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ABSTRACT 

This work presents a modeling methodology to assess the sensitivity to microstructure in high-

cycle fatigue (HCF) performance of fine wires made from MP35N alloy (35Ni-35Co-20Cr-

10Mo in wt %) used as conductors in cardiac leads. The model consists of a microstructure 

generator that creates a mesh of a statistically representative microstructure, a finite element 

analysis using a crystal plasticity constitutive model to determine the local response behavior of 

the microstructure, and a post processer employing fatigue indicating parameters (FIPs) to assess 

the likelihood of fatigue crack initiation. The fatigue crack initiation potency for selected 

microstructure attributes, boundary and interface conditions, and loading profiles is determined 

by computing the Fatemi-Socie FIP over a physically-relevant volume of scale.  Case studies are 

used to investigate (1) the influence of non-metallic inclusion proximity to the wire surface on 

fatigue potency and (2) the transition life demarcating lives primarily controlled by fatigue crack 

initiation versus microcrack fatigue growth. 
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NOMENCLATURE 

𝑘∗ = scaling parameter in Fatemi-Socie for influence of normal stress acting on critical plane  

𝐴 = anisotropy ratio 

𝑏 = Burgers vector 

𝑐𝑔𝑟 = material parameter in threshold strength relation 

𝐶𝜒 = coefficient in back stress evolution  

𝐶11, 𝐶12, 𝐶44 = components of elasticity tensor for cubic system 

𝑑𝑔 = scaling parameter associated with the microstructural size 

𝑑𝑔𝑟 = nominal grain size 

𝐷(𝛼) = drag stress on slip system 𝛼 

𝐷𝑜 = drag strength 

𝐸 = Young’s modulus for isotropic material 

𝑓𝑡𝑤 = twin volume fraction 

𝐹𝐺𝐸𝑉 = Generalized Extreme Value (GEV) distribution function 

𝐹𝐺𝑢𝑚𝑏𝑒𝑙 = Gumbel (Type I GEV) distribution function 

ℎ𝑜 = component in latent hardening coefficient matrix 

ℎ(𝛼𝛽) = latent hardening coefficient matrix 

H = height of AV 

𝑘1, 𝑘2 = parameters in dislocation evolution relation 

𝑘3 = coefficient scaling dislocation density in mean free path relation  
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𝑚 = number of instantiations conducted at a given 𝑆𝑎 

𝑛 = flow exponent 

𝑛𝑘 = material parameter in threshold strength relation 

𝑁𝑓 = cycles to failure 

𝑁𝑖𝑛𝑐 = number of cycles to incubate a fatigue crack 

𝑁𝑡 = transition life 

𝑃𝐹𝑆 = Fatemi-Socie parameter 

𝑃̃𝐹𝑆 = median of the EV FS values 

Δ𝑃𝐹𝑆 = range of EV FS parameter (= 𝑚𝑎𝑥(𝑃𝐹𝑆) − 𝑚𝑖𝑛(𝑃𝐹𝑆)) 

𝑅 = stress ratio (= 𝑆𝑚𝑖𝑛/𝑆𝑚𝑎𝑥) 

𝑆𝑚𝑖𝑛 = minimum stress 

𝑆𝑚𝑎𝑥 = maximum stress 

𝑆𝑎 = stress amplitude (= (𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛)/2 

𝑡 = twin spacing 

𝑡1, 𝑡2, 𝑡3 = different variants of thicknesses 

T = thickness of AV 

W = width of AV 

𝑥 = value in GEV distribution function 

𝑥𝑠𝑢𝑟𝑓 = NMI depth from wire surface 

𝛼𝑔 = correlation coefficient in Tanaka-Mura relation 

𝛼, 𝛽 = slip system indices 

𝛼𝑡 = coefficient in Taylor hardening relation 

𝜒(𝛼) = back stress on slip system 𝛼 
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𝛿(𝛼𝛽) = Kronecker delta 

𝛾(𝛼) = inelastic shear strain on slip system 𝛼 

𝛾̇𝑜 = shear strain rate coefficient 

∆𝛾𝑚𝑎𝑥
𝑝

 = maximum plastic shear strain range on the critical plane 

𝜂 = hardening coefficient in back stress evolution 

𝜂𝑜 = scaling parameter for hardening coefficient in back stress evolution 

𝜅(𝛼) = threshold stress on slip system 𝛼 

𝜅𝑜
(𝛼)

 = initial critical resolved shear stress on slip system 𝛼 

Λ(𝛼) = mean free path for dislocation motion of slip system 𝛼 

𝜇 = shear modulus resolved on slip system 

𝜇 = location parameter in GEV distribution function 

𝜈 = Poisson’s ratio for isotropic material 

𝜌(𝛼) = dislocation density of slip system 𝛼 

𝜌𝑜 = initial dislocation density 

𝜎 = scale parameter in GEV distribution function 

𝜎𝑛
𝑚𝑎𝑥 = maximum stress normal to the critical plane 

𝜎𝑦 = yield strength 

𝜏(𝛼) = shear stress on slip system 𝛼 

𝜏𝑜
(𝛼)

 = lattice resistance of slip system 𝛼 

Ω𝐹𝑆 = weighted EV FS variability parameter 

𝜉 = shape parameter in GEV distribution function 
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ABBREVIATIONS 

35N LT = low Ti version of MP35N (registered trademark of Fort Wayne Metals Research 

Products Corporation, Fort Wayne, IN, USA) 

AV = averaging volume 

CDF = cumulative density function 

CPFEM = crystal plasticity finite element method 

EV = extreme value 

FIP = Fatigue i\Indicator Parameter 

FS = Fatemi-Socie 

GEV = generalized extreme value 

HCF = high cycle fatigue 

ISV = internal state variable 

MFP = mean free path 

MP35N = alloy of 35Co-35Ni-20Cr-10Mo in wt % (registered trademark of SPS Technologies, 

Jenkintown, PA, USA) 

NMI = non-metallic inclusions 

RBBF = rotating beam bending fatigue 

SVE = statistical volume element 

T-M = Tanaka-Mura 

TEM = transmission electron microscope 

TTF = tension-tension fatigue 

UMAT = user material subroutine for finite element code, ABAQUS 

VHCF = very high cycle fatigue 



6  

 

 

INTRODUCTION 

 A robust understanding of component fatigue behavior is critical for medical devices, 

especially for permanently implantable, life sustaining applications in which minimizing 

invasive procedures and interventions is highly desirable. In the case of cardiac pacing leads, the 

in-situ loading conditions are variable and difficult to quantify. Heart contractions create a low-

amplitude, high-frequency load, and torso and arm movements add higher amplitude, but low 

frequency loading. In the high cycle fatigue (HCF) regime, the fatigue life of fine wires is 

dominated by fatigue crack initiation, defined here as nucleation and growth of a crack on the 

order of the nucleant grain/phase size. Once formed, a fatigue crack grows quickly to reach the 

critical crack length due to the geometric constraints of the wire, after which ductile (fast) 

fracture occurs. Fatigue crack nucleation in fine wires is a stochastic process often controlled by 

heterogeneities within the microstructure such as non-metallic inclusions (NMIs). Understanding 

the role these inclusions play in fatigue life variability is critical to the design of fatigue resistant 

lead wires. 

