivation for 

inter-pass rolling [22]. 
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Figure 2: Typical WAAM application with intersections: Bombardier near-net-shape Ti-6Al-4V landing gear rib [6]. 

The manufacture of structural application components requires more complex features 

than straight and free-standing walls, such as curves and intersections, as shown in a 

typical WAAM application in Figure 2. This near-net-shape part of a 21 kg Bombardier 

landing gear rib is 0.7 x 0.7 x 0.3 m in dimension and weighs 24 kg in the as-deposited 

condition. To the authors’ knowledge, no residual stress measurements have been 

performed on additively manufactured intersections. Only Mehnen et al. [23] simulated 

the stress in WAAM intersections of steel, which seemed to be less in the intersection 

compared to the free-standing walls. However, as the paper mainly discusses the 

strategy of producing different features, the stress development was not investigated in 

great detail, hence a comparison is not possible. The constraint in the transverse 

direction and the discontinuous deposition of the intersected region could significantly 

influence residual stress development. Also the application of inter-pass rolling can 

influence the residual stress development. A different behaviour may be observed when 

applied on intersections, as the lateral restraint might have a beneficial effect on the 

stress reduction as well. The established neutron diffraction stress measurement 

technique was performed to calculate the stress profiles in the three principal directions 

of the intersection, after which the destructive contour method was used for a more 

detailed insight into the stress distribution within the entire component. The contour 

method is based on stress relaxation and involves cutting through the section of interest 

by electro-discharge machining (EDM), after which the topography of the exposed 

surface contains the information of the relaxed stresses. The measured surface is post-

processed using a 3D finite element model, by calculating the required stress to return 

the displaced surface back to a flat plane [24]. 

2 Materials and Experiments 

Production of Specimen 
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Four Ti-6Al-4V intersecting walls were built with the deposition parameters from Table 

1 using the in-house-built HiVE machine (High-Value Engineering). The HiVE (Figure 3) is 

a converted friction stir welding CNC gantry with a WAAM deposition unit retrofitted to 

the machine. The machine tool has been replaced by a customized roller device, which 

is capable of two-directional rolling with vertical rolling loads up to 100 kN. The 

deposition unit is attached to a rotator, allowing the coaxial rotation of the shield, wire 

feeder and wire spool around the plasma torch. A Fronius Plasma 10 module was used 

[25] to deposit 1.2-mm-diameter Ti-6Al-4V wire on a 12-mm-thick Ti-6Al-4V substrate 

that was clamped during the deposition to a rigid steel backing block, which prevented 

distortion during the deposition. For the first three layers the current was increased by 

10% to compensate for the heat sinking effect of the substrate. A laminar flow local 

trailing shield [26] attached to the torch was used to prevent the deposited material 

from oxidising [27]. The plasma gas was pure-shield argon, as was the plasma shielding 

gas and the trailing shielding gas. 

 

Figure 3: The “HiVE” build platform: WAAM deposition unit retrofitted with a rotator to the z-axis of a FSW machine; the FSW 
tool is replaced by a customised roller unit. 

The oscillating path strategy, which is shown in the schematic in Figure 4, was used to 

produce the intersections: for odd layers (a), a continuous wall (I) was deposited in the 

x-direction with 6 mm oscillating width and a 3 mm step size. Two shorter lateral walls 

(II) & (III) with identical parameters to the first wall were deposited from the outside 

towards the centre in positive and negative y-direction respectively, until they joined 

the continuous wall. 
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Figure 4: Path strategy for (a) odd and (b) even layers; (c) roller profile and pattern 

At the intersection the oscillating width was increased from 6 mm to 10 mm to ensure 

a neat joint and to provide a near-net-shape with sufficient excess material that allows 

finish machining. After finishing one pass, the trailing shield remained above the sample 

for 45 s to prevent oxidation. Even layer numbers were deposited in the opposite 

direction: the continuous wall (I) was deposited in the negative x-direction and the 

discontinuous wall (II) & (III) from inside out in negative and positive y-direction 

respectively. The interlayer dwell time for all four specimens between each layer was 

5 min. This allowed cooling and time to manipulate the rolling unit. Two of these four 

specimens were inter-pass rolled with 75 kN at 5 mm/s rolling speed using a H13 tool 

steel roller with 150 mm diameter and convex profile of 3 mm radius (Figure 4 c). 

