
 

 

 

CRANFIELD UNIVERSITY 

 

 

 

Laurence Smith 

 

 

The impacts of a large-scale conversion to organic agriculture in 

England and Wales 

 

 

School of Water, Energy & Environment 

PhD in Agricultural Systems Modelling 

 

 

Academic Year: 2016 - 2017 

 

 

Supervisors:  Dr Adrian Williams, Prof. Guy Kirk, Dr Bruce Pearce 

 

July 2017 

 

 

 

 

 

 

 

 

 

 

 

 





 

 

CRANFIELD UNIVERSITY 

 

 

 

School of Water, Energy & Environment 

PhD in Agricultural Systems Modelling 

 

 

 

PhD 

 

 

Academic Year 2016 - 2017 

 

 

Laurence Smith 

 

 

The impacts of a large-scale conversion to organic agriculture in 

England and Wales 

 

 

 

Supervisors: Dr Adrian Williams, Prof. Guy Kirk,  

Dr Bruce Pearce 

July 2017 

 

 

This thesis is submitted in partial fulfilment of the requirements for 

the degree of PhD  

 

© Cranfield University 2017. All rights reserved. No part of this 

publication may be reproduced without the written permission of the 

copyright owner. 

 





iii 

ABSTRACT 

With the need to identify sustainable modes of food production for growing 

populations there has been a growing interest in the potential of organic 

farming.  Although evidence suggests that organic systems can produce food in 

an environmentally efficient manner, the impacts of a widespread conversion to 

organic management are still uncertain.  The research presented aimed to 

address this knowledge gap by completing a comprehensive and robust 

assessment of the food production, fossil energy-use and greenhouse gas 

impacts associated with a 100% conversion to organic farming in England and 

Wales.  

Firstly a structured literature review was carried out to determine the relative 

fossil-energy efficiency of organic systems.  The sustainability of typical organic 

crop rotations was then assessed using a simulation model of crop-soil N 

dynamics. Land-use and production scenarios under 100% organic 

management were assessed through the development and application of a 

large-scale linear programming model that estimates levels of production under 

biophysical constraints, e.g. N supplies from biological fixation by legumes.  A 

life-cycle assessment-based model was then applied to explore the extent to 

which a 100% conversion to organic farming could lead to improvements in 

greenhouse gas mitigation and fossil energy efficiency.  The environmental 

assessment approach allowed for processes inside and outside of the 

immediate boundaries of the production systems to be assessed, with the 

question “what is affected by the change in levels of production?” asked 

throughout the process. 

The results revealed that whilst some organic systems offer improved 

performance in non-renewable resource use efficiency, a widespread 

conversion would result in a substantial decrease in domestic food production. 

Total food output expressed over five major food groups fell to 64% of a non-

organic baseline.  An increase in food imports would therefore be required to 

meet demand.  From a greenhouse gas perspective, a 100% conversion to 

organic farming in England and Wales could lead to 6% decrease in the impacts 
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of food production.  The greenhouse gas mitigation potential of organic farming 

is strongly related to the use of clover and other legumes in place of 

manufactured N and lower concentrate feed rates in livestock production.  

Where the additional-land required under an organic scenario is newly 

cultivated, it is likely that any greenhouse gas benefit obtained would be offset.  

Total greenhouse gas emissions increased by an average of 28%, compared to 

a non-organic baseline, when the land use change impacts associated with 

increased food imports were included.  When the soil carbon sequestration 

benefits obtained through organic farming are also included the net difference 

between the two production systems is lessened, however a fundamental 

question remains concerning the availability of overseas land (land use 

requirements under organic management increased by 29-47% depending on 

the scenario).  

Reducing the area of fertility-building ley within organic rotations is likely to 

improve productivities and reduce land-use requirements within organic farming 

systems.  Improving crop cultivation practices, more effective cover-cropping 

and improved biological N-fixation could also help to improve N efficiency and 

productivity within organic systems.  Changes to international organic standards 

in some areas may also improve the environmental sustainability of the sector, 

e.g. by allowing recycling of P from sewage treatment.     

Overall the research showed that whilst the adoption of organic farming can 

lead to improvements in environmental performance, a widespread conversion 

would need to be accompanied by substantial changes in diet and/or typical 

organic practices to become feasible from the perspectives of environmental 

impact and total food production.  

 
Sponsors: UK Engineering and Physical Sciences Research Council,  
The Ratcliff Foundation and The Organic Research Centre  
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CHAPTER 1. INTRODUCTION  

This chapter provides context for the work carried out, before outlining the key 

hypothesis and the contribution to knowledge.  An overview of the thesis layout 

and the interaction between chapters is also provided in addition to a disclosure 

statement that describes the contribution of co-authors within chapters 4-7.  

1.1 Background 

The extent to which contrasting systems of food production can contribute to 

increasing demands is a topic of much debate.  At the same time changing 

weather patterns and limited availability of natural resources are posing 

increasing challenges to fragile ecosystems.  Increased wealth and urbanisation 

are also changing the diet of global populations towards animal protein 

consumption and agriculture’s impact on the environment is set to increase 

(Lampkin et al., 2015).  The magnitude of these issues has led to calls for 

radical shifts in the way food is produced, and moves towards forms of 

agriculture that can produce more food from less resource whilst sustaining 

rural livelihoods and public health (McIntyre et al., 2008; Foresight, 2011). 

Organic agriculture seeks to address many of the public demands for high 

quality, safe food, produced with minimal environmental losses (de Boer, 2003). 

However the differences between the environmental burdens of organic and 

conventional farming systems are still uncertain.  Conventional farmers are also 

adopting ‘organic practices’ such as cover cropping, use of organic fertilisers 

and diverse rotations to improve resource use efficiencies and reduce pest, 

disease and weed burdens (Wezel et al. 2014) making the differences between 

the two systems less distinct.  In addition, whilst organic farming provides some 

benefits over conventional systems, through the inclusion of practices that can 

reduce reliance on manufactured inputs, it has been suggested that there are 

some considerable disadvantages to the organic approach (Trewavas, 2001). 

For example, the need for intensive soil cultivation to manage weeds, and the 

increased nitrous oxide emissions associated with incorporation of green 
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manure and cover crops (Olesen, 2009).  Moreover, whilst the environmental 

impacts per unit of area are often less under organic agriculture (Aubert et al., 

2009), when comparisons are made on a product basis, organic systems can 

perform worse, primarily as a result of lower yields, resulting from limited N 

availability and worse feed conversion in some livestock sectors (Williams et al., 

2006; Seufert et al., 2012).    

Given the lower productivity of organic systems, it is important to know the 

consequences of a major shift to organic agriculture for national and global food 

production, without major changes in consumer diets and/or an increase in 

agricultural land area (Foresight, 2011). How much of the recorded 

environmental benefit from organic agriculture would be offset through a higher 

demand for land due to lower yields is questioned (Leifeld and Fuhrer, 2010) 

and the extent to which a large-scale uptake of organic practices would 

influence agriculture’s contribution to global warming is still uncertain.   Although 

some attempts have been made to tackle these questions (Audsley et al., 2009; 

Jones and Crane, 2009), previous upscaling studies have been limited in their 

scope. A further question concerns the extent to which a widespread conversion 

to organic farming would support calls for healthier diets, especially lower meat 

and increased fresh vegetable consumption (Buttriss, 2016). 

1.2 Specification of the working hypotheses for this study 

The work presented in this thesis aimed to assess the consequences of a 

widespread shift to organic farming, and the benefits and/or dis-benefits of the 

organic approach. The overarching research question was ‘what are the 

production and environmental impacts of a large-scale conversion to organic 

agriculture within England and Wales?’.  The key hypotheses for the model-

based analysis were defined as follows: 
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Hypothesis 1: 

A 100% conversion of agriculture in England and Wales to organic practices will 

not significantly reduce the levels of production of major arable and horticultural 

crops and livestock products. 

Hypothesis 2: 

A 100% conversion of agriculture in England and Wales to organic practices will 

not result in a net increase in greenhouse gas emissions. 

Hypothesis 3: 

A 100% conversion of agriculture in England and Wales to organic practices will 

result in less fossil-fuel use per kg of product  

Hypothesis 4: 

A 100% conversion of agriculture in England and Wales to organic practices will 

result in less fossil-fuel use per hectare of land. 

1.3 Research contribution 

The study built on previous work (e.g. Lampkin, 1994; Jones and Crane, 2009) 

by developing a more representative and detailed modelling framework that 

better reflects typical organic farm structures and organic yields under 

conditions of limited N supply.  The specific novel contributions to knowledge 

and understanding are as follows: 

 Firstly a comprehensive literature review on the energy efficiency of 

organic agriculture adds further information on the extent to which 

organic practices can contribute to greater fossil fuel efficiency, and the 

extent of any differentiation between farming systems with a focus on 

systems operating in a European, US, Canadian and Australasian 

context 

 Secondly a dynamic approach to nitrogen modelling explores the 

sustainability of contrasting organic crop rotations from a nitrogen, 

phosphorus and potassium supply and demand perspective.   The same 
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modelling approach is applied to explore the extent to which soil types 

and rainfall affect N availability and crop productivity within organic 

cropping systems 

 Thirdly a novel approach to scaling up organic agriculture explores the 

extent to which a widespread uptake of organic farming could meet 

current levels of production for key commodities. This modelling 

approach builds on previous work by ensuring that key ‘limiting factors’ 

are accounted for. 

 Finally a Life Cycle Assessment (LCA) based model explores the extent 

to which a widespread conversion to organic management could foster 

progress towards improved energy efficiency and greenhouse gas 

mitigation in agriculture in England and Wales, under the assumption that 

national diets remain the same.  

 

1.4 Thesis layout 

The research is presented in “paper” format and comprises four distinct peer-

reviewed journal-standard articles and a book chapter (Table 1.1).   A literature 

review is also presented in Chapter 3 to explore the common characteristics of 

organic systems in England and Wales, the growth and current status of the 

sector, the outputs from previous studies exploring the impacts of a 100% 

conversion and potential modelling approaches.  An overall discussion and 

areas for future work are presented in Chapter 8 before overarching 

conclusions are drawn.  The contribution of co-authors is summarised in an 

introductory summary page for each publication. 
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Table 1.1. Journal articles and book chapter presented in the thesis. Status: P = 

published, S = submitted, RS = Ready to submit.

 Journal / book title Title of article / chapter Status Location 

Renewable Agriculture 

and Food Systems 

The energy efficiency of 

organic agriculture:         

a review 

P Chapter 4 

Improving organic 

animal farming 

Can conversion to 

organic methods 

contribute to GHG 

mitigation and improved 

energy efficiency in 

livestock production? 

S Appendix A 

Renewable Agriculture 

and Food Systems 

Predicting the effect of 

rotation design on N, P, 

K balances on organic 

farms using the NDICEA 

model 

P Chapter 5  

and  

Appendix B 

Land Use Policy Modelling the impact of 

a widespread 

conversion to organic 

agriculture in England 

and Wales 

 S Chapter 6 

and 

Appendices 

B,C,D 

Global Change Biology   Modelling the 

greenhouse gas 

implications of 

conversion of food 

production in England 

and Wales to organic 

methods 

RS Chapter 7 

and  

Appendix E 
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Paper 1 / Chapter 4 explores the fossil-energy efficiency of contrasting organic 

production systems, allowing for an identification of systemic differences 

between the two farming systems in terms of on-farm energy use (e.g. diesel, 

electricity) and off-farm or indirect energy (e.g. fossil fuel used in the production 

of feed or fertiliser). 

Paper 2 / Chapter 5 assesses the performance of a dynamic model of soil 

nitrogen – NDICEA (Van der Burgt et al., 2006) utilising data from long-term 

organic trials. In a second stage of work, the sustainability of a range of organic 

crop rotations is assessed from a nutrient management perspective using a 

range of soil types and rainfall conditions within the same modelling framework.   

Paper 3 / Chapter 6 investigates the production impacts of scaling-up organic 

farming in England and Wales using a large-scale linear programming model 

and crop yields adjusted by soil and rainfall class.  The model incorporates 

constraints relating to crop rotation, N availability, stocking rate, livestock feed 

composition and feed availability at a national scale. The results provide an 

updated and comprehensive overview of the impacts of scaling-up organic 

practices and identify some interventions which could improve or worsen 

performance of a widespread conversion through a sensitivity analysis.  A 

detailed description of the model is contained in Appendix C. 

Paper 4 / Chapter 7 provides an overview of the greenhouse gas and fossil 

energy impacts of a ‘realistic’ 100% organic scenario through an application of 

environmental Life Cycle Assessment (LCA). The results reveal the extent to 

which organic farming methods could reduce greenhouse gas emissions from 

agricultural systems in the UK, and the potential knock-on impacts of the 

reduced yields and increased imports in terms of land-use change overseas. 

An overview of how each chapter relates to the hypothesis described in section 

1.2 is shown in Figure 1.1. Linkages between the various chapters are also 

indicated: 
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Figure 1.1. Overview of thesis chapters and their interactions.   Asterisk 

indicates peer reviewed outputs. 'H1, H2, H3, H4' refers to Hypothesis 1, 2, 3 and 

4 described in section 1.2. 

1.5 Dissemination from PhD thesis 

In addition to the peer-reviewed outputs described above, several conferences 

were attended over the course of the PhD to present early results from the 

analysis and obtain feedback on the methods applied.  The following 

conference-papers and poster presentations were made over the lifetime of the 

thesis: 

1.5.1 Conference papers 

 

Smith, L.G., Goglio, P., Williams, A.G., 2016. Energy efficiency in organic 

farming systems. LCA Food Conference 2016, UCD, Dublin, 19-21st October 

2016. 
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Smith, L.G., Tarsitano, D., Topp, C.F.E., Jones, S.K., Gerrard, C.L., Pearce, 

B.D., Williams, A.G., 2015. Assessing the influence of rotation design on the N, 

P, K balance of organic cropping systems. Aspects of Applied Biology: Valuing 

long-term sites and experiments for agriculture and ecology 128: 157-164. 

University of Newcastle, 27-28th May 2015. 

Smith, L.G., Williams, A.G., Pearce, B.D., 2013. Energy use in organic farming. 

Tyndall Centre’s Climate Transitions Conference, Cardiff University 4-5th April 

2013.   

1.5.2 Research posters 

Smith, L.G., Jones, P.J., Pearce, B.D., Williams, A.G., 2017. Assessing the 

production impacts of a large-scale conversion to organic farming in England 

and Wales. In: Rahmann, G (ed.) Proceedings of the 19th Organic World 

Congress, New Dehli, India, November 9-11, 2017. Organized by 

ISOFAR/OFAI/TIPI. 

Smith, L.G., Pearce, B.D., Williams, A.G., Kirk, G., 2017. Assessing the 

productivity of organic rotations using the NDICEA model. In: Rahmann, G (ed.) 

Proceedings of the 19th Organic World Congress, New Delhi, India, November 

9-11, 2017. Organized by ISOFAR/OFAI/TIPI. 

Smith, L.G., Tarsitano D, Topp C.F.E., Jones S.K., Gerrard C.L, Pearce B.D, 

Williams, A.G.,  Kirk G, Watson, C., 2015. Assessing the Nitrogen Balance of 

Organic farms using the NDICEA model. In: Baggs, E (ed.) Proceedings of the 

BSSS 2015 Annual Meeting: Celebrating a New Era for Soil Science, 26th 

November 2015. 

1.6 Disclosure statement 

Chapters 4, 5, 6, 7 are presented as co-authored papers.  Contributions from 

the lead author (Laurence Smith) and the co-authors listed on each paper are 

outlined below: 

Chapter 4:  The literature search strategy, data collection and analysis were 

developed and implemented by the lead author.  Adrian Williams at Cranfield 

http://www.tyndall.ac.uk/events/2013/climate-transitions-phd-conference-april-2013
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University and Bruce Pearce at the Organic Research Centre provided 

suggestions on relevant sources of literature and commented on the search 

strategy.   

Chapter 5: The lead author planned the research approach and assessed the 

accuracy of the NDICEA model using data collected from long-term organic 

trials in England and Wales.  The lead author also gathered data on typical 

organic farm structures through expert interviews and an assessment of Farm 

Business Survey data.  The lead author applied the data collected to determine 

the sustainability of a range of organic crop rotations.  Researchers at 

Scotland’s Rural College (SRUC) assessed the accuracy of NDICEA at the 

Scottish sites and the nutrient balance of the organic crop rotations applied at 

SRUC. 

Chapter 6:  The lead author designed the research approach and developed a 

bespoke model, the Optimal Land Use Model (OLUM), for use within the study. 

As part of this process the lead author collected data on typical organic 

practices and produced model-derived organic crop yields for a range of typical 

organic crop rotations.  Philip Jones (Reading University) provided regular input 

to the development of the OLUM whilst Adrian Williams and Guy Kirk (Cranfield 

University) provided input on the modelled scenarios selected for inclusion.   

Chapter 7:  The lead author designed the research approach and collected 

data from a range of industry sources in-order to adapt the Agri-LCA models.  

The lead author also accessed import/export data and results from overseas 

LCA-based studies to determine the environmental impacts of imported food.  

The lead author also collected data on carbon sequestration in organic farming 

systems and published estimates of the greenhouse gas impacts from land-use 

change. Adrian Williams provided an overview of the Agri-LCA models and 

access to relevant data for the calculation of the environmental impacts.  Guy 

Kirk provided guidance on the calculation of the greenhouse gas emission offset 

from soil carbon sequestration in organic systems.
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CHAPTER 2. OVERVIEW OF THE METHODS APPLIED 

IN THESIS 

In order to answer the research questions posed in section 1.2 a range of 

approaches were applied throughout the various chapters.  An overview of the 

methods applied in the PhD thesis is provided in the following section(s).  

2.1 Structured literature reviews 

The literature reviews aimed to identify previous work, provide a basis for the 

selection a suitable modelling framework (Chapter 3) and examine the extent to 

which various organic farming systems can improve production efficiencies with 

regard to fossil energy-use and greenhouse gas emissions (Chapters 3, 4 and 

Appendix A).  The reviews were carried out with a range of web-based search 

engines (ISI Web of Knowledge, Scopus, Google Scholar, BIOSIS Previews, 

SCIRUS, Science Direct, Organic Eprints). Some non-certified systems were 

included in the comparisons, although these were required to adhere to the 

IFOAM (International Federation of Organic Agriculture) principles (see section 

3.1.1).  Grey literature were also included within the searches (i.e. PhD theses, 

Government and NGO reports and research project reports).   

Within Chapter 3 a multi-criteria assessment was completed to compare the 

suitability of a range of models for use within this study.  Criteria for this 

evaluation were selected through a discussion with PhD supervisors at 

Cranfield University and through expert input from the School of Agriculture, 

Policy and Development at Reading University (Mr. Philip Jones).  A range of 

farm-level case-study portraits were included in the literature review presented 

in Appendix A, with the information on each case gathered through structured 

interviews.  These interviews were carried out over the telephone or in person 

with each farmer / land-manager.   

2.2 Nitrogen modelling 

Chapter 5 aimed to assess the extent to which typical yields within organic crop 

rotations could be sustained under a range of environmental conditions, 
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recognising that the supply of N can be a limiting factor within organic 

production systems (Berry et al., 2002). As a preliminary step, the suitability of 

three models of soil N was assessed, i.e. the SUNDIAL model, developed at 

Rothamsted Research (Smith et al., 1996), the EU-Rotate N model developed 

at Warwick University with assistance from partner institutes in the EU Quality 

of Life Programme (Rahn et al., 2007) and the Nitrogen Dynamics In Crop 

rotations in Ecological Agriculture (NDICEA) model developed at Wageningen 

University and the Louis Bolk Institute in the Netherlands.  Support for the use 

of SUNDIAL was found to be unavailable, whereas EU-Rotate N was unable 

capture the growth of grass/clover leys in organic rotations (although provision 

is made for this within the code, growth of the ley period was not captured in the 

modelled outputs, despite numerous attempts at debugging with the assistance 

of the model’s developers).  The NDICEA model was therefore selected and its 

accuracy assessed through a validation exercise.   

2.2.1 Validation of the NDICEA model 

Validation runs were completed through a comparison of measured and 

simulated values at a range of sites. Six suitable trial-sites were located in the 

UK, i.e. the Defra funded organic conversion trials at ADAS Terrington, HRI 

Huntsmill and Ty Gywn (IBERS), the Organic Research Centre’s Stockless Trial 

and two long-term grassland/arable trials at SRUC. Figure 5.1 provides an 

overview of the location and site parameters for each trial.   The data collected 

for the validation assessment is summarised in Table 2.1.  
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Table 2.1: soil, environment and cropping data extracted from research archives 

for a range of organic trials.  The data collected were used to assess the 

accuracy of the NDICEA model 

Soil data Environment data Cropping data 

Soil organic matter (SOM) 

contents 

Rainfall (mm) Crop type 

Soil N content (kg N ha-1) Temperature (degrees C) Crop yield (t DM ha-1 yr-1) 

Topsoil depth (cm) Evapotranspiration (mm) Crop dry matter (%) 

Soil type (clay, loam, 

sand, silt etc) 

Atmospheric deposition 

data (Kg N ha-1 yr-1) 

Cultivation dates (sowing, 

harvest dates etc) 

pH  Fertilisation data (type 

and amount) 

Maximum rooting depths 

(cm - if available) 

 Seed rates (kg ha-1) 

Daily temperature, rainfall and evapotranspiration data were entered into the 

model through the use of Comma Separated Value (CSV) files.  The other data 

(e.g. soil pH, crop dry matter percentages) were entered manually via the 

model’s interface.  Observed N and SOM values were used to apply an 

automatic calibration feature that adjusts default values controlling rates of N 

fixation, decomposition, N leaching and denitrification within NDICEA (Swain et 

al., 2015).   Measurements of soil N were then used to assess the model’s 

accuracy (see Figure 2.1) and to calculate Root Mean Square Errors (RMSE), 

based on the difference between measured and simulated soil N values at each 

trial site (equation 1). 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑠𝑖𝑚−𝑜𝑏𝑠)2𝑛

𝑖=1

𝑛
            (1) 
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In equation 1 sim refers to the predicted soil N content within NDICEA on a 

given day in a calendar year, obs refers to the recorded soil N content on the 

same day at a given site and n represents the total number of soil N samples 

over the time period assessed.   

 

Figure 2.1. Comparison of the measured and modelled soil N content at SRUC 

Woodside plot W3711 on various dates from 1995 - 2002 

The RMSE can be used to determine the residual variance, and hence the 

accuracy of models, under a range of conditions.  A degree of transparency is 

also provided by reporting average prediction error in the same unit as the 

observed variable (in this case kg N ha-1).  For the purpose of this study, a 

RMSE of less than 20 kg N ha-1 yr-1 was deemed to represent good-enough 

performance for practical purposes (Van der Burgt et al., 2006).  As this could 

be achieved for most of the experimental sites (see Table 5.3) the model was 

used to assess the nutrient demand and supply of each long-term trial (the 

results from this work are illustrated in Chapter 5) .  
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2.2.2 Modelling organic yield potentials  

Following the validation exercise, the NDICEA model was applied to determine 

N availabilities and potential crop yields within a wide range of organic rotations 

and for various soil types and rainfall zones in England and Wales.  As the 

model is target-oriented (i.e. NDICEA ‘reconstructs’ the dynamics of the state 

variables required to achieve a yield entered by the user, Swain et al. 2015) 

average organic yield data were adjusted manually in-line with nitrogen 

availability over the course of a rotation, as illustrated in Figure 2.2.  The 

nitrogen balance (kg N ha-1 yr-1) of each rotation was also used to determine 

whether yields should be increased or decreased (i.e. if the total N balance was 

low or negative, yields were reduced and vice-versa in situations of increased 

supply). 

 

Figure 2.2. N availability predictions and crop uptake values reported within 

NDICEA interface. Average organic yields were increased / decreased in line with 

N availability over the course of the rotation 
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Table 2.2: Typical organic crop rotations assessed within NDICEA.  Stocked 

rotations = with livestock manure; Stockless = without livestock manure 

 

A range of typical organic rotations were assessed, using example cropping 

sequences within the Organic Farm Management Handbook (Lampkin et al., 

2012) and guidelines given to organic farmers on the recommended duration of 

fertility building leys in arable rotations (see Table 2.2, Lampkin, 2002; Lampkin 

et al., 2012).  Potential yields within each rotation were assessed for 16 

soil/rainfall classes (see Table 2.3). 

Table 2.3: Soil/rainfall classes used within the NDICEA based yield adjustment.  

A total of 16 (i.e. 4x4) classes were used for the yield adjustment exercise. 

‘Humose’ refers to soil types with a low pH and high organic matter content  

 

Soil types within NDICEA (e.g. clay, loam, sand etc) were allocated to the 

above soil classes using a soil texture index from the Silsoe Whole Farm Model 

(Audsley et al., 2006).  Rainfall classes were derived from a 30-year UK Met 

Office dataset. Average organic crop yield data (i.e. pre-adjusted yields) and 

maximum/minimum yield ranges were obtained from structured interviews with 

IOTA1 registered advisors, sources providing technical information to the 

                                            
1
 Institute of Organic Training and Advice 

Rotation 1 2 3 4 5 6 7 8 9 10

Stocked 'complex' G/WC G/WC G/WC WW WO RC/G RC/G P SB SW

Stocked 'simple' RC/G RC/G WW P WW WR

Stockless 'complex' RC/G RC/G P* WO SB SW

Stockless 'simple' RC/G WW PE SO

Field vegetable RC/G RC/G P BR L

Market garden RC/G RC/G CB O B C SB BR PE CG

Dairy G/WC G/WC G/WC G/WC G/WC G/WC G/WC FB WS SB

Cattle and sheep G/WC G/WC G/WC G/WC G/WC G/WC G/WC G/WC FB WW

Mixed G/WC G/WC G/WC RC/G WW WO SB WB WR

(G/WC = Grass/white clover, WS = wholecrop silage,  WB = winter barley, WW = winter wheat,  WO = Winter oats, RC/G = red clover

SW = spring wheat, SB = Spring beans, P = potatoes, WR = Winter rye, FB = Fodder beet, PE = peas, SO = spring oats, PE = peas

BR = broccoli, L = leeks, CB = cabbage, O = onions, B = beetroot, C = carrots, CG = courgettes, SB = spring barley)

Rotation year

Soil classes Rainfall classes

Light Dry

Medium Average

Heavy Wet

Humose Very Wet
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organic sector, recent meta analyses, the Organic Farm Management 

Handbook and the organic module of the Defra Farm Business Survey (de Ponti 

et al., 2012; Seufert et al., 2012; Lampkin et al., 2012; Jackson et al., 2008; 

Moakes and Lampkin, 2009, 2010, 2011; Moakes et al., 2012, 2013, 2014). 

In a second phase the effect of “high” and “low” nitrogen fixation thresholds was 

assessed to determine the influence on N availability and productivity within 

each rotation and soil/rain class.  Crop offtake data (kg N ha-1 yr-1) were also 

analysed for treatment effects (i.e. effect of soil type and rainfall) using one-way 

analysis of variance (ANOVA).  Results from the yield adjustments and 

statistical analysis can be seen in Appendix B. 

2.3  Development of production impact model 

In the next phase of work, yield data derived from the NDICEA-based rotation 

modelling were applied within a large-scale optimisation model, in order to 

answer the research question relating to the amount of food that would be 

produced under a 100% organic agriculture (see section 1.2).  For the 

completion of this task, the author of this study constructed an Optimal Land 

Use Model (OLUM) within the GAMS2 programming language.  A basic-working 

model was established over an intensive period of activity at the University of 

Reading from July to September 2014, and the model refined over the months 

and years that followed.  During this period regular discussions on the modelling 

approach were held with Mr. Philip Jones, Senior Research Fellow at the 

Centre for Agricultural Strategy at Reading.  During these discussions it was 

deemed appropriate to address the limitations of earlier studies with particular 

regard to calculations addressing feed availability, nitrogen supply and offtake 

and rotational constraints within organic systems  (see section 3.7 Previous 

attempts to explore the impacts of up-scaling organic).   

 

                                            
2
 General Algebraic Modelling System 
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The OLUM followed a linear programming approach, where an objective 

variable in maximised subject to constraints.  The basic structure of the model is 

described in equation 2 below.   

           (2) 

Maximise: Z = ∑ 𝐶𝑖𝑗
𝑛
𝑖𝑗=0 x 𝑋𝑖𝑗  

Subject to:  Ax(ij) ≤ b; x(ij)  ≥ 0   

The objective function, which was maximised, was aggregate food output (Z) as 

metabolisable energy. C is the energy output of organic agricultural products (i) 

on a range of soil/rain classes (j) and X is the activity scalar (crop areas or 

livestock numbers). A represents the input and resource requirements 

associated with diverse agricultural activities (x) and b is the resource 

endowment and input availability vector (e.g. manure-N, land by site class).   

For more detail on the mathematical structure of the model see Chapter 6 and 

Appendix C.   

An overarching assumption within the OLUM was that the current agricultural 

area in England and Wales will remain the same post-conversion to organic 

management (i.e. there would be no expansion or contraction of the total 

farmland area).  An additional assumption concerned the area of land by farm-

type, which was presumed to remain constant following a switch to an organic 

scenario. This assumption follows evidence suggesting that dominant farming 

enterprise(s) tend to remain in-place post-conversion (Howlett et al., 2002; 

Langer, 2002). The nine Defra Robust Farm Types were therefore used as a 

basis for the construction of nine representative organic farms, i.e.: 

1. Dairy 

2. Less Favoured Area (LFA) Grazing Livestock  

3. Lowland Grazing Livestock 

4. Specialist Cereals  

5. General Cropping  

6. Specialist Pigs  

7. Specialist Poultry  

8. Mixed arable and livestock 

9. Horticulture 
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Organic farm data within the Farm Business Survey (FBS, years 2009 to 2011) 

provided most of information required for the farm-type construction (in 

particular crop areas and livestock numbers). For some farm-types data 

gathered in previous research were used (e.g. Edwards 2002, Leinonen et al. 

2012a,b, for specialist pigs and poultry) as these systems are under-

represented or missing from the organic sample within the FBS.  Farm structure 

data were collected through email/telephone communication, through online 

sources (in particular the Defra website and via the online repository Organic 

Eprints) and through consultation with experts during a work/study period at the 

Soil Association head offices in March/April 2016.    

Crop yield data were derived from the NDICEA-based assessments described 

above. Yield data for some crops (i.e. those excluded from the  typical rotations 

described in Table 2.2) were extracted from published studies, e.g. oilseed rape 

yields were drawn from a survey of French organic farmers (Valantin-Morison 

and Meynard, 2008).  Productivity estimates for permanent grassland and rough 

grazing were derived from a regression model described in Williams et al. 

(2006) which estimates grassland productivity for the site classes described in 

Brockman (1994) - see Appendix B.  Livestock productivity data were extracted 

from the Organic Farm Management Handbook (Lampkin et al., 2012) and 

industry-focussed research projects that include data on organic-farms (e.g. 

AHDB Dairy, 2014). 

Current land area(s) for each farm type (in hectares) were then derived from the 

June Agricultural Census (2010) on a 5km2 basis for each NUTS1 region of 

England (i.e. North East England, North West England, Yorkshire and the 

Humber, East Midlands, West Midlands, East of England, South East England 

and South West England) and for Wales. The farm type areas were combined 

with rainfall and soil type data derived from the UK Met Office and the National 

Soils Resources Institute (also reported on a 5km2 basis over England and 

Wales).  A land cover map was then used to remove extraneous areas from the 

dataset (e.g. urban conurbations, bracken, sea estuary, woodland).  The result 
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of this process was a breakdown of agricultural areas by rainfall band, soil type 

and farm type within each NUTS1 region, as illustrated in Figure 2.3: 

 
 

 
 

Figure 2.3. Land area estimates by land class for the NUTS1 regions ‘West 

Midlands’ and ‘Yorkshire and Humber’ for the ‘Mixed’ Robust Farm Type.  A 

combination of data sources allowed for the estimation of the land areas for each 

farm type applied in the OLUM. 

Limits on the availability of land within each soil/rainfall class (and the 

associated crop yield, derived from the NDICEA based yield adjustments) were 

set through the application of land-use constraints within the OLUM.  The model 

was then tasked with populating each NUTS region with the same area of each 

farm type as the 2010 situation, maximising the food energy produced, as 

described in the objective function (equation 2 above).   

Following a ‘base-run’ (i.e. a ‘best-guess estimate of what a 100% organic 

England and Wales would produce) a range of scenarios were assessed by 

adjusting key model parameters.  The scenarios were based on a review of the 
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marginal value for each constraint applied in the OLUM3 through an 

assessment of the GAMS output files. By reviewing the marginal values it was 

possible to identify constraints that had the greatest influence on the objective 

function (i.e. maximising food production).  Separate scenarios were also 

implemented for low and high rates of biological nitrogen fixation, as these are 

highly uncertain (Döring et al., 2013; Galloway, 1998) and higher/lower 

estimates significantly affected crop yields within the NDICEA based 

adjustments (see yield adjustment results in Appendix B).  Following the 

implementation of a range of scenarios, a ‘combined’ scenario that allowed for a 

reduction of fallow areas and the recycling of imported food residue was 

selected for the next stage of work (i.e. the environmental impact assessment) 

as this scenario markedly improved the levels of food production under organic 

management and was therefore deemed to be the most realistic (total food 

production was still considerably reduced compared to a conventional baseline). 

2.4 Environmental impact modelling 

In the final modelling phase, a Life Cycle Assessment (LCA) model was applied 

to determine the environmental impacts of a 100% organic scenario. The 

Cranfield Agri-LCA models provided the basis for this work (Williams et al. 

2006) and an introduction to their function and application was provided in June 

2016.    

Following this introduction, default crop areas by soil and rainfall class were 

adjusted within the Agri-LCA interface using OLUM-derived data for each of the 

crops assessed in this study (e.g. areas of winter wheat on each soil and rainfall 

class).  The adjusted cropland areas fed into the fossil fuel and N-loss modelling 

within the Agri-LCA and the associated CO2 and N2O calculations.  A range of 

industry data sources were also applied within the LCA models to better-

represent organic production systems and to estimate the impacts of a non-

organic baseline (i.e. based on 2010 levels of production, see Appendix E for a 

                                            
3
The marginal value can be considered to be the amount by which the objective function would change if 

the right hand side would be moved one unit (McCarl et al. 2014) 
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list of data sources applied).  These industry data were derived through email 

exchanges, telephone calls and/or through online resources.  The information 

sources collected fed-into parameters on cropping and livestock production 

(e.g. cultivation requirements, milk yields, replacement rates, cattle liveweights) 

within the Agri-LCA and were used to adjust the impact calculations (e.g. fossil 

fuel use, feed-intake and N excretion from livestock).  The result of this process 

was an updated estimate of the greenhouse gas emission and fossil-energy use 

impacts associated with a range of organic crop and livestock products.  Total 

impacts for each product type were expressed per kilogram of product as 

illustrated in Chapter 7.  The impact of the 100% organic scenario was then 

assessed by combining the per kilogram estimates with the total organic food 

production estimates, derived from the OLUM. The impacts of a non-organic 

baseline were also assessed using default conventional production data from 

the Agri-LCA and national production records (e.g. Defra cereal production 

datasets).   

Overseas production impacts were then assessed through an extraction of data 

from peer-reviewed literature (mainly other LCA-based studies), data from 

research project reports and official Government and industry statistics (see 

Chapter 7 and Appendix E).  This allowed for an estimate of the total overseas 

land-area currently utilised in the production of imports, and for a calculation of 

the additional land required under an organic scenario (more overseas land was 

required under the organic scenario due to a reduction in domestic productivity).  

The greenhouse gas impact associated with the cultivation of additional land 

was determined through an application of country-specific land use change 

values within LCA guidelines (British Standards Institute, 2011).  Carbon 

sequestration estimates for the organic scenario were also included in the 

environmental impact assessment, with rates of sequestration derived from a 

recent meta-analysis, and applied to the eligible organic area (Gattinger et al., 

2012). A range of sequestration values reported within the same meta-analysis 

were applied within a sensitivity analysis as described in Chapter 7.  Figure 2.4 

provides an overview of the steps taken within the environmental impact 

assessment of the 100% organic scenario. 
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Figure 2.4. Flow chart depicting stages of work implemented in the ‘scaling-up’ 

of environmental impacts for the 100% organic production scenario 

Energy efficiency ratios were also constructed for each of the crops and 

livestock products considered in Chapter 7 by converting the energy content of 

foodstuffs to metabolisable energy (ME) using standard composition tables 

(McCance, 2002) and data within a separate study comparing the efficiency of 

livestock production systems (Wilkinson, 2011).  Total energy outputs were then 

divided by the total fossil-fuel ME-use for each commodity, using data derived 

from the Agri-LCA, in order to calculate a production efficiency ratio by product 

type (see Table 7.6).  

2.5 Timeline of activity 

An overview of the stages of work and their approximate time of application is 

provided in Table 2.4 below: 

Table 2.4: overview of the tasks applied over duration of part-time PhD thesis 

 

Literature reviews in the early stages of work focussed on the identification of 

previous studies and suitable modelling framework(s) and the completion of a 

Literature reviews 1 x x x x x x

NDICEA validation and long-term trial 

modelling
x x x x x

OLUM construction and modelling of 

100% organic scenario
x x



NDICEA-based yield modelling x x x x x

OLUM construction and modelling of 

100% organic scenario
x x x x x x x

LCA of results from modelling x x x x

Literature reviews 2 x x x x

Thesis writeup and submission x x x x

2017

Q1 Q2 Q3 Q4

Task Description 
2013

2015

Q1 Q2 Q3 Q4

Task Description 
2016

Q1 Q2 Q3 Q4Q1 Q2

2012

Q1 Q2 Q3 Q4

Q3 Q4

2014

Q1 Q2 Q3 Q4
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review exploring the energy efficiency of organic farming systems (Smith et al., 

2015).  The most intensive period of work took place between June 2014 and 

December 2016. During this phase the OLUM model was constructed from 

scratch and continuously refined.  At the same time the NDICEA model was 

applied to produce a set of organic crop yields adjusted by soil class and rainfall 

zone.  The bulk of environmental LCA-work took place in mid-to-late 2016 whilst 

reviews exploring the broader impacts of organic cropping and livestock system 

production commenced in the same period and were finalised in 2017.   The 

following chapters contain more information on the methods used and results 

from their application. 
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CHAPTER 3. GENERAL LITERATURE REVIEW  

This chapter provides some general background information on the organic 

sector and an overview of previous work addressing the same or similar 

research questions as those described in Chapter 1.  A range of models are 

also considered, along with examples of their application in published material. 

Each model is assessed against a range of success criteria, defined within the 

context of this study.  The model comparison forms the basis for the selection of 

an assessment framework. 

3.1 Organic farming – an introduction  

Organic agriculture is an approach to food production that aims to create 

environmentally, socially and economically sustainable farming systems that 

rely on farm-sourced or local resources and ecological processes (Lampkin et 

al., 2012; Shepherd et al., 2003; Stockdale et al., 2001).  As a result, a central 

tenet of the organic approach is an avoidance of synthetic fertilisers or 

pesticides. Instead organic farms rely on organic fertiliser and crop rotation to 

promote soil fertility (Committee on Climate Change, 2010) in particular through 

the use of clovers and other legumes, which provide the main N-input to organic 

systems via biological nitrogen fixation.      

Increased diversity of cropping and livestock can also be observed on organic 

farms (Stockdale et al., 2001) with intercropping and under-sowing often being 

used to maintain a level of soil cover throughout the year.  Livestock also play 

an important role within organic production, providing a source of mobile fertility 

through manures and slurries whilst making use of the fertility building ley within 

organic rotations (Lampkin, 2002).  Such approaches help to develop a ‘closed-

cycle’ with regard to nutrient use (Novak and Fiorelli, 2009; Stolze et al., 2000) 

although it is recognised that this cannot be absolutely attained (Lampkin et al., 

2015).  The term organic is therefore not directly related to the type of inputs 

used but instead refers to the concept of the farm as an organism, through 

which all of the components of the farm interact and influence each other within 

a coherent whole (Steiner, 1924). This positivist approach distinguishes organic 
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farming from other modes of production that focus on single aspects, such as 

individual crop diseases and how they can be treated (Baars, 2002).    

3.1.1 Development of the organic sector 

Scientists such as Sir Albert Howard and Lady Eve Balfour were early 

proponents of organic farming, and their work with alternative husbandry and 

cropping systems placed a particular emphasis on the links between the way 

that food is produced, food quality and human health. The Haughley 

Experiment, established by Lady Eve Balfour in 1939, was one of the first 

comparisons of organic and conventional farming, and the results highlighted 

the importance of healthy, fertile soils in the production of healthy crops and 

livestock, and the subsequent link with human health (Balfour, 1943).  The early 

organic movement therefore focussed strongly on issues of human health, diet 

and nutrition and the promotion of soil fertility through the use of composts and 

other organic fertilisers.  The issue of pesticide use did not come to the fore until 

the publication of Rachel Carson’s Silent Spring in the early 1960s, which 

generated widespread public concern (Carson, 1963; Stockdale et al., 2001).  In 

addition, in the late 1960s broad societal changes led by student movements 

resulted in an increased emphasis on the social and cultural aspects in organic 

agriculture, although there was a clear tension between the conservative 

founders of the organic movement and the more radical younger generation.  