 Past studies [20] on MP35N medical grade wires have employed statistical Monte Carlo 

initiation life models to predict materials intrinsic variability. However, these models are 

constrained by a limited capability to represent the microstructure of these wires.  

Microstructure-sensitive fatigue models are attempts to represent scatter in fatigue life by 

explicitly considering the effects of microstructure [N1,N2,N3,N4]. Among the microstructure 

attributes that explain most of the variability are grain size and distribution of crystallographic 

orientations (i.e., crystallographic texture), phase volume fraction and distribution, the 



7  

interactions among adjacent grains, grain boundary character, non-metallic inclusion attributes, 

inclusion/matrix interface behavior, and voids or other pre-existing heterogeneity at the scale of 

the microstructure. By incorporating the statistical variability of microstructure attributes into the 

model, the fatigue life distribution of a component can be estimated from a limited set of fatigue 

experiments.  

The major components of a microstructure-sensitive fatigue model involve: 

1. A representation of one or more microstructural attributes that vary in conformance 

to some prescribed distributions informed from experiments; 

2. A method for applying representative fatigue loading and tracking the evolution of 

local stresses and strains; 

3. A metric to evaluate fatigue damage potency, i.e., a Fatigue Indicator Parameter 

(FIP) [N3]. This involves combining key response parameters in a manner that 

provide an indication of the fatigue damage potency of the applied loading 

considering the microstructure attributes represented. 

 Using a crystal plasticity finite element model (CPFEM) governed by a set of constitutive 

laws, different microstructural attributes can be modeled and quickly assessed for their impact on 

fatigue including slip localization, plastic strain heterogeneity due to geometrical features 

(notches, etc.) and grain-to-grain and grain-to-inclusion interactions. Specific applications of 

microstructure-sensitive fatigue modeling considered in recent work include: 

1. Establishing rankings of microstructure attributes most detrimental to life using 

extreme value marked correlation functions [N3,N5,16]; 

2. Establishing the effect of the loading amplitude on fatigue scatter [11, 18,GMC1]; 

3. Determining the influence of geometrical features on fatigue resistance [10, 11, 
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GMC1]; 

4. Predicting fatigue scatter due to the attributes of the primary inclusion particles which 

may include the inclusion size and type, the influence of the interface between the 

inclusion and matrix (e.g., perfectly bonded, partially debonded, fully debonded), the 

polycrystalline microstructure around the inclusion, and proximity of the inclusion to 

the surface or other inclusions [N6, 18]; 

5. Understanding the competing high cycle fatigue mechanisms for surface vs. 

subsurface crack nucleation [N7]. 

 Although Schaffer [19] developed a numerical model for fine wire MP35N incorporating 

the influence of several microstructural inputs via Monte Carlo methods, his model does not 

account for polycrystalline microplasticity which strongly contributes to HCF crack nucleation 

through localized anisotropic deformations [N1, N2, N3,GMC2].  The objective of this work is 

to develop a microstructure-sensitive fatigue simulation for MP35N fine wire capable of 

elucidating differences in fatigue performance due to variability of microstructure attributes.  

This modeling strategy includes [N1]: 

1. Formulation of crystal plasticity relations that capture the rate sensitivity and 

kinematic hardening behavior of MP35N fine wire; 

2. Development of a microstructure generation and meshing protocol to recreate salient 

MP35N microstructure attributes in a stochastic, finite-element framework; 

3. Selection of appropriate response parameters to assess fatigue performance; 

4. Characterization of the extreme-value distributions of the selected response 

parameters; and 

5. Validation of the newly-developed CPFEM model against experimental data. 
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Fine Wire Material 

 The fine wires are made from MP35N (ASTM F562) [2], a quaternary, low temperature 

superalloy containing major elements (wt %) 35Ni-35Co-20Cr-10Mo. The high amount of Ni 

produces a metastable face-centered cubic crystal structure. The fine wire form of MP35N has 

found use in surgical implants due its excellent corrosion resistance and biocompatibility [13] as 

well as its high strength and fatigue resistance. Applications include catheters, stylets and pacing 

leads. 

 Production of wires is accomplished by drawing a rod through successively smaller dies 

with intermediate annealing steps. The drawing process produces significant anisotropy in the 

material with strong texture components in the 001, 111 and 113 [7,14,23]. Drawing also 

contributes to a fine grain structure. Grain size for fine wire is typically 1-5 µm, compared with 

35 µm or greater for the bulk material. In the bulk material, hexagonal close packed platelets 

form through the Suzuki mechanism [1, 5]. These platelets have not been observed in fine wire 

specimens [14, 23] or bulk specimens under room-temperature deformation [17], leading to its 

characterization as a single-phase material. Plastic deformation is accommodated through both 

slip and intragranular twinning [23]. Twins are found to be between 1-10 nm in thickness. Once 

formed, deformation twins also act as a hardening mechanism, impeding the motion of 

dislocations. 

 The presence of non-metallic inclusions (NMIs) is a primary driver of fatigue crack 

initiation in MP35N wires [19,20]. Two types of inclusion particles have been identified, shown 

in Fig. 1: cuboidal titanium nitride (TiN) and globular aluminum oxide (Al2O3). The former 

particles are typically larger in size (4-10 µm) compared to the later (1-5 µm). A related alloy 
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designated 35N LT is a low Ti variant where Ti is reduced below 0.01% to eliminate TiN 

particles, improving fatigue performance [19,20]. In this work, the terms full-Ti or low-Ti will be 

used to differentiate between the MP35N or 35N LT variants when necessary. 

a)

 

b)

 

Fig. 1  Inclusions in MP35N fine wire. (a) Sharp cuboidal TiN inclusion, partially debonded 

from the matrix. (b) Globular Al2O3 (alumina) inclusion near the wire surface. Note differences 

in scale. From Ref. [19] 

 

Characterization of Microstructure Attributes 

 The salient microstructure attributes of the MP35N fine wire, characterized by Prasad et 

al. [14], provide realistic input for virtual microstructure instantiation. Grain size and texture 

distributions were characterized via electron back scatter diffraction (EBSD) imaging of a 

transverse wire cross-section. Grain morphology was characterized with their aspect ratio, i.e., 

by comparing longitudinal and transverse EBSD cross-sections. The MP35N fine wire has a 

grain size to be on the order of 1-5 µm with variation following a lognormal distribution.  