Table 1: Deposition Parameters 

Current 210 [A] 

Torch stand-off 8 [mm] 

Travel speed 3.5 [m/min] 

Plasma Gas 0.8 [l/min] 

Plasma Shield 10 [l/min] 

Trailing Shield ~200 [l/min] 

Crossing single-pass rolling paths were performed after one intersection layer was 

completed. The total rolling lengths in both directions was 50 mm and were symmetrical 

across the intersection (Figure 4 c). Irrespective of whether rolling was applied or not, 

these deposition parameters produced a total wall width of approximately 10 mm. The 

build was stopped once the wall reached a height of 25 mm; the last layer had an even 

layer number. One intersection of each, with and without rolling, was thermally stress 

relieved, in an inert argon atmosphere at 640 °C for 4 h, while it remained clamped to 
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the backing block. Finally all four specimens were machined to identical geometries. 

From the top of the wall, a maximum of 2 mm was machined away to reduce the height 

to 24 mm. The wall width was machined from approximately 10 mm to 6 mm and the 

radius at the intersection to 2.5 mm (Figure 5). 

t = 6 mm
bolt

x

y z

Contour Method
And Microstructure
Location  

Figure 5: Specimen after Machining 

Residual stresses in additive manufacturing are typically measured without finishing 

processes that potentially influences the stress field, such as machining. However, the 

neutron path length in the near-net shape would have been 26 mm for the longitudinal 

and 36.8 mm for the normal direction, which would not have allowed strain 

measurements in titanium. Finish machining also resulted in a more representative 

specimen in the condition of operation. 

Neutron Diffraction Residual Stress Measurement 

Lattice plane spacing measurements for residual stress calculation were carried out at 

the ENGIN-X time-of-flight neutron diffractometer at the pulsed neutron source of the 

Rutherford Appleton Laboratory in Didcot, UK [28]. The “white beam” with a wide range 

of wavelengths close to atomic distances allows the counting of neutrons diffracted by 

multiple planes simultaneously. Gauge volumes of 3  3  3 mm3 were located along the 

vertical centreline of the specimen with steps of 3 mm. Based on the typical WAAM 

microstructure [19], [20], it was estimated that 1-10 prior-β grains can be incorporated 

in the gauge volume. Each of those can contain approximately 108 α lamellae, which are 

estimated to be roughly between 10 μm3 and 100 μm3 in size. Their actual size and 

orientation depend on the orientation and nature of the parent prior-β grain [29] and 

the cooling rate [30]. Neutron diffraction strain determination requires the 

measurement of stress-free lattice parameters (d0) for each location measured. This was 
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achieved by manufacturing duplicates of each specimen, from which the centre column 

(5 x 5 x 20 mm) was extracted using electron discharge machining to relieve the residual 

stresses mechanically. During the d0 scan, it was established that the texture and sample 

orientation did not influence the measurement [31]. The specimen was orientated 

accordingly to obtain measurements in 3 orthogonal directions. Figure 6 (a) shows the 

setup for the vertical scan during the measurement of the longitudinal x and y directions 

using two opposite detectors. Figure 6 (b) shows the measurement of the normal 

direction using the left-hand side detector 1, also called “north bank”. 

gauge volumes
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Figure 6: Setup at ENGIN-X: a) Schematic of the beam paths to detect the longitudinal and lateral directions; b) Image of the actual 
setup on the beam-line to detect the normal plane with the north detector, while the south detector is “dark” 

Here the right-hand side detector 2 (or “south bank”) remains unused, because the 

orientation does not align with any of the measured orientations and the neutron path 

through the titanium substrate plus the thick steel backing bar does not allow the 

detection of peaks. Machining decreased the path length for the measurement from the 

values mentioned above of the longitudinal and transverse direction to and 15.5 mm for 

the normal direction. 

In the hexagonal-close-packed (hcp) α crystal, eight planes can be identified within the 

analysed time-of-flight (TOF) range between 22000 μs and 47500 μs, which are the 

{2021}, {1122}, {1013}, {1120}, {1012}, {1011}, {0002} and {1010} planes. They were 

single-peak fitted to determine the plane spacings d and fitted in whole using Pawley 

refinement [32] to directly determine the hcp lattice parameters ahcp and chcp. When 

using monochromatic neutron sources, typically the {1011} or {1013} planes are used to 

measure strains in Ti-6Al-4V additive manufacturing [6], [33], because they consistently 

provide good signal strength. In the present study, these two planes were likewise the 

only ones suitable. Other planes did not diffract in each orientation, which is due to the 

typical texture: In order to detect a plane, it must align normal to the strain direction to 
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be measured. Donoghue et al. and Antonysamy et al. [19], [34], [35] performed electron-