During the 1980s and 1990s issues of biodiversity conservation, animal welfare 

and social justice relating to fair trade with developing countries gained 

importance and the potential of organic agriculture to contribute to rural 

development was highlighted (Stockdale et al., 2001).   

It has therefore taken some time for the ideas behind organic agriculture to 

develop into a consistent and unified concept that is adhered to worldwide.  

However, strong unifying principles now link the wide range of farming systems 

within the organic sector (Stockdale et al., 2001).  This process has been 

assisted by IFOAM (the International Federation of Organic Agriculture 

Movements) who have defined organic agriculture along the lines of four key 

principles: 
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 Health: Organic agriculture should sustain and enhance the health of 

soil, plant, animal, human and planet as one and indivisible 

 Ecology: Organic agriculture should be based on living ecological 

systems and cycles, work with them, emulate them and help sustain 

them 

 Fairness: Organic agriculture should build on relationships that ensure 

fairness with regard to the common environment and life opportunities 

 Care: Organic agriculture should be managed in a precautionary and 

responsible manner to protect the health and well-being of current and 

future generations and the environment 

Source: IFOAM website: http://www.ifoam.org/about_ifoam/principles/index.html 

The principles defined by IFOAM are implemented locally by national or 

regional certification and inspection organisations, although a set of basic 

standards provide criteria that accredited certifiers in each country must fulfil 

(IFOAM, 2002).    

3.1.2 Organic farming policies, regulations and standards 

Individual countries have set out policy initiatives defining and supporting the 

development of the sector since the mid-1980s, and Padel and Lampkin (2007)   

highlight that this support was provided in three key contexts.  Firstly there was 

a relatively short-lived idea that low yields from organic farming might help 

reduce overproduction, encouraged by ‘Pillar 1’ support payments within the 

Common Agricultural Policy (CAP) following food shortages after the Second 

World War.  Secondly the organic sector was an infant industry, support for 

which could be justified in terms of expanding consumers choices and lastly it 

was seen as providing ‘public goods’, i.e. environmental, social and other 

benefits to society that are not covered by the price of the food sold. 

Individual certification bodies have also developed minimum standards for 

organic production, both to protect consumers from fraud and to protect 

producers from unfair competition.  The first organic standards were set through 

http://www.ifoam.org/about_ifoam/principles/index.html
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‘basic-norms’ defined by the biodynamic movement4 in Germany in 1928. 

These norms set requirements for producers who wished to use the ‘Demeter’ 

name on their products, and focussed on the use of seed and the length of 

conversion periods (i.e. the time period since the land was treated with 

manufactured fertilisers).  Since the 1920s and 30s a plethora of national and 

international organic standards have been developed by certification 

companies. In early years these often consisted of basic guidelines, with 

standards becoming more prescriptive and rule-based over time.  IFOAM have 

played an active role in helping standards to become more consistent, in 

particular through the publication of ‘basic-rules’ (i.e. minimum requirements) for 

organic standards that have helped to facilitate international trade (Schmid, 

2007). 

More recently, the development of private organic standards and national 

policies led to the formation of Regulation (EEC) 2092/1991, which was 

introduced in 1992 to protect organic farming by ensuring fair competition and 

transparency at all stages of production and processing (Padel and Lampkin, 

2007).  Both the European Regulation and the US Department of Agriculture’s 

National Organic Programme (NOP) have strongly influenced the development 

of the sector worldwide, in particular by improving the credibility of organic 

products in the marketplace (Padel and Lampkin, 2007). 

In line with the European Action Plan for organic food and farming, the 

European Commission began the process of a total revision of its organic 

regulation in 2005. The majority of the rules related to production remained 

                                            

4 Biodynamic farming has many similarities with organic agriculture although its origins can be traced back to a single 

set of lectures given by the Austrian philosopher Rudolf Steiner (1924).  On biodynamic farms a stronger emphasis is 

placed on the importance of the farm as an organism, the role of ruminant livestock, and the use of preparations derived 

from manure, herbs and minerals, for improving soil and crop health.  For more information see:  Wistinghausen, E., 

Sattler, F., 1992. Biodynamic Farming Practice. The Biodynamic Agricultural Association, BDAA, Stroud, England. 
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unchanged in the new regulation, but the number of derogations5 was reduced 

and a framework for strictly regulated regional flexibility introduced.  The new 

standards for organic production in the European Union were published in 

20096.     

The updated European organic standards also provided an organic logo, which 

helps to convey the organic character of the product (Figure 3.1). Use of the 

logo is now compulsory on all pre-packed organic products produced and/or 

sold in the EU.  Recent research suggests that although the logo has improved 

clarity to consumers, in the UK there is still some way to go before it is accepted 

and understood widely (Gerrard et al., 2013). 

 

Figure 3.1: Organic logo of the EU. Source: Article 57 of standard 834/2007 

The regulations introduced by the European Commission ensure that organic 

certification is communicated to consumers through the protected term ‘organic’ 

(or an equivalent protected terms in other languages), and that products can 

only use the term ‘organic’ (or one of the other terms protected by the 

Regulation) on the label if they have undergone inspection/certification. Organic 

products also have to show the name and number of the approved control body.  

The EU organic regulation was subjected to a second review which began in 

2012, and the European Commission published a proposal for a new, updated 

organic regulation in 2014. The proposals have been poorly received by IFOAM 

and its members due to inadequate stakeholder consultation, technical 

shortcomings and inconsistencies concerning import rules and the improvement 

                                            
5
 Derogations refer to special permissions which may be requested by a producer or processor who wishes to use inputs that are 

normally prohibited in organic agriculture (e.g. manufactured pesticides, conventionally grown seeds or certain veterinary 
medicines).  Requests are normally made in writing and addressed to the certification body operating in an individual country. 

6 The latest standards are entitled ‘’Council Regulation (EC) No 834/2007 of 28 June 2007 on organic production and labelling of 
organic products and repealing Regulation (EEC) No 2092/91’’.  The Commission regulation EC No 889/2008 of the 5th of 
September 2008 lays down in more detail the rules for the implementation of regulation 834/2007.  Both regulations are available 
on the website of the European Union (see: http://eur-lex.europa.eu/en/index.htm) 

http://eur-lex.europa.eu/en/index.htm
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of control systems (IFOAM EU Group, 2015; Padel and Woodward, 2014). 

Whilst the new organic regulation is expected to enter into application in 2018 or 

2019, an extensive consultation process is currently ongoing to resolve such 

issues. 

Despite such setbacks, the European organic movement has evolved from 

being opposed to agricultural policy developments, to being fully subsumed as 

part of their development. This has led some to state that the organic movement 

has lost control of its own destiny and that policy support has “pushed the 

sector towards protecting the environment, rather than producing food in a more 

sustainable manner” (Tovey, 1997).  Lampkin and Padel (2007) highlight that in 

some cases “organic farming has indeed just become one of many agri-

environmental schemes” although they go on to highlight that “the introduction 

of single European or national regulations, as opposed to the plethora of 

standards, has helped to reduce confusion and inspire confidence in 

consumers”.   

 

3.2 Growth and current status of the organic sector 

According to a recent IFOAM and FiBL (Swiss Research Institute of Organic 

Agriculture) survey there are 43.7 million hectares of organic agricultural land 

worldwide, comprising 1.0% of all agricultural land.  The highest shares of 

organic land are found in Oceania (4.1%) Europe (2.4%) and within the 

European Union (5.7%).    However many countries within Europe have much 

higher percentages, for example Austria (19.4%), Liechtenstein (30.9%) and 

Sweden (16.4%) (Willer and Lernoud, 2016).   
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Figure 3.2: Growth in global organic agricultural land 1999-2014.  Source: Willer 

and Lernoud (2016) 

The dramatic growth in the organic sector over recent years (Figure 3.2) can be 

partially attributed to growing policy support, in addition to an increasing 

consumer demand, which largely stems from a desire to buy “healthy” organic 

food (healthiness is often associated with the absence of chemical residues, as 

well as a higher nutritional value, amongst organic consumers, Padel and 

Lampkin, 2007; Seufert et al., 2017). Animal health, food safety and economic 

problems in the non-organic sector have also led to increases in the 

consumption of organic food products (Padel and Lampkin, 2007).    In addition 

some countries, such as Sweden, have set specific targets for a large increase 

in organically farmed land areas, to help mitigate the environmental impact of 

non-organic farming systems (McNeill et al., 2005).  

Global organic sales have also been increasing steadily over the last 25-30 

years, reaching a combined value of 80 billion US dollars in 2014. The size of 

Year

G
lo

b
a
l 

g
ro

w
th

 i
n

 o
rg

a
n

ic
 l
a

n
d

 (
M

 h
a
)



32 

 

the global market has expanded over five-fold since 1999, making it one of the 

fastest growing food sectors (Sahota, 2016; Seufert et al., 2017).  Markets in 

North America and Europe comprise 91% of global revenues (Sahota, 2016) 

highlighting a current disparity with the location of the majority of organic 

producers (over two-thirds of organic farmland is in developing countries where 

the focus is on exports, Sahota, 2016).   

3.3 Organic agriculture in the UK 

The amount of fully converted land in the UK is about 508,000 hectares, 

representing 2.9% of the total farmed area, although the proportion of land that 

is farmed organically varies widely by region, from highs of 10.7% in south-west 

England and 8% in Wales to 1.5% or less in Northern Ireland, East Midlands, 

East England, Yorkshire and Humberside (Soil Association, 2012, 2014).  The 

dominant type of organic land is permanent and temporary pasture, covering 

84% of organic land, with cereals being the next largest area, covering 7.6% of 

the total (Defra, 2017). 

Over half of all organically managed land within the United Kingdom is in 

England, with the South West region having the highest proportion of both crop 

and livestock producers  (Defra, 2017).  There was a 5% drop in the amount of 

organic land in the UK in 2016 (Soil Association, 2017), as some farmers 

reacted to market conditions and reverted to non-organic production, 

particularly as a result of rising imported feed costs and uncertainty over organic 

support payments following the British referendum on EU membership 

(Lampkin et al., 2017).    

Within the UK the main certification bodies are the Soil Association, Organic 

Farmers and Growers and the Biodynamic Association.  In many cases, 

standards set by these control bodies go above and beyond the minimum 

standard prescribed by the European Commission. For example the Soil 

Association standards require smaller flock sizes for chickens on animal welfare 

grounds.  The Soil Association is currently the largest certifier of organic 

products in the UK.     
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Support payments for organic conversion in the UK are currently available 

under the Rural Development Programme 2014-2020 and through Countryside 

Stewardship options.  Following the EU referendum result, it is currently 

unknown whether new applicants for agreements starting in 2018 will be eligible 

for payments.  Current support payments for organic farming in the UK are 

amongst the lowest in Europe (Figure 3.3) and a lack of public investment in 

this area is a contributory factor to the current small size of the sector (Lampkin 

et al., 2017; Sanders et al., 2011) . 

 

Figure 3.3: public expenditure for organic farming support across EU-25.  

Source: Sanders et al. (2011) 

 

3.3.1 The UK organic market: recent developments 

Although the beginning of the recession in 2008/9 led to a considerable decline 

in organic sales, the current UK organic food market represents a position of 

considerable recovery (Soil Association, 2010a, Mintel, 2013). In 2016, total 

sales of organic products in the UK increased for the fifth consecutive year, with 

total sales increasing by 7.1%, partly as a result of the devaluation in Sterling 

following the UK referendum on EU membership, which has led to increased 

organic food exports (Soil Association, 2017).  Sales of organic milk increased 

by 3.2% in volume terms, after a decrease of 2.2% in 2015, although more 

recently sales have been negatively affected by the low price of non-organic 

milk (Soil Association, 2017).  

Red meat sales also increased in 2016, which may in-part may relate to new 

evidence from Newcastle University on the nutritional benefits of organic meat 

Country
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in terms of fatty acid composition and concentrations of beneficial minerals and 

antioxidants (Soil Association, 2017; Średnicka-Tober et al., 2016).  Pig and 

poultry producers have been struggling with higher feed and energy prices, 

although poultry numbers rose by 6.7% in 2015 and sales of organic eggs and 

poultry meat have increased by 3.1% and 4.1% respectively, partly as a result 

of increasing consumer concerns over animal welfare in non-organic production 

(Soil Association, 2016).  The Soil Association also highlight that the 

representation of organic products in supermarkets is increasing, particularly as 

the ‘discount’ supermarkets are now stocking more organic products to attract 

consumers (Soil Association, 2017) although dynamic growth in the home-

delivery and independent retail sectors is also driving the current expansion.  

The future prospects for the sector are encouraging with a 5% expansion in the 

UK organic sector’s market value predicted for 2017 and with the UK-based 

Organic Trade Board being awarded over 10 million Euros of European funding 

to promote retailer uptake of organic products (The Organic Trade Board, 2017, 

Soil Association, 2017).  Rising (non-organic) food prices are also expected to 

contribute to the further development of the sector in the UK as conventional 

producers are encouraged to switch to more extensive methods of production to 

improve net-margins (Soil Association, 2017).   

Despite increases in sales, the UK’s organically farmed land area has been 

decreasing in recent years (Figure 3.4), primarily as a result of rising feed costs 

and uncertainty over the future profitability of the sector (Daneshkhu, 2016, 

Rustin, 2015.).   
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Figure 3.4: area of UK land in-conversion and fully organic (Defra, 2017)  

Considerable purchasing barriers also still exist in relation to organic products, 

with cost the biggest factor although many also consider the term ‘organic’ and 

it’s underlying principles to be vague. A third of organic consumers would 

therefore like to see more information on what ‘organic’ really means for each 

product (Mintel, 2013).  Fresh fruit, vegetables, dairy products and baby food 

are the most popular organic foodstuffs in the UK, with the absence of pesticide 

residues a particularly important factor in determining the popularity of organic 

fresh products and the success of one or two key brands driving the expansion 

of dairy products and baby food (Mintel, 2013). 

3.4 Characteristics of organic farming systems 

As mentioned in section 3.1, the organic approach focuses on the whole farm 

system, rather than individual components.  In this sense a conversion to 

organic agriculture can involve a significant restructuring of the farm, rather than 

an adaptation of current practice (Stockdale et al., 2001) although the dominant 

enterprise usually remains in-place post conversion (Howlett et al., 2002; 

Langer, 2002).  Mixed farms are also more commonly found within the organic 

sector, although specialised (e.g. stockless arable) farms do also occur (El-

Hage Scialabba and Hattam, 2002; Smith et al., 2011).     

Year
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Stockdale et al. (2001) state that common characteristics of organic farms 

include the following: 

 A focus on practices that can promote soil fertility and protect or enhance 

soil organic matter (SOM) 

 The adoption of practices that can conserve natural habits and wildlife 

within agricultural areas 

 The use of ‘natural’ methods of pest, disease and weed control, including 

crop rotations, the use of biological control from natural predators and 

resistant varieties 

 Extensive livestock management focusing on meeting the behavioural 

and physiological needs of animals with particular regard to housing and 

nutrition/diet 

In addition a study by Gabriel et al. (2009) found that the highest concentrations 

of organic farmland in the UK are in areas less suited to arable farming, 

characterized by high altitude and slope, and that typically organic farms are 

small and likely to be ‘mixed’ or ‘dairy’ farm types. Padel and Lampkin (2007) 

also found that organic farms subscribing for support schemes in Europe are 

generally low intensity livestock or mixed production systems located in 

marginal areas. 

In the following sections, the key characteristics of crop and livestock 

enterprises within the organic sector are explored in more detail. 

3.4.1 Crop production 

Crop production within organic farming is characterised by a diversity of 

cropping patterns, compared to non-organic farming systems, with the objective 

of minimising weed, pest and disease problems and the closing of nutrient and 

organic matter cycles (Lampkin et al., 2012). Although the ideal of self-

sufficiency within organic systems can never be fully achieved as exports are 

rarely balanced with the return of human waste to the farming system (in 

particular as the use of human sewage on organic farms is currently prohibited 

under organic standards, Soil Association, 2010b) it is seen as something to be 
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aimed for, and any external inputs should ideally be derived from renewable 

sources (although this can be hard to achieve in practice).  In general, only 

fertilisers that release nutrients slowly over time through soil microbial 

processes or weathering are allowed to enter the farm.   Where a need for 

supplementary nutrients is proven and cannot be addressed within the farming 

system or by re-design of the rotation, application of supplementary fertilisers 

can be made, with rock phosphate and a range of potassium minerals being two 

common sources (Stockdale et al., 2001). 

Lampkin et al. (2012) highlight that there is no standard organic crop rotation, 

as conditions and requirements vary greatly from site to site and with market 

fluctuations, however Table 3.1 provides some guidance on the typical 

proportions of crop categories on organic farms: 

Table 3.1: Proportions of crop categories within organic rotations.  Source: 

Lampkin et al.  (2012) 

Crop category Min (%) Max (%) 

Forage and green manure legumes 

and leys 20 100 

Cereals 0 50 

Other fodder crops 0 33 

Grain legumes & oil seeds 0 25 

Roots & vegetables 0 75 

 

As can be seen from Table 3.1, medium to long-term grass-clover leys are 

included in organic rotations to a greater or lesser extent, in order to build 

fertility and for grazing and fodder production.  For stockless systems, 

short/medium term green manures  (e.g. Trifolium, Medicago and Vicia spp.) 

are used instead, and these may be cut and mulched or incorporated directly 

into the soil (Stockdale et al., 2001). Where grass-clover leys are cut and 

mulched, however, the mulched crop acts as fertiliser and can promote grass-

growth at the expense of clover (Dahlin and Stenberg, 2010) resulting in lower 

clover contents in older leys (Nykänen et al., 2000).  Lampkin et al. (2012) also 
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highlight that the short-term green manures/leys common within organic 

stockless organic systems may not provide enough N through biological fixation 

to support the following crops (i.e. at the 20% level in Table 3.1) and that the 

‘Max’ values for each of the cereals, grain legumes, other fodder crops and 

vegetables may create problems for specific diseases, build-up of weeds and 

reductions in organic matter.    

Partly as a result of the restriction on synthetic input use, individual crop species 

and varieties within organic systems are chosen for their adaptability to local 

soil and climate conditions and resistance to local pests and diseases (El-Hage 

Scialabba and Müller-Lindenlauf, 2010).  Organic farmers also develop more 

resilient systems through growing a mix of crop varieties, avoiding the 

vulnerability to extreme weather events created by monocultures (Smith and 

Lenhart, 1996) and making more efficient use of available nutrients (Zhang and 

Li, 2003).   

3.4.2 Livestock production 

In line with the aim of creating a closed-system, plant and livestock production 

are integrated on organic farms to optimise nutrient use and recycling, with 

grass/clover from leys and arable crops providing feed for livestock and the 

livestock providing a mobile source of fertility for the grassland and crops  

(Watson et al., 2002).    Ruminants therefore play a vital role in many organic 

systems, by making productive use of fodder legumes, which also provide the 

main source of nitrogen to the farm. This approach aligns with organic 

standards which dictate that at least 60% of the diet (on a dry matter basis) for 

ruminants shall be forage based (European Commission, 2010).  Organic 

farming standards also require that feed brought into the holding for livestock is 

grown organically, although organic pigs and poultry units are allowed to import 

a small-amount of non-organic protein feed (European Commission, 2010; 

Hermansen, 2015).  The use of pure nutrients and additives is also limited to 

“natural” ingredients and levels of feeding are determined by an animal’s 

minimum needs rather than maximum production levels (Stockdale et al., 2001).  

This stipulation can lead to negative effects in terms of meeting animals’ 
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requirements, particularly in the poultry sector where the prohibition on the 

feeding of synthetic amino acids can contribute to worse feed conversion, N 

excretion, and mortality rates compared to conventional free-range or fully-

housed systems (Dekker et al., 2012; Leinonen and Kyriazakis, 2016; 

Steenfeldt and Hammershøj, 2015). 

Many organic farms will also aim to retain as closed a herd/flock as possible, 

and thereby reduce the risk of buying in disease whilst encouraging selection on 

the basis of an individual farm’s needs (Stockdale et al., 2001). This approach 

may lead to missed opportunites in terms of the ‘hybrid-vigour’ that can be 

obtained from introducing new genetics through cross-breeding (Buckley et al., 

2014).  A lack of suitable breeds can also pose an issue in the organic pig and 

poultry sectors which tend to rely on modern breeds that are not always suited 

to free-range/outdoor conditions (Nauta, 2001).  Organic farms also aim to 

apply species-specific husbandry with consideration for animals’ ability to 

express their natural behaviour.  Organic farming therefore aims to go beyond 

the alleviation of pain, fear and hunger as set out within the RSPCA ‘Five 

Freedoms’ (Main et al., 2001) with the aim of respecting the integrity of the 

animal.  The focus is therefore on efficiency, rather than maximisation of output, 

with longevity being an important factor within organic breeding/selection (Van 

Diepen et al., 2007).   Evidence also shows that the use of dual-purpose breeds 

on organic dairy farms is greater than within the non-organic sector (Van 

Diepen et al., 2007).  Feeding and management regimes must also be geared 

towards the species and class of stock being fed, taking account of nutritional 

adaptations and requirements (early weaning is discouraged under organic 

management, Stockdale et al., 2001).  

With regard to animal health, organic farms take a preventative approach, 

through appropriate housing, and management techniques (e.g. rotational 

grazing, Soil Association, 2008).  Whilst the application of these approaches 

can help to reduce the disease challenge and increase the resistance of host 

livestock, organic standards emphasise the need to treat any sick animal with 

the best available means (Stockdale et al., 2001).  Despite the adoption of such 
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preventative measures, internal and external parasites can pose particular 

problems on organic farms, and inherent shortfalls in trace-elements in animal 

diets can occur through a greater reliance on home-produced forages 

(Stockdale et al., 2001).  Mastitis is recognised as the dominant health problem 

for organic dairy herds (Haskell et al., 2009) and higher mortality rates have 

been found in organic poultry systems as a result of increased metabolic energy 

requirements, predation pressures and a greater incidence of feather pecking 

as a result of untrimmed beaks (Dekker et al., 2012; Leinonen et al., 2012a, b).  

The practices of intentional mutilation of livestock in the form of castration, 

dehorning, and tail and teeth clipping vary according to livestock type, for 

instance virtually all organic dairy herds within the United Kingdom are de-

horned (Roderick et al. 1996 in Stockdale et al. 2001) and tail docking of lambs 

is commonplace, whereas teeth clipping and tail-docking of pigs is prohibited 

under certain organic standards (Soil Association, 2008).   

3.5 Organic agriculture’s impact on climate change 

An overview of recent work exploring the impact of organic production on 

greenhouse gas emissions and soil carbon sequestration is presented in the 

following section.  A separate, detailed assessment of fossil energy efficiency 

within a range of organic systems is presented in Chapter 4.   

3.5.1 Greenhouse gases from agriculture – an overview 

The Fifth Assessment Report of the IPCC states that greenhouse gas (GHG) 

emissions from agriculture, between 2000 and 2010 were estimated to be 5.2 – 

5.8 GtCO2 eq yr-1 (i.e. 10-12% of global anthropogenic emissions, Smith et al., 

2014).  Moreover GHG emissions from deforestation, due to land conversion to 

crop or livestock production, account for c.12% of global GHG emissions (El-

Hage Scialabba and Hattam, 2002; El-Hage Scialabba and Müller-Lindenlauf, 

2010; Idel, 2013).   When these elements are combined with food handling and 

processing activities, it is estimated that approximately one-third of global 

anthropogenic GHG emissions are due to agriculture (El-Hage Scialabba and 

Müller-Lindenlauf, 2010; Olesen, 2009). There is considerable uncertainty in the 

estimate, as a direct result of a lack of clarity over how emissions from clearing 
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forests and cultivation of new land can be attributed to agriculture (Olesen, 

2009).  Despite this, agricultural systems clearly have a major role to play in 

reducing greenhouse gases.  Moreover, agriculture contributes a 

disproportionate amount of high impact GHGs: approximately 47% and 58% of 

total anthropogenic emissions of methane (CH4) and nitrous oxide (N2O) 

respectively.  Together, these two gases form over 90% of agriculture’s 

contribution to global warming (not including Land Use Change, Foresight, 

2011). For this reason, the following sections focus on the impact of organic 

practices on N2O and CH4 emissions.  

3.5.2 Organic farming and nitrous oxide (N2O) emissions 

 

The IPCC estimates that 70% of the total GHG emissions from agriculture are 

associated directly with nitrogen (N) fertiliser, through a combination of the CO2 

and N2O emissions arising from its manufacture and use (Powlson et al., 2011).  

Agricultural N2O emissions are forecast to increase by 35-60% as we approach 

2030, due to increased fertiliser use and animal manure production (FAO, 

2003).  Organic systems avoid the emissions associated with manufactured N 

fertiliser, as the main source of N is biological nitrogen fixation, within the fertility 

building ley period of the crop rotation (Lampkin, 2007).  Despite this, a global 

meta-analysis by Skinner et al. (2014) highlights that yield-scaled N2O 

emissions under organic management are higher as a result of lower rates of 

production,  although N2O emission per hectare are generally lower as a result 

of lower N-inputs and livestock densities.    

 

It has also been highlighted that the N use-efficiency of organic fertilisers is low, 

compared to equivalent quantities of inorganic fertiliser, as the N can often be 

released too late in the season, or even after the growing season has ended 

(McNeill et al., 2005).  Such effects are expounded by factors that are beyond 

the direct control of the farmer, such as the soil moisture, aeration and 

temperature, which affect the rate of N mineralisation from organic material 

(Novak and Fiorelli, 2009).   These effects have led some authors to conclude 

that the N2O emissions associated with the application of manure can be higher 
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than for mineral fertiliser, depending on soil type (Petersen et al., 2006; 

Rochette et al., 2008; van Groenigen et al., 2004).  The amount of nitrogen 

supplied by legumes can also vary greatly and is difficult to predict, with ranges 

of <100 to 700 kg N ha-1 yr-1, depending on the legume that is used (Ledgard, 

2001).  It is claimed by some that the total N budget on organic farms will 

therefore be inherently more unreliable than for conventional farms where the 

total N input (as manufactured fertiliser) is more easily controlled and predicted 

(Leach et al., 2002).   

In light of the unpredictable nature of the N sourced from legumes, 

improvements in N use efficiency on organic farms are particularly related to 

improvements in the use of manures as an effective nutrient resource (Novak 

and Fiorelli, 2009). This management must take into account the fact that 

nutrients from manure are available at a slower rate compared to mineral 

fertiliser, that fresh manure contains more readily available nitrogen than 

composted material, and that much of the available N in manure may be lost 

through the release of ammonia (NH3) during composting (Larney et al., 2006; 

Watson et al., 2005).  Manure analysis and improved timing of application may 

help to improve management by allowing for an enhanced prediction and 

uptake of available N (Novak and Fiorelli, 2009).  Nitrogen leaching from 

manures can also be reduced, through the use of cover and catch crops and 

green manures (Niggli et al., 2009; Stopes et al., 2002) which can also improve 

soil structure, and enable significantly lower mobile nitrogen concentrations, 

further reducing N2O emissions.  Improvements in N utilisation within organic 

systems can also be made by breeding crops to improve their N-use efficiency 

(Wolfe et al., 2008).  

3.5.3 Organic farming and methane (CH4) emissions 

 

There have been few direct comparisons of methane generation between 

organic and conventional production (Lampkin, 2007) although evidence has 

shown that diets high in roughage will lead to higher rates of methane 

emissions than diets high in starch (i.e. diets with a high cereal content, Eckard 
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et al., 2010; Johnson and Johnson, 1995).  The specifications within the 

European Commission’s Organic Regulations for at least 60% of the dry matter 

in daily rations of herbivores to consist of roughage, fresh or dried fodder, or 

silage has therefore led some authors to conclude that a conversion to organic 

agriculture will result in higher levels of methane being emitted (de Boer, 2003).  

A reliance on high cereal diets can result in severe difficulties relating to health 

and longevity of herbivores, however, which are by their physiology more suited 

to diets high in roughage (Zollitsch et al., 2004).  A high cereal diet can also 

result in milk and meat production that is reliant on concentrates grown on 

arable land with high inputs of nitrogen fertiliser (Niggli et al., 2009) and 

deforestation overseas in the case of imported soya and maize (El-Hage 

Scialabba and Müller-Lindenlauf, 2010).  Novak and Fiorelli (2009) also 

highlight that replacing roughage by concentrates contradicts the European 

environmental policy to promote extensive use of maintained grasslands, which 

store significant amounts of carbon in soil (Freibauer et al., 2004).     

 

There are also some claims that diets high in tannins (e.g. diets with a high 

clover/legume content) produce less methane than grass-only diets through a 

suppression of fibre degradation in the rumen (Hess et al., 2006).  For instance, 

McCaughey et al. (1999) found that CH4 emissions were reduced by 25% in the 

case of beef cows fed on alfalfa-based pastures, compared to grass only 

pastures. Although ruminant livestock farmers in the UK have been reluctant to 

grow alfalfa, due to a perception that forage legumes are difficult to grow and 

ensile, the situation is changing due to increased availability of disease resistant 

varieties and a growing awareness of the crop’s usefulness as a high-yielding 

source of protein (Cotswolds Seeds, 2017, AHDB Beef & Lamb, 2016).  

Lampkin (2007) highlights that the use of such legumes could represent a 

potential “triple-gain” for climate change: reducing methane emissions from 

animals, building SOM and reducing reliance on synthetic nitrogen fertilizers. 

The increasing popularity of legumes on non-organic farms may also result in 

savings for the agriculture sector overall, although a recent meta-analysis, 
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conducted as part of the UK Greenhouse Gas Platform project7, concluded that 

there is insufficient evidence for high-legume/high-tannin pastures to be 

considered an effective option for lowering direct CH4 emissions from ruminant 

livestock (McBride et al., 2012). 

 

3.5.4 Selection of effective greenhouse gas mitigation measures for 

agriculture   

Due to the present uncertainties in estimating greenhouse gas emissions from 

agricultural practices (Smith et al., 2007), the selection of effective mitigation 

measures by policy makers and industry is a difficult task. In particular 

uncertainties in this field relate to N2O emissions, which can be greatly affected 

by local soil and weather conditions (Mathieu et al., 2006). CH4 emission 

estimates are also influenced by a range of factors such as feed intake and 

ruminal microflora (Johnson and Johnson, 1995).  Climate and global change 

will also affect the future of agriculture, and the efficacy of mitigation options. 

For example it has been demonstrated that elevated atmospheric CO2 

concentrations could increase crop yields by 10-15%, which would reduce the 

demand for arable lands and non-renewable resource use per tonne of product 

(Smith et al., 2007).   

Novak and Fiorelli (2009) also highlight that any assessment of mitigation 

options should carefully consider the balance between their adverse and 

beneficial effects, with particular regard to practices diminishing productivity that 

may induce land-use change elsewhere in the world (Smith et al., 2007) or the 

fact that hedgerows used to store carbon in vegetation can have many other 

valuable functions such as creating a windbreak or improving biodiversity (Jose, 

2009).   

Despite such difficulties, a number of studies have attempted to assess the 

combined-GHG mitigation potential of organic farming systems (i.e. including 

CO2, CH4 and N2O) using Life Cycle Assessment (LCA) approaches, which 

                                            
7
 www.ghgplatform.org.uk  

http://www.ghgplatform.org.uk/
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offer a comprehensive and relatively consistent framework for assessing the 

environmental burdens of production processes (Notarnicola et al., 2017, see 

Section 3.8.1 for a description of the LCA approach).   

A comprehensive literature review comparing the Global Warming Potential 

(GWP) estimates from a range of LCA-based studies found no significant 

differences overall between organic and non-organic systems (Figure 3.5, 

Knudsen et al., 2011).  The authors note that lower yields in organic systems 

tended to offset the reduced use of manufactured inputs, leading to small 

differences overall when greenhouse impacts were expressed on a unit of 

product basis.  Conversely, and in common with a more recent work in this 

area, organic systems performed much better than non-organic when GWP 

estimates were expressed per unit of land area (Knudsen et al., 2011; Meier et 

al., 2015).  

 

 

 

Figure 3.5: Literature review of conventional and organic products.  Organic 

performs better above the line, worse below the line.  Source: Knudsen et al. 

(2011) 

The study by Knudsen et al. (2011) highlighted the importance of diet: beef had 

the highest greenhouse gas impact followed by lamb, pork, poultry and eggs. 
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The reviewers therefore note that the replacement of meat by plant products will 

have a greater impact than replacing conventional products with organic ones.  

Similar conclusions were drawn by Clark and Tilman (2017) who also found  

that organic systems result in similar GHG emissions per unit of product, and 

that shifting consumption patterns towards low impact foods would have a much 

greater impact on GHG reduction than a change in farm management practices. 

Knudsen et al. (2011) also cite a study by a Danish supermarket, which found 

that consumers who buy organic products tend to eat less meat than those who 

do not (FDB, 2010), suggesting that the diets of typical organic consumers may 

be inherently more sustainable than those of the general population. The 

authors of the study also note that most LCA-based comparisons do not 

address the GHG offset that could be achieved through soil carbon 

sequestration within organic farming, and that the inclusion of this aspect may 

make the difference between the systems much clearer (Knudsen et al., 2011).  

3.6 Carbon sequestration in organic farming 

Maintaining and increasing soil organic carbon (SOC) in agricultural systems is 

the mitigation option with the greatest potential (Smith et al., 2008) and building 

reserves of soil carbon can increase the potential productivity of soil (Smith et 

al., 2007).  Practices that have been shown to increase SOM, such as the use 

of organic fertilisers and fertility building leys with legumes, are commonly found 

on organic farms (Smith et al., 2011) and a range of long-term field trials have 

found higher organic matter contents in organically managed soils (Clark et al., 

1998; Loes and Øgaard, 1997; Mäder et al., 2002; Mäder et al., 2006; Marriott 

and Wander, 2006; Nguyen et al., 1995; Reganold et al., 1993).  In addition to 

storing carbon, higher levels of SOM can enhance the nutrient buffering 

capacity, water holding capacity and microbial activity within soils and help to 

increase the soil’s fertility (El-Hage Scialabba and Müller-Lindenlauf, 2010).  

Stockdale et al. (2001) also point out that the size of the active fungal 

population is often increased under organic management and increased 

microbial populations have been observed within organic farming in a long-term 

trial (Fließbach et al., 2007). 
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A review of 32 peer-reviewed publications explored SOC contents within 

organic farming, revealing a 2.2% average annual increase in SOC within 

organic systems (Leifeld and Fuhrer, 2010) however, the authors highlighted 

that in 74% of cases the amount of organic fertiliser (e.g. manure and/or 

compost) in the organic systems exceeded that applied in the conventional.  

Leifeld and Fuhrer (2010) state that a truly unbiased comparison should be 

based on the same or similar crop rotation (i.e. including fertility building ley 

periods in both organic and non-organic systems) and the same rates of organic 

fertiliser application, as neither of these practices are exclusively found in 

organic farming.  Although this suggestion is valid, a comparison of this kind 

would ignore the fact that organic farmers are more likely to be using a fertility 

building period and manures as a result of organic principles and standards.  A 

review of field studies carried out in the US also found that legume based and 

manure and legume based organic management resulted in similar levels of 

SOM increase (Marriott and Wander, 2006), suggesting that the ley period 

alone is more significant than additions of manure, in terms of building soil 

carbon. Soussana et al. (2007) also found that temporary leys have the 

potential to contribute to C storage when net-exchange of carbon is considered 

on a site-by-site basis.   

A more-recent study carried out by the Swiss Research Institute of Organic 

Agriculture (FiBL) reviewed 74 studies to identify differences in topsoil organic 

carbon under organic and non-organic management.  The results revealed 

significantly higher SOC concentrations (+0.18±0.06% points), stocks  (3.50 

±1.08 Mg C ha−1) and sequestration rates (0.45 ± 0.21 Mg C ha−1 y−1) within 

organic systems (mean values ± 95% confidence interval).  The main reason for 

the difference was found to be the use of ley/arable rotations and the 

application of organic fertilisers (Gattinger et al., 2012). When Gattinger et al. 

(2012) limited the assessment to organic farms receiving zero net-inputs, 

significant, positive differences in SOC concentrations and stocks were still 

found (0.13 ± 0.09% points and 2.16 ± 1.65 Mg C ha−1, respectively) although 

the difference for sequestration rates was no-longer statistically significant  

(0.27 ± 0.37 Mg C ha−1 y−1). 
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Although all of the studies assessed within the FiBL meta-analysis were based 

on pair-wise comparisons, and consisted of a mix of plot experiments, field trials 

and farm assessments, the authors note that many of the papers reviewed 

suffer from shortcomings that reduce their scientific value.  In particular, many 

of the studies contained no data on baseline SOC concentrations which made it 

impossible to determine if the differences were due to the management itself, or 

the residual effect of the previous land-management.  The authors of the study 

also point out that there are major issues relating to the shallow soil sampling 

depth (a median of 22.5cm across the studies).  With over 50% of soil carbon 

residing in the subsoil (Batjes, 1996) this is an important omission.   

It is also important to consider that soil carbon sequestered in arable soils is 

impermanent and is lost more rapidly than it accumulates (Freibauer et al., 

2004; Soussana et al., 2004) and that even a single ploughing can greatly 

increase the rate of mineralisation and subsequent release of CO2  (Reicosky et 

al., 1999).  To be effective, therefore, a conversion from arable to grassland 

should remain permanent (Novak and Fiorelli, 2009) although smaller increases 

in levels of SOC have been observed in some ley-arable systems, compared to 

continuous cropping (Johnston et al., 2009).  The total amount of carbon that 

can be sequestered following the adoption of organic farming will also depend 

on the SOM content at the time of conversion and the system type used as a 

comparator (e.g. whether both organic/non-organic systems are following a ley 

arable rotation, or whether the non-organic system is 100% arable, Powlson et 

al. (2011).   Moreover, the addition of organic material to the soil can only be 

considered to provide a net benefit with regard to soil carbon if the application 

avoids a deleterious alternative. For instance, the application of animal manures 

and straw to arable soils is often associated with a soil carbon increase, 

however in a UK context virtually all of the manure and straw produced is 

already applied to soils, or incorporated soon after harvest (Powlson et al. 

2011).   

Long-term studies have also revealed that the rate of SOC accumulation in 

agricultural soils is non-linear and will often reduce over time as a new steady-
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state is reached.  For instance the 140-year Broadbalk Experiment at 

Rothamsted Research, UK, found that on the ‘farmyard manure’ plots the rate 

of increase was greatest in the early years of application, and reduced over-

time as the soil approached a new state of equilibrium (Powlson et al., 2011).  It 

is therefore essential that any initial, large gains in soil carbon sequestration, 

resulting from the addition of manures or other organic materials, are not 

extrapolated year on year under the assumption that the same increase will 

continue to occur indefinitely (Powlson et al., 2011).  Smith et al. (2007) also 

highlight that terrestrial biomass sources only remove carbon from the 

atmosphere until the maximum capacity for the ecosystem is reached – this 

phenomenon is referred to as ‘sink saturation’ and is shown in Figure 3.6.    

 

 

 

Figure 3.6: The accumulation of total soil carbon in silty clay loam soils at 

Rothamsted, UK, when old arable land is sown to permanent grass. Adapted 

from nitrogen content in Figure 18.10 of Jenkinson (1988).  Source:  Freibauer et 

al. 2004. 

Reduced tillage also has the potential to increase rates of soil carbon 

sequestration (King et al., 2004) although no-tillage is difficult in organic 

agricultural systems because the associated development of weeds cannot be 

controlled with the use of herbicides, only by mechanical weed control (El-Hage 
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Scialabba and Müller-Lindenlauf, 2010).  Recent work has also highlighted that 

increases of SOC resulting from reduced tillage are often associated with higher 

concentrations near the soil surface, rather than an increase in SOC stocks, 

and that the need to combine reduced tillage systems with inversion tillage to 

control perennial weeds will almost certainly result in any gains being lost 

through mineralisation (Powlson et al., 2012).  The same study highlights that 

there is little room for the expansion of reduced tillage in the UK, and that only 

certain soil types are suited to this method of cultivation.  Other authors have 

highlighted that the larger soil aggregates, low gas diffusivity and greater water 

retention near to the soil surface, that results from reduced tillage, can make the 

soil less aerobic and lead to higher N2O emissions (Ball et al., 2008; Ball et al., 

1999)  

Despite uncertainty over the rates of SOC increase resulting from organic 

practices on agricultural land, previous studies have highlighted the 

improvement in other soil properties that can result from an adoption of organic 

management.  For example Siegrist et al. (1998) found that the adoption of 

organic agriculture can significantly reduce soil erodibility on a silty loam soil, in 

addition to increasing earthworm biomass and density.  Reganold et al. (1987) 

also found significantly higher moisture contents on soils under organic 

management (attributed to high SOM levels) and reported that levels of water 

erosion were nearly four times greater on the non-organic land.  Reganold et al. 

(1987) state that the difference in erosion rates between organic and 

conventional farms is related to the different crop rotation systems- highlighting 

that only the organic farm in their comparison included a green manure crop 

every third year and that the organically managed land had fewer cultivations.  It 

is therefore suggested that organically managed soils are less prone to the 

effects of extreme weather events such as flooding, water-logging and drought 

(El-Hage Scialabba and Müller-Lindenlauf, 2010).  Organically managed land 

also tends to be more diverse, with a greater proportion of the land-area 

devoted to features which improve biodiversity and encourage positive 

interactions.  The presence of these features is encouraged by the IFOAM basic 

standards, which state that organic producers “shall take measures to maintain 
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and improve landscape and enhance biodiversity” (IFOAM, 2002). Agroforestry 

systems have similar effects and their uptake is also encouraged within different 

standards for organic agriculture (IFOAM, 2002).   