MP35N in its cold-drawn condition exhibits a strong fiber texture produced from the wire 

drawing, shown in Fig. 2. 
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Fig. 2  An inverse pole figure map of low-Ti MP35N fine wire microstructure created by EBSD 

accompanied by pole figures showing strong 111 texture along axis of wire. From Ref. [14]. 

 

Modeling Methodology 

 The modeling methodology consists of several components that will be described in more 

detail in the following sections: 

1. A microstructure generation tool that creates a finite element mesh of a stochastic 

arrangement of grains (a so-called instantiation of microstructure), often surrounding 

a NMI within the defined volume; 

2. A finite element solver (ABAQUS) coupling to crystal plasticity model for MP35N to 

solve for the local cyclic stress and strain states generated under the simulated fatigue 

loading; 

3. A post-processer to compute the local volume-averaged response parameters (FIPs) 
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from each microstructure instantiation; 

4. The extreme-value FIP (Fatemi-Socie (FS) parameter in this case) distribution, 

populated from the maximum FS value of each microstructure instantiation, are then 

correlated to the distribution of fatigue lives to provide a direct quantitative 

comparison to the experimental fatigue data. 

 

Volume Elements Representing the Microstructure 

 To model the stochastic nature of metallic microstructures in a computationally feasible 

way, it is useful to employ Statistical Volume Elements (SVEs) [N3,N9,N10]. These idealized 

volumes are constructed such that each identically-sized volume is a sample of the underlying 

distributions of the microstructure attributes. Each SVE contains a unique, random arrangement 

of grains and crystallographic textures which are sampled from experimentally characterized 

grain size and texture distributions.  We consider SVE that are large enough relative to the grain 

size that the average stress-strain responses of multiple SVEs converge to the macroscopic 

stress-strain response determined by experiment.  The use of SVEs for numerical fatigue 

modeling offers advantages in computational efficiency. A limited number of SVEs (<100) at 

each loading condition can adequately characterize the distribution of the desired response 

parameter [N5,16]. Variation of microstructure attributes between successive SVEs results in 

differences in the local stress-strain response. These differences can be quantified using FIPs 

which are surrogate measures of the local driving force for fatigue crack nucleation and early 

growth.    

 Each volume element is created using an ellipsoid packing algorithm [16] and uses a 

meshing algorithm based on Musinski’s work [10]. The target microstructure is a small volume 



13  

of a MP35N fine-wire matrix surrounding a cuboidal TiN inclusion particle. Since the goal of the 

model is to examine rare event phenomenon associated with NMIs, an inclusion is input 

deterministically to each instantiation with full control of inclusion size, position and interface. 

The loading, interface and boundary conditions around the NMI can all be manipulated to 

examine their effect on fatigue potency.  The term fatigue potency relates to the likelihood of 

fatigue crack initiation as quantified by FIPs. 

 

Constitutive Models 

 In the fine wire configuration, MP35N consists of a single-phase, face-centered cubic 

(fcc) structure with intragranular deformation twins.  An elastic-crystal viscoplastic constitutive 

model established for another fcc alloy [21] was adopted with modification to 

phenomenologically account for the influence of deformation twins, dependent on twin volume 

fraction 𝑓𝑡𝑤 and twin spacing 𝑡. Homogenization over deformation twins is necessary due to the 

limited spatial resolution of finite element modeling. The model seeks to predict damage 

processes at the scale of microns, while deformation twins have thicknesses of the order of 1 to 

10 nm [14, 23].  

 The inelastic shear strain rate on each slip system 𝛼 is given by a power law relationship, 

 𝛾̇(𝛼) = 𝛾̇𝑜 〈
|𝜏(𝛼)−𝜒(𝛼)|−𝜅(𝛼)

𝐷(𝛼)
〉𝑛 𝑠𝑔𝑛(𝜏(𝛼) − 𝜒(𝛼)) [1] 

that depends on the shear stress 𝜏(𝛼), the back stress 𝜒(𝛼), which is critical for modeling the 

cyclic loading and ratchetting, the threshold stress 𝜅(𝛼), and drag stress 𝐷(𝛼) acting on each slip 

system.  In addition, 𝛾̇𝑜 is the shear strain rate constant and 𝑛 is the flow exponent.  The inelastic 

shear strain rate is zero on each slip system until the threshold stress 𝜅(𝛼) is reached.  Plastic slip 

is assumed to occur only on the 12 octahedral systems {111}110. 
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 The threshold hardening equation depends on dislocation density 𝜌 through a Taylor 

relation 

 𝜅(𝛼) = 𝜅𝑜
(𝛼)

+ 𝛼𝑡𝜇𝑏√𝜌(𝛼) [2] 

where 𝑏 is the Burgers vector, 𝜇 is the (resolved) shear modulus, 𝛼𝑡 is a constant and 𝜅𝑜 is the 

initial critical resolved shear stress (CRSS) given by 

 𝜅𝑜
(𝛼)

= [(𝜏𝑜
(𝛼)

)
𝑛𝑘

+ 𝑐𝑔𝑟(𝑑𝑔𝑟)
−0.5

+ 𝑐𝑔𝑟(𝑓𝑡𝑤)]
1/𝑛𝑘

 [3] 

which depends on the lattice resistance 𝜏𝑜, the nominal grain size 𝑑𝑔𝑟, and the twin volume 

fraction 𝑓𝑡𝑤 as well as material parameters 𝑐𝑔𝑟 and 𝑛𝑘.   

 Two internal state variables (ISVs) can evolve:  dislocation density and back stress.   