backscatter-diffraction (EBSD) measurements to determine the crystallographic α and 

reconstructed β-orientation in Ti-6Al-4V AM. The procedure to confirm the 

crystallographic orientation in neutron diffraction using the general materials 

diffractometer (GEM) at ISIS with EBSD has been performed previously on near-

α-titanium [36]. During solidification, the basal {100}bcc plane of the high-temperature 

phase is known to align normal with the build direction z, in other words parallel to the 

substrate [19], [34], [35]. The Burgers Orientation Relationship (BOR) in Figure 7 (a) 

shows how the basal {0001} α-plane of the bespoke α-lamellae transforms on the 

{110}bcc plane [29] once the temperature drops below the β-transus. 

The {110}bcc plane has six possible variants in the bcc unit cell, which can be either 

aligned with the z-axis or hold a 45° angle with it, as shown in Figure 7 (b). According to 

this and BOR, there are only two possible orientations of the α-crystal in respect to the 

z-axis, illustrated in Figure 7 (c), which is known from previous EBSD studies on 

Ti-6AL-4V WAAM [19]. Even with a free rotation around z, some hcp planes can never 

align with the required global orientation x- or y-direction. When measuring the normal 

strain, only the {1120} or the {1012} plane (depending on the {110}bcc variant respecting 

BOR) will align normal with the global z-direction (Figure 7 c), and a rotation around z 

does not change the relative orientation of either of the planes. Fortunately the {1011} 

or {1013} have a small deviation to the {1012} plane and can be picked up by the 

detectors as well. Inter-pass rolling is generally used to improve the mechanical 

properties in Ti-6Al-4V WAAM. The microstructural effect is the significant reduction in 

β-grain size from several millimetres to less than 100 μm, as well as the reduction of α 

colony and lath size [19], [20], which is the phase that is being used for strain 

measurement in the present work. More important however is the elimination of 

texture. A larger number of smaller α-grains with a random orientation, caused by inter-

pass rolling, facilitates neutron diffraction measurement. 
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Figure 7: (a) Burgers relationship [37] and change of the lattice during transformation with values taken from the present study; 
(a) possible orientations of the {110} variants; (a) possible orientations of the hcp unit cell after transformation. 

For a consistent residual stress evaluation of all specimens, only the stress calculation 

based on the single-peak-fitted {1011} and {1013} planes were used, as Pawley 

refinement is only compatible with the rolled specimen that diffracts all peaks. Lattice 

strain and residual stress in the three principal directions were calculated using eq. (1) 

and (2). εii is the strain in the respective orientation, based on a specific crystallographic 

plane dhkl. σii is the calculated stress in the corresponding direction [38]; It was 

attempted to calculate the stress based on as many planes as possible using the 

individual elastic constants Ehkl and νhkl. Stapleton et al. [39] have measured the Young’s 

moduli for six different α-planes and derived the single-crystal elastic constants Cij from 

them, which allows the completion of the full stiffness matrix 𝐶 and its inverse, the 

compliance matrix 𝑆. However only the {1011} and the {1013} planes were suitable for 

stress calculation (E1011 = 98 GPa and E1013 = 105 GPa), which was only clear after the 

data analysis. The Poisson ratio used for both planes was  = 0.342 [40]. The uncertainty 

for the strain and stress values were calculated with eq. (4) and (5), based on the partial 

differential eq. (3) for the propagation of uncertainty, using the uncertainty Δdhkl of the 

single peak fit. 

𝜀(𝑑ℎ𝑘𝑙)𝑖𝑖 =
𝑑ℎ𝑘𝑙 − 𝑑ℎ𝑘𝑙,0

𝑑ℎ𝑘𝑙,0
  (1) 

 𝑖𝑖 =
𝜈ℎ𝑘𝑙𝐸ℎ𝑘𝑙

(1 + 𝜈ℎ𝑘𝑙)(1 − 2𝜈ℎ𝑘𝑙)
(𝜀𝑥𝑥 + 𝜀𝑦𝑦 + 𝜀𝑧𝑧) +

𝐸ℎ𝑘𝑙

1 + 𝜈ℎ𝑘𝑙
𝜀𝑖𝑖 (2) 
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𝜕𝑥𝑖
∗ Δ𝑥𝑖|

𝑛
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Δ 𝑖𝑖 =
𝜐𝐸

(1 + 𝜐)(1 − 2𝜐)
(Δεxx + Δεyy + Δεzz) +

𝐸

1 + 𝜐
Δεii (5) 