3.7 Previous attempts to explore the impacts of ‘up-scaling 

organic’ 

Several studies explored the impacts of a large-scale uptake of organic 

agriculture. The methods applied and results derived are summarised in the 

following sections.   

3.7.1 Up-scaling studies – UK based assessments 

The most recent study exploring the impacts of a 100% conversion in a UK 

context was completed by the University of Reading’s Centre for Agricultural 

Strategy.  Jones and Crane (2009) considered three separate approaches to 

exploring how much food could be produced if all agriculture in England and 

Wales were organic: 

 Weighting by farm type:  In this approach, the current mix of organic 

farm types was assumed to change to become consistent with the 

current mix of conventional farm types at a national level. 

 Weighting by yield: in this approach organic yield ratios were applied to 

the conventional production figures (e.g. a reduction of 10-50% 

depending on the commodity), which avoided the issue of farm numbers 

or farm systems. 

 Supply side modelling involving the proliferation of model organic 

farms in the colonization of available agricultural land:  this 

approach was not applied due to time constraints, however the 

methodology that could have been applied with more resource was 

outlined in Jones and Crane (2009).  For this modelling approach, a 

linear programming-based model would be constructed and tasked with 

meeting the demand for domestically produced commodities using the 

land base within a particular region.  The model would then populate a 

given region with organic farm types required to meet the specified 
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demand.  The authors state that this option would provide the most 

realistic results by allowing the organic systems to adapt in order to meet 

consumer demand across the various regions. 

Jones and Crane (2009) found that when applying the weighting by farm type 

method, a conversion to organic production would increase the amount of 

‘minor cereals’ (i.e. oats, rye, triticale) dramatically, exceeding conventional 

production by 2.2 million tonnes, whereas the production of wheat and oilseed 

rape would reduce, as these two crops are currently under-represented on 

organic farms in England and Wales (there is currently no domestic market for 

organically produced oilseed rape (Jones and Crane, 2009).  When weighting 

by yield, for all cereals together, a wholly organic agriculture would produce 

approximately 59% of the conventional output.  For livestock, the ‘farm types’ 

estimate found that the amount of beef that would be produced under organic 

management would exceed the amounts currently provided by conventional 

farming, due to an increased presence of suckler herds on arable farms, as a 

result of increased areas of grass/clover ley.  Conversely within the ‘by-yield’ 

estimate the total amount of beef production was somewhat reduced due to 

lower stocking rates on most organic farms.  Pigs and poultry would also reduce 

because of much lower stocking densities. The projections for organic milk 

production ranged from 61-70% depending on whether the converting dairy 

farms retained their original size (resulting in the lower estimate) or increased 

their production intensity. 
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Table 3.2: Estimates of organic production as a proportion of conventional 

production derived from two raising approaches (Jones and Crane, 2009) 

 

The authors also note that a wholly organic agriculture would lead to very large 

savings in in-organic agrochemical use, although volumes of other inputs, in 

particular labour, would rise.  Benefits for the wider rural economy in terms of 

employment were therefore reported as being self-evident, although the authors 

note that the high labour requirements may be perceived as a barrier to 

conversion in some cases, especially for arable farms which may be operated 

largely by a sole worker (i.e. the farmer). 

A major difficulty highlighted within the University of Reading study is that 

scaling on the basis of farm-type assumes that current demand patterns for 

organic products will remain the same (i.e. there would be more emphasis on 

horticultural crops and less emphasis on crops for processing such as oilseeds 

and sugar beet).  Conversely, the approach of applying organic yield ratios to 

the area of organic crops ignores the significance of typical organic rotations 

and the present dominance of mixed farming systems within organic agriculture.  

In view of this Jones and Crane (2009) state that most reliance should be 

placed on estimates when the values obtained through the two approaches 

concur, as is the case for peas and beans in Table 3.2. 
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An earlier study completed by Lampkin (1994) also explored the effects of a 

widespread conversion to organic agriculture in the UK.  To implement the 

organic scenario a range of crop area and yield adjustments were applied to the 

conventional production data, as follows.  

 A reduction in the area of cereals, by a maximum of 25% 

 An expansion in the area of oats, at the expense of wheat and barley (a 

characteristic common to organic farms)  

 An expansion in the area of potatoes, vegetables and fodder crops 

 A reduction in sugar beet and oilseed rape areas due to difficulties 

associated with the organic production of these crops 

 An expansion in grain legume crop areas, particularly because of their 

usefulness in organic rotations in terms of providing nitrogen through 

biological fixation and because of their flexibility (i.e. can be used as 

either livestock feed or for human consumption) 

 Grass ley areas were expanded, particularly in arable areas 

 The area of permanent pasture and rough grazing was reduced slightly, 

due to increased forestry and environmental conservation activities which 

would lead to a general increase in woodland and ‘other land’ areas and 

because long-term grass leys would be brought back into cropping 

rotations 

The yield output assumptions were specified as ratios (organic:conventional) 

and combined with the crop area assumptions to define total outputs at national 

level.  The yield percentages ranged from 60% in the case of organic wheat to 

80% in the case of grain legumes. Dairy livestock numbers were estimated to 

remain the same as conventional under organic management although milk 

yield per cow (and total output) was reduced by 10% as the result of a switch to 

diets low in concentrate.  Stocking rates were predicted to fall by 20% in the 

case of grazing livestock and 40% in the case of pigs and poultry, illustrating the 

lower stocking rates and reduced feed availability under a 100% organic 

scenario.   
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The study found that the UK’s self-sufficiency under organic management would 

reduce to a similar level to the 1970s, although the author highlights that levels 

of food self-sufficiency in the UK may have been overestimated due to a 

reliance on livestock feed imports (Lampkin, 1994). The study emphasised that 

the assumptions made are necessarily speculative, but provide a useful starting 

point on which to base further work (Lampkin, 1994).   

3.7.2  Up-scaling studies – other EU countries 

A different approach to ‘scaling-up-organic’ was used by Zerger and Bossel 

(1994) in which a range of prototype farms were defined for 15 ‘production 

regions’ in Germany, and 75 ‘state indicators’ defined for each region over each 

point in time (every five years).  These indicators included the national food 

demand, for which three scenarios were explored i.e. 

1. Maintenance of 1983 per capita meat consumption 

2. Increasing per capita meat consumption 

3. Reduction in meat consumption to 1960 levels 

Three productions scenarios were also explored within the study, i.e. 

1. Intensification 

2. Business as usual 

3. Ecologization (organic farming) 

The organic production scenario was found to result in much lower levels of 

grain production (approximately 40% lower than “business as usual”) due to a 

reduced area and production intensity. There would also be a decrease in the 

area of sugar beet and an increase in potato production.  In contrast to Jones 

and Crane (2009) cattle numbers were also reduced by about 20%.  

Interestingly the study raised a major question of whether a large scale 

conversion to organic farming could be financed as the organic option had the 

lowest profit over a 40 year period compared to the “business as usual” and 

“intensification” options.  The authors therefore highlight that this option can 

only be pursued if risk reduction measures and an appropriate policy 

environment are put in place. However, this study assumed conventional prices 
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for all products sold; the economic situation would clearly change if organic 

premiums were applied. 

 

A team of researchers in Denmark also investigated the impacts of a 

restructuring of agriculture toward organic approaches over a 30 year time 

period (The Bichel Committee, 1999). Typical farm-structures and national 

organic yield data were combined within an upscaling approach to derive 

estimates of production and crop area at a national level (Ørum et al., 2000).  

Two yield levels were explored within the analysis, i.e. the “present yield level” 

based on current organic practice, and an “improved yield level” in which it was 

assumed that organic cereal production could be increased by 15% and clover 

grass production by 10%.  Two different levels of livestock feed imports to 

Denmark were also used in the organic scenarios, i.e. 1. No feed import, 

complete self-sufficiency in feed, and 2. 15% imported feed for ruminants and 

25% for non-ruminants, with imported feed amounts determined on the basis of 

feed-energy intake. 

The substantial reduction in output under organic management for the major 

crop and livestock types is illustrated in Table 3.3  The report illustrated that a 

considerably lower rate of production for pigs would have serious 

consequences for employment in primary production and processing, and that a 

number of supply industries would experience a fall in the demand for goods 

and services.  The Gross National Product (GNP) would therefore be reduced 

by 1-3%, corresponding to an annual reduction of DKK 11-26bn (£ 1.3-3.1 

million, exchange rate on 23/06/2017). Private consumption would be reduced 

by 2-5%, corresponding between DKK 1,900 and DKK 4,700 per capita per year 

(equivalent to £ 228-564) due to a reduction in agricultural wages, as a result of 

the reduced output (The Bichel Committee, 1999). 
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Table 3.3: Changes (%) in production under organic scenarios investigated by 

the Bichel Committee (Jacobsen and Fransden, 1999) 

 

 

In addition to calculating the effect on yield, a sub-group within the project 

calculated the environmental impacts of a 100% organic scenario (Hansen et 

al., 2001). This group found a much lower surplus of N within the organic 

farming scenarios (146–245 million kg N yr−1) compared to that of current 

Danish farming methods (418 million kg N yr−1).  Calculations within this sub-

group also demonstrated that a switch to organic production could result in a 

reduction of 9 to 53% in net energy consumption, depending on the amount of 

imported feed. Greenhouse gas emissions were predicted to reduce by 

between 13 and 38%, mainly as a result of the reduced nitrogen inputs and a 

reduction in animal numbers (The Bichel Committee, 1999). 

3.7.3 Up-scaling studies – global assessments 

Halberg et al. (2006) also used a modelling approach to explore the implications 

of a global conversion to organic agriculture in terms of food security.  This 

study used the IMPACT model (see description in section 3.8.2 below) which 

offers a method for analysing baseline and alternative scenarios of food 

demand, trade income and population. Through a review of the available 

literature, the authors found that organic agriculture results in yields that are 15-

35% lower than conventional, and that yields would be lower when crop failures 

and the need for a fertility building ley in the rotation were accounted for.  

Despite this reduction, the study found that a large-scale conversion to organic 

farming would not result in negative effects on global food availability, compared 

0-import 15-25% import 0-import 15-25% import

Cereal -62.0 -53.8 -52.9 -44.7

Rape -3.2 -100.0 -11.6 -100.0

Potatoes -79.8 -79.8 -79.8 -79.8

Sugar beet -54.4 -54.4 -54.4 -54.4

Greenfeed 57.6 53.7 66.0 63.4

Dairy farms 0.0 0.0 0.0 0.0

Pigs and poultry -69.1 -29.2 -54.3 -7.2

Total -33.8 -20.4 -26.2 -10.1

Present level of yield Improved level of yield
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with a baseline of food production over a 30 year period from 1995 onwards, 

especially if combined with food security policy initiatives. The authors also 

highlight that there may be other complementary advantages of supporting 

organic farming in Europe, such as decreasing overproduction, reducing 

environmental impacts and encouraging the development of a more ‘multi-

functional agriculture’ (Halberg et al., 2006).  There was even found to be a 

positive effect on food security in Sub-Saharan Africa and the study concluded 

that the partial introduction of modern organic farming systems in this region 

could result in yield increases of at least 50%.   

Badgley et al. (2007) also explored the implications of a 100% conversion to 

organic production on global food supply, through an application of organic yield 

ratios to FAO-derived statistics on food production within ten categories 

covering the major plant and animal components of human diets.  The yield 

ratios were obtained through a review of 293 comparisons, which were mainly 

derived from peer-reviewed scientific literature, although some yield data from 

conference proceedings, websites and technical reports were included.  The 

average yield ratios for the 10 groups are shown in Table 3.4  below.  The 

overall average yield ratio for all crop types was found to be 1.32 (Organic : 

conventional) at a global level.  Total N supply was estimated by multiplying the 

area currently in crop production by the average amount of N available from 

legumes established during winter fallow or between crops.  The total N 

supplied by leguminous crops was estimated to be 140 million Mg, “which is 58 

million Mg greater than the amount of synthetic N currently in use”.  The authors 

therefore suggest that rates of biologically fixed N and release can match N 

availability with crop uptake and achieve yields equivalent to high yielding 

conventional crops.   
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Table 3.4: Average yield ratio (organic: non-organic) and standard error (S.E.) for 

ten individual food categories recognized by the FAO.  N = number of 

comparisons for each crop,  Av. = average yield ratio based on the results from 

the comparisons 

 

If no data were available for individual crop types (e.g. tree nuts), then Badgley 

et al. (2007) used the average yield ratio for all plant foods or animal foods 

where relevant.  The results suggest that organic production has the potential to 

provide a substantially greater (c50%) amount of food than is currently 

produced, leading the authors to conclude that “organic production has the 

potential to support a substantially larger human population than currently 

exists”.  In common with Halberg et al. (2006), the study found high yield ratios 

for farms under organic management in the developing world (1.80 organic: 

conventional), implying that food security could be increased in these areas. 

Although the authors highlight that, at present, agriculture in developing 

countries is generally less intensive than in the developed world, and that 

organic agriculture is often compared with local, resource-poor methods of 

subsistence agriculture (Badgley et al., 2007).   

Connor (2008) criticises the outcomes of the Badgley et al. (2007) study, 

pointing out that the authors fail to realise that such a large increase in organic 

production would result in competition for limited organic nutrients and that crop 

yields and cropped areas will fall as an increasing proportion of land is devoted 

to fertility building ley periods.  Connor (2008) also points out that the 

assumption by Badgley et al. (2007) that 100% of arable land could accept an 
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additional legume crop is misleading and that for the multiple cropping systems 

of south-east Asia and China, organic agriculture could not possibly provide the 

quantity of N required per hectare (300-400kg) for producing the combined 

grain yields of >10 tonnes/ha.   

A more recent study by de Ponti et al. (2012) found that of the total 293 yield 

data entries used by Badgley et al. (2007) only 14% (42) met their quality 

criteria (i.e. relating to yield data being outdated, unrepresentative yield levels, 

insufficient information on treatments). Within their meta study, de Ponti et al. 

(2012) found that on average organic yields were 80% of those obtained under 

conventional agriculture, with a standard deviation of 21%.  The relative yields 

differed greatly across the regions of the world; in Northern Europe the relative 

yield was lowest (70%) and highest in Asia (89%).  The differences found for 

individual crop groups are summarised in Table 3.5 below: 

Table 3.5: Averages and ranges for the organic-conventional relative yields of 

selected crop groups and crops.   Source: de Ponti et al. (2012)  

Crop type Relative yield 

average % 

Range % 

Cereals 79 40-145 

Root and tuber crops 74 37-114 

Oilseed crops 74 41-114 

Vegetables 80 21-140 

Fruits 72 20-94 

Apple 69 44-92 

Other food crops 92 78-106 

Fodder crops 86 42-177 

 

The authors of the de Ponti et al. (2012) study state that the comparatively low 

yield gap between organic and conventional in the tropics can be accounted for 

by the fact that crops commonly grown in these regions, e.g. soybeans and 

other-pulses, have the ability to fix nitrogen and therefore require little/less 

artificial N-fertiliser. 
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3.8 Modelling approaches for assessing a change in 

agricultural land use– an overview and inter-comparison 

 

The use and development of agricultural models has increased rapidly over the 

last 30 years (Brockmeier and Urban, 2008) with the use of such approaches 

being considered an effective means to determine and assess complex 

relationships as an aid to decision making (Wang et al., 2009). In the beginning 

models were very limited in scope whereas today the use of global and/or 

regional multi-impact models covering a range of environmental, economic and 

social indicators is commonplace within the field of policy assessment and 

international trade negotiations (Brockmeier and Urban, 2008).    

The wide variety in modelling approaches used for assessing the environmental 

impact of farming systems is illustrated by Payraudeau and van der Werf (2005) 

who carried out an analysis of six methods: 1. Environmental Risk Mapping, 2. 

Life Cycle Analysis, 3. Environmental Impact Assessment, 4. Multi-agent 

Systems, 5. Linear Programming and 6. Agri-environmental indicators.  

Payraudeau and van der Werf (2005) highlight that the models can be split into 

those that are input related, e.g. considering the amount of fertiliser used, and 

effect related, e.g. considering the incidence of soil erosion. Payraudeau and 

van der Werf (2005) also state that effect based indicators are preferred, as 

they allow a more direct assessment of environmental impact.   Models also 

vary greatly in their detail, some using a time intensive approach to provide a 

comprehensive assessment of a limited range of indicators (e.g. Life Cycle 

Assessment-based models) whilst others provide a rapid overview of farming 

system performance against a broad range of environmental, economic and 

social sustainability criteria (Schader et al., 2014).  

For this study, the following models were considered in terms of their potential 

application in exploring the production and environmental impacts of a 100% 

conversion scenario: 
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 The Cranfield Agri-LCA: a suite of input and effect based models 

developed within a Life Cycle Assessment (LCA) framework 

 The Silsoe Whole Farm Model: an input and effect based Linear 

Programming model 

 The Land Use Allocation Model (LUAM): an input based-static Linear 

Programming model that represents the agricultural system in England 

and Wales as if it were a single farm 

 Farm Modelling Information System – FARMIS: an input based Positive 

Mathematical Programming Model that includes agro-environmental 

indicators 

 International Model for Policy Analysis of Agricultural Commodities and 

Trade (IMPACT).  A commodity market model for developing economic 

scenarios in relation to food security and water use 

 Common Agricultural Policy Regionalised Impact Analysis model 

(CAPRI) a commodity market model for assessing environmental and 

economic implications (food supply and trade) of CAP reform 

An overview of each model and its features follows.  

3.8.1 Agri-LCA model 

The Agri-LCA model, developed at Cranfield University (Williams et al., 2006) is 

a farm-systems based model developed to analyse and compare the 

environmental impacts of major agricultural commodities. The Life Cycle 

Assessment (LCA) approach used within the model can be defined as a 

systematic process to evaluate the environmental burdens associated with the 

production and/or delivery of a product or activity. Within agriculture, LCA is 

used to calculate the burdens associated with one unit of a food commodity, 

e.g. 1kg of wheat or meat, defined as the ‘functional unit’ (Williams and Audsley, 

2008).  Besides the functional unit there can be co-products or waste items 

such as straw, together with emissions to the environment, for example nitrate 

(NO3-) to water and nitrous oxide to air (N2O), as illustrated in Figure 3.7.  

Inputs to the system are usually traced back to the primary resource, e.g. the 

coal or uranium used to generate electricity or the energy required to produce 
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steel, plastic and other materials required for the manufacture of tractors 

(Williams et al., 2006).  

 

 

 

Figure 3.7: Outline of Agricultural LCA process.  Source: Williams et al. (2010)   

 

The LCA approach used within the Cranfield model is enshrined in the 

International Standards ISO14040 and 14044 (British Standards Institute, 1997, 

2006).  According to these standards the four stages of an LCA are:  

1. Goal and scope definition 

2. Life Cycle Inventory Compilation 

3. Life Cycle Impact Assessment  

4. Interpretation  

Phase 1 refers to the definition of the functional unit and system boundaries, 

with stage two referring to the gathering of information on relevant energy and 

material inputs and outputs (LCI).  An evaluation of the potential environmental 

impacts is then made by using quantitative characterisation indicators based on 

an Environmental Model (Life Cycle Impact Assessment - LCIA, Renó et al., 
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2011) before the results are interpreted and conclusions drawn.  Steps 1-4 are 

not always sequential, as it may be necessary to re-define the goal and scope 

of the study in light of missing or additional data, identified in stage 2 for 

example. 

Williams et al. (2006) highlight that agriculture has particular features that are 

not relevant to the LCA of industrial processes, relating to the fact that the effect 

of farming systems must be considered in the long-term, with particular regard 

to major nutrients, soil carbon and weed accumulation. The consequences in 

these areas must be examined through process modelling to ensure that the 

system being modelled does not result in the depletion of soil reserves or 

significant accumulation (e.g. of nitrogen) over time.  Unlike industrial products, 

or individual arable crops, livestock also pose certain difficulties.  It is not 

possible to consider an animal product in isolation, as genetic flows, varying 

nutritional requirements according to the metabolic stage of the animal(s) and 

the production and subsequent application of manures all have to be 

considered. The Agri-LCA models allow for the consideration and adjustment of 

these processes through farm-system modelling approaches including process 

models applied to soils, crops, post-harvest activities and animal production.  

Nutrient flow and breeding/replacement models are also applied to the livestock 

and arable sectors (Williams and Audsley, 2008).    

The indicators assessed through the Agri-LCA models include Eutrophication 

Potential (EP) measured in terms of phosphate (PO
3

4

-
) equivalents, the 

acidification potential, quantified in SO2 equivalents (1kg NH3-N is equivalent to 

2.3kg SO2).   Primary energy use is also recorded in Mega Joules (MJ, i.e. 106 

Joules). As can be seen in Figure 3.8, a figure is also given for Abiotic 

equivalent, in kg. This refers to Abiotic Resource Use (ARU), i.e. a use of 

natural resources aggregated using the method of the Institute of Environmental 

Sciences (CML) at Leiden University (Guinée, 1995).  This method puts many 

elements and natural resources on a common scale, related to their scarcity. It 

is quantified in terms of the mass of the element antimony (Sb), which was an 

arbitrary choice (Williams et al., 2006).  Environmental burdens are assessed in 
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terms of their impact over an extended time-period (e.g. Global Warming 

Potential values are expressed over 20, 100 and 500-year time frames).  The 

models do not therefore simply provide a snapshot of current practice but an 

overview of the longer-term impacts associated with contrasting agricultural 

management approaches. 

 

Figure 3.8: Sample of results from Agri-LCA model (www.agrilca.org) 

 

The system boundary for the model is specified at the ‘farm gate’, i.e. burdens 

associated with the transport and subsequent distribution of products following 

their production on farm are not considered, although some on-farm processing 

such as grain drying, milk cooling and potato storage is included (Williams et al., 

2006).   Product quality is also an important consideration within the model; for 

example meat is quantified as the edible carcass weight as used in statistics 

provided by the Meat and Livestock Commission (MLC), whereas milk is 

defined as the quantity of the fat-corrected product and oilseed is simply the 

amount harvested at a specified dry matter concentration (Williams et al., 2006).  

Allocation of burdens is achieved by economic value and by system expansion 

with regard to manure (i.e. the burdens associated with avoided manufactured 

N fertiliser are discounted from the crops fertilised with manure-N).  Average 

yields are assumed within the Agri-LCA model for Grade 3a land (Bibby et al. 

1969 in Williams et al. 2006).  Yields can also be adjusted for other grades of 

land by using linear coefficients (from Moxey et al. (1995) in Williams et al. 
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Poultry 1,000 kg dwt 32724 3797 27 56 3.3 24.2

Beef 1,000 kg dwt 36389 7543 98 217 1.8 23.4

Sheep meat 1,000 kg dwt 23196 8365 101 87 1.2 12.9
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2006) as illustrated in Table 3.6.  Grassland yields are calculated using the 

grass site class system (Brockman and Gwynn, 1994).  The data sources used 

within the model are established inventories and factors for industrial process 

for example the John Nix farm Management Pocketbook (2004-2005), Agro 

Business Consultants (2002-2005), Lampkin et al. (2002-2005), MLC yearbooks 

for pigs, sheep and beef, websites of organisations such as the Milk 

Development Council and Defra statistics.  Emission factors for ammonia, 

nitrous oxide and methane are sourced from the national inventories which also 

supply activity data. Some values were also developed within the Williams et al. 

(2006) study, based on some of the data sources listed above, inputs from 

Audsley et al. (1997) and the Ecoinvent data source (provided within the 

SimaPro platform). 

Table 3.6: Land grade factors used to scale yields within the Agri-LCA  

 

Nitrogen losses are adjusted within the Agri-LCA using a range of non-organic 

and organic crop rotations that contain representative crops and linear-

relationships based on simulations with the SUNDIAL model (Smith et al., 1996) 

which are applied for nine combinations of soil type and rainfall (i.e. sand, clay, 

loam and high, medium and low rainfall). The SUNDIAL simulations were run 

for long enough to ensure that the modelled rotations reach a steady state, i.e. 

with the soil organic N content being the same at the start and end of a rotation. 

The SUNDIAL-derived N loss estimates are combined with land occupation 

estimates for each crop by soil/rain class to determine the total impact.  Fossil 

energy use is also calculated for each crop as a function of soil type and tractor 

power as described in Williams et al. (2006).   

Land 

Grade 

Scaling 

Factor 

2 0.88 

3a 1.00 

3b 1.08 

4 1.12 
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The environmental influence of changes in animal diet, breed and management 

are assessed through changing the input values to the models (e.g. daily 

liveweight gain, annual fat-corrected milk yield, housing system) which in-turn 

affects metabolisable energy (ME) and crude protein (CP) requirements and N 

losses from manures and slurries (e.g. leaching, volatilisaton and 

denitrification).  Compound feed composition data are also applied and can be 

adjusted to determine embedded impacts of feed production overseas. Direct 

CH4 emissions are calculated as a function of liveweight gains, dry matter 

intake (adjusted in accordance with the forage component of the diet) and milk 

yields in the case of dairy cows.   

The Cranfield Agri-LCA model was used in a study carried out on behalf of the 

Food Climate Research Network and World Wildlife Fund (WWF) to assess the 

potential to reduce greenhouse gas emissions from the UK food system by 70% 

from a 2005 baseline (Audsley et al., 2009; Williams et al., 2011).  A total of 21 

production and technical measures were analysed together with eight 

behavioural measures, mainly relating to dietary change.  Modelling was used 

within the study to combine measures where this was possible, and reductions 

were considered beyond the farm gate, e.g. in processing, packing and 

distribution areas.    

 

Figure 3.9: Effectiveness (% emission reduction) of the top 12 mitigation 

measures included within Williams et al. (2011)  

% emission reduction from the UK food system
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No single measure or combination of measures was found to be capable of 

reducing emissions by more than about half. The single most effective measure 

within the study was ‘no meat’ with the technical measure of ‘no fossil fuels’ the 

next most effective (Figure 3.9) although it should be noted that all of the 

reductions assumed a 100% implementation which is unlikely for most of the 

measures considered.   

3.8.2 IMPACT (International Model for Policy Analysis of Agricultural 

Commodities and Trade)  

The IMPACT model was developed by the International Food Policy Research 

Institute (IFPRI) in Washington DC in the early 1990s.  The policy-focussed 

model was developed to assist in the development of a long-term vision with 

regard to the actions that need to be taken to feed the world and reduce poverty 

whilst protecting the natural resource base (Rosegrant et al., 2008).  The 

modelling approach allows for an assessment of alternative scenarios 

encompassing global food supply and demand, population, trade and income 

(Halberg et al., 2006).  The model also contains regional sub-models which 

allows supply, demand and prices for agricultural commodities to be 

determined. Elasticities are incorporated within the supply and demand 

functions to approximate the underlying production and demand functions, with 

international markets being used to determine agricultural commodity prices 

(Rosegrant et al., 2008).   

 The model covers a wide range of commodity groups and countries with trade 

between countries and regions being represented through a series of sub-

models.  Linear and non-linear equations are used within the model to estimate 

underlying production and demand functions.  Prices are determined through 

annual world commodity prices, updated annually, with demand for agricultural 

products being a function of prices, income and population growth.  Growth of 

crop production is also considered through the inclusion of a number of 

components, such as advancements in research and biotechnology, 

developments in infrastructure, education and the development of markets 

(Halberg et al., 2006). 
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The model has been used in several important research publications to assess 

food demand and security at the national level.  For example, the model was 

used by Msangi and Rosegrant (2009) to explore the impacts of several key 

drivers of change in food systems between 2007 and 2050, and possible entry 

points for policy intervention.  The study found that an expansion in biofuel 

production, necessary to meet the USA’s renewable fuel targets by 2022, would 

be accompanied by a net decrease in availability and access to food.  As can 

be seen from Figure 3.10 an increase in the rate of biofuel expansion could 

have a detrimental effect on the number of malnourished children between 2000 

and 2025. 

 

Figure 3.10: Trends in child malnutrition to 2025 under baseline case, biofuels 

and yield growth scenarios. CWANA = Central and West Asia and North Africa 

EASP = East Asia and Pacific, LAC=Latin America and the Caribbean, , SSA=Sub 

Saharan Africa (Msangi and Rosegrant, 2009) 

The report therefore suggested that policy interventions should focus on 

avoiding the use of food crops in the production of biofuels (e.g. ethanol and 

biodiesel).  The same report found that an increased investment in AKST 

(Agricultural Knowledge, Science and Technology) would result in greatly 

enhanced availability of calories, particularly in Sub-Saharan Africa and that the 

expected food price impacts of climate change would have strong implications 

for livestock production in particular, due to much higher costs of maize feed. 
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3.8.3 Silsoe Whole Farm Model 

The Silsoe Whole Farm Model is a computer based multiple objective Linear 

Programming (LP) model developed for exploring a number of farming 

scenarios (Annetts and Audsley, 2002).  The model aims to find the optimal 

solution from a range of cropping and machinery options for an individual farm 

with particular physical, economic and climatic characteristics.   Annetts and 

Audsley (2002) highlight that linear programming is a useful method for decision 

making in the planning of production on arable farms in the UK, as it captures 

conflicts between a number of choices of enterprise, which each have different 

requirements with regard to time/labour inputs, variable costs (e.g. seeds, 

fertiliser) and the time available which will vary according to farm location, the 

time of year and the soil type. 

The crop rotation, machinery use and cost of machines, cost of repairs, use of 

inputs (fertiliser, herbicides), fuel use and timing of operations are all included in 

the model together with the level of manpower available, subject to constraints.  

The climate and soil characteristics are the main physical constraints on the 

farm. Users of the model can choose to optimise long-term profit or a multiple 

objective of profit, risk and environmental criteria.   The model optimises the 

weighted sum of component objective functions, which calculate the net profit 

and environmental outcome subject to the following constraints (Annetts and 

Audsley, 2002): 

 

 Limits on the amount of machinery and time available for each period of 

the year 

 Restrictions on the total amounts or total area of activities 

 The requirement for crop operations to be sequenced including crop 

rotation sequencing 

 Livestock grazing and feeding constraints 

The model can therefore be used to examine the effect of changes on a farm 

such as alternative crop yields and new crops, livestock, machinery or 
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cultivation techniques. The model can also assess the effect of changes in the 

price paid for crops sold or inputs used (e.g. the price of tractor diesel). 

The effectiveness of the model was demonstrated by Audsley et al. (2006) who 

assessed the impact of future European agricultural land use scenarios,  under 

various climate projections derived from the HadCM3 and PCM climate model 

outputs for 2001-2100.  The results from the Silsoe Whole Farm Model-based 

assessments demonstrated that southern areas will face reduced profitability, 

whilst there will be a greater prevalence of arable farming in the northern parts 

of Europe. Interestingly all of the scenarios considered tended to increase the 

level of European production due to the fertilising effect of CO2 and new areas 

becoming suitable for cropping.   

The Whole Farm model was also applied to explore a range of agricultural 

futures for farming in England and Wales, through a comprehensive 

assessment that considered the environmental impacts of contrasting scenarios 

(e.g. “world-markets” vs “domestic self-sufficiency”).  The results highlighted 

that although intensive farming under a “market driven” scenario resulted in 

higher environmental burdens within farmed areas, the increase in production 

intensity could potentially allow some land to be used for other purposes such 

as woodland establishment or extensive farming (Morris et al., 2005). 

Despite the clear potential for the model to be used in considering future 

scenarios,  Annetts and Audsley (2002) highlight that the development of 

appropriate data to describe the environmental burdens associated with every 

possible crop, operation and machinery option has been a difficult process, and 

there is a need to explore the interactions between environmental effects and 

profitability in more detail. 
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3.8.4 Land Use Allocation Model (LUAM) 

 

The LUAM is a GAMS8 based linear programming model, which includes a 

spatial dimension by taking into account the historical patterns of production on 

different land classes. The objective function (i.e. the value to be maximised) is 

based on the net margin contribution of agricultural activities, which are 

adjusted by including a set of weights which alter the financial contributions of 

each enterprise on the basis of the historical persistence of the given enterprise 

in each land area/region.  Therefore an enterprise which is particularly common 

in a particular land area will contribute more to the net margin than in a land 

area where it is rarer.  The weights are taken to represent, without actually 

defining them, a range of factors that constrain the production of enterprises to 

certain areas. These can include factors such as levels of skills and expertise, 

tradition, soil type, capital endowments and complementarities with the 

production of other enterprises (Jones and Tranter, 2007).  

 

The land base of the model, and the associated weights, are characterized 

using an adapted version of the Centre for Ecology and Hydrology’s (CEH) 

Land Classification System (LCS), summarised in Table 3.7 below: 

 

 

 

 

 

 

 

 

 

 

                                            
8
 General Algebraic Modelling System: www.gams.com  

http://www.gams.com/
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Table 3.7: Summary of the land classes used within the LUAM. Source: Jones 

and Tranter (2007): 

 

The LUAM allocates land-use within each region according to the economic 

margin that can be achieved in relation to input costs (e.g. manufactured 

fertiliser and labour) and agricultural land-availability, with each activity 

contributing to the total net margin. The model therefore treats the entire 

agricultural area of England and Wales as if it were a single farm, with different 

conditions across the ‘farm’ (e.g. relating to soil type and pest and disease 

vulnerability) expressed through the regional weightings. 

The LUAM model has been applied in a number of policy-focussed studies 

exploring the impacts of changing demand and product prices on agriculture in 

England and Wales.  For example Arnoult et al. (2010) applied the LUAM to 

estimate the effects of a move towards healthier diets on agricultural land, 

finding that such a transition could improve the economic performance of 

agriculture in England and Wales, through an increase in higher economic-
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value crops (e.g. horticulture enterprises) and a contraction in enterprises with a 

lower-economic margin (e.g. beef and sheep).   

In a separate study, an adapted version of the LUAM was used to assess the 

impacts of climate change on the geographical pattern of land-use in England 

and Wales, using price and commodity-demand data from a previous world-

food trade study (Rosenzweig and Parry, 1994).  The results illustrated that the 

projected economic change under a ‘no-climate change scenario’ could result in 

a reduction of the future area under agricultural production in England and 

Wales, as a result of increased crop yields and improved technology.  The most 

serious climate change scenario resulted in a considerable change in cropping 

patterns, with reduced cereal cropping in some areas, as a result of higher 

temperatures and rainfall, and increased uptake of ‘new’ crops such as 

sunflower and grain maize. The results from this study also illustrated the 

importance of considering the economic impact of global markets when 

considering the national impacts of climate change (Hossell et al., 1996). 

3.8.5 Farm Modelling Information System - FARMIS 

The Farm Modelling Information System (FARMIS) is a comparative-static 

process-analytical programming model based on Farm Accountancy Data 

Network (FADN9) data, with individual farms’ data being aggregated to farm 

groups to ensure confidentiality and increase the robustness of the modelling 

system (Küpker et al., 2006b). The model was developed at the Johann 

Heinrich von Thünen-Institute (VTI –Federal Research Centre for Agriculture) in 

1996 and first used for policy analysis in Germany in 1998 (Schader, 2009).  

The FARMIS system enables the assessment of different policy options at the 

regional and farm group level, through an optimisation framework (Küpker et al., 

2006b).  Comparative-analytical and mathematical processing is applied to farm 

                                            
9 The FADN is an instrument for assessing incomes of agricultural holdings within the EU by farm type 

and the impact of Common Agricultural Policy measures.  In England and Wales, FADN data is collected 

via the FBS. 
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groups, to optimise an objective function, subject to a set of resource and policy 

constraints, with the main objective function being to maximise farm income10, 

subject to the (opportunity) costs for land and labour and interest on borrowed 

capital (Brockmeier and Urban, 2008; Küpker et al., 2006b).  Data extracted 

from the FADN are structured and organised within a Structured Query 

Language (SQL) database, which serves as the main source for the farm 

model.      

The constraints set within the model cover a number of areas including feeding 

(energy and nutrient requirements, calibrated feed rations), intermediate use of 

young stock, fertiliser use (organic and mineral), labour (seasonally 

differentiated), crop rotations and institutional restraints (e.g. set aside, quotas) 

(Küpker et al., 2006b).  More recently the model has been expanded to include 

the trade of land, milk quotas and premium rights to help determine the supply 

and demand of production factors and determine equilibrium prices (Brockmeier 

and Urban, 2008).   

A total of 27 crop and 15 livestock activities form the core of the model (Küpker 

et al., 2006a). The model calibration is achieved through a Positive 

Mathematical Programming (PMP) approach, which applies country specific 

calibration factors extracted from an LP-based assessment of a ‘baseline-year’.  

The PMP model is then used for future projections on factors such as land-use, 

production, and different income indicators (Brockmeier and Urban, 2008).    

The standard FARMIS procedure is summarised in the following steps 

(Schader, 2009):   

1. Farm groups are assembled using FADN data  

2. Input-output data are generated for each farm group 

3. Detailed model assumptions are specified in order to address the 

research question being investigated 

4. The model is calibrated for the base year by running it as a linear 

program with calibration constraints  

                                            
10

 Farm income here refers to the Farm Net Value Added (FNVA).  Costs of fixed factors are covered 
within this calculation, whether or not they are owned by the farmer (Küpker et al., 2006). 
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5. Policy scenarios are calculated using a calibrated PMP model and 

scenario-specific assumptions 

Policy simulation using the model takes place through the establishment of a 

‘reference scenario’ for a target year in the future (i.e. usually assuming that the 

present agricultural policy and farm practices will continue).  Alternative policy 

measures are then specified through additional activities or restrictions (e.g. 

changes to matrix coefficients).  The outcome of this is then compared to the 

reference scenario (Schader, 2009).    

Küpker et al. (2006a) used FARMIS to explore the effects of decoupling levels 

of production from support payments, within the 2003 CAP reform, finding that 

the decoupling of support payments in France and Germany would reduce 

acreages of major crops such as cereals, oilseeds and protein crops, and 

fodder maize, due to a loss of relative economic attractiveness.  Küpker et al. 

(2006a) also found that energy crops would shift from being grown on set-aside 

to non-set-aside land, indicating that food crops would be replaced with biofuels 

on productive arable land. The authors also found that ‘pure’ set-aside (i.e. land 

without crops) would increase by 21% under the reforms.  In addition the 

number of bulls and suckler cows was found to reduce in Germany, although 

numbers would increase in France as the reforms would encourage the 

maintenance of less-intensive systems in disadvantaged areas.  The authors of 

this study also highlight the need for improving the FARMIS model with regard 

to balancing the sales/movements of young animals at an EU level or at least 

across several (neighbouring) countries, to allow the implications of trade-flows 

of young-stock to be incorporated within the modelling. The authors also point 

out that extensive activities need to be better- formulated within the model 

(Küpker et al., 2006a).   

3.8.6 Common Agricultural Policy Regionalised Impact Analysis 

(CAPRI) 

The CAPRI model was established in 1999 with the objective of assessing the 

effect of Common Agricultural Policy instruments at a member-state and sub-

national level. CAPRI was first applied to assess the ‘Agenda 2000’ reform 
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package of the Common Agricultural Policy (Britz and Witzke, 2008).  The 

model is economic in focus and consists of the following sections: 

1. Specific databases, which extract information on cropping areas and 

outputs from well documented and official harmonised sources 

2. An assessment methodology description  

3. The software itself, used to complete assessments 

The model is formed of two sections a ‘supply module’ and a ‘market module’. 

The supply side covers all variable costs and income, with low/high-yield 

variants. Approximately 50 inputs and outputs are included within the model; a 

high level of detail is provided on NPK balances, premiums paid under the CAP 

feeding activities and nutrient requirements of animals (Britz and Witzke, 2008). 

The database connected to the model is derived from various sources such as 

national statistics on slaughtering, herd size, crop production, land use, farm 

and market balances and foreign trade as well as regional statistics derived 

from the REGIO database11 (Weiss and Leip, 2012).  The model comprises 

about 50 crop and animal activities for approximately 280 regions at the 

Nomenclature of Territorial Units of Statistics Level 1 (NUTS 1).  Each model 

within CAPRI maximises regional agricultural income at a given price and level 

of subsidy, subject to constraints on land, policy variables and feed and plant 

nutrient requirements in each region. The income is calculated as the sum of 

crop/livestock gross margins minus a quadratic function and subjected to a land 

availability constraint. Behavioural functions can also be implemented within the 

model, in order to capture the aggregated influence of economic factors that are 

not explicitly included in the original model (Jansson and Heckelei, 2011).  The 

CAPRI model can therefore include an application of econometric assessment 

techniques. The CAPRI model is therefore both a database and a simulation 

model for the agricultural sector of the EU, and integrates economic, physical 

and environmental information in a consistent way (Weiss and Leip, 2012).  In 

order to make a broader assessment of the effects of agricultural policies, single 

                                            
11

 https://unstats.un.org/unsd/progwork/pwform.asp?TitleId=369  

https://unstats.un.org/unsd/progwork/pwform.asp?TitleId=369
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farm data are grouped into representative farm types. The sum of regional 

farms then represents the agricultural sector of a certain geographic area.   