Dislocation density evolves by 

 𝜌̇(𝛼) = ∑ ℎ(𝛼𝛽) (
𝑘1

𝑏Λ(𝛽) − 𝑘2𝜌(𝛽)) |𝛾̇(𝛽)|12
𝛽=1  [4] 

where ℎ(𝛼𝛽) is the hardening coefficient matrix, Λ is the mean free path (MFP) for dislocation 

motion, and 𝑘1 and 𝑘2 are constants.  The dislocation density affects both isotropic and 

kinematic hardening. At high dislocation densities typical of strongly cold-worked components, 

competition between dislocation formation and annihilation results in saturation of ρ due to the 

dynamic equilibrium between the first and second terms of Eq. 4. Due to the low stacking fault 

energy (SFE) of MP35N, it is assumed that there is no interaction between the slip systems and 

only self-hardening is possible; indeed, self-hardening can even dominate on fcc metals with 

higher SFE [GMC3]. Therefore, the hardening coefficient matrix is given by 

 ℎ(𝛼𝛽) = ℎ𝑜𝛿(𝛼𝛽) [5] 

where ℎ𝑜 is a constant and 𝛿(𝛼𝛽) is the Kronecker delta.  The MFP Λ is a measure of the 

obstacle-free movement distance available to a dislocation on a given slip system. In MP35N, it 
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is described by the harmonic mean of three distances: the grain size 𝑑𝑔𝑟, twin spacing 𝑡, and the 

spacing of immobile dislocations which scales inversely with the square root of dislocation 

density, 

 
1

Λ(𝛽) =
1

𝑑𝑔𝑟
+

1

𝑡
+ 𝑘3√𝜌(𝛽) [6] 

 The back stress evolves according to 

 𝜒̇(𝛼) = 𝐶𝜒 [𝜂𝜇𝑏√𝜌(𝛼)𝑠𝑔𝑛(𝜏(𝛼) − 𝜒(𝛼)) − 𝜒(𝛼)] |𝛾̇(𝛼)| [7] 

where 𝐶𝜒 is a fitting parameter and 𝜂 depends on 𝑑𝑔𝑟, twin spacing 𝑡, and Λ by the relation 

 𝜂 = 𝜂𝑜Λ(𝛼) (
1

𝑑𝑔𝑟
+

1

𝑡
) [8] 

The back stress equation contains two terms: an accumulation term that depends on the 

dislocation density on the current slip system, and a dynamic recovery term dependent on the 

current value of 𝜒(𝛼) representing the influence of dislocation annihilation. The back stress ISV 

captures the Bauschinger effect and plastic ratcheting that occurs under cyclic loading as a result 

of non-uniform mesoscale structures such as dislocation pile-ups, twin boundaries, and 

dislocation walls. 

 The parameters of the constitutive model were calibrated using a combination of existing 

values from literature, physically-based estimations, and iterative fitting against cyclic 

mechanical test data conducted on the fine wires. The material response is a function of both the 

parameter values and the crystallographic texture of the microstructure, so the parameter fits 

must be adjusted for significant changes in texture. Three distinct model calibrations were 

performed: an initial calibration that was a first-order approximation targeting a microstructure 

with a single texture distribution around the wire drawing texture 111, an intermediate 

calibration to improve the kinematic hardening response, and a fine-tuning calibration targeting a 
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microstructure with multiple texture components shown in Fig. 2. 

 The isotropic hardening behavior and the strain-rate sensitivity were calibrated to 

uniaxial tensile test data reported in Ref. [14]. This test was conducted on a 250 mm length of 

low-Ti as-drawn MP35N wire in displacement control alternating every 0.5% strain between 

high and low strain rates of 1.7 × 10
−3

 and 1.7 × 10
−5

 s
−1

, respectively. The parameters 

governing the kinematic hardening behavior were determined by fitting to the model to two 

cyclic tension-tension force-control experiments, both conducted at R = 0.5, with  𝑆𝑚𝑎𝑥 = 1400 

MPa and 1500 MPa.  These experiments exhibit cyclic plastic ratchetting. The difference in 

accumulated ratchet strain between the two tests caused by the non-zero mean stress was 

compared to determine the increment of strain over each cycle which was used to calibrate the 

back stress evolution parameters. 

 The material parameters are summarized in Table 1.  Parameters  𝐷𝑜 , 𝜏𝑜 , 𝛼𝑡, 𝑏,  

𝑛𝑘, 𝑐𝑔𝑟, 𝐶𝜒,  and ℎ𝑜 are unchanged from the values used for IN100 [21]. The values of these 

parameters for MP35N are expected to be similar to those for IN100, since both are fcc alloys 

containing significant Ni content. Parameters 𝑑𝑔𝑟, 𝑓𝑡𝑤, 𝑡 and 𝑘3 were added to account for the 

strengthening effect of the small grain size and nano-scale twins. The value of 𝑑𝑔𝑟 was set to the 

median grain size of 2 µm and 𝑡 was given a value of 10 nm consistent with the twin spacing 

revealed by TEM [14, 23]. The values of 𝑓𝑡𝑤 and 𝑘3 were chosen to reflect physically reasonable 

values. The initial dislocation density 𝜌𝑜 was given a value reflecting the high initial dislocation 

density from 36% cold work in the as-drawn MP35N wire. Additional cyclic deformation from 

fatigue type loading is not expected to further increase 𝜌, so the ratio of 𝑘1 and 𝑘2 is selected 

such that 𝜌 saturates above 𝜌𝑜. 

 Since a complete set of the elastic properties, 𝐶11, 𝐶12, and 𝐶44, was not available for 
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MP35N, and experiments could only provide the uniaxial value for a textured wire, density 

functional theory (DFT) using a calculation methodology derived from the technique in Wang et 

al. [26] was first used to determine the anisotropy ratio of MP35N, 

 𝐴 =
2𝐶44

𝐶11−𝐶12
= 1.56 [9] 

Then it was assumed that this anisotropy ratio predicted at 0 Kelvin is same at room temperature, 

but scaled to match the experimentally measured modulus of a volume with known 

crystallographic texture.   These values are reported in Table 1.  The TiN inclusions were 

assumed to be isotropic elastic with 𝐸 = 360,000 MPa and 𝜈 = 0.24.  The parameters having the 

largest effect on the stress-strain response of a SVE were the elastic stiffness coefficients, 𝐶11, 

𝐶22, and 𝐶44, followed by the rate exponent 𝑛 and the back stress evolution coefficient 𝜂𝑜 [N11].  

However, the life correlations were much more sensitive to the T-M correlation coefficient 𝛼𝑔 

than any of the constitutive model parameters. 

Table 1  Parameters used in constitutive model for MP35N. 

Parameter Value 

𝐶11 237,321 MPa 

𝐶12 118,120 MPa 

𝐶44 92,756 MPa 

𝛾̇𝑜 7.2×10
16

 s
-1 

𝑛 18 

𝐷𝑜 195 MPa 

𝜏𝑜 75.15 MPa 

𝜌𝑜 3.0×10
9
 mm

-2 

𝛼𝑡 0.1 

𝜇 92,756 MPa 

𝑏 0.407 nm 

𝑛𝑘 1 
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𝑐𝑔𝑟 9.432 MPa√𝑚𝑚 

𝑑𝑔𝑟 0.002 mm 

𝑓𝑡𝑤 0.1 

𝐶𝜒 2 

𝜂𝑜 68.0 

𝑡 0.00001 mm 

ℎ𝑜 1 

𝑘1 100,000 mm
-1 

𝑘2 1.0 

𝑘3 0.1 

 

 

Fatigue Indicator Parameters 

 Fatigue Indicator Parameters (FIPs) provide a way to determine the location and relative 

potency of fatigue hot-spots within a component after the application of fatigue loading [N3]. 