Contour Method 

After the non-destructive neutron experiments the contour method was performed for 

residual stress analysis. A Fanuc Robocut α-C600i EDM machine was used to cut the 

specimen in a deionised water bath, while the specimen remained clamped on the 36-

mm-thick backing bar. 250-μm-diameter brass wire was used to perform the contour 

cut, oriented parallel to the y-axis and located in the symmetry plane of the intersection, 

as indicated with the dashed line in Figure 5. The cut was performed in the negative z-

direction from the top to the bottom of the specimen, thereby cutting through the 

location of the neutron gauge volume locations to give a direct comparison. As soon as 

the contour cut was completed and the wire entered the backing bar, the cut was 

stopped and both halves of the specimen were removed from the backing bar. This is 

unconventional procedure and does not satisfy the zero-net-stress assumption. It was 

chosen with the attempt to measure the as-deposited stress before unclamping and 

consequent distortion (to be comparable with the neutron diffraction result). After 

ultrasonic cleaning, the surface displacement of both cut halves were measured in a 

temperature-controlled room on a Zeiss Contura g2 coordinate measuring machine 

(CMM) with 3-mm-diameter ruby touch probe with a step size of 0.5 mm. The 

topographical data cloud from both cut surfaces of the samples was processed with 

Matlab analysis routines for data aligning, cleaning, flattening and smoothing [41]. For 

smoothing, a cubic spline with a knot spacing of 5.5 mm in both directions was used. For 

the finite element (FE) analysis one cut half of the sample was modelled in Abaqus 

software using an 8-node brick element and a uniform mesh with 1 mm distance 

between the adjacent FE nodes. The stress calculation was based on the linear elastic 

properties E = 114 GPa and  = 0.342. 

Microstructure 

Optical microstructural analysis was performed on the surface of the contour cut at the 

location of the neutron gauge on the as-deposited and the inter-pass-rolled specimens 

(dashed line in Figure 5). Conventional sample preparation including grinding, polishing 
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and etching with hydrofluoric acid exposed the microstructure, which was then analysed 

using an optical microscope with 50x magnification. 

3 Results 

Microstructure 

Figure 8 (a) and (b) compare the cross-sectional Ti-6Al-4V microstructures in the 

additively manufactured intersections of the as-deposited and the inter-pass-rolled 

specimen. The location and size of the first and last ND gauge volumes are shown in their 

actual location and size. 

 

Figure 8: Microstructure in the neutron diffraction gauge volume located on the contour cut surface (YZ) of (a) the as-deposited 
sample with large columnar prior-β grains containing hcp α-lamellae; the hcp cell is oriented according to Figure 7 and [29]; (b) 
the inter-pass rolled sample with very small, round and equiaxed prior-β grains containing smaller hcp α-lamellae. The identical 
horizontal bowed lines are the layer bands (or HAZ). 

Large columnar prior-β grains are visible in the as-deposited specimen (Figure 8 a) and 

only a few are incorporated by the neutron gauge volume. The high magnification image 

is located on a prior-β grain boundary, showing the α-lamellae organised in the typical 

basketweave fashion. Alignment constraints of the hcp α-crystal in respect to the 

orientation of the lamellae and prior-β grain boundary was discussed by Mathisen et al. 

[29]. Inter-pass rolling produced the expected fine and equiaxed prior-β microstructure 

(Figure 8 b), of which approximately 5000 populate the neutron gauge volume and each 

of those contain a large number of α-lamellae. The high magnification shows a 100-μm-

diameter grain. Inside developed α-lamellae that are smaller compared to the as-

deposited microstructure. The random orientation and large number of prior β-grains 

however imparts its untextured morphology to the incorporated α-phase. The identical 
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pattern of the heat-affected zones in both specimen (HAZ) highlights the similarity of 

the thermal history, showing that the smaller α-lamellae are not due to a faster cooling 

rate. 

Neutron Diffraction 

Figure 9 shows typical spectra in the longitudinal and the normal configuration of the 

as-deposited and the inter-pass-rolled d0 measurements. Planes with similar behaviour 

are shown in the same colour-scheme consistently through this paper. The intensities of 

the actual specimens were lower, due to the increased path length. The inter-pass rolled 

specimen did not show significant texture, whereas the diffraction pattern of the 

as-deposited specimen showed a highly orientation-dependent behaviour. 
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Figure 9: Exemplary fitted spectra of longitudinal and normal 
directions of as-deposited and inter-pass rolled samples. 

The {1120} and the {1012} planes (red) did not show a peak in the longitudinal direction 

of the as-deposited sample, but they were the strongest peaks in the normal direction. 