Within CAPRI, information on GHG fluxes for all emission sources from 

agriculture are calculated according to the IPCC guidelines (2006).  Fluxes of 

nitrogen are estimated using a mass-flow approach developed for the 

MITERRA-EUROPE model (Weiss and Leip, 2012).  The CO2 emissions from 

energy use are based on Kränzlein (2009)  whereas CO2 fluxes and carbon 

sequestration rates are based on Soussana et al. (2007).  The functional units 

vary depending on the process being measured; sometimes emissions are 

reported on a headage basis or per hectare of land, whereas for processes 

such as transport they are calculated on per product basis (e.g. CO2 emissions 

from transport of feed/crops).  Emission intensities are carried through to the 

end product, following pre-defined allocation rules. A team of researchers, 

based at the University of Bonn manage the model and are responsible for 

updates and distribution.  There are currently no-fees for its use, but entry into 

the CAPRI network is controlled by the members.  CAPRI has its own website, 

which provides information on the development of the tool to date and its 

potential use:   http://www.capri-model.org/ 

The CAPRI model was used by a team of researchers at the Joint Research 

Centre in Italy to calculate total Life Cycle emissions from the EU livestock 

sector.  The assessments found that 28-29% of CO2 equivalents within the 

sector are from beef production, 28-30% from cow milk production and 25-27% 

from pork production, although large ranges were found in the emission 

intensities across the EU-27 (Weiss and Leip, 2012).  The model was also used 

to determine farm, landscape and soil level nitrogen budgets/use efficiency and 

nitrogen surpluses for agricultural systems within individual countries in Europe,  

showing that countries that imported a high amount of feed were not able to 

effectively utilise the manure excreted by the animals, resulting in inefficient 

nitrogen use (Leip et al., 2011). 

http://www.capri-model.org/
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3.8.7 Selection of models for this study 

A number of the modelling approaches discussed in section 3.8, could be 

applied within a study exploring the impacts of a 100% conversion to organic 

farming, however the suitability of each will depend on the extent to which they 

meet the following success criteria, defined in the context of this study: 

1. The approach or models chosen should be designed for or readily 

adaptable to UK conditions 

2. The approach should allow for an assessment of the range of indicators 

to be used within this study (i.e. production, greenhouse gas emissions, 

fossil energy use) 

3. The approach should allow for interactions between farming systems 

(e.g. sale or transport of livestock feed or manure) 

4. The approach should be able to consider effects of change in practice 

both within the UK and overseas, to avoid the perception that a change 

in practice is effective, when in fact the change only causes displacement 

activity (e.g. land use change) 

5. The approach should already be suited to or readily adaptable to organic 

modes of production 

6. The models/modelling approach should be readily available (e.g. free to 

access/download and available within the UK) 

Each of these success criteria are considered for each of the models in Table 

3.8. 
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Table 3.8: Review of modelling approaches discussed in section 3.8 

Model name Suitability for UK 

conditions 

Capture of full range 

of indicators to be 

used in this study 

Allows for 

interaction 

between 

farms (e.g. 

trade effects) 

Consideration of 

global impacts 

Suitability for organic 

systems 

Availability 

Agri LCA models Designed for UK 

conditions 

Covers GHG and 

energy use (i.e. 

environmental impacts) 

Yes Yes, takes an 

LCA approach  

Has already been used to 

assess environmental 

performance of organic 

farms in a Defra project  

Freely available for download at: 

www.agrilca.org 

Silsoe Whole 

Farm Model 

Designed for UK 

conditions 

Crop yields and N use 

and leaching are 

included 

No but LP 

approach 

could be 

adapted  

No Not included in the current 

model 

Available from Cranfield University   

LUAM Designed for UK 

conditions 

Not directly – reports 

land use and 

production 

Yes  No Not included in the current 

model but could be 

adapted 

Available from Reading University 

FARMIS Europe-wide in 

focus but could be 

adapted to UK 

Focuses on economic 

impacts, energy use is 

included as a separate 

category  

Yes - trade of 

land, milk 

quotas and 

premium rights  

Not within original 

model but recent 

work has included 

this (i.e. Schader 

(2009) 

Has already been used to 

assess organic systems in 

Switzerland (i.e. Schader, 

2009) 

Model is freely available from the von 

Thünen Institute (VTI) in Germany 

http://www.agrilca.org/
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Model name Suitability for UK 

conditions 

Capture of full range 

of indicators to be 

used in this study 

Allows for 

interaction 

between 

farms (e.g. 

trade effects) 

Consideration of 

global impacts 

Suitability for organic 

systems 

Availability  

IMPACT World-wide  focus No, includes crop yields 

but not energy use, 

greenhouse gases or 

Soil Carbon 

Yes, captures 

net trade at 

national and 

international 

level  

Yes,  global 

impact with focus 

on food security 

Not included in the current 

model 

Cost for access from IFPRI (based in 

Washington DC) 

CAPRI European in focus GHG fluxes including 

CO2 from fossil fuel  

 

Yes, captures 

net trade at 

national and 

international 

level 

No 

European focus 

Would need to be adapted 

for organic production 

systems 

Request to access the tool can be 

made through the University of Bonn 
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Based on the comparison of the modelling approaches (Table 3.8) a linear-

programming (LP) method was selected to determine the production impacts of 

a 100% conversion to organic farming.  In addition to being a well-developed 

method for the multi-factorial assessment of UK agricultural systems (see 

sections 3.8.3 and 3.8.4) the flexibility inherent to LP methods allows for a 

range of scenarios to be assessed in a systematic and efficient manner and for 

the identification of trade-offs between management choices (Annetts and 

Audsley, 2002).  An LP model was combined with the Agri-LCA to determine 

domestic and overseas environmental impacts of the production scenario.    

The approach built on the development of the LUAM, which was constructed in 

GAMS by Philip Jones and colleagues at Reading University (see: Arnoult et al., 

2010). GAMS-based coding offers several advantages over other common 

programming languages. In particular by allowing for simple model classification 

through the use of mathematical symbols and algebraic relationships it is 

possible to define models in unambiguous terms that can be readily understood 

and adjusted. In addition the language includes in-built features for error-

detection and has direct compatibility with Excel through a GAMS Data 

Exchange (GDX) facility. All identifiers used within the GAMS code must also be 

declared and described with associated text before being referenced in the 

model, which can be of great assistance when returning to models after a 

period of absence in addition to helping with understanding of the modelled 

processes and interactions. The large library of existing models and an online 

GAMS community (http://www.gamsworld.org) also allows for sharing of ideas 

and approaches between those facing similar challenges (Bussieck and 

Meeraus, 2004). The Centre for Agricultural Strategy at Reading were also 

willing to engage and assist with an LP / GAMS modelling approach which was 

a key influencing factor in the selection of this method. 

 

 

 

http://www.gamsworld.org/
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CHAPTER 4. ENERGY EFFICIENCY IN ORGANIC 

FARMING 

 

Article title The energy efficiency of organic 

agriculture: A review 

Journal and publication status Renewable Agriculture and Food 

Systems.  Published 

Co – authors Adrian Williams (Cranfield University), 

Bruce Pearce (The Organic Research 

Centre) 

Co-author contributions Guidance on planning of content 

including search strategy, provision of 

literature 

Research methods applied Structured literature review  

Systematic data collection and 

analysis 
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4.1 Abstract 

Growing populations and a constrained fossil-manufactured energy supply 

present a major challenge for society and there is a real need to develop forms 

of agriculture that are less dependent on finite energy sources. It has been 

suggested that organic agriculture can provide a more energy efficient approach 

due to its focus on sustainable production methods. This review has 

investigated the extent to which this is true for a range of farming systems. Data 

from about 50 studies were reviewed with results suggesting that organic 

farming performs better than conventional for nearly all crop types when energy 

use is expressed on a unit of area basis. Results are more variable per unit of 

product due to the lower yield for most organic crops. For livestock, ruminant 

production systems tend to be more energy efficient under organic 

management due to the production of forage in grass–clover leys. Conversely, 

organic poultry tend to perform worse in terms of energy use as a result of 

higher feed conversion ratios and mortality rates compared to conventional fully 

housed or free-range systems. With regard to energy sources, there is some 

evidence that organic farms use more renewable energy and have less of an 

impact on natural ecosystems. Human energy requirements on organic farms 

are also higher as a result of greater system diversity and manual weed control. 

Overall this review has found that most organic farming systems are more 

energy efficient than their conventional counterparts, although there are some 

notable exceptions. 

4.2 Introduction 

Non-renewable (mainly fossil) energy inputs have played an important role in 

increasing the productivity of our food systems and sustaining the exponential 

rise in the world’s population witnessed over the last century (Smil, 2000).  At 

the same time, the dramatic rise in production levels required to support 

increased populations has created a dependence on mined sources of so-called 

“stored-solar energy” (Hall, 1984) within the developed world.  This, in turn, has 
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led to agricultural systems that are more exposed to fluctuations in the prices of 

fossil fuels, whether caused by political instability or increasing demand.  A 

range of environmental catastrophes caused by the pursuit of ever-more scarce 

sources of fossil energy have also caught the media and public’s attention in 

recent years.  These include the Deepwater Horizon oil rig disaster in 2010 and 

the Exxon natural gas project disaster in Papua New Guinea in 2012. Such 

events have served to underline the risks associated with our reliance on these 

energy sources (Trevors and Saier, 2010).  With this growing awareness, our 

vulnerability and the continuation of ‘agri business as usual’ has been 

questioned (McIntyre et al., 2008).  

In this context, organic agriculture has evolved as a farming system that 

focuses on the preservation and recycling of resources, with the aim of creating 

more sustainable production systems (IFOAM, 2002; Kukreja and Meredith, 

2011; Lampkin, 2002; Lampkin et al., 2011).  This has been encouraged 

through the development of an underlying set of internationally accepted 

principles, and legally binding standards in some jurisdictions, that define 

organic agriculture (Darnhofer et al., 2010; European Commission, 2008; Soil 

Association, 2008; United States Department of Agriculture, 1990).  With the 

focus on reducing inputs within the organic sector, it should follow that the 

adoption of organic production methods will result in farming systems that are 

less dependent on fossil fuel inputs.  Recent reviews by Lynch et al. (2011), 

Gomiero (2008) and Lampkin (2007) report that organic agriculture consistently 

has lower energy use and greenhouse gas emissions when results are 

expressed on a per hectare basis.   Results were more variable when presented 

per kilogram of product, and conventional production was found to have the 

highest levels of net energy production.   The above studies also found that the 

variety in energy assessment methods make direct comparisons between 

studies difficult.  The magnitude of difference between organic and conventional 

production varied greatly depending on whether ‘conventional’ production within 

a given region is of an intensive or extensive nature (Lynch et al., 2011). 
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The aim of this review is to build on the work of Gomiero (2008), Lynch (2011) 

and Lampkin (2007) by assessing the results from studies comparing the 

energy use and energy efficiency of organic and conventional farming systems.  

Unlike previous work, the review presented here provides an overview of 

energy use according to the type of input (e.g. fuel for machinery, embodied 

energy in feed and fertiliser).  A more complete overview of studies that have 

considered the embodied energy associated with inputs and ecosystem 

services is also presented (i.e. results from emergy studies).  In addition, the 

results from more recent published work have been included here.  This review 

also explores the extent to which the results from these studies vary according 

to the scope of the assessment, the unit of measurement and the farm or 

production system. 

4.3 Methods 

A structured literature review of organic/conventional energy use studies was 

carried out by the lead author in 2012 using a range of web based search 

engines  (ISI Web of Knowledge, Scopus, Google Scholar, BIOSIS Previews, 

SCIRUS , ScienceDirect, Organic Eprints).  The following or similar terms were 

used in a combination with the Boolean operators AND, OR:  

 energy, emergy, fossil fuel 

 organic, biodynamic, agro-ecological  

 life cycle assessment,  LCA, emergy, thermodynamic 

 comparison, compare 

Only studies based on pairwise comparisons were selected for inclusion and 

publications had to contain energy use data on both organic and conventional 

agriculture.  Non-certified production systems were also included, for example 

where experimental farms were using organic methods. In these cases a 

judgement was made as to whether the farming practices on the experimental 

farm being assessed adhered to the IFOAM (International Federation of 

Organic Agriculture) principles.  Countries in the developing world were 

http://apps.webofknowledge.com/UA_GeneralSearch_input.do?product=UA&search_mode=GeneralSearch&SID=3AEPEHAk75iJ@K9JCJO&preferencesSaved=
http://www.scopus.com/home.url
http://scholar.google.co.uk/
http://ip-science.thomsonreuters.com/cgi-bin/jrnlst/jloptions.cgi?PC=BP
http://www.scirus.com/
http://www.sciencedirect.com/
http://www.orgprints.org/
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excluded and the review focussed on modern agricultural systems (e.g. 

excluding the use of draught animals for cultivation).  Studies compared were 

drawn from Europe, North America, Canada, Australia and New Zealand.  Grey 

literature was included within the search, including PhD theses, Government 

and NGO reports and research project reports. A total of 48 studies were 

identified, as shown in Table 4.1.  Although the approach taken within this study 

did not follow published guidelines for the completion of systematic reviews, the 

search strategy was comprehensive and the results provide an effective and 

thorough assessment of relative performance within a range of organic 

systems.    

Energy use data were extracted from each paper and placed into Excel to allow 

for a comparison between organic and non-organic production systems and 

individual products. Production systems were grouped into the following 

categories for the purpose of this comparison: 

 Cropping  

 Dairy  

 Beef and sheep  

 Pig and poultry  

 Vegetable and fruit  

 Other 

 

Drawing on this literature, comparisons were made in relation to the amount of 

energy required per unit of product (e.g. kilograms or litres) in addition to the 

amount used per unit of land (e.g. hectares or acres) within each farm-type.   

This approach follows the suggestion of Van der Werf et al. (2007a) who 

propose that the unit of area comparison reflects a farming system’s function as 

a producer of non-market goods (e.g. biodiversity) whereas the unit of product 

comparison reflects agriculture’s function as a producer of market goods (e.g. 

food and fuel). Comparisons of environmental performance based solely on the 

amount of product can also present an issue when dealing with foodstuffs that 

vary greatly in nutritional and water content (e.g. milk and meat, De Vries and 
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De Boer, 2010).   Furthermore, Cherubini and Strømman (2011) highlight that 

displaying results per unit of agricultural land can provide a useful indicator of 

land-use efficiency.  The same study highlights the need to identify the limiting 

factor of the system being assessed and that this should be used as the 

reference indicator of the assessment.  With competition for agricultural land 

proposed to be one of the main drivers affecting food and farming in the future 

(Foresight, 2011) assessing energy use per unit of land can be a useful tool to 

compare the energy efficiency of agricultural systems.  

4.3.1 Types of study considered 

Most of the studies considered within this review have taken what Jones (1989) 

describes as a ‘mechanistic’ or ‘process analysis’ approach, i.e. assessing the 

fossil energy use associated with the various production stages of an 

agricultural product.  This includes the assessment of energy associated with 

production processes on case study farms (Alföldi et al., 1999; Cobb et al., 

1999) or through the application of Life Cycle Assessment (LCA).  This is a 

method used to calculate the burdens associated with one unit of a food 

commodity, e.g. 1 kilogram of wheat, area of land or Livestock Unit (LU) defined 

as the ‘functional unit’ (British Standards Institute, 1997).   Within the LCA 

approach, inputs to the system are usually traced beyond the farm gate to the 

primary resource.  For example, this can include the coal or uranium used to 

generate electricity or the energy required to produce steel, plastic and other 

materials required for the manufacture of tractors (Williams et al., 2006).  LCA 

has the distinct advantage of being able to determine efficiency within supply 

chains in a manner that can be easily understood (Wegener Sleeswijk et al., 

1996).  In addition, the broad principles for the application of LCA have been 

standardised, e.g. through the the International Organization for Standardisation 

14044 standard (British Standards Institute, 2006).  This has helped to make 

LCA the most widely used method for the assessment of energy use within 

supply chains in the agriculture sector (Pelletier et al., 2011).  It is important to 

note however that these standards are not prescriptive about boundary 
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conditions, the functional unit or the purpose of the study, which can make 

comparisons between studies difficult.    

Other studies considered here have followed a ‘thermodynamic approach’  

(Jones, 1989) through the adoption of emergy accounting (Odum, 1996).  

Emergy has developed as an alternative to the ‘traditional‘ fossil energy 

focussed approach of energy accounting.  It takes an eco-centric approach  that 

accounts for the contribution of natural services (e.g. rain, pollination, soil 

formation) in delivering agricultural products (Bakshi, 2002).  In a similar 

manner to LCA, the emergy approach measures the energy previously used in 

the creation of a product.   However it also accounts for the amount of available 

energy that sits within the assessed product or system.  The units of energy are 

expressed in a common unit (i.e. ‘solar energy’  or ‘emjoules’, Odum, 1996). 

The emergy approach also takes into account natural/ecological inputs and 

human activities. It calculates natural inputs, based on the distribution of solar 

energy in the biosphere and the energy output potential of the various 

processes (e.g. rainfall, total wind energy, total wave energy, Brown and 

Herendeen, 1996).  Human labour and services can also be accounted for, both 

in terms of the energy used to support human life and the energy associated 

with the accumulation of information (Odum, 1996). In this sense, emergy 

allows for an assessment of ‘energy quality’ through considering the importance 

of inputs and outputs in a web of relationships (Pizzigallo et al., 2008).  A limited 

number of studies have used the emergy approach to assess the efficiency of 

organic and conventional agriculture. The results from these studies will be 

described in a separate section below. 

A number of studies within this review have also taken the nominally 

dimensionless ‘energy ratio’ approach to determine the efficiency of production 

systems (i.e. dividing the energy output in food sold by the energy input of fossil 

fuels). This approach is nominally dimensionless in that the gross energy of 

fuels is compared with the metabolisable energy of foods or feeds.  Lampkin 

(2007) highlights that this method can be a useful determinant of the efficiency 

of agricultural systems in capturing solar energy and transforming this into 
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feedstuffs for growing populations.  Halberg et al. (2005) also highlight the 

potential of this approach to allow farmers and advisors to compare the 

efficiency and environmental impacts of crop and livestock enterprises, in order 

to identify areas for improvement. 

A limitation of the study is that there is insufficient data to perform a statistical 

analysis.  The wide variation in the scale of the studies and the methods used 

prevents this. In addition, the wide geographical variation in the studies, and the 

resultant wide range of soil types and climates, makes it difficult to draw 

definitive conclusions that will apply to each country or region (Table 4.1 shows 

the list of studies, their location and the energy assessment method used). 

4.4 Results from the literature survey: studies selected for 

inclusion 

Most of the comparative studies listed in Table 4.1 were based on production 

systems operating in Europe although some studies from the USA, Canada and 

Australasia were included.       
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Table 4.1: list of studies selected for inclusion within the review 

 

 

Author of study Country Production system/farm types Method

Alonso and Guzmán (2010) Spain Vegetables, arable crops, fruit Input/output assessment using farm data

Bailey et al. (2003) UK Arable Data collected from 5 years of field trials

Basset Mens and van der 

Werf.2005 France Pigs

Modelling of farm systems using published 

and expert data using LCA 

Mäder et al. (2002) Switzerland Cropping Experimental farms

Bos et al. (2007) Netherlands Arable, dairy, vegetables, mixed

Direct/indirect energy use modelling (did not 

follow ISO LCA standard)

Cederberg and Mattsson 

(2000) Sweden Dairy

LCA using measured farm data and published 

data

Clements et al. (1995) Canada Arable Experimental farm data and farm survey

Cormack and Metcalfe. (2000) UK

Arable, dairy, vegetables, beef 

and sheep, mixed Modelling based on book values 

Dalgaard et al. (2001) Denmark Arable, dairy and pig production Direct/Indirect Energy Modelling

Deike et al. (2008) Germany Arable Long term field experiment 

Flessa (2002) Germany Beef and arable Experimental farm data

Geier et al. (2001) Germany

Apple production in Hamburg 

(organic intensive, organic 

extensive and integrated) LCA using farm data and published data

Grönroos et al. (2006) Finland Dairy LCA using statistics and expert opinions

Gundogmus (2006) Turkey Raisin

Structured interviews & direct/indirect energy 

model

Guzmán and Alonso (2008) Spain Olive oil production

Calculated energy balances using data 

collected through farmer interviews

Haas et al. (2001) Germany Dairy

LCA using published agricultural planning 

data

Helander and Delin (2004) Sweden Arable 

Results from research farm-based 

comparison

Hoeppner et al. 2005 Canada Arable Crop rotation experiment

Kaltsas et al. (2007) Greece Olive oil production LCA using data collected through interviews

Karlen et al. (1995) USA Arable Farm level comparison

Kavargiris et al. (2009) Greece Grapes 

Energy analysis using data collected through 

farmer interviews

Klimeková and Lehocká (2007) Slovakia Spring Barley Field experiment data
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Author of study Country Production system/farm types Method

Kusterman et al. (2008) Germany Arable

REPRO model and data collected from 

experimental farm

Leinonen et al. (2012a)

United 

Kingdom Poultry - meat, standard LCA, structural model of industry

Leinonen et al. (2012b)

United 

Kingdom Poultry - eggs, caged LCA, structural model of industry

Mäder et al. (2002) Switzerland

Farm comparison - Conventional 

FYM / Biodynamic Data collected from experimental farms

Meisterling et al. (2009) USA Wheat LCA modelling study

Nemecek (2005) Switzerland Arable

Swiss Agricultural Life Cycle Assessment 

method (SALCA)

Nguyen and Haynes (1995) New Zealand Arable and livestock Farm comparison

Pelletier et al. (2008) Canada Wheat LCA Scenario modelling

Peters et al. (2010)

Western 

Australia Beef and sheep LCA using public/published data

Pimental et al. (1983) USA Arable, Apples Modelling based on published data

Pimental et al.  (2005) USA Arable

Recorded energy use from experimental farm 

at The Rodale Institute

Refsgaard et al. (1998)

Denmark - 

non irrigated 

sand Arable, Dairy, forage

System modelling using farm data from 

Government survey

Reganold et al. (2001) USA Apples Farm comparison

Schader (2009) Switzerland

Arable, beef, sheep, dairy, 

vegetables, poultry, pigs, mixed LCA using farm and public/published data

Thomassen et al. (2008) Netherlands Dairy LCA using public/published data

Van der Werf et al. 2007

Brittany, 

France Pig production

 Modelling of farm systems using published 

and expert data using FarmSmart tool

Venkat (2012) USA Arable, vegetables, fruit, nuts LCA modelling using production data

Williams et al. (2006)

United 

Kingdom

Arable, beef, sheep, dairy, 

vegetables, poultry, pigs, mixed LCA using public/published data

Williams et al. (2010) UK Arable LCA using public/published data

Wood et al. (2006) Australia Sheep, arable, vegetables, fruit Hybrid LCA incorporating a farm survey

Castellini et al. (2006) Italy Poultry - meat Emergy

Pizzigallo et al. (2008) Italy

Wine production (including 

processing post farm-gate) Emergy and LCA

La Rosa et al. (2008) Italy Red orange production Emergy

Coppola et al. (2009) Denmark Wheat Emergy

Ghaley and Porter (2013) Denmark

Wheat and combined food and 

energy system comparison Emergy
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4.5 Results from the literature survey: on farm energy use 

The efficient use of fossil fuel energy on farm is of increasing concern for 

farmers and stakeholders within the supply chain, in light of fluctuating input 

prices (Cassman and Liska, 2007; Woods et al., 2010) and the effects of 

climate change and pollution (Smil, 2000).  A number the process-oriented and 

LCA-based studies listed in Table 4.1 compared on farm resource efficiencies 

within a range of organic and conventional crop and livestock systems.  In 

addition, a number of studies have assessed human energy, using empirical 

methods or system modelling; the results from studies in both of these areas 

are outlined below. 

4.5.1 On farm fuel use  

A common criticism of organic agriculture is that a reliance on mechanical 

tillage (e.g. for weed control) results in lower energy efficiency overall 

(Hoeppner et al., 2006).  A process oriented modelling study carried out by 

ADAS (Cormack and Metcalfe, 2000) supported this criticism, finding higher 

machinery energy use within organic systems (i.e. energy associated with the 

manufacture, distribution and repairs to mechanical equipment). This increase 

was, however, offset by higher indirect energy use under conventional 

management.  Most of the additional fuel use within the ADAS study was 

associated with weed control.  Organic carrot production compared particularly 

poorly due to the energy intensive process of flame weeding.  Organic wheat 

production was also associated with higher machinery energy, a potentially 

significant finding in view of the dominance of wheat in the European arable 

sector and the importance of this crop as a staple of Western diets.  Venkat 

(2012) also found higher on farm energy use on organic farms for certain 

vegetable crops such as broccoli (see Figure 4.1) within an LCA comparison, 

suggesting this is due to systematically higher levels of mechanical weeding.  

Unlike the ADAS study, Venkat (2012) found that this difference was enough to 

offset the impact of fertiliser manufacture in the conventional system.  Greater 

use of tractor diesel per litre of milk produced was also reported for an organic 
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farm in an LCA of two large dairy units in Sweden (Cederberg and Mattsson, 

2000).  Higher fuel use per 1000kg of milk on the organic farm was a result of 

the larger area of fodder production and lower yields.  Jorgensen et al. (2005) 

also found that levels of on farm energy use were 28% higher for organic crop 

production in Denmark. This was a result of higher fuel consumption for weed 

control in addition to the energy intensive practice of manure spreading 

(compared to spreading fertiliser).  In common with the ADAS study, the authors 

found that the higher on farm energy use was offset by the energy requirements 

for the manufacture of inputs in the conventional system.  

The need for mouldboard ploughing in organic systems, for the removal of crop 

residues and control of weeds, can also contribute to greater on farm energy 

use in comparison to reduced tillage with herbicides, as identified in a 

comparison of organic, integrated and conventional farming systems (Leake, 

2000).  A study by Michigan State University also found a lower fuel use for a 

corn, soybean, wheat rotation under conventional no till, compared to the same 

rotation under low input and organic conditions, although the savings were 

offset by the energy associated with fertiliser and lime inputs (Robertson et al., 

2000).  Zentner et al. (2004) also found that gains in on farm fuel use from 

reduced tillage were offset by the embodied energy associated with inputs of 

pesticide and fertiliser within an energy analysis of nine cropping systems in 

Canada.  Despite this Snyder and Spaner (2010) note that high input costs are 

supporting a shift toward reduced input systems, where reduced tillage is 

applied, and it has been suggested that such tightly controlled conventional 

systems may rival organically managed farms with regard to energy efficiency, 

even when the costs of inputs are taken into account (Clements et al., 1995).  

Reduced tillage is no longer exclusive to conventional farms however. Recent 

studies show that this technique can be applied successfully under organic 

conditions for cereal crops (Berner et al., 2008; Crowley et al., 2012) with 

significant energy savings as a result (Crowley et al., 2012).  Lockeretz et al. 

(1981) also found that organic farmers in the ‘corn belt’ of the United States 

were more likely to use chisel ploughing methods, as opposed to the 
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mouldboard plough.  This was to help conserve organic matter and water, 

instead of exposing the soil to wind erosion, a common problem in the area 

studied.   It is also important to consider that reduced tillage is not always 

possible for farmers.  The possibility for implementation will depend greatly on 

soil type, topography and the available power of the machinery (Bailey et al., 

2003).  Increased herbicide leaching and greater populations of certain 

perennial weeds and grasses has also been reported in some reduced tillage 

systems (Locke et al., 2002; Tuesca et al., 2001) which could result in 

increased requirements for cultivation and fuel use to remove pernicious weeds.  

Reduced yields within no tillage systems have also been observed on some soil 

and climate conditions (Lal et al., 2007) reducing the overall energy efficiency 

per unit of product. 
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Figure 4.1: Distribution of ‘direct’ (i.e. on farm) and ‘indirect’ (i.e. off farm) energy 

use from nine studies comparing organic and conventional production.  Due to 

variation in the scale for the products reported a log scale has been used on the 

x-axis.  Most studies took a ‘cradle-to-gate’ approach (i.e. considering energy 

use associated with production but not retail consumption and disposal) for 

more details on boundaries and functional unit of each study, see Table 4.2. 

In contrast to many of the above studies, some authors have found similar or 

even lower levels of on-farm diesel use for organic production.  For example, 

Refsgaard et al. (1998) found little difference between the amounts of diesel 

required for the production of conventional and organic crops. However, the 
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organic systems within the process models used in this study tended to require 

more fuel for handling and spreading of manure.  A farm system monitoring 

project in Switzerland also found very similar levels of diesel in a long-term 

comparison of an organic and conventional farm, although the conventional 

systems used as a comparator within this study was of a relatively low intensity 

(Alföldi et al., 1999).      

4.5.2 Labour 

With regard to human energy (or labour), organic systems have been 

associated with higher numbers of staff on the farm due to increased livestock, 

reduced machinery use and diversity in farm enterprises (Cobb et al., 1999; 

Lobley et al., 2005; Ziesmer, 2007).  El-Hage Scialabba and Hattam (2002) also 

report that a higher share of labour intensive crops (e.g. vegetables) and on 

farm marketing and processing may lead to increased labour requirements on 

European organic farms. Within a modelling study of four organic and 

conventional crops, Pimental et al. (1983) also found lower labour productivity 

for organically produced crops (i.e. kg output per hour of labour input).  This 

was due to a need for increased cultivations, in addition to greater losses from 

pests and disease and high cosmetic standards which prevent sale of certain 

crops, in particular organic apples.    

Nguyen and Haynes (1995) also compared the labour productivity of three pairs 

of mixed cropping farms in the Canterbury region of New Zealand, with labour 

requirements calculated in hours per hectare for the entire rotation and the  

cropping part (i.e. peas, barley and wheat) separately.  The labour productivity 

was also measured as a ratio of harvested grain to the number of hours per 

hectare.  Although labour inputs per hectare for most grain crops were higher 

on the organic and biodynamic sites, the total labour use was lower as a result 

of the 3 to 4 year fertility building period.  This balanced out the higher 

requirement for the cropping phase.  Despite this, the grain crops grown within 

the biodynamic and organic systems had a lower labour productivity (0.4-1.1 

tonnes/hour) compared to the conventional (1.3-1.6 t hr-1), as a result of higher 
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labour inputs and lower yields. The additional labour requirement within the 

organic systems was partly due to the additional field and manual operations 

plus the additional labour requirement for the manufacture of cow horn manure 

(a homeopathic preparation for improving soil health) within the biodynamic 

system.  Karlen et al. (1995) took a similar approach in calculating the number 

of fieldwork hours required for crop production and harvest in a comparison of 

four 40 acre fields in the ‘Corn belt’ of the United States.  Within the ‘alternative’ 

system, labour requirements were substantially increased (between 178% and 

183% of the conventional).  This was primarily as a result of the additional time 

required for spreading manure, weed control and through the incorporation of a 

hay crop within the rotation, which required multiple harvests.   

An attempt was also made to compare the labour requirements of organic and 

conventional farms by comparing calendars of work for a conventional and 

organic farmer in addition to measuring heart rates and constructing an energy 

budget based on their food intake (Loake, 2001).  The relatively high energy 

and effort expenditure on the organic farm led the author of this study to 

suggest that “the annual activity of organic farming is characterised by physical 

stress and fatigue”.   Unfortunately the study was flawed in that it compared an 

organic farmer using hand tools with a conventional livestock and arable farmer 

who spends most of the heart rate assessment period driving a tractor.  The 

farms were therefore not comparable, and as the author notes, the organic 

farmer cannot be considered representative of the sector.  Having said this, the 

study does contribute to addressing the methodological difficulties associated 

with comparing mechanised systems and manual operations. 

4.6 Indirect, off farm energy use 

Indirect energy use (i.e. energy use associated with the production and 

transport of inputs) typically exceeds on farm energy use within modern farming 

systems in developed countries, with fertiliser and imported feeds for livestock 

comprising the two major sources of energy inputs used for agricultural 

products (Pelletier et al., 2011).  The importance given to on farm or local 
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resources within the IFOAM organic principles (Darnhofer et al., 2010) suggests 

that organic farms could be less reliant on external inputs of fertility and animal 

feed, and a number of studies have explored the extent to which this applies in 

practice.   

4.6.1 Fertiliser inputs 

The energy intensive manufacture of nitrogen (N) based fertilisers represents 

the most energy expensive input for modern farming, accounting for about half 

of agriculture’s energy use (Foresight, 2011) and approximately 1.1% of energy 

use globally (Dawson and Hilton, 2011).   Instead of relying on manufactured 

fertilisers, organic farms source the bulk of their nitrogen through biological 

fixation by temporary, legume-based leys.  The use of leys can also further the 

production of SOM (Leifeld and Fuhrer, 2010) in addition to providing an energy 

source for the soil biota, which enables humus production through 

transformation of organic material.  In this, sense the organic system aims to 

develop soil health over the long-term, rather than providing a short term 

nutrient supply through application of soluble plant nutrients (Watson et al., 

2002).  Refsgaard et al. (1998) state that in this context “one might think of 

organic farming as a systematic replacement of fossil fuel N fertilizer production 

with solar driven nitrogen fixation in legumes”, with fossil fuels being used to 

help this process.  This was illustrated by Gomiero (2008) who found that the 

main reason for increased energy efficiency under organic management was 

the lack of synthetic inputs, in particular fertilisers and pesticides.   

Despite the reliance on biologically fixed nitrogen within organic agriculture,  

organic farmers still make use of mineral sources for other nutrients, in 

particular rock phosphate (P) which is mined from natural stores. Trewavas 

(2004) argues that when this aspect is taken into account, the energy efficiency 

of organic farming is lowered considerably, when compared to integrated no till 

systems.  Low solubility of rock phosphate may also make it less effective than 

manufactured P fertiliser (superphosphate) particularly in low rainfall areas 

(Bolland et al., 1988).  Co-application of rock phosphate with elemental sulphur 
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or manure could, however, help to enhance availability (Agyin-Birikorang et al., 

2007; Evans et al., 2006).  Use of rock phosphate may also help to maintain a 

stable supply of readily available P over time, compared to use of water soluble 

phosphate fertiliser (Randhawa et al., 2006).  Pelletier et al. (2008) found in 

their LCA of organic and conventional wheat and soy production in Canada, that 

the cumulative energy impacts of producing phosphate fertiliser were on 

average four times higher than those associated with producing rock phosphate 

used in organic agriculture.  Sourcing fertility from outside of the farming system 

also applies to farms producing large quantities of crops, which depend on 

external sources of compost and manure.  Alonso and Guzman (2010) for 

example found higher energy use for organic crops grown in Spain, as a result 

of the energy associated with production of large quantities of compost.  Karlen 

et al. (1995) found that without charging for the energy associated with the 

manure nutrients (i.e. assuming that the manure is a ‘cost’ incurred by the 

livestock enterprise) an ‘alternative’ system required about half of the energy of 

the conventional, however if the energy costs for the nutrients were included, 

the alternative system used twice as much energy as the conventional (see 

Figure 4.1).  Duesing (1995) in Rigby and Cáceres (2001) also refer to North 

Californian organic farmers using manure from South Californian dairy farms, 

which in turn used imported feed grain from the Midwest.  Rigby and Cáceres 

(2001) note that such practices have serious implications in terms of energy use 

and that the methods used do not necessarily sit well with some people’s 

perceptions of organic production, or the organic principles.    

Despite evidence that some organic farmers are importing fertility and are 

therefore ‘robbing Peter to pay Paul’,  Alonso and Guzman (2010) point out that 

inputs of manure and compost help to promote the long-term health of the 

system, and cannot be compared in the same way to non-renewable energy 

sources.  They also highlight that organic farmers are able to reduce levels of 

compost application as soil humus levels develop.  Moreover when a 

comparison was made of non-renewable energy use (i.e. fossil fuels) within this 

study, the energy use was significantly lower within all of the organic production 
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systems.  El-Hage Scialabba and Müller-Lindenlauf (2010) also highlight that 

the pollution and soil degradation problems associated with landless livestock 

production systems can be reduced through the co-operative use of farmyard 

manure between crop and livestock operations on organic farms.  With landless 

livestock production systems currently supplying over 50% of pig and poultry 

meat worldwide (Steinfeld et al., 2006) the relative advantages of a more 

integrated approach to production are an important consideration.   Reviews 

comparing nutrient budgets on organic and conventional farms have also found 

that nutrient surpluses and nitrogen leaching are generally smaller for organic 

farms. This suggests a more efficient use and recycling of nutrients between 

enterprises (Shepherd et al., 2003; Tuomisto et al., 2012b). 

4.6.2 Livestock feed 

As mentioned above, organic farms try to maintain a closed production system 

as far as possible with regard to all inputs, not only those relating to soil fertility.  

Assessments of energy use within beef and dairy production by Schader (2009) 

and Haas et al. (2001) found that this approach manifests through a reliance on 

home grown sources of feed for livestock (see lower energy inputs associated 

with imported feed within these studies in Table 4.2).  Lower energy use 

associated with concentrate feed has also been reported in comparisons of 

organic and conventional dairy production in Sweden, Denmark and the 

Netherlands (Cederberg and Mattsson, 2000; Jørgensen et al., 2005; 

Thomassen et al., 2008).  Within an assessment of the environmental impacts 

of a 1996 ‘baseline’ and a number of 100% organic conversion scenarios in 

Denmark, Dalgaard et al. (2001) also found that domestically produced, organic 

grass/clover was energetically cheaper than conventional forage, due to a lack 

of fertiliser application. The increased efficiency contributed to lower energy use 

overall per LU. 

For poultry most organic production systems have longer production cycles. 

This can have a positive effect in terms of animal welfare (e.g. lower prevalence 

of limb disorders, through use of slow growing breeds, (Castellini et al., 2008) 
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but also results in lower energy efficiency through higher levels of feed use per 

unit of product (e.g. Leinonen et al. (2012a) see Figure 4.1).  In addition, 

mortality rates of caged poultry systems have been shown to be lower than 

organic or free range systems (Leinonen et al., 2012a, b).  For pig meat 

production, recent studies have shown that organic systems tend to import less 

feed, which contributes to lower energy use and greater efficiency per unit of 

land, but also lower levels of output and a possible increased energy use per 

kilo of product, depending on the assessment method used (Basset-Mens and 

van der Werf, 2005; van der Werf et al., 2007b).  Williams et al. (2006) also 

reported a considerable increase in the area of land used for the production of 

pig feed within organic systems, in an LCA study of UK production. This led to a 

reduced energy output per hectare, compared to conventional production.  

 

 

 

 

 

 

 

 



 

103 

 

Table 4.2: Distribution of ‘direct’ (i.e. on farm) and ‘indirect’ (i.e. off farm) energy use from nine studies comparing organic and 

conventional production.   

 

 

 

Author(s) Product Type of study Unit System boundary

Fuel and 

electricity

Purchased 

feed (indirect)

Fertiliser, 

compost, 

pesticides 

(indirect)

Machinery and 

buildings 

(indirect) Other Total

Chickens - broilers - organic LCA GJ/tonne 7.5 32.8 -0.5 0.5 0.0 40.3

Chickens - broilers - 

conventional, free-range LCA GJ/tonne 7.6 18.2 -0.4 0.3 0.0 25.7

Chickens - broilers - 

conventional, standard LCA GJ/tonne 9.1 16.4 -0.4 0.2 0.0 25.4

Chickens - layers - organic LCA GJ/tonne 6.6 19.9 -0.4 0.3 0.0 26.4

Chickens - layers - 

conventional, free range LCA GJ/tonne 6.1 12.9 -0.5 0.3 0.0 18.8

Chickens - layers - 

conventional, barn LCA GJ/tonne 10.3 12.1 -0.4 0.2 0.0 22.2

Chickens - layers - 

conventional, caged LCA GJ/tonne 5.5 11.6 -0.4 0.3 0.0 16.9

Pigs - organic LCA GJ/tonne of pig 0.0 0.0 0.0 0.5 21.8 22.2

Pigs - conventional LCA GJ/tonne of pig 0.0 0.0 0.0 3.7 12.2 15.9

Pigs - organic LCA GJ/ha 0.0 0.0 0.0 0.3 22.0 22.4

Pigs - conventional LCA GJ/ha 0.0 0.0 0.0 6.7 22.5 29.2

Cradle to gate.  

Manure treated as 

energy credit due to 

fertiliser production 

offset

Cradle to gate.  

Manure treated as 

energy credit due to 

fertiliser production 

offset

Leinonen et al. 2012a

Leinonen et al. 2012b

Basset-Mens and 

van der Werf. 2005

Cradle to gate
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Author(s) Product Type of study Unit System boundary

Fuel and 

electricity

Purchased 

feed (indirect)

Fertiliser, 

compost, 

pesticides 

(indirect)

Machinery and 

buildings 

(indirect) Other Total

Beef suckler cow farms - 

organic LCA GJ/ha 8.0 1.5 0.1 6.4 0.2 16.2

Beef suckler cow farms - 

conventional LCA GJ/ha 11.2 3.9 2.2 7.8 0.4 25.5

Dairy - organic LCA GJ/tonne 3.4 0.8 0.0 0.0 1.8 6.0

Dairy - extensive 

conventional LCA GJ/tonne 4.1 3.7 0.2 0.0 0.6 8.6

Dairy - intensive conventional LCA GJ/tonne 4.5 3.8 3.7 0.0 7.1 19.1

Broccoli - organic LCA GJ/acre 18.3 0.0 2.6 0.0 11.5 32.4

Broccoli - conventional LCA GJ/acre 16.0 0.0 5.5 0.0 5.4 26.9

Soybean, corn, oat, hay 

rotation, with manure 

charges,  organic Fam study GJ/field 0.7 0.0 9.5 0.0 0.0 10.2

Soybean, corn, oat, hay 

rotation, without manure 

charges, organic Fam study GJ/field 0.7 0.0 1.4 0.0 0.0 2.1

Conventional corn and 

soybean Fam study GJ/field 0.8 0.0 3.2 0.0 0.3 4.3

Potatoes - organic LCA GJ/tonne 1.0 0.0 0.2 0.2 0.0 1.3

Potatoes - conventional LCA GJ/tonne 0.8 0.0 0.4 0.1 0.0 1.3

Bread wheat - organic LCA GJ/tonne 1.4 0.0 0.2 0.0 0.1 1.7

Bread wheat - conv. LCA GJ/tonne 0.8 0.0 1.5 0.0 0.1 2.5

Lettuce -  greenhouse crop,  

organic Farm surveys GJ/ha 7.5 0.0 31.4 3.1 128.7 170.6

Lettuce - greenhouse crop - 

conventional Farm surveys GJ/ha 4.7 0.0 3.5 3.1 140.1 151.4

Venkat. 2012

Cradle to gate, 

includes labour and 

embodied energy in 

machinery/buildings 

within 'other'

Schader. 2009

Haas et al. 2001

Cradle to gate.  