FIPs are physically-based metrics that combine tensor quantities such as stresses or plastic 

strains occurring over a representative load cycle into a single scalar value which can be used to 

judge the relative fatigue potency. Numerous FIPs have been proposed and utilized for different 

materials and crack nucleation mechanisms. 

 The Fatemi-Socie (FS) parameter [6] was selected for use with the model for its ability to 

predict fatigue response in materials where crack nucleation is driven by localized cyclic shear 

strain. The parameter is based on the observation that cyclic fatigue cracks tend to form on 

planes aligned with the direction of maximum shear strain amplitude, but that magnitude of shear 

strain amplitude alone does not explain the lower rates of cracking in torsional fatigue compared 

to uniaxial. To account for this, the maximum plastic shear strain amplitude over a cycle is 

modified by the normal stress to the plane of maximum plastic shear strain. The FS parameter is 
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given by 

 𝑃𝐹𝑆 =
∆𝛾𝑚𝑎𝑥

𝑝

2
[1 + 𝑘∗ 𝜎𝑛

𝑚𝑎𝑥

𝜎𝑦
] [10] 

where ∆𝛾𝑚𝑎𝑥
𝑝  is the maximum range of plastic shear strain on the critical plane over a cycle and 

𝜎𝑛
𝑚𝑎𝑥  is the maximum stress normal to the critical plane. The maximum normal stress is 

normalized by the yield stress 𝜎𝑦 and weighted by the coefficient 𝑘∗.  The weighting coefficient 

can be estimated by correlating uniaxial to torsional fatigue data. Lacking torsional data for 

MP35N fine wire, 𝑘∗ has been arbitrarily set to 1, which is within the range of values found in 

fatigue literature [3, 11, GMC4]. The FS parameter as formulated in Eq. 10 is termed a critical 

plane type FIP since it accounts for preferential crack nucleation on cyclic shear planes, either 

crystallographic [GMC5] or non-crystallographic [GMC4, N8]. The crystallographic formulation 

finds the critical plane by searching among all available slip systems, while the non-

crystallographic formulation takes the plane of maximum cyclic shear strain in 3D space. The 

non-crystallographic formulation is used in this work to simplify computation. The choice of 

critical plane calculation methodology is not expected to significantly impact the parameter 

scaling. 

 The FS parameter must be evaluated over an appropriate volume to provide a meaningful 

indication of fatigue crack nucleation potency. Two important considerations for averaging 

volume (AV) selection are size and sampling location within the SVE.  Volume size is dictated 

by (a) the finite size of fatigue crack initiation, (b) regularization to eliminate mesh-size 

dependency and (c) desired level of smoothing over microstructural features such as grains. The 

term initiation is not well-defined in literature, having no single agreed-upon criteria. For the 

purposes of this research, a fatigue crack is considered initiated when the cracked area within the 

matrix approaches 1 µm
2
. This size was chosen to match the scale of grains in MP35N fine wire, 



20  

which is the smallest feature explicitly modeled in the FEA mesh.  Therefore, the size of the AVs 

used will be of this same scale. Sampling location is associated with the locations of stress risers 

within the microstructure which provide the driving force for crack initiation. In many cases, the 

locations of stress risers are unknown a priori so the entire SVE must be interrogated to locate 

them. However, when a hard NMI is present within the SVE, stress concentrations will occur 

along the inclusion-matrix interface, permitting a targeted application of sampling locations 

there. Inclusions that are half debonded from the matrix in an orientation perpendicular to the 

loading axis will generate their maximum stresses along the debonding perimeter [18,N6]. Under 

HCF conditions, stresses quickly approach their far-field values moving radially outward away 

from the NMI surface, resulting in insufficient driving force to generate plasticity more than a 

few microns from the NMI interface. Because of this, AVs are sampled immediately adjacent to 

the NMI. These sampling locations for the 50% debonded NMI configuration have been shown 

in prior work [18,N6] to be the locations of the largest FIP magnitude.  Fig. 3 illustrates the 

locations of selected FIP AVs for the case of a 50% debonded TiN inclusion. 

 

Fig. 3  Schematic showing the positioning and naming conventions of selected FS AVs with 

respect to a 50% debonded cuboidal inclusion. 

 

 Each of the four distinct volumes shown is replicated on the X+, X−, Z+ and Z− inclusion 
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faces. The plane labeled Debond Perimeter bisects the inclusion along the Y-axis. Matrix 

elements above this plane are debonded from the inclusion surface by means of a frictionless 

normal contact, while elements below are bonded via tie constraints. All FIP AVs are bisected by 

the debond perimeter such that they contain both bonded and debonded elements in equal 

measure. Each volume is a rectangular prism of dimensions W×H×T where W is the width 

measured in the plane of the debond perimeter, H is the height along the Y-axis and T is the AV 

thickness measured radially away from the inclusion and perpendicular to the inclusion face.  

Each AV has H = 1 µm and comes in three variants of thickness, 0.10 µm, 0.25 µm, and 0.50 

µm, measured perpendicular to the inclusion face.  Two widths of AV were considered.  

Domains denoted by Full Face span the width of the inclusion face, while domains Left, Right, 

and Mid have a width equal to half the inclusion width. The Mid domain overlaps both the Left 

and Right domains by half. Table 2 gives the volumes of each AV in µm
3
 for the case of a 4 µm 

NMI.  In total, considering the four edges of the cubic NMI, 48 distinct AVs are defined.   

 

 

Table 2  Volumes (in µm
3
) of the FIP AVs for a cubic NMI with edge length of 4 µm for each of 

the three variants of thickness. 

AV Identifier t1 =0.10 µm t2 = 0.25 µm t3 = 0.50 µm 

Full Face 0.4 1.0 2.0 

Left Face 0.2 0.5 1.0 

Mid Face 0.2 0.5 1.0 

Right Face 0.2 0.5 1.0 

 

Extreme Value Statistics 
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 Statistics of extreme values (i.e., maxima and minima) are useful in the study of the 

fatigue behavior of engineering components [N6, N4, N3, N5, 16]. Engineering components 

used in life critical applications must be designed to make the likelihood of fatigue failure 

extremely small. Prediction of reliability requires characterization of the behavior of the tail end 

of the population which fails prior to its designed lifespan. Extreme value statistics characterize 

this tail. Three classes of extreme-value distributions – Gumbel (Type I), Fréchet (Type II) and 

Weibull (Type III) – can be described by a single distribution through the addition of a shape 

parameter [18]. This combined distribution is known as the Generalized Extreme Value (GEV) 

distribution. The cumulative distribution function (CDF) for the GEV distribution is given by 

 𝐹𝐺𝐸𝑉(𝑥;  𝜇, 𝜎, 𝜉 ) = 𝑒−[1+𝜉(
𝑥−𝜇

𝜎
)]

−1/𝜉

 [11] 

where 𝜇 is the location parameter, 𝜎 is the scale parameter and 𝜉 is the shape parameter. 