In turn, the basal {0002} plane and the prismatic {1010} plane (blue) were relatively 

strong in the longitudinal direction, but c vanished in the normal direction. This is in 

agreement with the theory, because the z-rotation of the unit cells, which only occur in 

the two variants shown in Figure 7 (c), does not allow the geometrical alignment of some 

planes with global orientations. Table 2 compares the measured plane spacings with the 

expected detectability of α-planes according to the typical texture and BOR, as explained 

in the methodology section. Also detected were the {110}bcc plane in the longitudinal 

direction and the {200}bcc plane in the normal direction, confirming the  prior-β 

orientation. 
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Table 2: Theoretical and experimental detection of hcp-planes in Ti-6Al-4V WAAM with the typical strong prior β texture 

   2 2 1   112 2   1 1     112     1 1 2   1 1 1      2   1 1    

Longitudinal 
direction (x & y) 

90° hcp orient. good  good   good good good 
45° hcp orient. good  good   good   
Experimental moderate moderate good   very good good good 

Normal 
direction (z) 

90° hcp orient.   moderate very good  moderate   
45° hcp orient.     very good    
Experimental   good very good very good good   

 

All stress-free lattice parameters d0 were found to be isotropic and independent from 

their location in the wall or whether the wall was inter-pass rolled or not. Table 3 shows 

the determined stress-free d0 of all detected planes of both detectors, as well as the 

magnitude of fit uncertainty absolute and in strain.  Throughout all conditions the {1011} 

was fitted with the smallest error. Thermal stress relieving slightly decreased the plane 

spacings by 2.3  10–4 Å on average. Throughout all measurements, the north detector 

measured a d-spacing of approximately 4  10–4 Å more than the one measured by the 

south detector. Therefore each strain was calculated by comparing the strained d-values 

against the d0 measured by the same detector to take detector errors into account. 

Table 3: Stress free d-spacings of the hcp α-phase 

   𝟐𝟎𝟐 𝟏   𝟏𝟏𝟐 𝟐   𝟏𝟎𝟏 𝟑   𝟏𝟏𝟐 𝟎   𝟏𝟎𝟏 𝟐   𝟏𝟎𝟏 𝟏   𝟎𝟎𝟎𝟐   𝟏𝟎𝟏 𝟎  

As- 
deposited 

d_north [Å] 1.22075 1.23781 1.32506 1.46095 1.71492 2.22392 2.33436 2.52858 
fit uncert. [1 −4 Å] 2.6 1.9 1.8 2.2 2.2 1.1 2.4 4.3 
fit uncert. [x10^-6] 203.0 153.5 135.8 150.6 128.3 49.5 102.8 170.1 

d_south [Å] 1.22010 1.23746 1.32463 1.46090 1.71484 2.22352 2.33385 2.52817 
fit uncert.  [1 −4 Å] 2.3 1.8 2.1 1.9 2.2 1.1 2.2 3.9 
fit uncert. [x10^-6] 188.5 145.5 158.5 130.1 128.3 49.5 94.3 154.3 

Stress 
relieved 

d_north [Å] 1.22063 1.23784 1.32480 1.46060 1.71464 2.22375 2.33349 2.52846 
fit uncert.  [1 −4 Å] 2.2 1.8 1.5 1.3 1.4 0.8 2.1 3.4 
fit uncert. [x10^-6] 180.2 145.4 113.2 89.0 81.6 36.0 90.0 134.5 

d_south [Å] 1.22003 1.23740 1.32449 1.46043 1.71444 2.22336 2.33343 2.52827 
fit uncert. [1 −4 Å] 1.7 1.5 1.5 1.5 1.6 0.8 1.6 3.2 
fit uncert. [x10^-6] 139.3 121.2 113.3 102.7 93.3 36.0 68.6 126.6 

The diagrams in Figure 10 show the strain profiles in the three orthogonal directions for 

the as-deposited and inter-pass-rolled specimens from those planes that gave a 

diffraction pattern, as well as the strain of the lattice parameters ahcp and chcp using the 

Pawley refinement for comparison. The profiles from the different planes are 

comparable. The {1120}, {1012}, {0002} and {1010} planes sometimes diverge from the 

other profiles. In particular, the a and c strain values in the normal direction of the as-

deposited specimen diverge dramatically from the other planes and each other 

(Figure 10 c). Finally only the {1011} and {1013} planes (green) were used for stress 

calculation. Error bars are not displayed intentionally to preserve clarity, however the 

uncertainty of the measurements were approximately factor 2 to 3 compared to those 

of the d0 in Table 3. The average strain uncertainties for the {1011} and {1013} planes 

for example were 101 x 10-6 and 269 x 10-6 respectively. 
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Figure 10: Residual strain profile along the symmetry line in all three principle directions of the as-deposited sample in (a) x, (b) 
y and (c) z direction; and of the and inter-pass rolled sample in (d) x, (e) y and (f) z direction. 