Excluded energy in 

buildings/machinery

Cradle to gate 

includes labour but 

excluded energy in 

buildings and 

machinery

Cradle to gate

Cradle to gate.  

Excluded energy in 

buildings/machinery

Cradle to gate

Alonso and Guzmán. 

2010

Karlen et al. 1995

Williams et al. 2006



 

105 

 

4.7 Effect of functional unit when comparing studies 

As found by Lynch et al. (2011), the unit of comparison affects the performance 

of organic farming systems with regard to environmental assessment criteria 

such as energy use. In common with this study, we have found that for most 

product types, organic performs better than conventional per unit of product, 

with over 75% of the product comparisons in Figure 4.2 reporting lower energy 

use.  In particular, Figure 4.2 illustrates the efficiency of organic grazing 

systems, which is due to the lower energy impacts associated with forage 

production for beef and sheep production (organic energy-use ranges from 21 

to 94% of conventional for these systems, depending on the system intensity).  

In common with Lynch et al. (2011), we have also found that organic systems 

tend to compare less favourably for poultry systems.  Energy use under organic 

management was found to range from 125 to 160% of conventional for broilers.   

For egg production, energy use also tended to be higher, between 120 and 

127% of the conventional barn and cage-based systems respectively.   There 

was less difference between the energy requirements of organic and 

conventional free-range systems, with organic requiring 103 to 105% of the 

energy used on the conventional systems (Leinonen et al., 2012b; Williams et 

al., 2006).      

With regard to crops, most organic systems perform better than conventional in 

energy use terms, mainly as a result of an absence of manufactured nitrogen 

fertiliser. Energy use for cereal cropping is approximately 80% of conventional 

per unit of product, despite the lower yield.  Vegetable production energy 

requirements also tend to be lower on organic farms, requiring approximately 

75% of the energy used under conventional.  There are some exceptions, in 

particular glasshouse vegetables, apple and potato production exhibit reduced 

yields and similar levels of energy inputs, which can result in more energy use 

per unit of product overall. This is a result of greater losses from insect pests 

and diseases in the case of potatoes and apples.  Reduced yields in organic 
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glasshouse vegetable production systems were partly due to an increased 

occurrence of speciality cropping (e.g. vine tomatoes, Williams et al., 2006). 

 

Figure 4.2: Organic vs conventional energy use per unit of product with 

expanded selection.  Organic performs better below the line, worse above the 

line.  Please note the ‘trend-line’ is x=y for the purposes of illustrating the 

relative performance for each product type and is not a line of best fit. 

It is also clear from Figure 4.3 that the difference between conventional and 

organic systems is greater when comparisons are made on a per hectare basis, 

over 80% of the comparisons showing a lower energy use associated with 

organic production.  This is to be expected due to the lower intensity of 

production on most organic holdings, resulting in fewer inputs, and a reduced 

yield.   Despite this, organic performs less well when the energy content of the 

0

10

20

30

40

50

0 10 20 30 40 50

O
rg

an
ic

 e
n

e
rg

y 
u

se
 (

M
J 

p
e

r 
u

n
it

-1
o

f 
p

ro
d

u
ct

)

Conventional energy use (MJ per unit-1 of product)

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

O
rg

an
ic

 e
n

e
rg

y 
u

se
 (

M
J 

p
e

r 
u

n
it

-1
 o

f 
p

ro
d

u
ct

)

Conventional energy use (MJ per unit-1 of product)

0

10

20

30

40

50

0 10 20 30 40 50

O
rg

an
ic

 e
n

er
gy

 u
se

 (
M

J 
p

er
 u

n
it

-1
o

f 
p

ro
d

u
ct

)

Conventional energy use (MJ per unit-1 of product)

Cropping farms

Dairy farms

Beef and sheep

Pigs and poultry

Vegetables and fruit

Other



 

107 

 

organic matter/compost used on organic holdings is taken into consideration. 

Average energy inputs per unit of land area were approximately double that of 

the conventional farms when this was taken into account (Alonso and Guzman; 

Karlen et al., 1995). For the reasons outlined above, however, this renewable 

energy input cannot be compared in the same way to fossil-fuel based energy.    

 

Figure 4.3: Organic vs conventional energy use per hectare with expanded 

selection. Organic performs better below the line, worse above the line.  Please 

note the ‘trend-line’ is x=y for the purposes of illustrating the relative 

performance for each product type and is not a line of best fit.  

A number of studies have compared organic and conventional systems in terms 

of energy efficiency (energy out/energy in).  A range of approaches to 
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measuring energy have been used with some authors expressing production of 

organic/non organic systems in terms of combustion energy (Pimentel et al., 

1983) and other authors using metabolisable energy output values (Cormack 

and Metcalfe, 2000). In addition some studies have included energy use 

associated with the production of farm infrastructure (e.g. buildings and 

machinery) whereas others have only focussed on energy use associated with 

feed, fertiliser and other variable inputs (Alonso and Guzman, 2010; Helander 

and Delin, 2004).  Despite the variation in methods, it is possible to see that 

organic production outperforms conventional for nearly all of the products listed 

in Table 4.3.  Again lower levels of inputs are the main reason for the increased 

efficiency of organic farming within these studies.   There are some exceptions, 

however, for instance the Cormack and Metcalfe (2000) study found that the 

lower yield and the inclusion of fertility building crops within stockless arable 

farms resulted in a lower energy efficiency overall.  Guzmán and Alonso (2008) 

also found that net efficiency is lower in organic olive production, mainly due to 

incorporated organic material originating from other ecosystems, although the 

organic systems performed better in terms of non-renewable energy use 

efficiency.  Nguyen and Haynes (1995) also reported greater machinery use for 

weed control in organic pea production, which resulted in a lower energy 

efficiency overall, in a comparison of mixed farming systems in New Zealand.   

 

 

 

 

 

 

 



 

109 

 

Table 4.3: Energy ratios (energy output divided by input) for conventional and 

organic crops and livestock. All of the studies cited here contain statistical 

uncertainties; some authors have calculated these and others not, where 

individual values are presented these represent the average energy ratio.  

Ranges are presented where different treatments or sites have been used to 

compare the production systems, e.g. Nguyen and Haynes (1995).  

 

 

Farm system or 

crop/livestock

Region of 

production Org.  OUT/IN Conv. OUT/IN Source

Crops

Corn USA 5.75-7.6 4.47 Pimental et al. (1983)

Spring wheat USA 3.22-3.49 2.38 Pimental et al. (1983)

Potatoes USA 1.07-1.20 1.28 Pimental et al. (1983)

Stockless arable farm UK 4.41 5.18 Cormack and Metcalfe (2000)

Wheat New Zealand 14.9-16.5 11.2-17.4 Nguyen and Haynes (1995)

Barley New Zealand 15.4-17.5 9.9-16.3 Nguyen and Haynes (1995)

Peas New Zealand 9.0-9.1 8.8-11.5 Nguyen and Haynes (1995)

Arable rotation Canada 10.4 6.8 Hoeppner et al. (2006)

Arable and alfalfa rotation Canada 33.5/11.9 19/7.4 Hoeppner et al. (2006)

Arable rotation: situation 

related pesticide use (2002-

2006 experiment period) Germany 17.4 20.7 Deike et al. (2008)

Arable rotation: reduced 

pesticide use (2002-2006 

experiment period) Germany 16.9 20.7 Deike et al. (2008)

Arable Farms Sweden 4.3 5.9  Int: 5.9-6.5 Helander and Delin (2004) 

Arable crops Spain 1.88-8.27 4.52-6.7 Alonso and Guzmán (2010)

Vegetables and Fruits

Vegetables Spain 0.42-2 0.75-1.38 Alonso and Guzmán (2010)

Greenhouse vegetables 

(unheated) Spain 0.13-0.22 0.21-0.28 Alonso and Guzmán (2010)

Irrigated fruits Spain 1.73-5.89 4.88-5.48 Alonso and Guzmán (2010)

Rainfed fruits Spain 1.33-2.82 1.87-2.14 Alonso and Guzmán (2010)

Apples USA 1.18 1.11-1.13 Reganold (2001)

Apples USA 0.06 0.89 Pimental et al. (1983)

Olive groves (without compost 

allocation) Spain 2.4-5.2 2.2-4.2 Guzmán and Alonso (2008)

Olive groves (with compost 

allocation) Spain 0.6-2.2 1.4-2.8 Guzmán and Alonso (2008)
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4.8 Emergy studies 

Most of the studies referred to above have concentrated on fossil fuel use when 

comparing the efficiency of organic and conventional systems.  A limited 

number of studies have taken a different approach, using the emergy method to 

account for all energy inputs to the system, including human activity and 

ecosystem services (Bakshi, 2002; Odum, 1996).  Emergy accounts for these 

inputs through an assessment of total amount of energy used for their creation.  

Scienceman (1989) therefore explains emergy as a calculation of the “energy 

memory” of systems (Brown and Herendeen, 1996).  A common unit (i.e. solar 

emjoules – seJ) is used within emergy assessments, to express the amount of 

emergy required to produce a gram (seJ/g) or joule (seJ/J) of a particular 

resource, commodity or service.  This is referred to as the ‘solar transformity’.  

The emergy-efficiency of different agricultural production systems can be 

Farm system or 

crop/livestock

Region of 

production Org.  OUT/IN Conv. OUT/IN Source

Livestock and mixed farms

Sheep meat and wool New Zealand 9.1-12 11-15' Nguyen and Haynes (1995)

Upland livestock (beef and 

sheep) UK 2.47 1.1 Cormack and Metcalfe (2000)

Dairy UK 1.67 0.43 Cormack and Metcalfe (2000)

Pig farms France 1.59 1.17-1.20 van der Werf et al. (2007)

Mainly arable farm (some 

livestock) UK 5.54 3.58 Cormack and Metcalfe (2000)

Experimental farms:   Organic 

beef and arable and 

conventional croppping farm - 

higher value includes straw 

harvested Germany 18/21 11.1 Kustermann et al. (2008)

28 commerical cropping and 

livestock/cropping only farms 

(18 organic and 10 

conventional) Germany 13 (6.0-19.3) 11.8 (6.1-16.2) Kustermann et al. (2008)
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compared through their relative solar transformities, with a lower transformity 

value per unit indicating a greater efficiency.    

In addition to exploring the solar transformities of production systems, some 

emergy studies have investigated the Emergy Yield Ratio (EYR).  This is an 

expression of the total emergy (in seJ) within a system in relation to the emergy 

purchased on the market (e.g. fossil fuels).  In this sense, the EYR is a 

“measure of the systems net contribution to the economy beyond its own 

operation” (Odum, 1996).  Other studies have also explored the Environmental 

Loading Ratio (ELR), which is the ratio of purchased and non-renewable local 

emergy to renewable environmental emergy. This measure can be used as an 

indicator of environmental stress and technological level (Odum, 1996).  

Emergy flow and emergy density are also used to explore levels of 

environmental stress through comparing the spatial and temporal concentration 

of emergy within different systems (e.g. emergy per unit of time or area, 

Castellini et al., 2006). 

Castellini et al. (2006) used the emergy approach to assess the efficiency of 

organic and conventional poultry production systems in Italy.  Their study found 

that the solar transformity was lower within the organic system assessed, 

despite a lower level of production.  This was due to the avoidance of chemical 

fertilisers and pesticides in the production of feed.  In addition, the study found 

that the emergy costs for cleaning/sanitization of buildings were lower in the 

organic system, as a result of organic regulations only permitting molecules for 

sanitisation that have a low environmental impact.  Through an assessment of 

the Energy Yield Ratio, the same study revealed a reduction in external inputs 

and in ecosystem stresses when under organic management.  The organic 

system also had a higher use of renewable energy, as expressed through the 

ELR (see Table 4.4).  In particular, this was through its reliance on organic 

sources of fertility (poultry and cow manure) as opposed to synthetic fertiliser.  

The emergy density within the conventional system was also approximately 

eight times higher than the organic, as a result of much greater use of non-

renewable inputs. 
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Pizzigallo et al. (2008) also found a higher ELR for conventional systems of 

wine production in Tuscany, Italy, finding that the use of non-renewable 

resources on the conventional farm was approximately 15 times greater than 

that of renewable, while for the organic farm this level was only 10 times 

greater.  The higher ELR for the conventional system was a result of the 

increased soil erosion and the use of manufactured fertilisers.  Furthermore, the 

conventional system used a higher amount of agricultural machinery and fuel, 

plus a greater amount of glass for bottling (the organic farm used bottles that 

were lighter).  The difference is thus not intrinsic to the farming system.  The 

organic farm also had a lower solar transformity indicating a less resource 

intensive production system. However, the conventional farm was 

disadvantaged by a greater amount of on farm processing and the fact that only 

the best grapes were harvested (Pizzigallo et al., 2008).     

La Rosa et al. (2008) also used the emergy approach to compare organic and 

conventional red orange production from four Sicilian farms, this study also 

found a higher renewable energy use on the organic farm assessed, which 

contributed to a higher EYR and a much lower ELR.  This was the result of a 

greater reliance on organic sources of fertility within the organic system, 

compared to the energy intensive manufactured fertiliser inputs used on the 

conventional farm.  Furthermore, the conventional system used a greater 

amount of electricity per hectare.  Conversely, the same study found a higher 

solar transformity (seJ/g) associated with two of the three organic farms 

assessed, as a result of the lower product yield.  

In a comparison of wheat production in Denmark, Coppola et al. (2008) also 

found a lower emergy flow in organic production systems (i.e. lower seJ ha-1 

year-1) due to an absence of man-made fertilisers. Organic seed production was 

found to be more resource-intensive than conventional, and more field 

operations and greater machinery use were reported for the organic system.  

The study also reported a lower solar transformity for the organic wheat crop, 

suggesting a reduced efficiency per unit of biomass (straw and grain) despite 

the lower environmental impact, as expressed within the reduced ELR in Table 
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4.4.  Ghaley and Porter (2013) also used the emergy method to compare two 

farming systems in Denmark; a conventional wheat production system and an 

organically managed Combined Food and Energy (CFE) system consisting of 

mixed arable cropping, clover ryegrass swards and woody biomass production.  

The emergy use in the conventional wheat system was 7.4 times higher than in 

the CFE, as a result of increased use of manufactured fertiliser and higher rates 

of soil erosion.  The multiple yield components of the CFE system resulted in a 

greater output and a higher EYR.  A lower ELR was also reported for the CFE 

system due to the reliance on renewable inputs (e.g. biologically fixed nitrogen). 

The study concludes that the CFE system provides a greater contribution to the 

economy compared with a wheat monoculture.  The authors also suggest that 

such a diverse system could provide a suitable way forward for food and energy 

production, if an appropriate economic and policy environment could be 

provided.   
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Table 4.4: Results from five 'emergy' studies comparing organic and conventional production.  Results expressed as ‘seJ’ = 

solar emergy joules or emjoules, i.e. units of solar energy that would be required to generate all the inputs to the farming 

system defined (expressed in seJ joule (j)-1 or seJ gram (g)-1 or seJ hectare (ha)-1. 

 
 

 
Author of study 

 

 
Castellini et al. (2006) 

 
Pizigallo et al. (2008) 

 
La Rosa et al. (2008) 

 
Coppola et al.  (2009) 

 
Ghaley and Porter (2013) 

 
Production system and country 

 
Poultry (meat) 

production cycle: Italy 
 

 
Wine production: 

Italy 

 
Red orange production: 

Sicily  

  
Wheat production:  

Denmark  

 
Conventional wheat and organic 

Combined Food and Energy (CFE) 
system: Denmark 

 

 
System type – conventional / 

organic 

 
Conv. 

 
Org. 

 
Conv. 

 
Org. 

 
Conv. 

 
Org. 

 
Conv. 

 
Org. 

 
Conv. (wheat) 

 
Org. (CFE) 

 
 

Solar transformity (seJ J
-1
) 

 
 

6.1 x 10
5 

 
 

5.7 x 10
5 

 
 

N/A
 

 
 

 N/A
 

    
 

N/A 

 
 

N/A 

 
 

3.9- 5.8 x 10
4 

 
 

4.6-7.1 x 10
4
 

 
 

8.63 x 10
4
 

 
 

6.40 x 10
3
 

 
 
 

Solar transformity (seJ g
-1
) 

 

 
4.3 x 10

9 
 

4.1 x 10
9 

 
4.7 x 10

15  

(per tonne)
 

 
3.0 x 10

15  

(per tonne)
 

 
1.2 x 10

9
 

 
0.6-2.2 x 10

9 

 
 

N/A 

 
 

N/A 

 
 

N/A 

 
 

N/A 
 

Emergy flow (seJ ha
-1
) N/A N/A N/A N/A N/A N/A 6.6-6.9 x 10

15
 5.4-5.6 x 10

15 
N/A 

 
N/A 

 

 
Empower density (seJ year

-1
) m

2
 

 
7.8 x 10

14
 3.6 x 10

12
 1.9 x 10

16
 1.0 x 10

16
 N/A N/A N/A N/A N/A N/A 

 
Emergy Yield Ratio (EYR) 1.1 1.5 N/A N/A 1.5 1.6-11.7 N/A N/A 1.0 1.2 

Environmental Loading Ratio 
(ELR) 

5.2 2.0 15.4 10.5 43.0 3.8-30 

 
 

7.3-8.5 

 
 

2.3-2.4 

 
 

37.7 

 
 

4.2 
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Emergy is clearly a useful method that presents a more complete picture of the 

energy and ecosystem costs and benefits associated with a range of farming 

systems (Gomiero et al., 2008).  Unlike energy accounting, the emergy 

approach allows for an assessment of a productive system’s relationship with 

the environment, in terms of energy flows. It takes into account environmental 

inputs that are usually treated as ‘free’ (e.g. ecosystem services, Bakshi, 2002; 

Pizzigallo et al., 2008), assessing the amount of natural ‘labour’ required to 

obtain a given product (Castellini et al., 2008).  Despite these perceived 

advantages, the emergy approach has been criticised on the basis of the 

subjective judgements and associations that lead to the allocation of solar 

energy values to inputs such as wind and rain (Jones, 1989).  The lack of a 

sufficiently detailed explanation behind the underlying methodology within many 

of the calculated solar transformities has contributed to this criticism, (Hau and 

Bakshi, 2004) although recent attempts have been made to apply uncertainty 

calculations to the emergy approach (Li et al., 2011).  Hulsbergen et al. (2001) 

also state that inclusion of solar radiation in the energy balance can mask the 

variation of fossil energy input influenced by different husbandry techniques, as 

fossil energy is often a small proportion of the total emergy use when 

considering solar inputs. Conversely, it can also be misleading to focus only on 

the use of energy on-farm (i.e. without accounting for the embodied energy 

associated with inputs and natural services) providing an advantage to farms 

dependent on external sources for the maintenance of higher levels of 

production (Topp et al., 2007).  It has been suggested that a combined 

approach of using LCA and emergy analysis may help both methods to 

improve, allowing LCA to account for ecosystem services, and overcoming 

problems with allocation (i.e. partitioning energy inputs between multiple 

outputs) found within the emergy approach.  This combined method was 

adopted by Pizzigallo et al. (2008), who used LCA methods to comprehend and 

disaggregate the productive systems assessed, together with the application of 

emergy to account for the energy contribution of ecosystems. 
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4.9 Discussion 

4.9.1 Comparisons by farming system 

When making comparisons of the energy efficiency of organic and conventional 

systems, it is difficult to draw definitive conclusions, partly as a result of the 

variation within each of the sectors, which makes performance very site and 

system dependent (Seufert et al., 2012).  For example, Williams et al. (2010) 

found that wheat grown on sandy soils uses about 20% more energy than on 

clay soils, within an LCA of organic and conventional arable crops grown in the 

UK.  Refsgaard et al. (1998) also found that differences in soil type had a 

greater effect on energy efficiency than organic or conventional farming 

practices.  Nevertheless, in common with the findings of Lampkin (2007), Lynch 

et al. (2011) and Gomiero et al. (2008) it is possible to state that for most 

grazing systems, organic farming will result in a lower energy use, on a unit 

area or weight of product basis.  This is a direct result of the use of clover and 

other forage legumes within leys, which results in more efficient forage 

production compared to the conventional practice (Deike et al., 2008; Hoeppner 

et al., 2006; Küstermann et al., 2008).  Similarly, for dairy systems, organic 

production tends to result in lower energy use per litre of milk produced, due to 

greater energy efficiency in the production of forage and reduced reliance on 

imported concentrates (Cederberg and Mattsson, 2000; Haas et al., 2001; 

Thomassen et al., 2008).  With regard to poultry, meat and egg production 

tends to require more energy per kilogram of product and per hectare under 

organic management, as poorer overall feed conversion ratios and higher 

mortality rates reduce overall efficiency (Leinonen et al., 2012a; Williams et al., 

2006).    

With regard to cropping systems,  the absence of fertiliser inputs tends to more 

than compensate for a lower yield within organic cereal production, resulting in 

lower energy use per kilogram of product (Pelletier et al., 2008; Williams et al., 

2006) or little difference overall (Nemecek et al., 2005).  Organic management 

can also be better in terms of energy use for field vegetable production, as a 

result of fewer inputs in manufactured fertilisers and herbicides, although in 
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some cases the energy used for flame weeding can make it worse (Cormack 

and Metcalfe, 2000).  For organically produced potatoes, energy use tends to 

be greater due to yield losses from pests, causing lower yields overall (Williams 

et al., 2006).  Pimental et al. (1983) found that organic potato yields were only 

50% of conventional as a result of a lack of control of blight (Phytopthora 

infestans) resulting in much lower energy efficiency per kilogram of product.   

With regard to on farm energy use, in common with the study by Lynch et al. 

(2011) this review has found that in many cases organic farmers’ diesel 

requirements are comparable to conventional; although for some crops this 

energy use may be greater through increased reliance on mechanical tillage, 

e.g. for broccoli (Venkat, 2012), wheat and potatoes (Williams et al., 2006).    

The reduced tillage systems commonly found on conventional farms will also 

require less diesel than the ‘traditional’ mouldboard ploughing technique 

commonly used on organic farms, although the difference may be offset by 

indirect energy, depending on the rate/efficiency of usage (Clements et al., 

1995; Robertson et al., 2000).  With regard to indoor crops, a greater amount of 

energy is used for greenhouse production under organic management on a 

kilogram of product basis, as a result of lower yields but similar energy 

requirements for heating or building construction (Alonso and Guzman, 2010; 

Williams et al., 2006).   

The ‘human energy’ aspect is missing from many of the studies considered 

here.  This is a result of the absence of a widely accepted and applied 

methodology for its inclusion, in addition to the relatively small contribution of 

labour to total energy use in modern cropping systems.  Borin et al. (1997), for 

example, calculated that this aspect accounts for less than 0.2% of the total 

energy input in modern cropping systems.  Relatively high energy input is likely, 

however, in other systems, such as fruit, vegetable and livestock production. 

The limited number of studies that have included this aspect found that organic 

farming will generally result in greater levels of on farm energy from human 

labour (Karlen et al., 1995; Nguyen and Haynes, 1995; Pimentel et al., 1983).  

Although this may have negative effects on the productivity per labour hour, 
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some authors have taken an optimistic view of the increased labour 

requirements associated with organic production systems. For instance, Pretty 

(1998) in Cobb et al. (1999) found that a shift towards an organic production 

scenario in the UK could create 100,000 jobs in addition to encouraging more 

added value through on farm processing of products and direct sales.   

4.9.2 Productivity vs. energy efficiency 

It is also important to note that most of the studies and farming systems 

mentioned above found higher levels of productivity in conventional systems, 

despite organic systems having greater resource use efficiency.  In this context 

Deike et al. (2008) point out the large yield losses that would result from a 

widespread switch to organic production.  The lower yields from organic 

management have led some authors to conclude that organic farming is 

incapable of feeding the world in a sustainable manner (Connor, 2008; 

Trewavas, 2004).  Others have claimed that the apparent benefits of organic 

production such as reduced fertiliser manufacture and pesticide use are a poor 

exchange for a potential lack of productivity (Powlson et al., 2011).   Despite 

this, a recent meta-analysis by Seufert et al. (2012) found that under good 

management practices, some organically grown food crops can nearly match 

conventional yields.  Specifically, organically produced legumes and perennials 

on rain fed, weak acidic to alkaline soils were found to have small yield 

differences of less than 5%, although the authors of this study note the small 

sample size and high uncertainty for these crops.  On the other hand, for 

vegetables and cereals, a greater, statistically significant yield reduction was 

found for organic systems (-33% and -26% respectively). The authors note that 

when only the most comparable organic and conventional systems are used, 

organic yields can be up to 34% lower.  Conversely, a study based at the 

Rodale Institute’s experimental farm in the north eastern United States 

demonstrated that under drought conditions, crops in organically managed 

systems can produce higher yields than conventional crops.  Yield increases 

within this study ranged from 137% to 196% of conventional depending on the 

crop and method of fertilisation (Lotter et al., 2003).  The main reason given is 
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the increased water holding capacity of the soil, as a result of an increased 

organic matter content.  Smolik et al. (1995) also found that yields within an 

organic system were more stable in the face of diseases and weather variation 

over a six year period. 

Whatever the yield differences between organic and conventional production, it 

is clear from both an environmental and economic perspective that we need to 

reduce our reliance on fossil fuels, per unit of food produced, whether under an 

organic or conventional production scenario.  Although the use of these 

reserves has clearly had a positive impact in terms of increasing productivity 

throughout the ‘Green Revolution’ (Godfray et al., 2010) and fertiliser 

manufacture efficiency is increasing (Woods et al., 2010) it has been highlighted 

that oil and gas reserves are only sufficient to meet our needs for another 50 to 

100 years (Crews and Peoples, 2004).  Moreover, the negative effects of our 

dependency on non-renewable inputs are already being witnessed (e.g. through 

food price riots in 2008, in part caused by increasing costs of fertiliser and fuel, 

Piesse and Thirtle, 2009).  The wisdom of putting our faith in the development 

of an unproven or unknown energy source to maintain or increase levels of 

production in the future has also been questioned (Crews and Peoples, 2004).    

In addition recent assessments have found that vast increases in yield seen in 

recent years have been at the expense of increases in soil erosion, reductions 

in biodiversity and a large increase in agriculture’s reliance on manufactured 

fertilisers and pesticides (Millennium Ecosystem Assessment, 2005; Tilman, 

1999).  In this context Gomiero et al. (2008) highlight the usefulness of methods 

such as emergy accounting, which can present a more complete picture of 

agricultural systems’ impact on the natural environment.  The current 

application of emergy approaches to comparisons of organic and conventional 

farming systems has been limited, however, and more work comparing the two 

approaches using this method would be helpful.    

It should also be noted that in their current form, organic systems do not offer a 

radical alternative to the fossil fuel reliance of modern agricultural systems. The 

reduced use of energy in organic production and increased energy efficiency 
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compared to conventional production is often marginal. These systems often 

still depend on the same sources of (fossil fuel) for tractors, machinery and 

buildings etc. While organic production can make a contribution to a more 

resource efficient agriculture, in its present form it does not provide a complete 

solution. 

Some have suggested that a ‘happy medium’ for the development of more fossil 

fuel efficient farming systems would be to pursue lower input conventional 

farming systems (e.g. by reducing man-made fertiliser inputs, increased use of 

legumes for nitrogen fixation and organic manures, Foresight, 2011).  Indeed 

recent work has highlighted that well managed conventional systems with 

reduced input levels can outperform organic production in terms of resource use 

efficiency, when measured on an energy output/input basis (Tuomisto et al., 

2012a).  In this context, the recent International Assessment of Agricultural 

Knowledge, Science and Technology for Development (McIntyre et al., 2008)  

and Foresight (2011) reports outline a number of key challenges to maintain the 

production of food whilst decreasing dependence on fossil energy, none of 

which would seem to exclude or preclude a conversion to organic standards: 

 The development of decentralised, locally based production and 

distribution systems 

 Improving nutrient use, in particular more exact timings and amounts of  

fertilisers (organic and inorganic) 

 Increasing  productivity through increasing the marketable/edible yield 

from crops, improved animal breeding, feeding and pest and disease 

control 

 Recycling of urban and  industrial waste 

 Increased use of renewable energy throughout the supply chain 

In addition, the need to improve the synchrony between N supplied by legumes 

and N demand from crops is highlighted by Myers et al. (1997).  However, even 

with developments in this area, it will be difficult to match the synchronisation 

with crop demand to the same extent as through targeted application of soluble 

nitrogen through manufactured fertiliser (Cassman et al., 2002; Crews and 
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Peoples, 2004).  Crews and Peoples (2004) also highlight the importance of 

reducing the amount of grain fed to livestock, thereby freeing up land for 

legumes and reducing agriculture’s current dependence on manufactured 

fertiliser. This would, however, particularly reduce the output of eggs and poultry 

meat and, to a lesser extent, pig meat, given the nutritional requirements of 

these stock.   Kumm (2002) also highlights the importance of focussing meat 

production on landscapes that cannot be used for arable cropping, and using 

by-products that can contribute to food supply only through the refinement of 

meat producing animals.  Although Kumm (2002) also highlights that in 

situations of energy shortage, there might be competition between meat 

production and the bioenergy sector.   

4.10 Conclusion 

Organic production systems focus on the development of closed cycles of 

production as far as this is possible, as espoused by the IFOAM principles.  

This naturally creates systems which are less productive.  Results from studies 

considered within this review, however, have illustrated that the reduced yields 

are matched by greater energy efficiencies for most ruminant livestock and field 

crops.  The difference is greatest when comparisons are made on a unit of area 

basis, although substantial increases in energy efficiency can also be observed 

per unit of product within most of the comparative studies.  The difference 

between organic and conventional production tends to be greatest for grassland 

systems, due to the relative efficiency of producing grass in conjunction with 

clover, a practice encouraged within the organic sector. There are some 

important exceptions where organic performs worse. For example potatoes 

where a lower yield reduces efficiency and other vegetables that require flame 

weeding.  Within livestock production, organic pig and poultry production 

systems also perform worse where poor feed conversion and higher mortality 

rates can lead to lower energy efficiency overall.  The limited number of emergy 

analyses comparing the two production systems to date have also found a 

lower environmental loading and increased renewable energy use on organic 

farms.  Overall it would appear that the energy efficiency of most cropping and 



122 

 

ruminant livestock farming systems can be enhanced through the adoption of 

organic management.  However, in many cases this will be at the expense of 

crop or livestock yields.    
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5.1 Abstract 

The dynamic model Nitrogen Dynamics in Crop rotations in Ecological 

Agriculture (NDICEA) was used to assess the nitrogen (N), phosphorus (P) and 

potassium (K) balance of long-term organic cropping trials and typical organic 

crop rotations on a range of soil types and rainfall zones in the UK. The 

measurements of soil N taken at each of the organic trial sites were also used 

to assess the performance of NDICEA. The modelled outputs compared well to 

recorded soil N levels, with relatively small error margins. NDICEA therefore 

seems to be a useful tool for UK organic farmers. The modelling of typical 

organic rotations has shown that positive N balances can be achieved, although 

negative N balances can occur under high rainfall conditions and on lighter soil 

types as a result of leaching. The analysis and modelling also showed that 

some organic cropping systems rely on imported sources of P and K to maintain 

an adequate balance and large deficits of both nutrients are apparent in 

stockless systems. Although the K deficits could be addressed through the 

buffering capacity of minerals, the amount available for crop uptake will depend 

on the type and amount of minerals present, current cropping and fertilisation 

practices and the climatic environment. A P deficit represents a more 

fundamental problem for the maintenance of crop yields and the organic sector 

currently relies on mined sources of P which represents a fundamental conflict 

with the International Federation of Organic Agriculture Movements organic 

principles. 

5.2 Introduction 

Organic cropping systems focus on feeding the soil, rather than the plant, to 

build long-term system health and resilience (Lampkin, 2002).  This approach 

results in a reliance on fertility building ley periods and the application of 

composts and manures, which supply a source of nutrition for the growing 

crops, whilst potentially improving the soil microbial life and organic matter 

contents (Lampkin, 2002; Watson et al., 2002).  The length of the ley period can 

vary from short term (12-18 months) to long-term (around 5 years), but typically 

the ley is kept for about 18 months to 3 years.  In Europe, organic farmers most 
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frequently use grass-clover mixes for their leys, with white clover (Trifolium 

repens) and red clover (T. pratense) being popular legume species and 

perennial ryegrass (Lolium perenne) and Italian ryegrass (L. multiflorum) as 

commonly chosen grass species (Döring et al., 2013).   The crops following the 

ley period make use of the built-up fertility, although the ley period can also 

remove fertility, in particular K in conserved grass (silage).  Cropping following 

the ley phase often includes rotational use of over-winter green manures and 

cover crops such as cereal rye (Secale cereale) and vetch (Vicia satvia) to 

reduce losses and to supply additional N through biological fixation (Lampkin, 

2002).    

The use of these approaches on organic farms creates systems in which the 

nitrogen supplied is in a less available form, compared with conventional 

systems using mineral fertiliser (Torstensson et al., 2006).  The supply of 

available nitrogen in organic systems can therefore be a limiting factor for the 

maintenance of crop yields (Berry et al., 2002; Dawson et al., 2008; de Ponti et 

al., 2012).  In addition, poor synchronicity between the supply and demand for 

nitrogen can lead to leaching and gaseous losses, particularly following ley 

cultivation.  Nevertheless, this is also an issue for conventional farmers, 

particularly following periods of high rainfall (Dawson et al., 2008; Liang et al., 

2011; Patil et al., 2010).  Under organic management, the surplus of N following 

ley cultivation can be followed by an N deficit later in the crop rotation (Berry et 

al., 2002).  Although this shortage can be resolved through the application of 

organic composts, manures, and/or through the use of short-term green 

manures, it can be difficult to match the N supplied from such sources with crop 

demand.  A reliance on such methods can therefore contribute to lower nitrogen 

use efficiencies compared to non-organic systems applying targeted mineral N 

(Dawson et al., 2008; Torstensson et al., 2006).  Despite the challenges of N 

availability and synchronicity of N supply/demand on organic farms, Berry et al. 

(2003) found positive N balances in a comparison of nine organic farms, and 

reported that the farms were probably sustainable in terms of N supply and 

offtake.  However, the same study found that phosphorus (P) and potassium (K) 

levels were in deficit within the stockless systems assessed, and that only farms 
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with large manure returns from stock fed with bought-in feed had a positive or 

neutral K budget.  Korsaeth et al. (2012) and Torstensson et al. (2006) also 

found P and K deficits within organic arable cropping and mixed dairy farming 

systems in Norway and Sweden respectively.    

The research presented here aimed to assess the effect of rotation design on 

the supply and offtake of nitrogen (N), phosphorus (P) and potassium (K) on 

organic farms using the dynamic model NDICEA (Nitrogen Dynamics In Crop 

rotations in Ecological Agriculture).  Five hypotheses were posed at the outset 

of this study.  First, NDICEA can effectively calculate the course of mineral-N 

over a range of organic crop rotations. Second, the N supplied through 

biological fixation in stockless organic rotations is sufficient to support crop 

offtake. Third, organic cropping systems incorporating livestock manure 

applications are able to maintain a positive or neutral N, P and K balance. 

Fourth, organic rotations will typically rely on imported P to maintain a balance 

of this nutrient.  Fifth, that a deficit of K is a common feature in the overall 

nutrient balance of typical organic crop rotations. 

5.3 Methods 

The NDICEA model (Van der Burgt et al., 2006) was applied to assess the 

supply and demand of nitrogen (N), phosphorus (P) and potassium (K) within a 

range of stocked (i.e. with manure) and stockless rotations applied at 

experimental organic farms in the UK.  In addition, typical organic rotations were 

drawn from the literature.   

5.4 Model description 

NDICEA is a dynamic, target-oriented model with crop yield and crop quality 

parameters, e.g. dry matter, N, P and K contents, used as a basis for crop 

uptake calculations.  Mineralisation of nitrogen from soil organic matter (SOM) 

and organic inputs such as manure and compost is also calculated, factoring in 

the effects of weather, irrigation and soil type, although the model does not 

account for volatilisation losses during composting / storage of manure.   The 

model uses a daily time step, utilising site specific weather data (rainfall, 
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temperature, evapotranspiration) and user-defined soil and crop parameters.  

Although the model contains default values for a range of soil types these 

values can be automatically adjusted through the addition of data on measured 

soil mineral nitrogen and SOM within the user interface.  Following the entry of 

these values calibration of the model takes place through the implementation of 

an algorithm that selects an optimum parameter value from a range of plausible 

values for such variables as N leaching, denitrification and water holding 

capacity (Van der Burgt et al., 2006).  Within this study measured values of soil 

mineral nitrogen and SOM were used to calibrate the model runs and improve 

the accuracy of the assessments.      

A repeat calculations function within the model also allows the user to assess 

the longer term impacts of rotations both in terms of the nutrient supply and the 

effect on organic matter stocks.  The focus of the model is on nitrogen 

dynamics.  For P and K, a simpler farm-gate balance approach is taken (i.e. 

only crop offtake and atmospheric deposition is calculated, based on the user-

defined input parameters and/or default values).  The calculations for P and K 

are also unaffected by changing the soil type or daily rainfall and 

evapotranspiration values within the model.  The wide range of cover crops and 

green manure-options within the NDICEA interface makes the tool particularly 

applicable for organic farmers, however the tool can also be used to improve 

understanding of nitrogen dynamics under non-organic management (Van der 

Burgt et al., 2006). Under both organic and non-organic management model 

performance will be improved by calibration, with a higher number of 

measurements improving the accuracy of the estimates of N supply and losses 

(van der Burgt and Rietberg, 2012).    

 

 

 

 



138 

 

5.5 Description of sites and cropping systems 

The model was run using crop, soil and weather data from the UK Government 

funded organic conversion trials held at ADAS Terrington (Cormack, 2006), 

Warwick University’s Hunts Mill site (Lennartsson, 2000) as well as other long-

term trials at Elm Farm Research Centre (EFRC, Welsh et al., 2002), Scotland’s 

Rural College (SRUC Tulloch and Woodside, Taylor et al., 2006) and a grazing 

only trial at the Institute of Biological, Environmental and Rural Sciences 

(IBERS) at the University of Aberystwyth (Ty Gwyn, Haggar and Padel, 1996).  

Please see Table 5.1 and Figure 5.1 for more information on the trials.  

Soils data from each site were collected from project reports, site records and 

published literature (Cormack, 2006; Haggar and Padel, 1996; Lennartsson, 

2000; Taylor et al., 2006; Welsh et al., 2002).  The bulked soil samples at each 

site were taken along a W transect twice each year in the case of Elm Farm 

(Welsh et al., 2002), Warwick University (Lennartsson, 2000) and ADAS 

Terrington (Cormack, 2006, after sowing and harvest) and once per year at the 

SRUC sites (Watson et al., 2011) and at Ty Gwyn (Haggar and Padel, 1996, 

January and April respectively).  Samples were analysed for available P 

(Modified Morgan’s solution at SRUC sites and Olsen’s method at other sites), 

available K (Modified Morgan’s solution at SRUC sites and ammonium nitrate 

extraction at ADAS and Elm Farm), mineral nitrogen (potassium chloride 

solution) and organic matter (loss on ignition).   
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Table 5.1: Crop Rotations used at each of the experimental sites (C = Carrots, 

G/C = Grass White Clover,  P = Potatoes, RC = Red clover,  SBA = Spring barley, 

SB = Spring beans,  SO = Spring oats,  S = Swede, SW = Spring wheat, WB = 

Winter beans,  WO = Winter oats, WW = Winter wheat):   

 

                             Rotation year 

Rotation 1 2 3 4 5 6 7 8 9 10  

EFRC A RC WW WW SO               

EFRC B RC P WW WO               

EFRC C RC WW WB WW               

ADAS Terrington RC RC P WW SB SW RC P WW SB   

Warwick, Hunts Mill - Area 1 SB G/C G/C P C SBA G/C         

Warwick, Hunts Mill - Area 6 P C SB P C SBA G/C         

SRUC - Tulloch T50 G/C G/C G/C SO S SO           

SRUC - Tulloch T67 G/C G/C G/C G/C SO SO           

SRUC - Woodside W37 G/C G/C SO P SO  G/RC S SO
 

   

SRUC- Woodside W50 G/C G/C G/C SO P SO         

IBERS - Ty Gwyn G/C G/C G/C                 
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Figure 5.1. Approximate location and site parameters for each of the long-term 

organic trial sites.  OM = organic matter content of the soil (% loss on ignition). 