Parameters 𝜇 and 𝜎 are permitted to be any real number, but 𝜉 is restricted to the interval [-1,1]. 

The shape parameter significantly alters the behavior of the GEV distribution depending on 

whether 𝜉 > 0, 𝜉 = 0, or 𝜉 < 0.  In the case of 𝜉 = 0, Eq. 11 is undefined and must be replaced 

by the limit as ξ → 0 resulting in 

 𝐹𝐺𝑢𝑚𝑏𝑒𝑙(𝑥;  𝜇, 𝜎, 𝜉 ) = 𝑒−𝑒
(−

𝑥−𝜇
𝜎

)

 [12] 

also known as the Gumbel or Type I GEV distribution. In this work, the GEV distribution (Eq. 

11) is used to fit the distributions of the volume-averaged FS parameter and the corresponding 

fatigue life correlations. Several distribution fits were evaluated and it was found that the fit to 

the Gumbel distribution was much worse than the GEV distribution [N11]. 

 

Correlation to Life 

 Once a sufficiently large sample of the extreme-value FS response values has been 
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constructed from multiple microstructure instantiations, the sample can then be correlated to a 

life distribution using a modified Tanaka-Mura (T-M) approach [25] [3]. The Tanaka-Mura 

equation considers that the number of cycles required to initiate a crack along a slip band under 

HCF loading is related to the energy required to form new surfaces which is inversely 

proportional to the square of the cyclic plastic shear strain range. By substituting the extreme-

value FS parameter for cyclic plastic shear strain range, the following relation emerges [22]: 

 𝑁𝑖𝑛𝑐 =
𝛼𝑔

𝑑𝑔
(𝑃𝐹𝑆)−2 [13] 

where 𝑁𝑖𝑛𝑐 is the number of cycles required to initiate a fatigue crack, 𝑑𝑔 is a scaling parameter 

associated with the microstructural size scale and 𝛼𝑔 is a correlation coefficient, determined by 

fitting the extreme-value FS distribution to an experimental life distribution. 

 Under HCF and VHCF conditions the total cycles to failure is large, and the great 

majority of these contribute to crack initiation.  Therefore, we neglect the contribution of 

propagation life to the total life in MP35N fine wire fatigue.  The second case study discussed in 

the next section investigates this assumption further. 

 

RESULTS AND DISCUSSION 

Effect of Inclusion Proximity to Surface 

 A parametric study was conducted to investigate the ability of the model to predict the 

effect of NMI surface proximity on fatigue life. The main objective was to reproduce the trend 

found by Schaffer [20] regarding the influence of inclusion surface proximity on full-Ti MP35N 

wire fatigue life.  The NMI were placed at four different depths from the wire surface, 0.75, 1.5, 

2.0 and 4.0 µm. Twenty microstructure instantiations were run at each depth to estimate the 

median fatigue life and scatter. 
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 Each microstructure instantiation is a 20 µm
3
 SVE occupying a volume immediately 

adjacent to the outer surface of the MP35N wire. The positive X-face is along the wire outer 

surface, and all other SVE faces are interior.  Loading is along the Y axis, coincident with the 

local wire axis.  Periodic boundary conditions are prescribed for the Y and Z faces and all edges. 

The positive X-face is traction-free and unconstrained, while the negative X-face is given a 

node-wise displacement boundary condition to mimic a periodic boundary. The negative X-face 

displacement boundary conditions are extracted from a reference analysis having fully 3D 

boundary conditions but identical mesh and loading history. 

 Each SVE was instantiated with 1000 grains using the ellipsoid packing method. The 

grains were given a fiber texture with a single texture component normally distributed about the 

111 orientation with standard deviation defined such that 2σ = 15°.  The NMI depth from the 

wire surface xsurf was defined as the perpendicular distance from the wire surface to the nearest 

point of the NMI. Similarly, the centroid distance 𝑥𝑐 was defined as the perpendicular distance 

from the wire surface to the NMI centroid.  NMI size was fixed at 4 µm in this study. The NMIs 

were oriented such that the inclusion faces were parallel to the SVE faces. All NMIs had their 

upper halves debonded from the matrix, a worse-case scenario. 

 The loading profile applied to each microstructure instantiation was in the form of three 

fully-reversed R = −1 displacement controlled cycles. This history is intended to replicate loads 

experienced under rotating beam bending fatigue (RBBF) by a small surface volume. Loading 

was applied along the global Y-axis, parallel to the wire neutral axis at the bend apex in the 

RBBF experiments.  The magnitude of the loading amplitude applied to each SVE for each NMI 

depth is based on the far-field stress 𝑆𝑌𝑌 at the NMI centroid, calculated using a linear stress 

gradient which is a maximum at the wire free surfaces and zero at the neutral axis. 
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 Twenty microstructure instantiations were run at each of the four NMI depths. The 

extreme value (EV) (i.e., maximum) FS values from among the twelve Left, Mid or Right Face 

volumes were plotted versus NMI distance from surface are shown in Fig. 4.  The EV FS values 

plotted in Fig. 4 were correlated to fatigue life values through the modified Tanaka-Mura 

approach. The correlation to life was performed at the 0.75 µm level assuming negligible 

propagation life. The median EV FS value was correlated to the linear regression fit the 

experimental data points with 𝑑𝑔 = 1.5 µm. A correlation coefficient 𝛼𝑔 = 1.129×10
−5

 µm–

cycles was found to correlate well to experiment. The lives for the other NMI depths were 

predicted using the same values of 𝛼𝑔 and 𝑑𝑔. The resulting life correlations are plotted against 

the experimental data points in Fig. 5.  As expected, life increases as the NMI depth from the 

free surface is increased. Moreover, the model shows good correlation with the linear regression 

trend computed from the experimental data points at all depths considered. The minimum lives 

predicted by the model at each level is below the 5% confidence bound. This indicates that the 

model gives a more conservative prediction of minimum fatigue life than the regression fit.  