Figure 11 (a-c) shows the averaged residual stresses of the {1011} and {1013} planes in 

(a) the longitudinal x, in (b) the transverse y and (c) the normal z-directions. The 

relatively high uncertainty is due to the weaker signal strength of the measurements 

compared to the d0 (Figure 9). However, the good point-to-point consistency in all 

profiles increases confidence. The longitudinal residual stress profile in the x-direction 

of the as-deposited specimen is constant along the height at approximately 200 MPa 

and drops to almost zero towards the top of the specimen. In the transverse y-direction 

the stress is constant along the height at approximately 100 MPa, but without the drop 

at the top. The inter-pass-rolled specimen has similar profiles, with slightly larger values 

in both directions. The only difference is the drop in tensile stress in the top region of 
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the transverse direction, caused by the last rolling step. The stress-relieved specimens 

did not contain significant residual stresses in any direction. The longitudinal stresses 

are slightly tensile, while the normal stresses are slightly compressive. Noteworthy is the 

tensile region in the upper half of the inter-pass rolled specimen in the normal direction 

while the as-deposited one is effectively stress-free or slightly compressive. 
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Figure 11: Calculated average orthogonal residual stresses using 
neutron diffraction with the {1011} and {1013} planes in the 
(a) longitudinal, the (b) transverse and (c) the normal directions. 

Contour Method 

Figure 12 shows the residual stress maps in the y-z plane for all four specimens. Both 

the non-heat-treated specimens (as-deposited (a) and inter-pass rolled (b)) have 

virtually identical residual stress maps. At the top centre both have a small region of very 

large compressive stress, reaching -356 MPa and -313 MPa respectively. Large tensile 
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stresses can be seen below the interface, where they are the largest just under the 

intersections at 338 MPa and 325 MPa. Further balancing compressive regions are 

located at the wide edges and the bottom of the substrate. The through-thickness stress 

in the lateral deposit (on the left and the right side of the longitudinal deposit) is 

practically zero. 

[MPa]

(d)

(c)

Transverse deposit

Substrate

Longitudinal
deposit

y

(b)

(a)

z

 

Figure 12: Full residual stress maps produced by the contour method on the y-z plane of all four specimens: (a) as deposited and 
(b) inter-pass rolled and both after stress-relieving (c, d); units in [mm]; horizontal and vertical dashed lines indicate the interface 
with the substrate and the wall contour respectively. 

The only noteworthy difference of the as-deposited and the inter-pass rolled stress map 

is the slightly increased compressive region under the rolled length in the inter-pass 

rolled specimen, revealing little impact of the cold work on the residual stresses in 
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general. Both stress-relieved specimens (Figure 12 c and d) are virtually stress-free, as 

they range between -32 MPa and 20 MPa. Only the strong compressive field at the top 

of the intersection and the balancing tensile field just below were not relieved entirely. 

4 Discussion 

Neutron Diffraction 

Ti-6Al-4V is an α+β alloy. The low-temperature hcp α-phase completes the 

transformation into full body-centred cubic (bcc) β-phase at approximately 995 °C [37]. 

The moderate-to-fast cooling rates resulted in the formation of a fully lamellar 

microstructure, in which the α-lamellae start growing from the parent β grain boundary, 

as shown in Figure 8 (a). These lamellae are separated by a small residual β phases and 

can form a colonies within the parent β grain [42], [43]. At room temperature Ti-6Al-4V 

typically contains between 3% and 9% of the high-temperature β-phase [25], [44] and 

non-instantaneous cooling allows partitioning, which in this case is the diffusion of Al 

and V into the respective phase that they stabilise. This influences the lattice parameters 

of both hcp and bcc unit cells [45]–[47]. Elmer et al. [48] reported no diffusion or change 

in lattice size up to 550 °C. However, above a stress relieving temperature of 600 °C the 

lattice size can change, but this was observed in a non-lamellar, equiaxed-like and 

oversaturated Ti-6Al-4V microstructure with 12.1 % β-phase prior to stress relieving. 