Rainfall amounts are mean values over the course of the trial(s). 

Soil samples were taken at a range of depths.  At Elm Farm separate topsoil (0-

15cm) and subsoil (15-30cm) samples were assessed for the above 

parameters.  At Warwick University assessments were carried out on samples 

from 0-30cm and 30-60cms.  At Ty Gwyn mineral nitrogen was sampled to 

80cm in 15cm and 20cm increments respectively, although only the first sample 

layer was assessed for P, K and organic matter.  At ADAS Terrington all 

samples were taken to 90cm in 15cm increments.  At Woodside, the mineral 

nitrogen was sampled to 45cm in increments of 15cm, and at Tulloch, the 

mineral nitrogen was sampled to 30cm in increments of 15cm. 

The rotations applied at EFRC and ADAS Terrington were managed as 

stockless systems, although phosphate fertilisers permitted under organic 

standards were applied.  The EFRC trial received lime up to a maximum rate of 

2 t ha-1 yr-1.  Lime was similarly applied at the ADAS site in order to keep the pH 

between 6 and 6.5.  All of the red clover leys at each site were managed 
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through cutting and mulching.  The Hunts Mill plot trials included both ‘with 

manure’ and ‘without manure’ treatments.  Both sites at Hunts Mill received a 

single application of green waste compost at a rate of 20 tonnes per hectare.  At 

the Ty Gywn organic dairy unit, manure was deposited at a rate consistent with 

2 Livestock Units (LU) per hectare and lime was applied at a mean rate of 0.7 t 

ha-1 over 3 years.  At both of the SRUC sites (i.e. Tulloch and Woodside) total 

annual manure applications were based on 2.8 LU ha-1 for the period 1991-

1998.  In addition ground limestone and potassium sulphate (K2SO4) were 

applied to all Woodside plots in 1991, at a rate of 3.75 t ha-1 and 150 kg ha-1 

respectively.  All grass-clover leys at SRUC sites were managed through a 

combination of grazing with sheep and cutting for silage as described in Taylor 

et al. (2006). 

In addition to data from the organic trials, information on typical organic 

rotations was gathered, based on examples within the Organic Farm 

Management Handbook (Lampkin et al., 2011b) and following guidelines given 

to organic farmers with respect to the proportion of fertility building leys to 

exploitative phase (see Table 4.3 for description of the rotations used, Lampkin, 

2002; Lampkin et al., 2011b).   Manure application rates for the typical stocked 

cropping systems were derived using typical livestock numbers for cropping 

farms (i.e. 0.3 Grazing Livestock Units per Utilisable Agricultural hectare) 

reported within a sample of approximately 30 organic farms included within the 

FBS (Farm Business Survey) for England and Wales (Moakes and Lampkin, 

2010; Moakes and Lampkin, 2011; Moakes et al., 2012a).  Rock phosphate 

application rates were derived with expert input from the Institute of Organic 

Training and Advice (IOTA) registered advisors. 
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Table 5.2: Typical organic rotations assessed within this study (G/WC = Grass/ 

white clover, RC/G = Red clover/grass, SO - Spring oats, SW = Spring wheat,  SB 

= Spring beans, WO = Winter oats, WW = Winter wheat, WR = Winter rye, P = 

Potatoes,   PE = Peas)      

  Rotation year   

Rotation 1 2 3 4 5 6 7 8 9 10   

Stocked 'complex' G/WC G/WC G/WC WW WO RC/G RC/G P SB SW 

Stocked 'simple' RC/G RC/G WW P WW WR           

Stockless 'complex' RC/G RC/G P WO SB SW         

Stockless 'simple' RC/G WW PE SO               

 

The rotations were chosen to represent a range of stocked and stockless 

organic cropping systems.  To assess the representativeness of the rotations 

crop areas were compared to those reported for a stratified sample of 30 

organic farms included within the Organic Farm Income Reports published by 

Aberystwyth University and The Organic Research Centre (Moakes and 

Lampkin, 2010; Moakes and Lampkin, 2011; Moakes et al., 2012). 

As shown in Figure 5.2, the typical rotations are broadly representative of the 

crop areas reported on actual organic farms within the Farm Income Reports’ 

matched sample.  Although there are some differences by crop type (e.g. both 

stocked simple and stockless simple containing a high percentage of cereal 

crops) the differences are generally in the region of 15-20%.  In view of the wide 

variation between the rotations on individual farms, this is an acceptable margin 

of error and the rotations applied here can be considered to be broadly 

representative of organic cropping farms. 
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Figure 5.2: Comparison of the land use by crop type for the typical rotations 

used within this study to data for 30 ‘Cropping Farms’ collected with the FBS-

based Organic Farm Incomes Reports (2010-2012). Error bars = standard error.  

 

5.6 Model application  

The model was applied to assess the effect of rotation design on the supply and 

offtake of nitrogen (N), phosphorus (P) and potassium (K) on the above 

experimental sites and within typical organic rotations.  The measured changes 

in SOM over time were small for most of the sites assessed (data not shown).  It 

was therefore necessary to run the model a number of times to ensure a 

minimal gain or loss of SOM and to avoid erroneous conclusions.  Based on 

measured data and results from long-term experiments  (Johnston et al., 2009; 

Melillo et al., 1989)  a uniform, near steady-state was assumed to have been 

reached once the annual change in SOM was less than 2% of the total organic 

matter pool (expressed in kg ha-1) over the rotation.  Two runs of the model 

were implemented for each site, an uncalibrated run, using only the basic, user-
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adjusted soil and crop parameters, and a calibrated run following the input of 

measured amounts of soil mineral N and SOM to make the model automatically 

adjust advanced soil parameters such as N leaching and denitrification factors.  

The root mean square errors (RMSE) were calculated based on the size of the 

deviation between the measured soil N and modelled soil N values and the 

number of samples at each site.  The observed N values were used therefore in 

the calibrated runs as both inputs to the model and as comparator for assessing 

model performance.  Following the calculation of N, P and K balances for the 

trial sites, a further application of the model was implemented for the typical 

organic rotations desribed above, using the same soil and weather conditions 

as the trial sites.   

5.7 Results and discussion 

The modelled estimates for Soil Mineral Nitrogen (SMN) were compared with 

the sampled soil N values from each of the sites to test the ability of the model 

to simulate the measured rotations.  An NPK balance for each of the rotations 

was then calculated.  

5.7.1 Comparison of the NDICEA model’s estimates for soil N with 

measured mineral N values at each of the trial sites 

A RMSE of 20 kg N ha-1 or less was proposed by Van der Burgt et al. (2006) to 

represent acceptable model performance for practical purposes.  This could be 

achieved for most of the sites, although in some cases (e.g. EFRC and Hunts 

Mill) the modelled results are above this value (see calibrated model output in 

Table 5.3).  The higher errors at EFRC could be a result of the small number of 

measurements (i.e. 7).  The high errors for the stocked rotations at Hunts Mill 

could be explained by the fact that soil N measurements were taken soon after 

application of manures (the modelled values for this phase of the rotation were 

more than 100 kg N ha-1 lower than the recorded values).  It may also be 

possible that the model is underestimating the nitrogen supplied or that the 

deeper samples at Hunts Mill (0-60cm) resulted in a mixing of topsoil and 
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subsoil layers, and a subsequent overestimate of the mineral N content in the 

subsoil layer. 

 

Table 5.3: Comparison of the error found in calculating soil N (kg N ha-1) 

produced by uncalibrated and calibrated runs of NDICEA using data collected for 

the rotations applied at each experimental site (RMSE = Root Mean Square Error 

across all measurements, n = number of soil mineral N samples used for 

calibration of the model) 

Site / experiment n 

RMSE 
uncalibrated 

model 
RMSE calibrated 

model 

EFRC A 7 48.8 16.6 

EFRC B 7 57.6 48.7 

EFRC C 7 30.4 21.5 

ADAS Terrington 10 10.9 6.3 

Warwick, Hunts Mill Area 1 with FYM 12 47.7 44.1 

Warwick, Hunts Mill Area 6 with FYM 12 22.3 19.3 

Warwick, Hunts Mill Area 1 no FYM 12 41.0 38.8 

Warwick, Hunts Mill Area 6 no FYM 12 23.7 18.6 

SRUC Woodside W37 30 12.8 11.6 

SRUC Woodside W50 30 14.1 11.8 

SRUC Tulloch T50 5 22.0 18.9 

SRUC Tulloch T67 5 13.4 6.0 

Ty Gwyn 2 8.3 7.5 
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5.7.2 NPK balance for each of the rotations applied at the organic 

trial sites 

Modelled nutrient balances derived from NDICEA are presented in Table 5.4 for 

each of the stockless rotations.  The results include an estimate of the change 

in SOM, with a negative number indicating mining of existing reserves and a 

positive number indicating an assimilation of N to SOM (i.e. an increase in 

organic matter stocks).   

Table 4.4 illustrates that the amount of N supplied through biological fixation 

could potentially support the crop removal at the EFRC trial, although due to 

losses from the system, in particular leaching, much of this N is lost.  The 

negative values for organic N indicated a mining of organic matter over the 

course of the experiment.  This decline was observed through field 

measurements with organic matter levels dropping from 32 g kg-1 to 25 g kg-1 of 

soil, probably as a result of starting the trial after a 5-6 year ley.  Organic matter 

levels would be expected to rise again on return to a longer-term ley period, as 

is standard organic practice.  The increase in organic matter levels from the 

implementation of a one-year fertility building ley was reflected in the NDICEA 

model, which showed a rise during this period, although the subsequent decline 

more than offset the gain.  When a nutrient demanding crop was introduced into 

the rotation (e.g. potatoes in EFRC B) the deficit for all three nutrients increased 

to the extent that further use of external inputs (e.g. composts or manures) 

would be required, in particular for P and K.  The high P and K offtake of beans 

similarly contributed to the large deficit of these two nutrients within the balance 

for rotation EFRC C.   
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Table 5.4: Nutrient balance of stockless organic rotations/trial sites expressed in kg ha-1 year-1 

  EFRC A EFRC B   EFRC C   ADAS    HuntsMill  HuntsMill  

                            Area 1   Area 6 

  N P K N P K N P K N P K N P K N P K 

Fertiliser applied   8     8     8     8   8 5 18       

Deposition 20   4 20   4 20   4 30 1 5 20   3 20   3 

Biological fixation 44     59     59     84     42     21     

Total supply 64 8 4 79 8 4 79 8 4 114 9 5 70 5 22 41 0 3 

Volatilisation 0     0     0           0     0     

Denitrification 47     54     44     26     24     7     

Leaching 57     57     52     28     18     15     

Product Removal 36 8 6 63 17 32 55 14 26 77 15 45 35 9 55 33 10 62 

Total loss 140 8 6 174 17 32 151 14 26 131 15 45 77 9 55 55 10 62 

                                      

Nutrient balance -76 0 -2 -95 -9 -28 -72 -6 -22 -17 -6 -40 -7 -4 -33 -14 -10 -59 

                                      

Change in soil organic N -93     -100     -60     0     -1     -13     

Change in soil mineral N 17     5     -12     -17     -6     -1     
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A similar picture is presented for the rotation at ADAS Terrington.  Despite the 

large contribution of N though fixation, there are considerable losses from 

leaching and denitrification, resulting in a negative N balance.  It may be 

possible to address this problem through better use of over-winter cover crops 

(cover crops performed poorly over the course of the experiment with only one 

crop yielding over 1t DM ha-1). The deficits for P within this trial are also 

unsustainable in the long-term and would need to be addressed through imports 

or by reducing the exploitative phase of the rotation.  The K deficits for this site 

are also substantial, however it is possible that weathering of K stocks in the 

mineral pool could redress this (Khan et al., 2014).  

Lower rates of leaching were found for both Hunts Mill plots, although 

considerable deficits of P and K were also found despite the addition of green 

waste compost on area 1. The K deficits could be addressed through the 

buffering capacity of K-bearing minerals (Khan et al., 2014) however the P 

deficit represents a more fundamental issue for the maintenance of crop yields 

in the longer term (Cordell et al., 2009).  The results for Hunts Mill area 6 also 

illustrate that it is possible to maintain a fairly balanced system with regard to N 

through the effective use of late summer/autumn sown green manures (i.e. 

without the use of a ley/break crop), although the overall deficit for N may result 

in a reduction in offtake or the need to use imported composts or manure.    

Most of the stocked rotations were found to be more balanced with regard to N 

and P supply and loss (see Table 5.5).  However, all of the SRUC sites faced a 

large K deficit, due to the high offtake from grass/clover silage, the potato crop 

(only at Woodside) and the use of straw for bedding, which were not offset by 

the manure application.  Similar results were found within the nutrient balances 

for Tulloch and Woodside calculated by Watson et al. (2000) although lower 

offtake was estimated within this study due to the lower assumptions on P and 

K content within NDICEA.  Despite the K deficit, no trend in K levels was found 

over time at Tulloch or Woodside, although the soil samples were restricted to 

the first 30cm and 45cm due to the presence of indurated layers at deeper 
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levels, largely impenetrable to soil augers or crop roots.   It is possible that soil 

K levels at these sites were being supplemented by reserves within parent 

material, in addition to potential inputs from crop residues (these inputs are 

ignored in standard soil K measurements and this in part explains why test 

values are unrelated to crop K balances, Khan et al., 2014).  These and other 

factors lead Khan et al. (2014) to suggest that measurements of available soil K 

are an unreliable indicator and that producers should use strip trials to 

determine site-specific fertiliser management.  At both Woodside sites, the rate 

of N leaching was higher than at Tulloch, despite a lower annual rainfall.  This 

was in part related to the lighter soil texture and the relatively low yield of the 

grass/clover leys at Woodside 37 (4-6 t DM ha-1, Taylor et al., 2006) which was 

related to the high soil moisture deficit.  The low grass/clover yield at Woodside 

37 also led to a negative N balance overall, due to a lower rate of biological N 

fixation.  Much of the excess nitrogen at the other SRUC sites was locked up as 

organic matter (illustrated as a positive value under ‘Change in organic N’ in 

Table 5.5). This was observed within the trial through a small increase in SOM 

levels observed at Tulloch, although the measured organic matter levels at 

Woodside remained relatively constant.  Volatilization rates were low across all 

of the stocked rotations in Table 5.5 as a result of incorporating applied manure 

on the same day as application on the trial sites.   
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Table 5.5: Nutrient balance of stocked organic rotations/trial sites expressed in kg ha-1 yr-1 

  
  

Tulloch T50 
  

Tulloch T67   
Woodside 
W50 

  
Woodside 
W37 

  
Hunts Mill 
Area 1 

  
Hunts Mill 
Area 6 

  N P K N P K N P K N P K N P K N P K 

Fertiliser applied 63 17 63 83 22 81 63 17 62 38 10 37 48 13 53 62 16 61 

Deposition 12 1 7 12 1 7 12 1 7 12 1 7 20   4 20   3 

Biological fixation 57     109     112 0 0 60     25     9     

Total supply 132 18 69 204 24 88 187 18 69 110 11 44 93 13 57 91 16 65 

Volatilisation 7     8     6     5     5     5     

Denitrification 3     3     12     11     15     14     

Leaching 26     30     49     45     29     29     

Product Removal 59 17 96 57 36 188 78 19 92 61 17 79 43 10 59 42 11 71 

Total loss 95 17 96 98 36 188 145 19 92 122 17 79 92 10 59 90 11 71 

                   

Nutrient balance 37 1 -27 106 -12 -100 42 0 -23 -12 -5 -35 1 4 -2 1 4 -6 

                                      

Change in organic N 32     101     41     6     1     1     

Change in mineral N 5     5     1     -18     0     0     
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5.7.3 Nutrient (NPK) balance for typical rotations applied using site 

conditions of the organic trials 

Nutrient balances are presented in Table 5.6 for each of the typical rotations 

described in Table 5.2.  The results presented are mean values across all six 

sites and associated soil/weather conditions. 

The stocked complex rotation described below seems to represent a well-

balanced system with regard to N and P supply and offtake. However, the 

model predicted a relatively large K deficit with offtake exceeding supply. As 

discussed earlier, this could be addressed through K delivery from the 

weathering of  minerals depending on the underlying geology, climatic 

conditions and site management (Khan et al., 2014; Simonsson et al., 2007), or 

through imported compost and/or mineral sources.  The higher proportion of 

nutrient-demanding crops (e.g. potatoes) within the stocked simple rotation 

creates a larger K deficit compared to the stocked complex example. As with 

the stocked experimental sites in Table 5, volatilization rates were low for all of 

the stocked rotations in Table 6, as a result of selecting same-day incorporation 

of manure applied within NDICEA, and the low stocking density (i.e. 0.3 LU ha-

1).  The volatilisation losses would be expected to increase if incorporation was 

delayed for any reason. 

The stockless complex rotation in Table 5.6 has a deficit for all three nutrients.  

Two years of a red clover ley plus one year of spring beans did not provide 

enough N to support four years of crop offtake due to a high rate of leaching 

and denitrification.  The presence of nutrient demanding crops contributes to the 

deficit (i.e. potatoes lead to a high N and K demand and beans to a high K 

offtake).  The stockless simple rotation faces less of a deficit with respect to N, 

due to a higher input of biologically fixed N from the inclusion of peas which 

have a higher rate of N fixation than beans within NDICEA, and the use of the 

grass/vetch over-winter green manures following the spring crops.  In addition 

there is an absence of nutrient demanding crops (e.g. potatoes) however the 

rate of leaching is still high.  
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Table 5.6: Nutrient balance of typical organic rotations/trial sites expressed in kg ha-1 yr-1. se = standard error  

                      Stocked complex                            Stocked simple              Stockless complex                  Stockless simple 

    N se (+/-) P K N se (+/-) P K N se (+/-) P K N se (+/-) P K 

Fertiliser applied   32 0 12 23 26 0 14 21     8       9   

Deposition   17 3   5 17 2   5 17 3   5 16 2   5 

Biological fixation   142 9     117 9     93 10     130 11     

Total supply   190 9 12 28 160 10 14 26 109 10 8 5 146 11 9 5 

Volatilisation   2 0     2 0     0 0     0 0     

Denitrification   21 2     17 2     31 3     26 2     

Leaching   35 9     39 9     50 10     57 11     

Product Removal   79 0 13 37 72 0 14 42 49 0 10 37 55 0 10 16 

Total loss   137 8.7 13 37 130 10 14 42 130 10 10 37 138 11 10 16 

                  

Nutrient balance   53 7 -1 -9 30 9 0 -16 -21 3 -2 -32 8 3 -1 -11 

                  

Change in organic N   51 8     28 8     -3 10     20 9     

Change in mineral N 2 8     2 7     -18 9     -12 7     

                                    



 

153 

 

The relatively low deficit of P within all of the typical rotations in Table 5.6 is a 

result of the application of rock phosphate.  All of the modelled rotations would 

face a P deficit on a similar scale to the K balance without the use of this input. 

5.7.4 Implications for improved organic management  

In common with previous studies, the work presented here found considerable 

rates of N leaching within the rotations assessed (Berry et al., 2003; Kirchmann 

et al., 2007; Torstensson et al., 2006).  In some cases, this exceeded the 

amount lost by product removal (e.g. the stockless simple rotation described in 

Table 5.4).  High rates of leaching under organic management are related to 

difficulties associated with matching crop N demand with N availability, 

particularly following incorporation of the ley, when N availability exceeds 

demand (Aronsson et al., 2007; Bergström et al.; Torstensson et al., 2006).   

The use of organic manures can also make it difficult to predict N availability, 

compared with applications of mineral fertiliser (Cassman et al., 2002), making 

it more difficult to maximise N recovery and crop yields under organic 

management (Seufert et al., 2012).  As a result of these factors, lower nitrogen 

use efficiency has been reported for organic cropping in comparisons with 

conventional systems (Bergström et al., 2008; Torstensson et al., 2006).  

The effective use of over winter green manures and undersowing of leys in 

cereal crops will help to reduce losses and thus enhance overall N efficiency 

(Kaffka and Koepf, 1989; Torstensson et al., 2006) and the lowest rates of 

leaching within this study were found for the rotations incorporating undersown 

crops and cover-crops (e.g. ADAS Terrington, Warwick University Hunts Mill).  

Poor cover-crop establishment (e.g. at the ADAS and Elm Farm experiment) 

was experienced as a result of competition from weeds and slow emergence,  

which reduced the benefit obtained (ADAS, 2006).  Poor cover-crop 

establishment can also be related to competition from the cash crop, adverse 

weather conditions and low soil temperatures at the time of sowing (Snapp et 

al., 2005).  In particular, the occasional occurrence of poorly performing cover 

crops presents an important challenge for the long-term sustainability of 
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stockless systems, which rely on keeping the N supplied through biological 

fixation within the system.  Although with careful rotation design, such systems 

are, in theory, sustainable from a nitrogen management perspective (Schmutz 

et al., 2007), in practice these systems appear to be highly vulnerable to poor 

establishment during the cover-cropping period.  

The use of cover-crops is not limited to organic farms, and higher nitrogen use 

efficiencies can be obtained by using this method alongside targeted mineral 

fertiliser application(s) to meet crop demand (and thus increase yield) whilst 

minimising losses (Torstensson et al., 2006).  Such tightly controlled systems 

could represent a suitable approach to developing highly N-efficient production 

systems, through a combination of organic practices and targeted fertiliser 

application (Cassman et al. 2002, Godfray, 2014).  Similar targeted approaches 

could still be used on organically-managed land, through the use organic 

fertilisers with a high N availability (e.g. poultry manure and digestate from 

slurry based anaerobic digestion) to supply readily available N at key points in 

the rotation (Berry et al., 2002; Möller and Stinner, 2009).  However the 

application of such sources can increase the occurrence of nitrophilous weeds 

and their use within organic systems has been questioned as the high N 

availability leads to feeding the plant instead of the soil (Möller, 2009) and a 

reduction in the amount of organic matter applied in the case of digestate 

(Oelofse et al., 2013; Stinner et al., 2008).  The use of perennial crops can also 

help to reduce leaching in organic systems through keeping the soil covered 

and improving N synchrony (Cox et al., 2002; Di and Cameron, 2002), although 

lower yields, weed susceptibility and pest and disease management issues may 

limit uptake (Pimentel et al., 2012).  A lack of technical information, suitable 

varieties and socioeconomic constraints (e.g. lower consumer demand 

compared to staple annual crops) also limit the potential for a wider adoption of 

perennial cropping (Pimentel et al., 2012; Valdivia et al., 2012).  

Organic farmers can also reduce N leaching considerably through improved 

management of manures and slurries.  In particular careful storage, application 

timing and choice of application method will help to maximise N recovery and 
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minimise losses where slurries and manures are applied (Smith et al., 2002; 

Webb et al., 2010).  Manure analysis can also improve on farm nutrient use 

efficiency and help to reduce losses by improving understanding of nutrient 

supply from organic sources (Watson et al., 2005).  In some regions, there may 

be opportunities for farmers to work together to measure the nutrient use 

efficiency of their systems through a combination of manure and livestock 

dietary analysis combined with soil sampling (Le Gal et al., 2011; Verhoeven et 

al., 2003).  Such participatory approaches can be effective at allowing for 

improvement options to be identified and for the fine-tuning of production 

systems. Again the use of such methods is not restricted to organic farms, 

however the inability of such farms to access manufactured N fertiliser makes 

the implementation of such measures all the more important for the effective 

prediction of N supply.  

With regard to phosphorus, the modelled systems able to achieve a sustainable 

balance were using external inputs of rock phosphate to offset losses.  Although 

rock phosphate can help to offset losses, a reliance on this source may result in 

limited P bioavailability to meet crop demand, due to slow rates of solubilisation 

(Edwards et al., 2010).  In addition, the use of such a fertiliser clearly does not 

fit well with the International Federation of Organic Agriculture Movements 

(IFOAM) organic principles (IFOAM, 2006) which emphasise the importance of 

reducing inputs to increase the long-term sustainability of farming systems.  

Despite this aim, the use of imported manure, straw and/or rock phosphate is 

common on organic farms, particularly for the supply of P and K (Kirchmann et 

al., 2008; Nowak et al., 2013; Oelofse et al., 2010).  In many cases, manure and 

straw is sourced from conventional farms, which has led to the conclusion that 

organic farms are being ‘propped-up’ by conventional agriculture, and that as a 

result a large-scale conversion to organic management would be unsustainable 

(Kirchmann et al., 2008; Nowak et al., 2013; Oelofse et al., 2010).  Organic 

monogastric systems (in particular poultry) also often require imported feed 

(e.g. soy) to supply protein and essential amino acids (Dekker et al., 2011) and 

so these systems are supplemented by internationally imported P and K.   
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The use of household waste and sewage sludge on organic farms could 

represent a possible solution to reduce the reliance on conventional manure 

and/or rock phosphate on organic cropping farms, in particular for the 

sustainable supply of P.  Source separated urine also presents an opportunity 

to apply readily available nitrogen and phosphorus (Germer et al., 2011; Karak 

and Bhattacharyya, 2011; Kirchmann et al., 2008).  The use of such sources 

clearly fits with the organic ideal of closing the system as far as possible 

(Oelofse et al., 2013), although in this case the ‘system’ expands beyond the 

farm gate to the consumer (Oelofse et al., 2010).  Although there have been 

many cases of household waste recycling on organic farms to supply nutrients 

to the soil (Altieri et al., 1999; Darnhofer, 2005; Luske and van der Kamp, 

2009), the use of sewage sludge or urine is strictly prohibited on organic land in 

Europe, despite the fact that its use seems to be a rational and scientifically 

supported method of closing the nutrient cycle.  Developments in the area of 

struvite (magnesium ammonium phosphate) recovery from waste water 

treatment plants could present a possible solution, allowing for application of a 

refined and slow release mineral fertiliser product, however this product is not 

currently on the list of permitted fertiliser within the European Commission 

organic regulation (European Council, 2007).  This is an area that needs further 

scrutiny from a scientifically based perspective as it would appear that historical 

concerns about the toxic effects of applying urine and sewage sludge to 

agricultural land may no longer be justified (Karak and Bhattacharyya, 2011; 

Smith, 2009), although public perception concerning the risks to human health 

remains an issue in some areas (Robinson et al., 2012).  Increasing the co-

operative use of manure between (organic) livestock and arable farmers has 

also been suggested as a possible route for reducing the use of conventional 

manures on organic land and, within farming in general, the co-operative use of 

manure between specialised livestock and arable holdings could contribute to 

the prevention of stockpiling of nutrients and associated losses on intensive 

livestock holdings (El-Hage Scialabba and Müller-Lindenlauf, 2010a; Wilkins, 

2008).  In particular this approach has been encouraged in Denmark by a 
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decision to phase out the use of conventional manure and straw on organic land 

by 2021, partly in recognition of the conflict between principle and practice and 

partly to prevent the import of genetically modified organisms (GMOs) into 

organic systems via manure (Oelofse et al., 2013).  In addition, the transition 

strategy in Denmark has highlighted the importance of crop rotation design (in 

particular to improve understanding on nutrient supply and losses), the 

development of crop cultivars for low-nutrient environments, and the 

development of biogas plants that can run on plant-based feedstock (in 

particular grass/clover harvested from leys) in recognition of the limited supply 

of organic manure (Jørgensen and Kristensen, 2010; Oelofse et al., 2013). 

Potassium deficits were observed across all of the rotations however on many 

soils, this does not present an issue given vast reserves of mineral K within 

parent material which may be released for plant uptake by weathering (Khan et 

al., 2014).  Despite this potential, Holmqvist et al. (2003) found that weathering 

and bioavailability from the mineral fraction can vary greatly (between 3 and 80 

kg K ha-1 yr-1 on a range of soil types in Norway, Sweden and Scotland) 

although the modelled predictions in this study did not take into account the 

dynamic and localised biological weathering by plant roots illustrated by x-ray 

diffraction studies (e.g. Hinsinger et al. (1991) in Khan et al. (2014)) and the 

potential contribution of mycorrhizal fungae to K availability (Hoffland et al., 

2002). Nevertheless improved knowledge of site-specific geochemical and 

mineralogical data in addition to soil rhizosphere interactions, could be a useful 

aid to the development of site-specific fertiliser recommendations and nutrient 

balances (Andrist-Rangel et al., 2007; Holmqvist et al., 2003).  With respect to 

mineral reserves of K on the sites assessed in this study, only EFRC, IBERS 

and ADAS Terrington could be expected to supply a considerable amount of K 

from the clay fraction (Buckman and Brady, 1984), although sand- and silt-sized 

muscovite and biotite can also be a major source of plant-available K on lighter 

soils (Mengel et al., 1998) and the presence of these and other K-bearing 

minerals may have offset some or all of the K offtake at Hunts Mill and the 

Scottish sites (Andrist-Rangel et al., 2010).  Despite the high deficits, there was 
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no apparent trend in available K levels over time at most of the experimental 

sites considered, although Hunts Mill showed a slight decline over the course of 

the study and the K measurements at Tulloch (taken in the winter) may have 

been affected by the preceding silage crop (Watson et al., 2000).  Other studies 

have demonstrated a decline in soil P and K levels following conversion to 

organic management (Loes and Øgaard, 1997; Torstensson et al., 2006) and 

positive yield responses have been observed following K applications in long-

term experiments in Australia and the UK (Bar-Yosef et al., 2015) and within 

rice production systems, following several years of intensive cropping 

(Greenland, 1997).  It is thus important to use nutrient budgets together with soil 

analysis to help understand the buffering capacity of soils and the management 

of P and K on individual fields.  It should also be remembered that the bank-

balance (i.e. supply minus offtake) concept of nutrient management can have 

major limitations, as N fertilisation in excess of crop removal can lead to a 

depletion of soil carbon reserves by enhancing microbial decomposition (Khan 

et al., 2007; Mulvaney et al., 2009). This approach can also lead to an 

uneconomical fertiliser usage in the case of K that may also have an adverse 

effects on soil quality and productivity (Khan et al., 2014) although a range of 

management factors (e.g. N supply and tillage system) can mask the effect of K 

fertilisation on crop yield (Bar-Yosef et al., 2015). It has also been suggested 

that crop yield and quality reductions following K fertiliser application are more 

likely to be related to K-Mg and K-Ca antagonism in plant uptake and/or K 

immobilisation in the soil (Bar-Yosef et al., 2015), rather than toxicity in the plant 

and root zone, or a depletion of the soil structure (Khan et al., 2014). 

In summary, it is clear from the analysis and modelling within this study that 

most typical organic cropping systems in the UK will require nutrient inputs to 

maintain an N, P and K balance.  It should also be remembered that most 

organic farms import fewer nutrients than their conventional counterparts 

(Hansen et al., 2000; Torstensson et al., 2006; Trydeman Knudsen et al., 2006).  

Although this approach naturally leads to lower yields, and can lead to lower 

nitrogen efficiencies within cropping systems (Torstensson et al., 2006),  it can 
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also offer a useful way to balance production and environmental concerns 

(Francis and Porter, 2011; Gomiero et al., 2011).  For example organic farms 

often require less fossil energy on a per hectare or kilogram of product basis, in 

particular through the absence of imported mineral N fertiliser (Smith et al., 

2015).  The use of grass/clover leys and manures for fertility building on organic 

farms also contributes to greater SOC concentrations and stocks on organically 

managed land (Gattinger et al., 2012).    In addition organic methods (e.g. use 

of clover and other legumes to supply N) can be used effectively on 

conventional farms to increase efficiencies and reduce the environmental 

impacts of the agriculture sector as a whole (Gaudin et al., 2013; Godfray, 

2014; Pretty et al., 2005). 

5.8 Conclusion 

An assessment of the NDICEA model has found that it is a useful tool for UK 

organic farmers to assess the amount of nitrogen supplied and lost through their 

rotations, although the model should be calibrated to improve accuracy for UK 

conditions where measured crop N, P, K,  soil-N and organic matter values are 

available.  The modelling of the N, P and K balance within organic trials found 

that in most cases sufficient N is being supplied through biological fixation to 

support the cropping, although leaching in higher rainfall areas and on lighter 

soil types may prevent the N from becoming available to the crop(s).  The study 

has also shown that careful rotation design is particularly important within 

stockless organic systems to reduce losses and avoid the requirements for 

external inputs as far as possible. Although adequate nitrogen balances are 

theoretically achievable within stockless organic cropping systems, these 

systems are highly vulnerable to cover crop failure, poor crop yields and low 

rates of N fixation within the fertility building period.  Negative P and K balances 

were found for most of the experimental stockless systems and the typical 

stockless rotations modelled within this study. For phosphorus, the systems 

seem to be dependent on imported rock phosphate for the maintenance of a 

small surplus or deficit.  The much larger K deficits could be addressed through 
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weathering and subsequent bioavailability of mineral K stocks, depending on 

site and management conditions.  On soils with naturally low K deposits within 

parent material, K inputs in the form of fertiliser or feed may be required to 

offset removal, or a reduction in K demanding crops (e.g. potatoes) may be 

necessary.    

N, P and K balances on organic farms are a useful method for exploring the 

extent to which organic methods can be applied effectively to improve nutrient 

use efficiencies within agricultural systems.  It is likely that the greatest nitrogen 

use efficiencies can be achieved through a combination of organic production 

methods (e.g. use of cover crops and clover to supply N) combined with 

conventional farming practices (e.g. use of mineral fertiliser at key points in the 

rotation to meet crop demands fully and increase yields).  In addition, the need 

to obtain minerals from sustainable sources leads to the conclusion that 

deriving these from suitably defined wastewater treatment could close the 

nutrient loop for organic farms, but this would require a change in international 

standards.  
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6.1 Abstract 

We assess the production impacts of a 100% conversion to organic agriculture 

in England and Wales using a large-scale linear programming model.  The 

model includes a range of typical farm structures, scaled up across the 

available land area, with the objective of maximising food production. The 

effects of soil and rainfall, nitrogen (N) supply/offtake and livestock feed 

demand are accounted for.  Results reveal major reductions in wheat and 

barley production, whilst the production of minor cereals such as oats and rye 

increased.  Monogastric livestock and milk production also decreased 

considerably, whilst beef and sheep numbers increased.  Vegetable production 

was generally comparable to that under conventional farming. Minimising the 

area of fertility building leys and/or improving rates of N fixation increased the 

food supply from organic agriculture at the national level.  The total food output, 

in terms of metabolisable energy, was 64% of that under conventional farming.  

This would necessitate substantial increases in food imports, with a 

corresponding expansion of cultivated agricultural land overseas.  Significant 

changes in diet and reductions in food waste would be required to offset the 

production impacts of a 100% conversion to organic farming.  

6.2 Introduction 

The continuing expansion and intensification of global agriculture presents a 

clear need to develop modes of production that can supply sufficient amounts of 

food for growing populations with more efficient use of resources (Godfray et 

al., 2010).  At the same time there is a pressing need to move populations of 

western countries towards more balanced diets to promote public health, with 

particular regard to fresh vegetable and fruit consumption (Macdiarmid et al., 

2011; Wellesley et al., 2015).   Organic farming has the potential to contribute to 

developments in the first of these areas through a focus on reduced input 

intensity and the maintenance or enhancement of ecosystem functions and 

various studies have identified and quantified the benefits of organic production, 

in areas such as fossil-energy use, biodiversity, human nutrition and on-farm 
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employment (Lampkin et al., 2015).  The significantly higher soil carbon 

sequestration rates observed in organically managed soils have also led to 

suggestions that wider use of this production system could help to delay the 

onset of damaging climate change (Gattinger et al., 2012) although others note 

that the requirement to increase the area of land in agricultural production to 

meet food demand could offset these benefits (Leifeld et al., 2013).  The 

benefits provided by organic agriculture in areas such as soil protection and 

rural development also align with the dimensions of sustainability proposed by 

the United Nations following Rio+20 and EU action plans such as the 

Biodiversity Strategy (European Commission, 2010) and the Soil Thematic 

Strategy (European Commission, 2006).    

While acknowledging these sustainability benefits and the potential for further 

growth in the market for organic products (Willer and Lernoud, 2016) some 

commentators (for example Connor, 2008) have suggested that the lower yields 

observed in organic agriculture would mean that widespread conversion to 

organic production could be detrimental to food security.  Because the land area 

devoted to organic farming globally currently remains very small (i.e. organic 

farmland constitutes approximately 1% of the total global agricultural area, 

Willer and Lernoud, 2016), it is also difficult to extrapolate from this low baseline 

to assess the impacts of much larger scale adoption.   

Despite this limitation, a few studies have attempted to explore the production 

and food security impacts of a widespread conversion to organic farming, the 

most recent of which was completed in 2009 by the Centre for Agricultural 

Strategy at the University of Reading, UK (Jones and Crane, 2009).  In this 

study two different approaches were used to estimate how much food might be 

produced under an assumed 100% organic conversion of agriculture in England 

and Wales.  The results indicated that full organic conversion would lead to 

major reductions in wheat, barley, and oilseed rape production.  Pig and poultry 

numbers would also fall markedly, while there would be significant increases in 

the production of minor-cereals (e.g. oats, rye) and ruminant livestock.  

Although the Jones and Crane (2009) study projected credible trends, levels of  
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production were not adjusted in line with N availability (i.e. the nitrogen 

availability constraints that impact organic farming, Berry et al., 2002).   Feed 

availability and the nutritional requirements of livestock were also not assessed 

in detail.  Prior to this 2009 study, Badgley et al. (2007) assessed the 

implications of a 100% conversion to organic production at a global level using 

FAO-derived data.  Organic yield adjustment coefficients (i.e. organic versus 

conventional) were estimated for 10 groups of crops and livestock products, 

based on a review of 293 studies drawn from the peer-reviewed literature.  At 

the global level Badgley et al. (2007) estimated the average organic yield ratio 

for all crop types to be 1.32 (i.e. organic would produce 132% of the 

conventional yield).  The total N supplied by leguminous cover crops in organic 

systems was estimated to be 140 million Mg which, according to the study 

authors “is 58 million Mg greater than the amount of synthetic N currently in 

use” (Badgley et al., 2007).  The authors therefore suggest that the rates of 

biologically fixed N under widespread organic conversion could support yields 

equivalent to high-yielding conventional agriculture. Although the Badgley et al. 

(2007) study included estimates of N availability, the authors base this on the 

erroneous assumption that 100% of arable land could accept an additional 

legume crop, following the main crop in the same year.  In making this 

assumption the authors fail to account for the fact that much of the world's 

productive land area is already required to carry multiple food crops in a single 

year to meet food demand. Additionally, no account was taken of areas where 

climatic conditions and water supplies limit the possibility of a second crop in 

the same year (Connor, 2008).   

The study presented here builds on these earlier studies to provide a robust 

estimate of the production and food security impacts of a 100% conversion to 

organic farming in England and Wales.  A modelling approach was adopted that 

was able to account for yield differences between conventional and organic 

production, as well as yield variation due to  local environmental conditions, plus 

supply constraints imposed by the availability of N, the need to maintain rational 

crop rotations, and the availability of livestock feeds.  A multi-scenario approach 
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was adopted to explore the impact of variation in the assumptions underpinning 

these constraints.  In addition, a healthy eating framework developed in the UK 

was used to assess the ability of a fully organic domestic agriculture to supply 

optimal human nutritional requirements (i.e. the Eatwell Plate, Macdiarmid et al., 

2011). 

6.3 Methods 

6.3.1 The OLUM model  

A linear programming model was developed – the Optimal Land Use Model 

(OLUM) – in the GAMS programming language (GAMS Development 

Corporation, http://www.gams.com/), to explore the impacts of 100% conversion 

to organic farming in England and Wales. Figure 6.1 summarises the model. At 

its core is an objective function, Z, to maximise the output of food (expressed as 

metabolisable energy - ME), defined as: 

𝐙 = ∑ 𝑪𝒊𝒋
𝒏
𝒊𝒋=𝟎 ∙ 𝒙𝒊𝒋    subject to  𝑹𝒙𝒊𝒋  ≤  𝐛,  𝒙𝒊𝒋   ≥  𝟎                              (1)

                                            

where 𝐶𝑖𝑗 is the ME output per unit of agricultural products i on soil × rainfall 

class j and 𝑥𝑖𝑗 is a scalar, i.e. areas of crops and numbers of livestock 

produced.   𝑅𝑥𝑖𝑗 is the resource (𝑅) requirement of producing enterprises (𝑥𝑖𝑗) 

and b is the resource endowment and input availability vector.   Constraints are 

specified as linear inequalities and equalities and employed to determine the 

following: 

1. Availability of land by farm type and soil × rainfall class. 

2. Maximum and minimum stocking densities (livestock units per ha). 

3. Annual feed requirements of different livestock and feed types, 

expressed as metabolisable energy (ME) and crude protein (CP) 

requirements. 

4. Maximum/minimum crop areas by crop groups (i.e. rotation constraints). 

http://www.gams.com/
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5. Soil N availability reflecting cycling of nutrients, plus N inputs and outputs 

through crop and livestock offtake, atmospheric deposition and biological 

N fixation. 

6. Upper limits on the total permissible production volumes of individual 

crop and livestock products, set at 150% of the current supply, on the 

assumption that increases beyond this volume could not be absorbed by 

the market. Geographical constraints on sugar-beet production were also 

imposed to restrict the expansion of this crop away from major 

processing centres in eastern regions. 