Similarly, confidence in the minimum life value predicted by the model at each NMI depth could 

be improved by running additional microstructure instantiations at that condition.  The 

distribution of lives at each NMI depth can be further investigated by examining the empirical 

CDFs and fitting GEV distributions. The empirical CDFs along with the fitted GEV distributions 

are plotted in Fig. 6. 
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Fig. 4  Extreme-value FS parameter values for four distinct NMI depths and corresponding stress 

amplitudes reduced proportionally from a nominal 620 MPa stress amplitude at the wire surface. 
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Fig. 5  Life correlations of the model fit to experimental data. The modified T-M fit is performed 

at the 0.75 µm level resulting in a correlation coefficient 𝛼𝑔 of 1.129 × 10
−5

 µm-cycles. 

 

 Plotting the CDFs allows for comparison of the probability of failure at a given number 

of cycles among differing NMI depths from the wire surface.  Based on the figure, the 

probability of failure at 1×10
7
 cycles is predicted to be 1.0 for  xsurf  = 0.75 µm,  0.94 for xsurf  = 

1.5 µm,  0.85 for xsurf  = 2.0 µm but only 0.07  for xsurf = 4.0 µm. This result demonstrates that 

the probability of failure drops off drastically once xsurf reaches or exceeds the diameter of the 

NMI. This is consistent with past studies [18], which have found that fully embedded NMIs 

having depth (xsurf) greater than the diameter of the NMI are associated with substantially lower 

fatigue potencies than those closer to the surface. The reduction of fatigue potency with 

increasing depth is enhanced by the stress gradient in RBBF fatigue. These stress gradients are 

not present in fatigue specimens in tension-compression or tension-tension fatigue. 
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Fig. 6  CDFs of the Fatigue-life correlations with corresponding GEV distributions. 

 

 

Identifying the Crack Initiation to Microcrack Growth Transition 

 A second study was conducted to identify the transition life between fatigue crack 

initiation and microcrack growth regimes. The transition life value 𝑁𝑡 can be considered as the 

value of 𝑁𝑓 where dominant fatigue mechanism switches from large-scale plasticity and 

microcrack growth to crack initiation due to highly localized damage accumulation.  Because the 

FS parameter as employed in this model directly equates the localized cyclic shear strain with 

crack initiation potency most associated with initiation, the transition life 𝑁𝑡 may be identified as 

the point of divergence between the experimental mean S-N curve and the model T-M 

correlation to the initiation regime. At stress amplitudes above this transition, fatigue life is 

dominated by the cycles to propagate the crack through the wire, with the result that the model 
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produces overly conservative life estimates based solely on initiation life. 

 The experimental fatigue-life data used in this study shown in Fig. 7 was obtained from 

Prasad et al. [14]. They conducted RBBF on 100 µm diameter as-drawn low-Ti MP35N wire at 

seven stress amplitudes ranging from 1650 MPa (the 0.2% offset yield strength) down to 550 

MPa with R = -1. They also performed tension-tension fatigue (TTF) with a stress ratio R = 0.3 

on the same wire. Here, squares represent the RBBF data and circles represent TTF. Filled 

shapes indicate fractures and open shapes indicate runouts. Note that RBBF tests are 

displacement controlled, with displacement amplitude being converted to stress amplitude for 

comparative purposes as described in ASTM E2948-16a [N12]. The displacement controlled 

nature of RBBF means that the stress intensity factor range, defined as Δ𝐾 = 𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛 and 

the crack growth rate likely decreases as the crack grows due to the increased compliance of the 

wire with a larger crack size. In contrast, TTF are force-controlled tests, with ∆K generally 

increasing with crack growth. Because the increased rate of crack growth as well as the positive 

mean stress, it is expected that the life to failure in TTF is controlled by crack nucleation at all 

stress amplitudes and does not exhibit a crack growth dominated regime. 

 Comparing the RBBF and TTF fatigue data in Fig. 7, it is seen that the TTF life 

distribution is below that of the RBBF at every comparable stress amplitude. A contributing 

factor is the difference in the highly-stressed volume due to the test geometry. For equivalent 

𝑆𝑚𝑎𝑥, assuming uniform spatial defect distributions, the likelihood of finding a fatigue hotspot 

with sufficient driving force to nucleate a fatigue crack increases in proportion to the size of the 

highly-stressed volume. A larger highly-stressed volume samples a much larger subset of the 

defect population within an individual test specimen and biases the fracture initiation toward 

higher potency flaws leading to earlier crack nucleation and reduced fatigue life. In addition, the 
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likelihood of multiple cracks forming independently and later coalescing into a single large crack 

increases when the highly stressed volume occupies a significant portion of the overall specimen. 

In TTF, the entire wire cross section along the entire 255 mm gage length between the grips is 

subject to the maximum stress 𝑆𝑚𝑎𝑥. In contrast, only a small portion of the wire near the wire 

surface and the bend apex approaches 𝑆𝑚𝑎𝑥 in RBBF tests.  The highly-stressed volume of the 

TTF is approximately 133 greater than RBBF, assuming that the highly-stressed volume for 

RBBF is an annular cross-section 5 µm from the outer wire radius over a length extending 5 mm 

on either side of the bend apex. This assumption is based on Schaffer’s finding that 90% of 

RBBF fractures occur less than 5 mm from the bend apex and the inclusions that nucleated the 

fatigue crack are within 5 µm of the wire surface [19]. 

 Microstructures for the model correlation were instantiated in the same way as the study 

described in the last section except that all NMIs were centered in the SVE and fully 3D periodic 

boundary conditions were prescribed. Ten microstructure instantiations were generated and 

exposed to five stress amplitudes, 1000, 820, 680, 620 and 550 MPa, corresponding to the five 

lowest stress amplitudes in the Prasad et al. data. No adjustments for the NMI depth from the 

wire surface were undertaken, instead the far-field stress at the NMI was set equal to the fully-

reversed stress amplitude at the wire surface. In other words, each SVE was instantiated with a 4 

µm cuboidal inclusion with an applied load commensurate with that at the wire surface, but 

neglecting the traction-free boundary which was modeled in the prior study. Preliminary 

modeling showed that influence of changing the alternating stress amplitude on the local FIP 

response near the inclusion was much larger than the effect of this boundary condition.  

 The EV FS parameter values are largely unchanged by the choice of 𝑘∗ [N11]. Therefore, 

the following T-M life correlations use 𝑘∗ = 1. The T-M correlation of the model EV FS 
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response to the Prasad RBBF data was undertaken at the 620 MPa stress amplitude because it 

was the lowest stress amplitude without runouts found to be dominated by crack nucleation. 

Using 𝑑𝑔 = 2 µm, the correlation coefficient 𝛼𝑔 was found to be 4.995×10
−7

 µm-cycles. 