This may have allowed diffusion and lattice change at a lower temperature, while no 

significant lattice size change was observed in the present study. Furthermore the rapid 

cooling rate used by Elmer et al. [48] retained homogenised elements in the matrix and 

did not allow partitioning after heat treatment, while the slow furnace cooling during 

the stress relief of the intersections could have reset the initial lattice size. 

Inter-pass rolling changes the microstructure significantly, as shown in Figure 8 (b). The 

stress-free lattice parameter however did not change within the resolution of ENGIN-X, 

suggesting a comparable composition in the α-phase, regardless of the reduced 

α-lamellae size and reorientation. Hence rolling did not influence the composition 

(i.e. partitioning) at identical thermal histories. The argument is supported by the similar 

appearance of the HAZ (Figure 8 (a, b), which is evidence for a similar thermal cycle. 

Furthermore, rolling did not make any significant difference to the final residual stress 

state. Hence the thermal history must have been dominant. However rolling had a 
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positive impact on the material texture, as it reduced the preferred orientation and size 

of α and β grains and thereby allowing the detection of all hcp planes during the neutron 

measurements, so exploiting the potential of the white beam at ENGIN-X. This reduced 

texture and grain sizes are known to improve the mechanical properties [20], [21]. 

Stress Development in intersections 

In comparison to previous work, where the longitudinal residual stress in a single free-

standing Ti-6Al-4V WAAM wall reached 500 MPa [3], [6], [33], [49], the residual stress in 

the intersection was, at 200 MPa, significantly lower. Two reasons could be that the total 

longitudinal (and transverse) length of the wall was 150 mm, which is shorter than the 

samples reported in the literature or finish machining might have released tensile 

residual stresses. A third reason could be the oscillating path strategy, which has a 

comparably high energy input per unit length, resulting in a higher component 

temperature and smaller temperature gradient. A final explanation could be the self-

stress-relieving nature of intersections, determined by the path strategy and sequence 

of passes. This phenomenon was observed previously in an numerical simulation that 

predicted less residual stresses in the intersection, compared to the longitudinal tensile 

stresses in the adjacent free-standing walls [23]. This suggests that the reason is due to 

the thermal strategy, rather than machining. Figure 13 illustrates the residual stress 

development during the deposition of a single intersection layer, generated by three 

subsequent intersecting passes. 
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Figure 13: Longitudinal tensile residual stress development in 
additively manufactured intersections showing (a) the tensile 
stress build up in a deposit and its relieve (b), once the lateral 
pass is deposited. 

The first pass of the continuous intersection layer presumably generates typical 

longitudinal tensile residual stresses (Figure 13 a). The following laterally-deposited pass 

completes the layer (Figure 13 b). Thermal shrinkage also results in the development of 

tensile residual stress in the longitudinal direction, but it also effects the previous 

deposition, as the through-thickness shrinkage of the second pass is constrained by the 

intersection. The through-thickness shrinkage of the second pass compresses the first 

pass longitudinally and therefore counteracts the previously developed tensile stress. 

The established residual stress profile along the additively manufactured intersection is 

therefore tensile in both directions and constant along the height, larger in the direction 

of the continuous wall, but still lower than in a free-standing wall. The steep drop in 

stress at the top in x-direction is therefore caused by the second pass in y-direction. A 

similar observation was made in simulations of intersections [23]. The stress profile in 

the normal direction is close to zero or slightly compressive, which averts development 

of possible hydrostatic tensile stresses. The second and third gauge volume from the top 

of the inter-pass rolled specimen however do show low but potentially problematic 
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hydrostatic tensile stress with a minimum of 100 MPa. This is an effect that was also 

observed in rolling of free-standing single pass walls [4]. 

The residual stress profile as-deposited, which is strongly tensile in two directions and 

near zero or slightly compressive in the third direction can be thermally stress-relieved. 

The achieved residual stress of a little less than 100 MPa was still larger than expected 

[8] using the stress relieving temperature of 650 °C, hence little residual distortion after 

unclamping was observed. A higher stress relieving temperature would further reduce 

the stresses [8] but could involve a microstructural modification at and above 700 °C. 

Contour Method 

The contour method is normally performed on a free-standing specimen without 

superimposed external clamping loads. When post-processing the topography of a 

contour surface, the net-stress on that cross section is assumed to be zero. However, in 

the present study the substrate remained clamped onto the backing bar, maintaining 

significant clamping loads in the specimen, so the cross-sectional residual stress was not 

self-balanced. The zero-stress assumption for the contour method is therefore no longer 

valid. Figure 14 shows the comparison of the neutron diffraction results with the 

equivalent profile taken from the contour stress map. The difference originates from the 

contour cut traversing through the unbalanced stress field: neutron diffraction 

measurement show large tensile stresses along the height of the specimen 

(Figure 11 (a, b)), as is also known for the clamped condition in single pass walls [6], [50]. 