 

175 

 

 

Figure 6.1. Schematic of the Optimal Land Use Model (OLUM).
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The components of the model are as follows. 

6.3.2 Farm types 

The functional units are farms, i.e. systems consuming various inputs, including land 

and other resources, to produce multiple crop and livestock outputs.  Nine farm types 

are defined based on the Defra Robust Farm Types (Figure 6.2).  The mix of 

enterprises available to each farm type was fixed, although the model was permitted 

to vary the relative scale of these.  This constraint was based on the observation that 

the dominant enterprises on farms under conventional agriculture is usually 

maintained post-conversion, because these are the activities that suit existing farm 

infrastructure and local conditions (Howlett et al., 2002; Langer, 2002).     

6.3.3 The land base 

Land availability was fixed, at the national level, within NUTS1 region and within farm 

type. Within each farm type, the allocated land area was fixed at the area under each 

Robust Farm Type observed in the 2010 Defra June Survey of Agriculture.  It was 

assumed that the total land area under each robust farm type would not change 

following organic conversion. The land base was disaggregated into 16 classes 

based on soil type and rainfall (next section) and yield potential was determined for 

each class. Within each farm type and NUTS1 region, the areas of these 16 land 

classes were fixed according to their observed spatial distribution. 

6.3.4 Land classes 

Heavy, medium and light soil classes were specified, each with estimated organic 

matter content and pH values based on data from long-term organic cropping trials 

(Smith et al., 2016).  A fourth soil class was specified for ‘humose’, i.e. cultivated 

soils with an organic matter content and pH typical of the Downholland soil series of 

the Soil Survey of England and Wales (www.LandIS.org.uk), which is representative 

of such soils.  The spatial distribution of each soil class in 5 km × 5 km grid squares 

across England and Wales was obtained from the National Soil Inventory 

(www.LandIS.org.uk).  Four rainfall classes were specified based on 30-year 

Meteorological Office annual rainfall data. These were, dry 539–635 mm, medium 

636–723 mm, wet 724–823 mm and very wet >824 mm.  To determine the total 
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areas of each soil × rainfall combination (hereinafter ‘land classes’), the dominant 

combination was identified in each of the 5 km × 5 km grid squares of the National 

Soil Inventory, and then the sum of the areas of each square, less any non-

agricultural area, was allocated to that land class (Figure 6.3).   

The areas of each land class within each farm type and NUTS1 region were 

estimated to generate constraints on land availability at these levels. The sum of 

these areas provided the constraint on land availability at the national level: 

∑ 𝑎𝑐,𝑡,𝑠,𝑟
𝑛
𝑐 =0   =  𝐿𝑡,𝑠,𝑟        ∀  𝑡, 𝑠, 𝑟                  (2)                                                  

where 𝑎𝑐,𝑡,𝑠,𝑟 is total production area, summed over for each crop (c),  farm type (𝑡), 

land class (𝑠) and NUTS1 region (𝑟) and 𝐿𝑡,𝑠,𝑟 is total land availability.  

 

Figure 6.2.  Dominant Robust Farm Types on a 5 km × 5 km grid across England and 

Wales. Data are from the Defra June Agricultural Census (Defra, 2011).   
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Figure 6.3. Dominant land classes based on soil type and rainfall on a 5 km × 5 km 

grid . Data sources are described in the main text.   

6.3.5 Crop yields  

Potential crop yields for each land class were estimated using the Nitrogen 

Dynamics in Crop Rotations in Ecological Agriculture (NDICEA) model (van der 

Burgt et al., 2006). Smith et al. (2016) showed that NDICEA gives sufficiently 

accurate estimates of N availability for our purposes in a range of UK soil types and 

rainfall zones, using data from long-term organic trials.  NDICEA has three modules 

as follows:   

 soil water dynamics, which accounts for irrigation, rainfall, evapo-transpiration, 

capillary rise and percolation;  
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 N mineralisation, which accounts for N availability from soil organic matter 

(SOM) and organic manure; and 

 inorganic N dynamics, which accounts for N inputs from mineralisation, 

atmospheric deposition, fertilisers, irrigation and biological fixation, and N 

losses through denitrification, leaching and crop uptake.    

NDICEA is target-oriented, meaning target yields are entered by the user and 

adjusted manually.  We thus iteratively adjusted yields according to N supply in each 

land class for the rotations in Table 6.1. Points in the rotation where N availability 

was greater or less than crop requirements were identified, and yields were adjusted 

accordingly up to a maximum yield potential, based on data sources described in 

Appendix B.  

Table 6.1. Rotations assessed within NDICEA to derive crop yields for each soil and 

rainfall class 

 

Example results from the NDICEA yield estimation and adjustment exercise are 

shown in Appendix B.  Due to the lack of yield data for organic oilseed rape and 

sugar beet in the UK, as a consequence of very limited production of  these organic 

crops, yield data from a national survey of organic farmers in France and a UK-

based modelling study were used (Tzilivakis et al., 2005; Valantin-Morison and 

Meynard, 2008).  The yields for these crops were adjusted for each of the 16 

soil/rainfall classes on the same basis as crops considered similar in terms of their 

likely position in the rotation (i.e. wheat and potatoes). 

Rotation 1 2 3 4 5 6 7 8 9 10

Stocked 'complex' G/WC G/WC G/WC WW WO RC/G RC/G P SB SW

Stocked 'simple' RC/G RC/G WW P WW WR

Stockless 'complex' RC/G RC/G P* WO SB SW

Stockless 'simple' RC/G WW PE SO

Field vegetable RC/G RC/G P BR L

Market garden RC/G RC/G CB O B C SB BR PE CG

Dairy G/WC G/WC G/WC G/WC G/WC G/WC G/WC FB WS SB

Cattle and sheep G/WC G/WC G/WC G/WC G/WC G/WC G/WC G/WC FB WW

Mixed G/WC G/WC G/WC RC/G WW WO SB WB WR

(G/WC = Grass/white clover, WS = wholecrop silage,  WB = winter barley, WW = winter wheat,  WO = Winter oats, RC/G = red clover,

SW = spring wheat, SB = Spring beans, P = potatoes, WR = Winter rye, FB = Fodder beet, PE = peas, SO = spring oats, BR = broccoli,

L = leeks, CB = cabbage, O = onions, B = beetroot, C = carrots, CG = courgettes, SB = spring barley)

Rotation year
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6.3.6 Grass yields 

A regression-equation model, based on the grass site class system of Brockman and 

Gwynn (1988), was used to estimate organic permanent pasture yields based on 

annual rainfall, soil type and altitude (Williams et al., 2006).  The model was 

validated by comparison with yield data from grassland-dominated organic 

conversion trials at the University of Wales, Aberystwyth (Haggar and Padel, 1996) 

and Scotland’s Rural College (SRUC,Taylor et al., 2006).  Appendix B describes the 

regression model and the calculated yields.   

6.3.7 Crop rotation constraints  

Crop rotation is a necessary component of organic systems to break pest and 

disease cycles, control weeds and maintain soil N through biological fixation 

(Lampkin, 2002).  It was therefore important to include rotational constraints in the 

OLUM on the area of each crop type that could be grown. The rotational constraints 

were applied at the level of crop group defined in terms of common growth 

characteristics, i.e. similar nutrient requirements and pest/disease susceptibility (see 

Appendix B).  The minima and maxima area constraints on these crop groups were 

derived from the rotational data described in Table 1 and specified in the model by: 

∑ 𝑎𝑔,𝑡,𝑠,𝑟
𝑛
𝑔 =0   ≥ or ≤  𝐿𝑡,𝑠,𝑟  ∙ 𝑅𝑔,𝑡       ∀  𝑡, 𝑠, 𝑟                   (3)                                              

 

Where 𝑎 is the total land-area produced by crop group (g), in each farm type,  

soil/rainfall class and region (𝑡, 𝑠, 𝑟) , Lt,s,r  is total land availability  by farm type, land 

class and region and 𝑅𝑔,𝑡 is a coefficient reflecting the minimum or maximum 

proportion of total utilisable agricultural area (UAA) that must be allocated to this 

crop group.   

6.3.8 Constraints on livestock numbers 

Total livestock numbers were constrained both within farm type and at the national 

level.  At the farm-type level, permissible maximum and minimum stocking rates 

were set, reflecting constraints inherent in CAP cross-compliance measures.  These 

stocking rates were derived from actual practice, as observed in the organic sub-
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sample of the Defra Farm Business Survey (Moakes et al. 2012, 2014).   Minimum 

and maximum stocking rates averaged over the organic farm sample over a three 

year period were calculated by dividing total livestock units by total land area.  At the 

national level maximum permissible livestock units of each stock type were set, and 

a separate constraint was set through a maximum manure-N production of 170 kg-N 

per hectare averaged over the entire land base (a limit set for organic production 

within Council Regulation No 889/2008, 2008).  As the data provided by Moakes et 

al (2012,2014) excludes information on organic poultry and pig farms, alternative 

sources were used (i.e. Browning pers. comm. 2016, Leinonen et al., 2012a; 

Leinonen et al., 2012b) to derive stocking rate limits for these livestock types.   

Minimum and maximum stocking rates were defined by: 

 

∑ 𝑙𝑢𝑙
𝑛
𝑙 =1  ∙  𝑙𝑙,𝑡,𝑠,𝑟   ≥ or ≤ ∑ 𝑐𝑐,𝑡,𝑠,𝑟

𝑛
𝑐 =1   ∙ 𝑠𝑟𝑡     ∀  𝑡, 𝑠, 𝑟                           (4) 

                            

where 𝑙𝑢𝑙 is a standard livestock unit conversion factor, 𝑙𝑙,𝑡,𝑠,𝑟  is livestock numbers, 

𝑐𝑐,𝑡,𝑠,𝑟 the total agricultural area and  𝑠𝑟𝑡 the minimum or maximum stocking rate per 

ha within each farm type, soil/rain class and region (𝑡, 𝑠, 𝑟 ).  Minimum stocking rate 

constraints were removed for specialist cereals, field vegetables, market gardens 

and general cropping farms to allow for stockless production.    

The numbers of young stock, replacements and other stock (e.g. pigs and poultry) 

required by the model were calculated as a fixed ratio of the numbers of adult 

animals in the dominant livestock type on each farm type (i.e. the stock type with the 

highest number of livestock units as a proportion of the total livestock presence).  An 

example of the approach used is: 

 

∑ ∑  ∑  ∑  𝑙𝑏𝑐,𝑙𝑔,𝑠,𝑟
𝑛
𝑟=1

𝑛
𝑠=1  ∙ 𝑝𝑙𝑓𝑐 𝑛

𝑙𝑔=1  = 𝑙𝑓𝑐,𝑠,𝑟      ∀   𝑙, 𝑙𝑔, 𝑠, 𝑟 𝑛
𝑏𝑐=1                          (5) 
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where  𝑙𝑏𝑐,𝑙𝑔,𝑠,𝑟  is the number of adult animals of the dominant livestock type (in this 

example beef suckler cattle 𝑏𝑐)  𝑝𝑙𝑓𝑐 is a fixed proportion reflecting the number of 

replacements required to maintain the adult herd.  The term 𝑙𝑓𝑐,𝑠,𝑟represents total 

store cattle numbers and 𝑙𝑔 is the area of the farm-type “lowland-grazing” in each 

soil/rain class ( 𝑠 ) and region ( 𝑟 ).  

6.3.9 Feed availability 

Livestock numbers were also limited by total feed demand and availability. The ME 

requirements of the livestock produced were offset against the ME availability in the 

feedstocks produced.  Data on the ME requirements of the different types of 

livestock and the energy and protein contents of different types of crops and 

grasses, plus purchased feeds, were drawn from a range of industry sources and 

technical guides (Lampkin et al., 2014; Soffe, 2003; The Professional Nutrient 

Management Group, 2015).  Livestock concentrate feed composition data were 

obtained from Vitrition Organic Feeds, Newcastle University (Edwards, 2002) and a 

recent study on the feasibility of replacing soy in UK livestock production with UK-

grown protein crops (Jones et al., 2014).  Feed supply constraints and minimum 

feeding requirements for different types of livestock were defined using the following 

feed-groups: 

 forage (e.g. grass/clover, fodder beet, fodder maize); 

 concentrates/straights (e.g. cereals, beans, peas); and 

 compound feeds (processed feeds incorporating straights, plus other 

supplements including, soybean and oilseed meals, crop processing residues, 

and other imported feed including molasses). 

The proportion of the total livestock ME requirement supplied by each feed group 

was predetermined for each robust farm type, using data reported in Moakes et al. 

(2012, 2014).  Due to the dominance of forage crops within most organic rotations 

(e.g. grass, clover and other leguminous crops) a maximum forage ME supply was 

applied at the farm type level in each region to reflect the fact that most organic 

farms still feed some concentrate and compound feed for finishing. This constraint 
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also ensured that the ME from forages demanded by ruminant livestock did not 

exceed the ME available from the forage crops.  This constraint was applied within 

each farm type and region to reflect the fact that forage is unlikely to be transported 

between farms due to costs and impracticalities associated with the transport of such 

high bulk, low value products.  More details on the livestock feed constraints applied 

are contained in the detailed model description (Appendix C).  

6.3.10 Livestock outputs 

Outputs of beef, sheep meat and milk were constrained, to reflect current yield 

potential, on a livestock headage basis for each farm type and region using financial 

output data from Moakes et al. (2013), financial and physical output data from the 

Organic Farm Management Handbook (i.e. total financial output by livestock type 

divided by price/head, Lampkin et al., 2011) and a recent study by the Agriculture 

and Horticulture Development Board (AHDB Dairy, 2012).  Eggs, poultry meat and 

pork production were also constrained per head of livestock based on rearing 

periods and liveweights recorded by Leinonen et al. (2012a, b) and Soffe (2003).  

These data were applied through equations which expressed total volume/value of 

output as a proportion of the headage of livestock on each farm (more on this 

approach is provided in Appendix C). 

6.3.11 Nitrogen balances of crops and livestock 

As the supply of N can be a limiting factor for the maintenance of productivity in 

organic systems (Berry et al., 2002) N supply and offtake equations were 

incorporated within OLUM.  Total N supply and crop/livestock offtake were defined 

on a regional basis to allow for transfer of manure between farms within the same 

area, as in Equation 6: 

∑ ∑ ∑ 𝑐𝑜𝑐,𝑡,𝑠,𝑟
𝑛
𝑠 =1   ∙  𝑎𝑐ℎ,𝑡,𝑠,𝑟  + ∑ ∑ ∑ 𝑙𝑖𝑣𝑛𝑙

𝑛
𝑠=1

𝑛
𝑡=1  ∙ 𝑙𝑙,𝑡,𝑠,𝑟 ≤ 𝑛

𝑙=1   𝑛
𝑡=1

𝑛
𝑐=1   

 ∑ ∑ ∑ 𝑓𝑥𝑐,𝑡,𝑠,𝑟
𝑛
𝑠 =1   ∙  𝑎𝑐,𝑡,𝑠,𝑟  + ∑ ∑ ∑ 𝑙𝑢𝑙,𝑡,𝑠,𝑟

𝑛
𝑠=1

𝑛
𝑡=1  ∙ 𝑙𝑙,𝑡,𝑠,𝑟 ∙ 𝑁𝑖𝑛𝑡  𝑛

𝑙=1   𝑛
𝑡=1

𝑛
𝑐=1 +   

 ∑ ∑ ∑ 𝑖𝑚𝑝𝑙𝑡𝑠𝑟
𝑛
𝑠=1

𝑛
𝑡=1  ∙ 𝑐𝑜𝑚𝑝𝑛    +𝑛

𝑙=1 ∑ ∑ ∑ 𝑎𝑐,𝑡,𝑠,𝑟
𝑛
𝑠 =1   ∙  𝑑𝑝𝑐,𝑡,𝑠,𝑟    ∀ 𝑟  𝑛

𝑡=1
𝑛
𝑐=1        (6) 
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where 𝑐𝑜𝑐,𝑡,𝑠,𝑟 is rate of crop-N offtake,  𝑎𝑐ℎ,𝑡,𝑠,𝑟 is the scalar, i.e. the area of crops 

destined for human consumption (ch),  𝑙𝑖𝑣𝑛𝑙 is the livestock N-offtake per head of 

livestock 𝑙𝑙,𝑡,𝑠,𝑟 by livestock type (𝑙).  The term 𝑓𝑥𝑐,𝑡,𝑠,𝑟 represents N fixation per 

hectare of crop 𝑎𝑐,𝑡,𝑠,𝑟 , 𝑙𝑢𝑙,𝑡,𝑠,𝑟 is total livestock units,  𝑙𝑙,𝑡,𝑠,𝑟  livestock numbers and 

𝑁𝑖𝑛𝑡 is N contained within imported concentrate (i.e. cereals and beans).  Imported 

compound feed (e.g. soy cake) is represented by 𝑖𝑚𝑝𝑙,𝑡,𝑠,𝑟 and 𝑐𝑜𝑚𝑝𝑛, i.e. the total 

compound feed tonnage and the N content/tonne, based on feed values provided by 

Watson et al. (2010).  The term 𝑑𝑝𝑐,𝑡,𝑠,𝑟 represents average atmospheric N 

deposition values, derived from national pollution data downloaded from the Centre 

for Ecology and Hydrology (CEH) website (http://www.pollutantdeposition.ceh.ac.uk/).  

N supply and offtake values for crops and livestock products were derived from 

Defra Fertiliser Recommendations (Defra, 2010) and the nutrient budgeting software 

PLANET (Dampney and Sagoo, 2008).   To capture manure requirements for 

individual crops, a separate manure supply and demand constraint was applied 

within each region (see Appendix C). 

6.3.12 Scenario testing 

A base run of the model was produced, applying the data sources, assumptions and 

constraints described above, in order to generate a “best-guess” of what a wholly 

organic England and Wales would look like.  The results of this base run were used 

as a comparator for additional scenarios in which parameters and constraints were 

adjusted to explore sensitivity of the scenario to changes to key assumptions.  The 

scenarios and associated adjustments are summarised in Table 6.2 and explained 

below.    

N fixation rate: As biological fixation by legumes is the main N input to organic 

systems, and reliable estimates of the amount of N fixed by different N-fixing crops 

under different conditions are difficult to obtain (Herridge et al., 2008), two scenarios 

were run to explore the effect of higher and lower fixation rates, where the base run 

represents an ‘average’ fixation rate. The amounts of N fixed at these high and low 

rates were derived from Peoples et al. (2009), Schmidt et al. (1999) and Herridge et 

al. (2008). These altered N-fixation rates were also used to generate new crop yield 

estimates within NDICEA (see ‘crop yields’ section above).   

http://www.pollutantdeposition.ceh.ac.uk/
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Clover ley area: Organically managed arable land must be periodically diverted to 

fertility-building leys. This reduces the area that is cultivated over time compared with 

conventional systems. To explore the impacts of this, two scenarios were run with 

high and low clover-ley rates, with the average used for the base scenario.  

Stocking rates: The effects of varying stocking rate constraints on livestock outputs 

were also assessed to capture intensive and non-intensive organic livestock 

production, using high/low stocking rate  ranges based on data derived from AHDB 

Dairy (2012) and Moakes et al. (2012, 2014).    

Fallow land:  A significant area of fallow (non-productive) land was enforced in the 

base run reflecting average historic organic practice (up to 13% of the total area in 

the case of cropping farms was fallow).  A separate scenario explored the impact of 

removing this constraint, i.e. allowing fallow land to be cultivated in order to reduce 

supply shortfalls. 

Combined scenario: In a final scenario, two constraint settings were adjusted 

simultaneously.  First, a new source of feed stocks (processing residue from 

imported cereals) was included in the livestock feed availability equation. Second, 

fallow areas were added to the cultivatable land area.  

Results for each scenario were compared with three references: (i) the base run; (ii) 

the observed situation in 2010 under conventional agriculture as recorded in the 

June Survey of Agriculture (Defra, 2011; Welsh Government, 2011); and (iii) the 

projections of Jones and Crane (2009) for a wholly organic agriculture. The latter 

was undertaken for validation purposes.   

We consider the ‘combined’ scenario to be the most likely outcome of 100% organic 

conversion as it does much to address the supply shortfalls seen in the base run.  

The results from this scenario were therefore used to assess the potential impacts of 

a 100% conversion on human nutrition. This was done by assessing the food outputs 

by each food group within a healthy eating framework developed in the UK, i.e. the 

Eatwell Plate (Macdiarmid et al., 2011).  This comparison addressed the question of 

whether the mix of products produced by a wholly organic agriculture is more closely 

aligned with the requirements of the Eatwell Plate than conventional agriculture, for 



186 

 

example by supplying more fruits and vegetables than can currently be supplied by 

domestic sources.  

Table 6.2. Scenarios assessed within the sensitivity analysis, defined in terms of their 

adjusted parameters 

Scenario name Parameters adjusted 

Low N fix Low crop yields and N fixation rates from NDICEA modelling  

High N fix High crop yields and N fixation rates from NDICEA modelling  

Low Clover area 10% reduction in area of grass/clover leys as % of total utilisable area (UAA) 

High Clover area 10% increase in area of grass/clover leys as % of total utilisable area (UAA) 

High stocking rate Upper/lower bounds on stocking rates per ha increased  

Low Stocking rate Upper/lower bounds on stocking rates per ha decreased 

No fallow Non-productive land (fallow) added to cultivatable area 

Combined Imported food residue added to livestock feed and fallow added to 
cultivatable area 

  

 

6.4 Results 

6.4.1 Cereals 

Under all the organic scenarios, wheat and barley production was considerably 

reduced compared to the conventional non-organic baseline (Figure 6.4). Averaged 

across the scenarios, organic production was only 42% of the 2010 non-organic 

baseline production.  For wheat, the greatest reductions were for the low stocking 

rate, high clover area and low-N fixation scenarios, due to combination of lower 

manure availability, cropland availability and crop yields.  Reductions in output were 

less severe for barley, although the levels of production were more variable, ranging 

from 26% of the non-organic baseline under the low-N fixation scenario to 73% in the 

low clover scenario.  Reductions in barley output were less severe for the low clover 

area, and high N fixation scenarios, as a result of both higher cropland areas and 

higher yields.  The production of oats was relatively stable over the scenarios, 

reaching the upper limit of 150% of the baseline area in some scenarios.  Production 

(and production areas) of oilseed rape (OSR) were also relatively consistent, in 
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showing significant losses in all scenarios with an overall average production of 2.5% 

of the 2010 baseline (data not shown).  Production estimates for wheat and barley 

are similar to those reported by Jones and Crane (2009), whereas the projections for 

beans and peas are higher, probably as a result of their increased representation in 

rotations.  Oat production was much lower than reported by Jones and Crane (2009), 

probably as a result of the imposition of upper limits on production area in the OLUM.    

 

Figure 6.4. Production of arable crops in England and Wales under organic 

management scenarios compared to a 2010 conventional baseline and results from 

Jones and Crane (2009). 

6.4.2 Other crops 

Potato production was generally higher than in the non-organic baseline (Figure 6.5).   

This is reasonable because potatoes are common in organic rotations due to their 

beneficial effects on soil structure and for weed control.   Potato production was less 

in the low-stocking rate scenario due to the lower livestock-manure-N availability. 

However, output volumes under all other scenarios exceeded the conventional 

baseline and the estimates of Jones and Crane (2009).  Production of sugar beet 

was more variable than potatoes across the scenarios as the high-N offtake per 
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hectare greatly affected the amount that could be produced under the low-N fixation 

and low stocking rate scenarios.  

Brassica and protected vegetable crop production varied considerably across the 

scenarios with the highest production found under the high-N fixation scenario 

(Figure 6.6).   With higher stocking rates production was reduced, as additional land 

and manure-N was required for feed crops.   Production of root crops (onions, leeks, 

carrots) reached the upper constraints in most of the modelled scenarios, illustrating 

their relatively high energy values and resource-use efficiency (Carlsson-Kanyama et 

al., 2003). 

 

Figure 6.5. Production of potatoes and sugar beet in England and Wales under 

organic management scenarios compared to a 2010 conventional baseline and results 

from Jones and Crane (2009). 
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Figure 6.6. Production of vegetable crops in England and Wales under organic 

management scenarios compared to a 2010 conventional baseline. 

6.4.3 Grazing livestock 

Increases in beef cattle and sheep numbers, above the 2010 conventional baseline, 

were observed across all scenarios (Figure 6.7). This was particularly so for the 

“combined” scenario, due to increases in feed availability from recycled residues.  

The lowest rates of sheep meat production occurred under the low-stocking rate and 

low-N fixation scenarios, in the latter case due to lower cereal yields and the 

consequent reduced feed availability.  Dairy cattle numbers and milk production were 

more sensitive to changes in N availability, cropping area, and cereal yield, due to a 

higher reliance on concentrate feeds compared to beef and sheep.   Overall, milk 

production reached between 40% (low N fixation scenario) and 90% (high stocking 

rate scenario) of the 2010 conventional baseline. Despite the increase in beef and 

sheep livestock numbers, total carcass production for these livestock types was 

comparable to the conventional baseline as a result of longer finishing periods and 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Brassicas Protected
veg

Onions and
leeks

Carrots

A
m

o
u

n
t 

p
ro

d
u

c
e

d
 (

to
n

n
e

s
 x

 1
0

6
)

Crop type



190 

 

lower carcass weights in organic systems (Figure 6.9). 

 

Figure 6.7. Ruminant livestock numbers in England and Wales under organic 

management scenarios compared to 2010 conventional baseline and results from 

Jones and Crane (2009). * =  head x 10. 

 

Figure 6.8. Monogastric livestock numbers and outputs in England and Wales under 

organic management scenarios compared to 2010 conventional baseline.  * =  head x 

102 , ** =  head x 103. 
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Figure 6.9. Output of livestock products in England and Wales under organic 

management scenarios compared to 2010 conventional baseline.  * =  meat and eggs, 

** = milk. 

6.4.4 Pigs and poultry 

A major reduction in monogastric livestock production was predicted in all the 

organic scenarios compared to the conventional baseline (Figure 6.8 and Figure 

6.9).  Laying hen numbers were particularly affected, with total numbers reduced to 

25–30% of the non-organic baseline, and considerably lower than the estimate by 

Jones and Crane (2009).  The difference is due to limits on feed supply, as 

evidenced by the increase in monogastric numbers when dependence on home-

grown feed supply was reduced under the Combined scenario.  A similar effect is 

observed for pig production systems, although the values were closer to those 

projected by Jones and Crane (2009).     
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6.4.5 Metabolisable energy supply by food group 

Conversion of the output volume results to output ME by Eatwell food group enables 

an assessment of the ability of a wholly organic agriculture in England and Wales to 

provide the food required by the populations of these countries (Figure 6.10 and 

Appendix D).  The results show that fruit and vegetable production could almost 

match the 2010 conventional baseline levels under the Combined organic scenario 

(i.e. with increased feed availability and a reduced fallow area) with increases in 

outputs in eastern and south-west regions offsetting reductions in other regions.  

This illustrates the relatively small difference between organic and non-organic yields 

for field vegetables and the relatively small production areas required.  However, the 

ME output of fruit (in particular apples and strawberries) was considerably less than 

the conventional baseline (data not shown), in part because of cosmetic standards 

within the retail sector (Smith et al., 2015).   The relatively high organic productivity 

seen in the fruit and vegetable food groups results from the high yields and outputs 

of ME per hectare for many of these crops (e.g. carrots and potatoes).  The losses in 

output and food energy in starchy crops (e.g. wheat and barley) are a result of low 

yields, plus the requirement to divert land to clover/grass leys in arable rotations.  

Smaller reductions for this food group were found in western, livestock-dominated 

areas, which tend to have lower yields under conventional agriculture.    
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Figure 6.10. Food production (expressed by Eatwell group) in England and Wales 

under organic management as a percentage of a 2010 conventional baseline, 

expressed as total ME by NUTS 1 region (100% level = conventional production in 

2010). The output by group refers to production only (e.g. wheat and potatoes in the 

case of starchy carbohydrates) as opposed to processed foods.   Commodities 

allocated to each group within this study are shown in Appendix D. 

Milk ME was substantially reduced under the Combined scenario, at just under two 

thirds of 2010 levels (see Appendix D) although introduction of dairy herds results in 

a small production increase in the eastern counties of England.  In terms of total 

protein production, the reduction in meat and egg supply is somewhat offset by the 

increase in grazing livestock and peas and beans, although there is still an overall 

reduction in protein supply, in particular resulting from a decrease in poultry-meat 

and pork production under organic management.  
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Figure 6.11. Crop area and yield under a 100% organic England and Wales agriculture, 

expressed as a percentage of the 2010 conventional baseline.  Conventional yield 

data are from Nix (2009), the Farm Business Survey (2010) and Defra Horticultural 

Statistics (2010).   Organic yield data are derived from the NDICEA-based adjustments 

and published sources described above.  OSR = oilseed rape. Error bars indicate 

standard deviation. 

Figure 6.11 shows that the decrease in wheat production projected by the Combined 

scenario is a result of reductions in both area cultivated and crop yield (organic 

yields are only 51% of non-organic production). Oats and rye have smaller yield 

losses under organic production, but the projected increases in production under 

organic scenarios are largely due to increases in the area cultivated.  The low 

productivity of organic oilseed rape is compounded by a much smaller cultivated 

area (which itself probably results from the low yield).   The increase in bean 

production under the organic scenario is a result of the increase in production area, 

this being driven by the need to maintain fertility (as reflected in the rotation 

constraints).  It is also the case that such N-fixing crops produce yields under organic 

management very close to conventional.   The production area of potatoes is also 

substantially increased under the organic scenario, whilst sugar beet areas hit the 

upper constraint on production area.  
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6.5 Discussion  

6.5.1 Reprise of modelling outcomes and comparison to outputs from 

previous work 

The results showed that converting agriculture in England and Wales to organic 

management would result in a major drop in food production, with total food output 

(as metabolisable energy, ME) falling to 64% of non-organic baseline levels 

(Appendix D).  The reductions in crop output would be most severe for major cereal 

crops, sugar beet and oilseed rape, as a result of reduced yields, the need to divert 

land to fertility building leys, pest, disease and weed susceptibility and high N 

demands in the spring  (Schneeberger et al., 2002; Tzilivakis et al., 2005; Valantin-

Morison and Meynard, 2008).  

Carrot yields are also lower under organic management, due to susceptibility to 

weeds and carrot fly attack.  Despite this, the relative efficiency of this crop, in terms 

of energy output relative to N requirements, resulted in a potential overproduction 

compared to 2010 levels (see Figure 6.6) and a substantial increase in the 

production area. Vegetable, potato and leguminous crop production could meet or 

exceed the non-organic baseline due to smaller yield losses for these crops within 

organic systems and over-representation of these crops in organic rotations.   Beef 

and sheep numbers could also increase overall as a result of increased stocking 

levels in arable dominated areas, whereas poultry and pig production and output 

would decrease, due to the requirement for more extensive production practices 

under organic certification.  Dairy cattle numbers and total milk production would also 

decrease as a result of lower stocking rates and lower milk yields under organic 

management. 

The similarity of the results reported here to outcomes from the study by Jones and 

Crane (2009), which used a different approach, suggest that the estimates are 

robust and therefore realistic as far as such an extreme scenario can be predicted.  

There are some interesting areas of divergence however, in particular the projection, 

in this study, of much lower volumes of egg production.   This divergence has been 

caused by limits on domestic feed availability present in the OLUM model, reflecting 

constraints on the amount of imported feed and upper constraints on the stocking 



196 

 

rate per hectare.  Estimates of total wheat and barley production were also 

considerably lower than Jones and Crane (2009), and it is possible that Jones and 

Crane (2009) overestimate organic yields of major cereals due to sampling error, i.e. 

the Farm Business Survey, which was the sole-source of the organic yield data used 

in the 2009 study, is known to over-represent larger, more commercial farms (Jones 

and Crane, 2009).  Conversely, pea and bean production estimates are higher in this 

study, driven by rotational requirements (nearly all of the rotations applied included a 

legume crop).  Production of sugar beet was comparable with Jones and Crane 

(2009), except in cases of reduced N supply (i.e. the “low stocking rate” and “low N-

fixation” scenarios).  Milk production levels were similar to the 2009 study, although 

production volumes exceeded those projected in Jones and Crane (2009) under the 

higher stocking rate scenario.   

6.5.2 Implications for national diets 

The results suggest that a widespread conversion to organic farming would have 

major implications for domestic food supply.  Without a fundamental change in 

consumption habits, these losses would require, in compensation, considerable 

increases in imports, implying a corresponding expansion of cultivated agricultural 

land overseas.    

An analysis of the extent to which diets would need to change in order to 

accommodate reduced supply of important commodities from organic production is 

beyond the scope of this study. However, some qualitative conclusions can be 

drawn.  The results suggest dietary changes would need to include a reduction in the 

consumption of poultry meat and eggs, increased consumption of beef, lamb and 

non-meat protein (in particular beans and peas) and increased vegetable 

consumption in some regions.  Although an increase in bean, pea and vegetable 

consumption would be relatively consistent with the changes to western diets 

currently being recommended by health professionals, an increase in red meat and a 

drop in poultry meat consumption could represent a conflict.  A requirement for a 

reduction in wheat consumption could also present major difficulties, and this would 

need to be compensated for by an increased consumption of other forms of 



 

197 

 

domestically-produced starchy carbohydrate (e.g. potatoes and oats), or increased 

imports of crops like maize and rice. 

It should also be noted that fish supply by catching or farming was not addressed, 

but increasing fish consumption in the UK, especially oily fish, is recommended 

(Macdiarmid et al., 2011). 

6.5.3 How feasible are dietary changes on this scale? 

Dietary changes on this scale would be difficult to achieve in a free market, 

particularly in view of the UK’s dependence on wheat as a staple, the lack of policy 

mechanisms to drive this (especially mechanisms that do not add to total food costs) 

and the lack of political will to invest the time and resources needed to transition to 

healthier and more sustainable diets (Wellesley et al., 2015).  Encouraging greater 

consumption of vegetable crops is likely to require a significant overhaul of policy 

support measures in the UK and Europe, which has in the past tended to promote 

the (over) production of meat, sugar and dairy products, thereby driving down market 

prices, leading to over consumption, particularly in low income households (Bailey et 

al., 2016; Birt, 2007).  With the recent decision to leave the European Union, the UK 

has an opportunity to change the balance of support for agriculture and reduce the 

environmental and health impacts of the food system, whilst providing additional jobs 

in a labour-intensive sector (Schoen and Lang, 2016). 

There is also some evidence to suggest that typical ‘organic consumers’ are directed 

towards more sustainable food choices, exhibiting preferences for fresh vegetable 

consumption and vegetarian food (Pelletier et al., 2013).  A shift to organic 

consumption habits would therefore be likely to lessen the environmental impacts of 

widespread organic conversion (Baroni et al., 2006).  Moves in this direction could 

also help to encourage nutritionally balanced diets and the associated health 

benefits (Macdiarmid et al., 2011).   The increased costs to consumers associated 

with organic production and consumption could present a major challenge, however,  

particularly in view of the current lack of willingness to pay more for sustainable diets 

(von Koerber et al., 2017).   
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The results of this study also highlight the importance of food waste reduction in 

achieving a more sustainable supply of food.  With over 27% of the food purchased 

in the UK wasted in 2015 there are still considerable opportunities for offsetting 

supply losses in this area through improving: management practices in the retail 

sector (e.g. avoiding overstocking); technological innovations (e.g. smart-fridges); 

and educating consumers (e.g. the Love Food Hate Waste Campaign introduced by 

the Waste and Resources Action Programme (WRAP) in 2007 (Priefer et al., 2013).  

If such measures could be implemented on a wider scale, they would help to reduce 

overall food demand, thereby reducing the significance of the supply shortfalls 

projected under extensive organic conversion and in so doing allow for the wider 

adoption of this agricultural system, accruing the  lower resource-use benefits that 

would accompany it. 

6.5.4 Other ways to counter production volume shortfalls 

Another possible solution to under-supply of major commodities might be to bring 

more land into arable cultivation, as was done on a large scale in the UK during the 

Second World War. However, converting non-productive land (e.g. parklands) or 

non-arable land, such as woodland or low input permanent grassland) to arable 

production would result changes to landscape character, loss of amenity and 

potentially severe environmental impacts.  Such a move would also run counter to 

multiple environmental protection policy objectives as set-out in the UK Climate 

Change Act, the UNFCCC Paris Climate Change agreement, the UN Convention on 

Biodiversity and the EU Biodiversity Strategy.  Some increased production from 

urban farms and gardens could be envisaged. 

A relaxation of organic standards might also be envisioned (such as an increase in 

permissible stocking rates and maximum flock sizes) to increase commodity supply 

under a 100% organic scenario.  Reducing the area of grass/clover ley within 

cropping systems could also allow for greater crop production, as illustrated within 

the “low clover area” scenario.   Although such a shift may have positive impacts in 

terms of land availability for the productive phase of rotations in the short term, it is 

likely to ultimately result in decreased N availability and increased occurrence of 

pests, diseases and weeds, as use of grass/clover-leys in organic systems is the 
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primary method of controlling these factors (Lampkin, 2002).   A balance would 

therefore be required in terms of the optimum amount of ley relative to the cropping 

phase, although this is likely to vary with climate, soil and other conditions, such as 

labour availability post-harvest for ley establishment.  Difficulties associated with the 

prediction of N supply from grass/clover leys can also present major challenges, in 

particular for stockless systems, which rely on biological fixation for the supply of N 

and can struggle to maintain a positive N balance over the course of a rotation, 

particularly in wetter areas and on lighter soils (Smith et al., 2016).  In addition, 

reducing the grass/clover ley percentage in organic rotations may offset some of the 

purported benefits of organic approaches in terms of enhanced C sequestration and 

biodiversity (Lampkin et al., 2015).  P supply could also become critical in due 

course and a change in organic standards to permit the use of sewage sludge would 

promote the circular economy and produce a valuable supply of P and N, along with 

organic matter. 

6.5.5 Future research and methodological reflection 

Although the modelling approach used in this study extends the approaches 

deployed by Jones and Crane (2009), i.e. by increasing the range of factors taken 

into consideration in estimating production volumes (e.g. concerning yield variation 

by land class and constraints on livestock feed demand), the approach is still 

somewhat restricted. The primary limitation is that the objective function of the 

OLUM is maximisation of food production, as this does not fully reflect the diverse 

and multifaceted business goals of farmers.  An economic approach to the upscaling 

of organic agriculture, i.e. the use of a profit maximising model, may yield 

considerably different results, although the input costs and price differentials under a 

100% organic scenario are likely to be highly spurious given uncertainty over product 

prices and changes to the costs of inputs in such an extreme situation. It should also 

be considered that in this modelling exercise organic systems in their current form 

were scaled up to the national level, but constrained by biophysical factors.  Under a 

100% organic scenario it may be reasonable to expect a significant restructuring of 

the industry to avoid some of the supply shortfalls observed here.  Although it is 

likely that the broad structure of agriculture in England and Wales will remain the 

same, due to immutable agronomic constraints (e.g. cropping dominating in the 
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eastern areas and ruminant livestock dominating in the west) there will be some loss 

of specialisation, i.e. a shift towards greater arable production in livestock dominated 

areas (e.g. Wales and the south west of England) and expanded ruminant livestock 

production in the Eastern Counties, where specialist arable farms currently 

predominate 

It is also quite possible that a widespread switch to organic methods would have a 

much greater impact on food production than estimated within this study.  For 

example the approach employed here assumed that the organic industry would 

maintain the current (conventional) mix of farm-types by region, however the current 

trend within organic agriculture in the UK is for a high proportion of farms, including 

arable farms, to host ruminant livestock, i.e. producing  beef, lamb and dairy 

products (Defra, 2015).  If this arrangement were scaled up to the national level the 

impacts on food security in the UK could be even more severe, at least for arable 

production, although the output of beef and sheep would be likely to increase 

dramatically. In addition, in the OLUM model, stockless production was permitted ad 

libitum on farm types dominated by cropping (i.e. specialist cereal and general 

cropping farms), whereas stockless systems are currently rare in UK organic 

production (economically and agronomically it can be difficult to justify the 

maintenance of ley/arable rotation without livestock).  One way in which stockless 

arable farms can make economically rational use of grass and clover leys is to use 

the forage produced for other purposes.  For example grass and clover can be an 

efficient feedstock for anaerobic digestion (AD) plants, if these can be situated on the 

farms where the feedstock is produced, or at a reasonable distance to them (Halberg 

et al., 2008). The economic impact of the modelled scenarios projected here is 

beyond the scope of this study to assess. However, such approaches could 

contribute to making the application of stockless ley/arable systems more viable on a 

wider scale.  The digestate fertiliser provided by the wider application of AD on 

arable farms could also help to enhance organic crop yields by providing a source of 

readily-available N to meet crop requirements at times of peak demand (Stinner et 

al., 2008).   

In future developments of the OLUM model it would be possible to construct a 

scenario where forage can be used for heat and/or electricity generation. Careful 
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consideration would of course have to be given to constraints limiting the extent to 

which the model can deploy this option, reflecting the fact that the development of 

farm-scale AD has, and continues to be, slow in the UK as a result of perceived 

risks, and relatively poor economic returns for smaller scale plants (Jones and 

Salter, 2013).  It is therefore likely that the use of forage for feedstock, on a large 

scale, would depend on the application of centralised AD plants with a number of 

organic farms providing feedstocks from a distance.    