  

Fig. 7  Life data generated by RBBF and TTF on as-drawn low-Ti MP35N wire [14] and 

predictions for fatigue crack nucleation correlated to the 620 MPa RBBF data using the T-M 

model. 

 

 Fig. 7 shows the resultant fit with the model results plotted as crosses. The model 

correlation shows good agreement with RBBF experimental data at 550 MPa but diverges at 

stress amplitudes higher than 680 MPa. Furthermore, the slope from the model is close to that of 

the TTF experimental data, which further supports the accuracy of our models since we did not 

use this data to calibrate the model. Above 680 MPa, the model predictions are overly 

conservative compared the 680 MPa TF experimental data, which suggests that crack 

propagation indeed actively reduces fatigue life. Thus, we estimate that the transition from crack 
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nucleation to propagation for the RBBF data is within the range of life values in the 680 MPa 

stress amplitude.  

 The value of 𝑁𝑡 is very close to 1×10
5
 cycles. At life values below 1×10

5
  cycles,  the 

T-M model correlation underpredicts the RBBF data suggesting that microcrack growth would 

dominate the total life to failure.  At life values above 1×10
5
 cycles, the model correlates well to 

the RBBF data, indicating that crack nucleation is the main contributor to fatigue life. For RBBF, 

the stress amplitude of 680 MPa represents the transitional stress where crack nucleation and 

microcrack growth contribute to the total life in roughly equal measure. 

 Another indication that the transitional stress amplitude occurs at 680 MPa is the 

increased scatter of the model predicted lives compared to the other stress levels.  This can be 

seen intuitively by looking at the life correlations in Fig. 7.  To quantify the variability at a given 

stress amplitude, a weighted EV FS variability parameter Ω𝐹𝑆 is defined as 

 Ω𝐹𝑆(𝑆𝑎, 𝑚) =
Δ𝑃𝐹𝑆(𝑆𝑎,𝑚)

𝑃̃𝐹𝑆(𝑆𝑎,𝑚)
 [14] 

with 𝑆𝑎 being the stress amplitude considered and 𝑚 being the number of instantiations run at 

that amplitude.  The quantity Δ𝑃𝐹𝑆 is the range of EV FS parameter defined as  Δ𝑃𝐹𝑆 =

𝑚𝑎𝑥(𝑃𝐹𝑆) − 𝑚𝑖𝑛(𝑃𝐹𝑆)  and  𝑃̃𝐹𝑆 is  the  median  of  the  EV  FS values. Weighting the observed 

scatter by 𝑃̃𝐹𝑆 allows for a comparison to be made between FS response parameters spanning 

several orders of magnitude. Fig. 8 shows a bar graph of Ω𝐹𝑆 for the five stress amplitudes 

modeled with 10 microstructure instantiations each. The weighted variability at 680 MPa is 5.03, 

which is more than twice as large as the next largest value, 1.95, at 1000 MPa. Moreover, the 

value of Ω𝐹𝑆 at 680 MPa is more than three times larger than the values at its neighboring stress 

amplitudes. The spike in Ω𝐹𝑆 at 680 MPa suggests a heightened sensitivity of the EV FS 

response to the microstructural features along the NMI debond interface, which can be associated 
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with a switch in the dominant fatigue mechanism. 

 The value of Ω𝐹𝑆 is sensitive to the number of microstructure instantiations run. Since 

only a small number of microstructure instantiations were run, the values obtained should be 

treated as a comparative metric only and not representative of the true fatigue variability. Adding 

additional microstructure instantiations will improve the Ω𝐹𝑆 estimates until the point when EV 

FS distribution becomes converged. 

 

Fig. 8  Weighted variability (Ω𝐹𝑆) in EV FS response parameters at the five stress amplitudes 

modeled with 10 microstructure instantiations each. 

 

SUMMARY AND CONCLUSIONS 

 A workflow for establishing the influence of microstructure on the potency for fatigue 

crack nucleation in fine wire was described and demonstrated.  Some key new contributions and 

observations are summarized. 
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 A microstructure generation tool was developed to construct statistical volume elements 

(SVEs) reflecting the fine-grained microstructure and fiber texture characteristic of MP35N fine 

wire. This included (1) an algorithm for seeding ellipsoidal grains by sampling from a lognormal 

distribution matched to experimentally characterized grain size distributions, (2) the ability to 

impose non-random grain texture distributions mimicking the fiber texture, (3) a scheme for 

placing non-metallic inclusions (NMIs) into SVEs with control over the NMI-matrix interface, 

and (4) a meshing algorithm to maximize resolution of stress gradients near the NMI while 

maintaining computational efficiency to run fatigue loading cycles with finite-element solver.  

By evaluating multiple SVEs, the inherent statistical variability of inclusion-grain and grain-

grain interactions at the NMI-matrix interface was assessed. 

 A physically-based, rate-dependent crystal viscoplasticity constitutive model was 

developed for a single-phase, face-centered cubic MP35N alloy representative of microstructure 

in the fine wire necessary to model the local cyclic response. Deformation processes at and 

above the grain scale are modeled, including accumulation of plastic shear strain on preferred 

slip systems, isotropic and kinematic hardening, and nanoscale twinning through a 

homogenization approach. The model parameters were fit to a limited number of judiciously 

chosen mechanical behavior experiments conducted on fine wire, including monotonic strain rate 

jump and cyclic ratcheting tests. 

 A modified Tanaka-Mura initiation life relationship was used to correlate the fatigue 

crack initiation life with the extreme-value Fatemi-Socie parameter volume-averaged over local 

regions near the NMI-matrix interface. The model correctly predicted the fatigue potency 

resulting from the variation of NMI proximity to the wire surface conducted in rotating beam 

bending fatigue (RBBF). A significant reduction in fatigue crack nucleation potency was found 
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when NMIs became fully embedded to depth from the surface greater than the diameter of the 

NMI consistent with fatigue experiments. In another exercise, the transition life between crack 

initiation and microcrack growth dominated fatigue regimes for fine wire loaded in RBBF was 

determined. The transition life was estimated to be 1×10
5
 cycles based on the point of 

divergence between the model correlation and the experimental life data which occurred at a 

stress amplitude of 680 MPa, and by the notable increase in the scatter in the predicted lives near 

this transition.  The RBBF data having lives longer than the transition life overlapped the 

predicted lives, while the experimental RBBF lives less than the transition life were much longer 

than the predictions, indicating that crack nucleation is no longer the dominant component of the 

fatigue life, and rather the lives are controlled by microcrack propagation. It is anticipated that 

the model will effectively correlate the uniaxial tension-tension force-controlled fatigue datasets 

due to the rapid growth of the microcracks in force-controlled modes of fatigue. 
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