The relatively large area on both sides from that location is expected to contain very 

little stress normal to the cut surface, as this stress represents the through-thickness 

stress of the lateral deposits. The backing bar in turn must contain balancing 

compressive stresses. As the contour cut propagates in a negative z-direction through 

the specimen, tensile stressed material is removed continuously, which in turn reduces 

the balancing compressive stresses in the substrate. Once the contour cut has passed 

through the entire cross section of the specimen, the tensile stresses on the y-z plane 

are removed and the backing bar will no longer carry a balancing compressive stress. 

Based on the incomplete cut through one component of the assembly two explanations 

for the deviation from the contour method to neutron diffraction are possible, as 

follows. 
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The balancing stresses in the backing bar are responsible for the discrepancy between 

the neutron and contour results, as they offset the contour cut surface from the net-

zero assumption. This offset decreases continuously as the contour cut propagates until 

it reaches the interface between specimen and backing bar. Comparing the stresses 

obtained by the two methods from the as-deposited and the inter-pass rolled specimen 

in Figure 14 (a, b) shows the continuously decreasing mismatch from the top of the 

specimen to the interface. Figuratively, performing the contour cut on the clamped 

specimen is effectively continuously unclamping it and therefore suggests a stress-

profile that appears like the profile of an unclamped wall compared to a clamped wall 

(Figure 1). 

Furthermore the zero stress assumption is not valid in any case and requires post-

processing for a better understanding. The difference in the stress-relieved specimen 

between the contour method and neutron diffraction Figure 14 (c, d) is smaller, because 

the EDM cutting error would be reduced by stress relieving. 

The slight waviness in the stress plots taken from the contour method can be attributed 

to the spline fit, as half the wavelength is equivalent to the knot spacing in the spline fit. 

This waviness is also evident on both directions in the contour map in Figure 12. 

Plasticity has been reported to play a role when the stresses are either above or close 

to the material yield strength, however with a typical longitudinal yield strength of 

850 MPa [22] plasticity is not expected to be an issue. 
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Figure 14: Comparison of the neutron diffraction experiment of the as-deposited (a) and inter-pass rolled specimen (b) and both 
after stress relieving (c, d). 

Nevertheless, comparing the as-deposited and inter-pass rolled contour maps 

(Figure 12 (a, b)) shows that rolling did not influence the residual stresses and the 

location of most critical stress can be identified with confidence at the root of the 

deposit, and especially at the intersection. Finally the stress-relieved contour maps 

suggest a successful stress relief without any stress gradients (Q.E.D) and agrees with 

the neutron diffraction results. 

5 Conclusions 

In this study the effect of vertical inter-pass rolling and thermal stress relieving on 

Ti-6Al-4V intersections produced by Wire + Arc Additive Manufacturing has been 

investigated. We have demonstrated that: 

1. The as-deposited material shows a strong crystallographic texture, which can be 

virtually eliminated by inter-pass rolling. As deposited, only the {1011} and 

{1013} planes diffract consistently neutrons in all three assumed principal 

directions in Ti-6Al-4V WAAM. As a consequence Pawley refinement is 

unsuitable for stress calculation. It only becomes suitable when the texture is 

eliminated and the prior-β grains are significantly refined. 
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2. Hydrostatic tensile stresses were not found in the as-deposited intersection, 

hence thermal stress-relieving significantly reduced the residual stress. The 

inter-pass rolled intersection contained low hydrostatic stress below the 

plastically deformed region of the last rolling step, but it did not limit the thermal 

stress relieving at this location. However, inter-pass rolling did not have any 

other effect on the residual stresses. 

3. The residual stress in the intersections is tensile in the longitudinal directions of 

both walls and constant along the height. The stress in the continuously 

deposited wall is higher than in the discontinuous one. After the first and 

continuous deposition of the intersection, the subsequent transverse deposit, 

which completes the layer, diminishes the residual stress of the previous deposit. 

Normal stresses are relatively constant along the wall height as well, but 

compressive. 

4. The zero-stress assumption for the contour method is not valid in this 

unbalanced stress field and requires post-processing. Nevertheless the contour 

method results reveal qualitatively the regions of large stresses and gradients in 

as-deposited intersections and furthermore suggest that thermal stress relieving 

can eliminate residual stresses in AM intersections entirely. 
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