The results from this study also illustrate the dependence of organic systems on N 

supplied within the farming system, in particular on the supply of manure.  In this 

study the assumption was made that manure would not be transported outside a 

given region.  However, it would be reasonable to expect that transfer might occur 

over larger distances (e.g. from livestock-dominated areas in the south west of 

England to arable areas in the east) although transport costs, increased disease 

risks and odour may make long-distance transport infeasible (Sims et al., 2005).  

Some successes have been achieved in installing central manure processing plants 

in the Netherlands, to help deal with N surpluses at a local level, although the 

financial viability of such systems has been difficult to maintain, even in cases where 

the final product is ‘dewatered’ to facilitate transport (Zwart, 2015). 

The approach taken to reflecting N availability and its influence on yields in the 

OLUM model is also fairly rudimentary, i.e. through focussing on N availability under 

a limited range of environmental conditions (i.e. soil type and rainfall).  A more 

complex model of organic crop yields could take account of factors such as pests 

and diseases, water stress and annual variations in areas of grass/clover ley, 

whether caused by environmental (e.g. average temperatures within each region) or 

economic (e.g. availability of labour) factors. The effect of climate change on the 

production scenarios could also be considered, for example, allowing for the 

predicted northward expansion of sunflower production and possibly soybean into 

the UK (Olesen and Bindi, 2002).   Expanding the model to consider a broader range 

of nutritional requirements and supply values for crop and livestock products (e.g. 

iron, calcium) and/or environmental criteria (e.g. greenhouse gas emissions per 

tonne) could also allow for an increased range of scenarios to be modelled, for 

example to estimate the optimum balance between healthy food choices and 
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environmental sustainability, as reported in Macdiarmid et al.  (2011).  The OLUM 

provides an invaluable framework for the assessment of such scenarios by providing 

a model that emulates the current national structure of the agricultural industry and 

current practices on typical farms. 

6.6 Conclusion  

In summary, the results from our study suggest the impact of full conversion to 

organic farming on food production in England and Wales would be severe. The 

losses would be greater for some commodities (e.g. cereals, oilseeds, monogastric 

livestock) than others (e.g. vegetables and milk). The relative similarity of organic 

vegetable yields to conventional make this the most likely cropping sector to be able 

to sustain widespread adoption of organic practices. The results also suggest that 

certain organic practices could be expanded within some non-organic systems to 

improve resource use efficiency, without jeopardising production. This could include 

greater use of clover in grassland and/or introducing livestock to field vegetable 

cropping systems.  To lessen the need for large-scale compensating increases in 

imports, significant changes in diet would be required (e.g. reducing pig and poultry 

meat consumption).  Efforts to reduce production losses and losses in the food chain 

would also be required.    
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7.1 Abstract 

The consequences for net greenhouse gas (GHG) emissions of a widespread 

conversion to organic farming practices are largely unknown. We assessed the 

impact on GHG emissions of a 100% shift to organic food production in England and 

Wales using Life Cycle Assessment methods and a linear programming model. We 

included both the GHG emissions associated with the diversion of land overseas to 

supplying shortfalls in UK supply under organic production, and the offset that could 

be achieved through soil carbon sequestration benefits attributed to organic systems.  

Major reductions in food production were found under fully organic production, in 

particular for wheat, barley, oilseed rape, pork, eggs and poultry meat, though 

production of potatoes, oats, minor cereals and ruminant meat increased. Direct 

GHG emissions were less under organic management, despite increased emissions 

per tonne for some products. However, when the land use change impacts 

associated with increased imports were included, the GHG savings that could be 

achieved through widespread organic conversion were offset, leading to higher GHG 

emissions overall. The offsetting effect of inclusion of the C sequestration benefits of 

organic management varied greatly depending on the assumptions made.  

We found that organic farming practices can reduce the GHG emissions and fossil 

energy use associated with the production of many agricultural commodities. 

However, a widespread conversion would necessitate a considerable change in the 

national diet to avoid a major compensatory expansion in food production overseas 

to redress supply shortfalls in the UK market, and the GHG emissions associated 

with land use change.  

7.2 Introduction 

Organic farming systems aim to have a lower greenhouse gas impact than 

conventional through a lower production intensity, less use of manufactured inputs, 

and greater soil organic carbon (SOC) contents (Lampkin et al., 2015). It is 

suggested that organic practices could contribute significantly to achieving national 

GHG reduction targets (e.g. Scotland's Organic Action Plan).  However, as far as we 

are aware there have been no rigorous assessments of the validity of this 
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suggestion, covering the main agricultural GHGs: methane (CH4), nitrous oxide 

(N2O) and carbon dioxide (CO2) from both primary and secondary sources. 

Government recommendations and support policies promoting organic practices 

have to some extent been informed by studies using Life Cycle Assessment (LCA) 

approaches (e.g. Williams et al., 2006). LCA offers a robust, comprehensive and 

easily understood method for the assessment of the environmental impact of 

different production systems and individual management practices (Notarnicola et 

al., 2017). Through the adoption of a whole supply chain approach, LCA methods 

avoid the omission of key environmental externalities in sustainability assessments.  

LCA methods are underpinned by international standards (ISO, 2006), which helps 

ensure comparability between studies, and they can be used to assess a wide range 

of scenarios, for example, changing cropping patterns, adjusting diets for livestock, 

or bringing more land into agricultural production, across a range of scales (Lehuger 

et al., 2009; Vázquez-Rowe et al., 2014).  

LCA studies exploring the environmental impacts of organic cropping have yielded 

mixed outcomes, arising from differences in assessment approaches (in particular 

the system boundaries) and data sources, and variation in environmental factors 

and/or typical practices, between countries or regions (Meier et al., 2015). For 

example, Williams et al. (2006) found that most organic field cropping systems in 

England generate similar or greater GHG emissions per tonne compared to 

conventional systems, with lower yields and increased rates of nitrate leaching 

offsetting lower use of inputs. Conversely, a Swiss study reported significantly lower 

GHG emissions per tonne of organic product (Nemecek et al., 2011). These lower 

GHG estimates resulted from a focus on outputs from the system as a whole (i.e. the 

entire crop rotation) and less-intensive modes of production compared to the 

Williams et al. (2006) study.   

Only a few studies have applied LCA methods to the aggregate impacts of a 

widespread conversion to organic farm management. The most recent attempt was 

made by Audsley et al. (2009) who combined national data on commodity 

production, processing, distribution, retail and trade with the results from the 

Cranfield University LCA model (Williams et al., 2006). The Audsley et al. (2009) 
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study compared a ‘baseline’ LCA assessment, reflecting observed, real-world 

consumption patterns, with a range of scenarios, one of which was the assumption 

of a transition to 100% organic diets in the UK.  This organic scenario built on a 

study by Jones and Crane (2009) in which the production impacts of a 100% 

conversion to organic agriculture in England and Wales were estimated, through an 

application of data on organic yields, crop areas and livestock numbers from the 

Farm Business Survey (FBS). The results of Audsley et al. (2009) indicated that a 

switch to organic consumption in the UK could result in a GHG emission reduction of 

about 8% in terms of food production, but the GHGs associated with the additional 

overseas Land Use Change (LUC) required to meet UK supply shortfalls were not 

considered.  

The study reported here builds on the assessments by Jones and Crane (2009) and 

Audsley et al. (2009) by accounting for (a) limits to organic production imposed by 

the supply of livestock feed and available N; (b) the GHG impact of overseas land 

use changes associated with increased food-imports under organic production, and 

(c) the GHG offset potential of soil carbon sequestration under organic production.   

This study therefore provides an updated and more-comprehensive assessment of 

the potential land use, food production and GHG impacts of an up-scaling of organic 

agriculture to achieve 100% coverage. 

7.3 Method 

A combination of land-use modelling and Life Cycle Assessment were used to 

assess how total GHG emissions would change under conversion to a 100% organic 

agriculture in England and Wales, as described in the following sections. 

7.3.1 The OLUM farm type model 

The OLUM (Optimal Land Use Model) model is described in detail by Smith et al. 

(2017). It includes a suite of activities that represent current organic practices within 

a range of farm types12 across the entire agricultural land-base in England and 

                                            
12

 The farm types contained within the OLUM model were based on the Defra Robust Farm Types i.e. 
specialist cropping, mixed arable and livestock, specialist dairy, lowland grazing livestock, Less 
Favoured Area (LFA) grazing livestock, pigs and poultry, other 
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Wales.  It was constructed using the programming platform GAMS13 and took a 

linear programming (LP) approach, where an objective function is maximised, 

subject to certain constraints (i.e. resource availabilities, defined as equalities or 

inequalities). The basic structure of the model is given in Equation 1:  

            (1) 

𝐙 = ∑ 𝑪𝒊𝒋

𝒏

𝒊𝒋=𝟎

∙ 𝒙𝒊𝒋 

subject to 

𝑹𝐱(𝐢𝐣)  ≤  𝐛;  𝐱(𝐢𝐣)  ≥  𝟎 

where:  

𝒁 is the objective variable (i.e. the value to be maximised, expressed as the 
total metabolisable energy (ME) of all food crops and livestock products;   

𝑪𝒊𝒋 is the ME output of individual organic agricultural products summed over 𝑖 

product types on 𝑗 soil/rain classes;  

𝒙𝒊𝒋 is a scalar for the agricultural activities (i.e. crop areas/livestock numbers);  

𝑹𝒙𝒊𝒋 represents the input and resource requirements (𝑅) associated with the 

agricultural activities (𝑥𝑖𝑗); and 

b is the resource endowment and input availability vector (e.g. land by soil 
and rainfall class). 

 

Within each farm type, the set of crop and livestock production activities available 

were fixed, as evidence suggests that the dominant agricultural activity (e.g. dairy 

farming) will usually stay in place post conversion to organic management, due to 

existing farm infrastructure and local conditions (Howlett et al., 2002). However, 

these activities could be individually expanded and contracted endogenously.   The 

land areas under each of these farm types was fixed, reflecting the areal coverage of 

their conventional equivalents recorded in the June Survey of Agriculture in 2010 

                                            
13

  General Algebraic Modelling System (GAMS).  GAMS Development Corporation. 
http://www.gams.com/http://www.gams.com 

 

 

http://www.gams./
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(Defra, 2011). A number of logical constraints were applied within the model to 

reflect: the availability of land within the various soil/rainfall classes; maximum 

permissible area of crop groups (e.g. cereals, root crops) reflecting rotational 

constraints and upper limits on the total output of each crop, set at 150% of the 

current supply, following an assumption that further increases could not be absorbed 

by the market.  

Rotational N availability limits were also imposed, as determined by crop and 

livestock-product offtake (from the land), N supply from various sources, such as 

biological fixation, imported feed and atmospheric deposition, as well as manure-N 

availability within each region. Livestock numbers and associated product output 

volumes were constrained by feed availability, maximum and minimum stocking 

densities.  

The OLUM was run to produce a ‘best estimate’ of what a fully organic agriculture 

sector would look like. To ensure that the results from the base run were reasonable, 

outputs were compared to the real-world distribution of (conventional) production in 

2010, derived from a range of industry sources specified in Appendix E, and to 

results from a previous study on the production impacts of a switch to organic 

farming in England and Wales (Jones and Crane, 2009).  The environmental impacts 

of the organic production scenario were then assessed through an application of the 

Cranfield Agri-LCA models (Williams et al., 2006). 

7.3.2 The Agri-LCA models 

The Agri-LCA models are stand-alone models that were designed to estimate GHG 

emissions from different agricultural systems in England and Wales, under various 

assumptions (Williams et al., 2006).  Results from earlier emissions analyses using 

these models, i.e. based on the current combination of agricultural systems in 

England and Wales, were used to create a comparator to assess the relative 

performance of the organic conversion scenario projected in the current study.  To 

achieve this, estimates of the GHG emissions and fossil energy use associated with 

each tonne of conventional product reported in Williams et al. (2006) were combined 

with national data on levels of production to provide an estimate of the impact of 

conventional production in 2010.   To assess the GHG implications of the organic 
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scenario, the following components of the Agri-LCA models were adjusted to better 

reflect organic agriculture: 

1. Crop and grassland yields 

2. Crop cultivation practices and manure/compost application rates 

3. Crop and grassland areas by soil and rainfall type 

4. Livestock productivity and mortality rates 

5. Livestock diet compositions 

Crop yield, cultivation and manure application data were required for twelve main 

crops: wheat, barley, rye, oats, potatoes, oilseed rape, sugar beet, beans and peas, 

cabbage, carrots, onions and forage maize (i.e. covering 98% of the cultivated land 

in England and Wales, Defra, 2011b). Data sources are given in Appendix E.  Crop 

and grassland areas under each of sixteen soil and rainfall classes were derived 

from the OLUM results.  The adjusted crop areas, by each soil and rainfall class, 

were used to adjust the N2O and CO2 impacts of organic management.  The 

functional units used in the LCA analysis were tonnes of marketed crop-product.     

Organic animal production data were drawn from a range of industry sources to 

define by livestock type: daily liveweight gain, annual fat-corrected milk yield, and 

feed conversion ratios (Appendix E). Data were also obtained on the composition of 

livestock diets, stocking rates per hectare and the proportion of livestock on upland 

and lowland land (Appendix E).  These values were applied within the Agri-LCA, 

ensuring that feed intake met the metabolisable energy demand of livestock. 

Nitrogen excretion from livestock was derived from mass balances.   Compound feed 

composition data were also applied to determine embedded impacts of feed 

production overseas. Direct CH4 emissions were calculated as a function of dry 

matter intake (scaled in proportion to the forage dry matter intake) liveweight and 

milk yields.  The livestock assessments within the Agri-LCA focussed on six 

commodities: eggs, milk, sheep, beef, pig and poultry meat. Meat outputs were 

defined in terms of total dressed carcass weight (tonnes), eggs by weight (tonnes) 

and milk output as fat-corrected litres (Williams et al., 2006). 
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7.3.3 System boundaries and allocation of environmental burdens 

The downstream system boundary applied in the LCA was the farm gate, i.e. only 

inputs consumed during farm-based processes were considered.  The GHG 

emissions associated with downstream activities – such as distribution, consumption 

and disposal of products produced on the farm – were not included. Some on-farm 

processing, such as grain drying, milk cooling and potato storage, were included in 

the total impact assessment, as these operations were considered to be part of the 

on-farm production process (Williams et al., 2006).  Allocation of the environmental 

burdens associated with fossil energy use, including GHG emissions, was achieved 

by economic value with respect to disparate outputs such as grain and straw and by 

system expansion with regard to manure (i.e. the manufactured N fertiliser avoided 

was discounted from the environmental burdens associated with non-organic crops). 

Emission factors were derived from IPCC 2006 estimates and total emissions 

converted to CO2 equivalents using 100-year global warming potentials. 

7.3.4 Carbon sequestration estimates 

Annual topsoil carbon sequestration estimates under organically-managed land were 

made following Gattinger et al. (2012), who completed a pairwise meta-analysis of 

74 studies and found significantly higher SOC concentrations and sequestration 

rates in organic systems, compared to conventional. Gattinger et al. (2012) noted 

that greater use of compost and manures/slurries in organic farming systems, 

together with longer and more diverse crop rotations, were important reasons for the 

difference, although not all the studies identified these drivers and some found lower 

rates of carbon sequestration in soils for zero-net-input systems.  Given the 

uncertainties associated with the prediction of soil carbon sequestration rates (Smith, 

2004), no single figure is appropriate and so we compared the three annual 

sequestration rates reported in Gattinger et al. (2012): 

 Low – the rate reported for those zero-net-input systems where bulk densities 

and inputs were recorded:  0.07 Mg C ha−1 yr−1 

 Medium – the rate over all zero-net-input systems: 0.27 and 0.45 Mg C ha−1 

yr−1  
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 High – the rate for all studies that included sufficient data (i.e. peer-reviewed 

pair-wise farming system comparisons reporting data on SOC concentrations, 

where organic farming practices were applied for at-least 3 consecutive 

years): 0.45 Mg C ha−1 yr−1 

 

We highlight that the above gains will be time-limited, as any given soil will have a 

finite capacity to accumulate C and a new steady state will be reached over time 

(Powlson et al., 2011).  The sequestration rates therefore provide an estimate of the 

GHG offset potential that could be achieved in the early-years (i.e. < 20) following a 

conversion to organic methods (more in the discussion section).  Sequestration rates 

in established swards of permanent pasture or rough grazing were also assumed to 

be zero under the assumption that these sites will already have reached a steady 

state (Smith, 2004).  

7.3.5 Imports and exports 

Quantities of food imported into England and Wales were included in the LCA to 

assess the total impacts of full organic conversion.  We considered that any shortfall 

in supply from organic agriculture compared with historic conventional agriculture 

would need to be compensated by increased imports of organically produced 

commodities from overseas. Using data from a range of industry sources (Appendix 

E) the required amounts of imported product were allocated to particular global 

regions based on the historic regions of origin of conventional imports (Hess et al., 

2015).  The GHG and energy-use associated with the transport of imports to 

England and Wales was determined by multiplying the total volume of imports by 

GHG and fossil energy use coefficients derived from Hess et al. (2015). Transport 

burdens for imported sugar and sheep meat were derived from Plassman et al. 

(2010) and Webb et al. (2013) respectively.   

Estimates of the overseas land-use required to produce these imports were derived 

through average regional yield data from Eurostat, plus a recent meta-analysis on 

organic crop yields (de Ponti et al., 2012) and from results of an LCA for milling 

wheat grown in Canada (Pelletier et al., 2008). Land requirements to generate each 

tonne of imported livestock-product were derived from the Agri-LCA (Williams et al., 
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2006) and recent studies on the environmental burdens of imported lamb from New 

Zealand (Barber and Lucock, 2006; Webb et al., 2013). The additional land required 

for the supply of organic crops and livestock products was calculated as the 

difference between the amount of land required for imports in the non-organic 

baseline (based on the non-organic land-use values in Table 7.1) and the total 

amount required under each organic scenario.   

Table 7.1: Land use per tonne values applied in this study to calculate overseas land 

requirements for imports.  Note that the land use requirements refer only to the non-

forage component of the diet 

 

Overseas land use 
requirement (ha per tonne 

-1
) 

- non-organic (Williams et al. 
2006)  

Overseas land use 
requirement (ha per tonne

-1
) - 

organic  (Williams et al. 2006) 

Overseas land use 
requirement (ha per tonne

-1
) 

– organic-  other literature 
sources 

    

Pork (dressed 
carcass) 0.7 1.3 1.0 

Poultry (dressed 
carcass) 0.6 1.4 2.5 

Eggs  0.7 1.5 1.7 

Milk (‘000 litres fat 
adjusted) 0.04 0.07 0.07 

Beef (dressed 
carcass) 0.3 0.5 1.2 

Sheep (dressed  
carcass)  0.2 0.4 1.0 

 

GHG emissions from the conversion of pasture land to arable, in overseas 

production, were calculated based on the extra land required under organic 

management, multiplied by land use change emission estimates for CO2 as specified 

by the British Standards Institute (2011), for a range of countries within and outwith 

Europe – see Table 7.2 (British Standards Institute, 2011). It was assumed that 

woodland would not be converted to arable land, as this would release considerably 

more CO2 eq than tillage of  pasture and would represent a direct conflict with the 

International Federation of Organic Agriculture Movements (IFOAM) organic 

principles14.   GHG emissions and fossil energy use associated with the production 

                                            
14

 http://www.ifoam.bio/en/organic-landmarks/principles-organic-agriculture  

http://www.ifoam.bio/en/organic-landmarks/principles-organic-agriculture
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of oilseed rape, wheat and lamb (i.e. commodities imported to the UK from non-

European countries) were derived from Pelletier et al. (2008) and Webb et al. (2013).  

The environmental burdens associated with crop and livestock products sourced 

from the rest of the UK and Europe were derived from the Agri-LCA, under the 

assumption that similar emissions and fossil energy use would occur in these 

systems (Williams et al., 2006). 

Table 7.2: GHG emissions from Land Use Change (from pasture to arable) by region 

from PAS2050 (British Standards Institute, 2011). These are assumed to continue for 

20 years.  

Region 
GHG emissions 
(tCO2eq ha-1 yr-1)   

UK 7.0 

Europe 6.5 

Other 5.7 

 

As with soil carbon sequestration rates, GHG emissions from land use changes are 

uncertain but can have a major impact on estimates of agriculture’s net contribution 

to climate change (Smith, 2004).   Bearing in mind that not all of the additional 

overseas land required to compensate for domestic supply shortfalls would 

necessarily be newly cultivated, a sensitivity analysis was undertaken to explore the 

effect of different assumptions about the requirements for conversion of land from 

pasture to arable.  Three land-use conversion rates were applied to the additional 

land requirements as follows: 

 

 Low – where only 25% of the additional overseas arable land required under 

100% organic conversion was formerly grassland 

 

 Medium – where 50% of the additional land required was formerly grassland 

 

 High – where all of the additional land required was formerly grassland 
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The low, medium and high LUC and soil C sequestration estimates were combined 

in three scenarios, and the results applied to the GHG impact derived from the Agri-

LCA models.  This approach captures a range of possible outcomes (Table 7.3). 

Table 7.3: Soil carbon sequestration and land use change scenarios applied in this 

study  

Scenario C Sequestration rate Land Use Change rate 

   

Scenario 1 Low High 

Scenario 2 Medium Medium 

Scenario 3 High Low 

   

 

The total GHG emissions arising from overseas conversion of pasture to arable were 

found to be inversely correlated to domestic organic oilseed rape (OSR) yields, i.e. 

the lower England and Wales OSR yields were, the greater the demand for overseas 

land to make up supply shortfalls.  Therefore two additional scenarios were applied 

in the Agri-LCA where: (a) current oilseed rape cultivars were replaced by cultivars 

which yield more under organic conditions, and (b) organic sunflower imports were 

used as an alternative to imported oilseed rape. The new cultivar yield estimates 

were derived from Valantin-Morison and Meynard (2008), and organic sunflower 

yields from Mazzoncini et al. (2006).  Overseas land requirements were also strongly 

related to the assumption, in the Agri-LCA, concerning the amount of overseas land 

required to produce each tonne of livestock product. The impacts of changing these 

assumptions were also explored. First, by applying new assumptions regarding the 

area of land required to support organic monogastric livestock production overseas 

(Basset-Mens and van der Werf, 2005; Leinonen et al., 2012a, b); second, by 

adjusting the land areas required for ruminant-meat imports produced overseas in 

line with the estimates of Wilkinson (2011) and average organic cereal yields for EU 

and non-EU countries reported in de Ponti et al. (2012, see Table 7.1). 
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The GHG and fossil energy burdens associated with crops and livestock products 

exported from the UK were also subtracted from the estimate of total environmental 

burdens, with exported tonnages applied as a fraction of domestic production (data 

sources in Appendix E).  Where production volumes were reduced below the level of 

domestic demand it was assumed that no exports would occur, i.e. domestic 

consumption would take priority. In contrast, where the organic scenario resulted in a 

net increase in domestic production that exceeded rates of consumption, the surplus, 

once all domestic demand was met, was exported and subtracted from the total 

GHG and fossil energy use-impact. The estimated GHG and fossil energy burden is 

therefore that required to meet domestic food demand under conventional and 

organic scenarios. 

7.4 Results 

Conversion to 100% organic management, under the organic scenario, caused a 

considerable drop in crop production compared to the 2010 conventional baseline, in 

particular for wheat, barley and oilseed rape (Table 7.4). The low output of organic 

oilseed rape was primarily the result of a much smaller cultivated area due to its 

relatively low yield, compared to both conventional OSR and organic alternatives.  

The increase in legume outputs under the organic scenario was a result of an 

increase in the cultivated area, as required by the rotational constraints in the OLUM. 

This area would have increased further had the constraint on maximum production 

area not been reached.  The area of potatoes cultivated also substantially increased, 

and hit the 150% production constraint, primarily due to the usefulness of potatoes in 

organic arable rotations for weed control. In addition, the high ME output of potatoes 

per hectare makes this a favoured crop for maximising food ME production. The high 

ME yield per hectare of sugar beet also contributed to the crop reaching the upper 

constraint on production area. Grazing livestock numbers increased under the 

organic scenario, although total carcass outputs did not increase by the same 

percentage, as a result of lower carcass weights and longer finishing periods under 

organic livestock management.  Monogastric livestock numbers and associated meat 

volumes fell sharply under the organic scenario, as a result of lower concentrate feed 

availability and upper stocking rate limits imposed to reflect organic standards.   
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Table 7.4: Projected crop production volumes, crop areas, livestock outputs and 

livestock numbers. Livestock meat outputs volumes are adjusted for bone content 

after Wilkinson et al. (2011). 

 

Aggregated GHG emissions and fossil energy use associated with conventional crop 

and livestock production and under a suite of organic scenarios are presented in 

Figure 7.1. The land use change and C sequestration scenarios represent sensitivity 

analyses of rates of land use change, carbon accumulation and oilseed yield. These 

results illustrate the total impacts from the transition of domestic production in 

England and Wales to organic, plus ‘exported impacts’ i.e. production, carbon 

sequestration and land-use change resulting from the requirement to produce crops 

overseas to compensate for domestic production shortfalls. 

  

Crops

Conventional 

2010 Baseline - 

'000 tonnes

Organic 

scenario - '000 

tonnes

Organic as % of 

conventional

Conventional 

2010 Baseline 

000' ha.

Organic scenario 

000' ha.

Organic as % of 

conventional

Wheat 13,870 7,145 52% 1,815 1,557 86%

Barley 3,447 1,513 44% 193 218 113%

Rye 96 144 150% 21 43 208%

Oats 537 806 150% 62 156 249%

Potatoes 3,447 5,171 150% 102 239 234%

OSR 2,071 152 7% 605 4 1%

Sugar beet 6,699 5,184 77% 118 118 100%

Beans and peas 571 857 150% 203 229 113%

Cabbage 248 170 69% 5,759 5,689 99%

Carrots 651.2 977 150% 9,808 31,796 324%

Onions 345 518 150% 8,722 16,308 187%

Sugar beet 6,699 5,184 77% 118,491 118,491 100%

Livestock

Conventional 

2010 Baseline - 

'000 tonnes

Organic 

scenario - '000 

tonnes

Organic as % of 

conventional

Conventional 

2010 baseline 

000' head

Organic 

scenario 000' 

head

Organic as % of 

conventional

Sheep meat 184                         235                       128% Ewes and rams 10,557                  16,984                 161%

Beef meat 469                         509                       108% Suckler cows 938                        1,579                   168%

Pig meat 482                         135                       28% Sows and boars 427                        154                      36%

Eggs 504                         152                       30% Layers 30                          10                        33%

Chicken meat 716                         178                       25% Broilers 85                          46                        55%

Milk (litres x 10
8
) 103                         65                         63% Dairy cows 1,380                    1,074                   78%
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Figure 7.1: Average crop greenhouse gas emissions (GHGs) from all organic 

scenarios compared to conventional 2010 baseline. HLUC = high land use change, 

MLUC = medium land use change, LLUC = low land use change. LCSEQ = low C 

sequestration, MCSEQ = medium C sequestration, HCSEQ = high C sequestration.  

High OSR and Sunflower refer to high oilseed rape yield and sunflower import 

scenarios referred to in methods above.   

Figure 7.1 shows the production-related GHG savings that could be achieved 

following conversion to organic methods. The results show that even when the 

GHGs generated by increased overseas production are accounted for, total GHG 

emissions for crops still only reach 76% of the non-organic position. GHG emissions 

associated with transport were also reduced under organic management, as a result 

of the increase in domestic potato production, and the subsequent reduction in the 

weight of imports.  However, when CO2 emissions from land-use change are 

included, the picture becomes less positive. When the rate of land use change is 

assumed to be high or medium, emissions savings from organic management were 
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more than offset.  When land use change rates are assumed to be low and where 

carbon sequestration for both domestic and overseas organic production is factored 

in, net GHG emissions are again favourable under organic conversion.  

The sensitivity of the results to the oilseed rape yield and the type of oil crop grown is 

illustrated in Figure 7.2 (high organic oilseed rape yields and sunflower imports result 

in LUC emissions that were only 47% and 50% of an average oilseed rape scenario, 

due to a decrease in land-use requirements).  

 

Figure 7.2:  Area of land needed for overseas imports under the 2010 non-organic 

baseline and organic scenarios: crops.   

A similar picture is presented for livestock production as a result of lower GHG 

emissions per unit of product in the organic scenario. For beef and lamb in particular, 

the production-related GHG emissions were lower under a 100% organic scenario 

(Figure 7.3). However, when emissions from LUC were included, the emissions 

savings of the organic scenario were again fully offset (total emissions were 

approximately 26% higher than the 2010 baseline based on the average of all LUC 

scenarios in Figure 7.3).   When carbon sequestration was included, the total GHG 

emissions in the organic scenario were still higher at 104% of the 2010 non-organic 

baseline. Import production constitutes a much greater component of the total GHG 
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footprint under organic monogastric livestock production, as the differences in output 

were much greater compared to most of the crops, particularly for poultry meat, pork 

and eggs, due to the large decrease in domestic production (Table 7.4).  

 

 

Figure 7.3: Average livestock GHG from all organic scenarios compared to 

conventional 2010 baseline. HLUC = high land use change, MLUC = medium land use 

change, LLUC = low land use change. LCSEQ = low C sequestration, MCSEQ = 

medium C sequestration, HCSEQ = high C sequestration.   ALT LAND refers to 

alternative values for land-occupation associated with livestock production, as 

described in methods above.   

The considerable reduction in emissions for the domestic production element of 

GHG sources under organic management (i.e. excluding emissions associated with 

overseas LUC) was a direct result of reduced N2O emissions, achieved through the 

avoidance of fertiliser manufacture and lower rates of N application for many organic 

field crops (Figure 7.4).  Emissions were higher per tonne of output for some organic 

-20

-10

0

10

20

30

40

50

M
ill

io
n

 t
o

n
n

e
s 

C
O

2
(e

)

-20

-10

0

10

20

30

40

50

60

M
ill

io
n

 t
o

n
n

es
 C

O
2(

e)

Transport of imports

Import production

E & W production

Land Use Change

C- sequestration - domestic

C-sequestration - overseas

Livestock

LUC and C SEQUESTRATION – ORGANIC SCENARIO

M
ill

io
n

 t
o

n
n

e
s 

C
O

2
 e

q
 y

r-1
 



224 

 

crops, e.g. for organic field beans grown in England and Wales, due to increased 

rates of N leaching and denitrification under organic management, a result of the 

increased presence of this crop on wet/heavy soils, although significant volumes of 

field beans grown for human consumption would have to be exported as a result of 

low rates of domestic consumption.  Cereal crops traditionally receiving lower rates 

of manufactured N fertiliser under non-organic management (i.e. oats and spring 

barley) also had greater GHG emissions per tonne under organic management, as 

the yield reduction offset the savings associated with imported fertiliser in the 

conventional system.  In addition, increased GHG emissions were found for organic 

crops requiring a much higher fossil fuel input in their cultivation (e.g. organic 

potatoes and carrots, which require flame weeding/flame haulm removal for weed 

and disease control).  

 

Figure 7.4:  Crop GHG emissions per tonne of product (excluding Land Use Change) 

under organic and conventional scenarios (i.e. adjusted values per tonne from the 

Cranfield Agri-LCA – the suite of Life Cycle Assessment-based models applied in this 

study)  
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Figure 7.5:  Livestock GHG emissions per tonne of product (excluding Land Use 

Change) by source under organic and conventional scenarios. Meat production 

impacts are on a Dressed Carcass Weight (DCW) basis  

Organic pig production produced lower GHG emissions per tonne of product despite 

the reduced yield, as the outdoor nature of organic systems greatly reduces 

requirements for fossil energy used in housing and its associated CO2 emissions and 

reduces methane emissions by not having slurry storage, although N2O emissions 

were increased as a result of greater leaching and denitrification from manure 

deposition and application (Figure 7.5).  Poultry meat and egg production generated 

greater emissions under organic management as a result of poorer feed conversion 

ratios, longer rearing times, higher mortality rates and greater leaching losses 

compared to conventional free-range and fully housed systems.  Organic dairy, beef 

and sheep production resulted in lower total GHG emissions, although greater forage 

intake in the organic system increased the total CH4 contribution per tonne of 

product.  
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Figure 7.6:  Area of land needed for overseas imports under the 2010 non-organic 

baseline and organic scenarios: livestock.   

The requirement for overseas land to make up for shortfalls in domestic supply under 

the full organic scenario is over five times the amount required in the conventional 

2010 baseline when applying the Agri-LCA values (Figure 7.6). This is largely the 

result of the requirement to increase imports of organic pork, poultry meat and eggs, 

the overseas land area requirements for which are between 1.8 and 4.1 times the 

non-organic baseline on a per tonne basis.  

When results for livestock, crops and all land-use-changes were combined (Table 

7.5) the resource efficiency savings obtained through organic production systems 

were sufficient to cause a slight decrease in total GHG emissions, despite an 

increase in transport emissions through increased imports. When emissions 

associated with the conversion of additional land to arable production were added, 

there is a net increase in emissions under organic management, although this is 

offset to a large extent when domestic soil carbon sequestration is factored in.  
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Table 7.5: Aggregate greenhouse gas emissions (GHGs) under organic scenarios 

compared to the conventional baseline.  LUC = Land Use Change 

 

From a fossil energy use perspective, the organic systems assessed were more 

efficient per tonne of product for ruminant livestock production and for major field 

crops such as wheat (see Figure 7.7 and Figure 7.8 ) or per MJ of food energy 

produced (Table 6.6). Again this is largely a result of avoiding the use of 

manufactured N fertiliser, which is derived primarily from natural gas, although as 

with GHG emissions, some exceptions occurred for crops receiving lower amounts 

of manufactured N in conventional farming and for organic crops requiring flame 

weeding.  Livestock follow a similar trend to the crop-GHG impacts, with ruminant 

production systems comparing favourably (in particular sheep meat production 

systems) as a result of reduced inputs of concentrate feed and associated N fertiliser 

manufacture. Organic poultry systems were less efficient in terms of fossil energy 

use as a result of much lower meat outputs per unit of feed.  

 

Domestic production and imports

Production, imports & Land Use

Change (LUC)

Production, imports, LUC,

C sequestration

GHGs: organic scenario (ktCO2e) 46,192 63,753 51,313

GHGs: non-organic scenario - 2010 (ktCO2e) 49,312

Organic GHGs as proportion of non-organic 94% 129% 104%
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Figure 7.7:  Fossil energy use per tonne of animal product under organic and 

conventional scenarios.  * = MJ/’000 litres  

 

Figure 7.8:  Fossil energy use per tonne of crop product under organic and 

conventional scenarios.  OSR = oilseed rape  
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Table 7.6:  Energy ratio (total metabolisable energy (MJ ME) output by crop divided by 

primary energy used in production, i.e. for beans 4.4 MJ of energy are produced for 

every 1 MJ of energy in under conventional management. Most primary energy in 

these cases is non-renewable. 

 

7.5 Discussion 

Results from the life cycle assessments revealed that whilst substantial gains in the 

efficiency of non-renewable resource use could be obtained through a large-scale 

conversion to organic production methods, a major increase in the area of overseas 

agricultural production would be required, to compensate for production shortfalls if 

diets were to remain the same.  If only 50% of the additional overseas land area 

were to be converted from pasture, then the GHG savings obtained by the use of 

low-input methods commonly applied on organic farms would be largely offset.  At 

lower rates of grassland conversion, and when soil carbon sequestration rates 

Crops

Energy rato 

Conventional (OUT/IN)

Energy ratio Organic 

(OUT/IN)

Difference - organic ratio 

as % of conventional

Beans 4.4 4.3 97%

Cabbage 2.0 2.5 125%

Carrots 4.1 3.2 76%

Maize silage 2.1 2.2 107%

Oats 4.5 3.8 85%

Onions 1.4 1.4 100%

Oilseed rape 2.3 2.5 109%

Vining Peas 6.0 6.5 109%

Potatoes 1.9 1.7 85%

Spring barley 5.1 4.1 80%

Sugar beet 6.8 5.1 75%

Triticale and Rye 3.5 5.1 144%

Feed wheat 4.3 5.0 117%

Milling wheat 4.6 5.0 111%

Winter Barley 4.6 4.6 99%

Livestock products - adjusted for bone and shell content

Pig meat 0.2 0.3 115%

Poultry meat 0.2 0.1 78%

Beef meat 0.2 0.3 158%

Sheep meat 0.3 0.5 185%

Milk 1.0 1.1 110%

Eggs 0.3 0.2 69%
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associated with organic management are factored in, fully organic production would 

moderately reduce net GHG emissions from England and Wales agriculture. 

However, fundamental questions remain, i.e. can the additional overseas land 

required to make up for production shortfalls be found at all, and if it can be found, 

can this be obtained solely from the existing base of tilled land?  With the demands 

placed on the existing arable land base  continuing to increase as a result of growing 

populations (Bajzelj et al., 2014), a shift to lower-yielding forms of agriculture, such 

as organic farming, could be considered infeasible without a fundamental change in 

consumption habits and/or production systems. The following sections explore 

whether changes in both of these areas could be made in order to make a full-

organic conversion scenario feasible. 

7.5.1 Effecting behavioural change towards ‘sustainable diets’ 

It has been highlighted that demand-side measures, including changes to national 

diets, are essential to ensure progress towards GHG mitigation targets (Bajzelj et al., 

2014).  Unfortunately, evidence suggests that changing dietary habits on a large 

scale is likely to be a slow and difficult process. The difficulty results from a range of 

factors, such as ingrained consumption habits, disagreements between stakeholders 

on what a sustainable diet consists of, low public awareness of the health and 

environmental impacts of food choices, consumer purchasing power and a lack of 

meaningful commercial and/or Government support for change (de Boer et al., 2014; 

Garnett, 2014b).  Although some modest successes have been achieved in 

changing consumption habits in recent years, (e.g. the Love Food Hate Waste 

campaign in the UK) the current rate of change in consumption patterns is unlikely to 

support the land use change needed to yield any significant offsetting of the GHG 

impacts associated with food and farming even in the medium term (Bajzelj et al., 

2014).  The development of more conjoined international policy support (for example  

through the introduction of a carbon tax applied to food purchases and implemented 

across G8 members) could help to drive change towards lower carbon agriculture in 

these countries, for example through public procurement and state education 

programmes. However, more research is required on the efficacy of potential state 

interventions to drive change in this area and the identification of, and means to 
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overcoming, possible barriers to change, for example conflicts between 

environmental, socio-economic and nutritional goals (Bajzelj et al., 2014).  

Education campaigns to raise levels of food and health consciousness among 

citizens may help to make the scenario presented here more feasible. Evidence 

suggests that consumers buying a high proportion of organic food exhibit a greater 

tendency towards fresh vegetable consumption and vegetarianism (Hamzaoui 

Essoussi and Zahaf, 2008). This is likely due to the fact that interest in organic food 

arises out of a more general food and health consciousness and to a lesser extent 

concern for the environment. A successful public education programme of this kind 

could therefore yield multiple benefits, i.e. increasing acceptance of less resource-

intensive diets, and improving public health (Macdiarmid et al., 2011).  The current 

small-size of the organic sector, and in particular the tendency for organic 

consumers to be from higher-income households, makes the likelihood of the 

efficacy of such a public education campaign difficult to predict (Dimitri and 

Dettmann, 2012).  However, with the potential benefits of such an outcome so large, 

further research on the complementarities between sustainable and healthy 

consumption, following a widespread public education campaign, must surely be 

worthwhile. 

It may also be possible to encourage food production in urban spaces under a 100% 

organic scenario, following examples elsewhere and the past.  A good exemplar 

from the UK past would be the Dig for Victory campaign operated during the Second 

World War. This campaign encouraged all households to take on land, which the 

family would cultivate, to provide an additional household supply of fruits and 

vegetables and so address the very pressing national food security problem. From 

elsewhere in the world other possible exemplars might include Cuba and the Pacific 

Island states, where horticulture practiced in civic and urban environments make 

important contributions to ensuring an adequate supply of nutritious food (Altieri et 

al., 1999).  

7.5.2 Improving organic production systems 

Closing the yield gap between conventional and organic agriculture would go a long 

way to improving the feasibility of full organic conversion, especially where major 
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crops, such as cereals, are concerned. Measures to address the N availability 

limitations and leaching losses commonly occurring with organic management (e.g. 

making better use of manures and cover crops) are likely to make an important 

contribution to organic yield improvement strategies (Smith et al., 2016). 

Improvements in organic rotation design (such as avoidance of ploughing leys in the 

autumn) and ensuring a more effective and reliable supply of N from biological 

fixation, may also be required, particularly in the case of stockless organic farms, 

which can struggle to maintain positive N balances over a rotation (Smith et al., 

2016).  Allowing sewage sludge application on certified organic land could also help 

to address commonly experienced phosphorus (P) deficits, which are responsible for 

yields losses in crops with a high P requirement, e.g. potatoes (Smith et al., 2016).  

Replacing crops that perform poorly under organic conditions with similar 

alternatives could also help to improve the relative performance of the sector, such 

as substituting oilseed rape with sunflowers.  While this crop cannot yet be grown 

reliably in much of the UK under current climatic conditions, the effects of climate 

change are likely to encourage a northwards expansion of sunflowers in Europe 

(Olesen and Bindi, 2002). Establishing more efficient photosynthetic pathways 

though genetic modification of major crops like wheat, oats, barley and rice could 

also drastically increase yields under the warmer growing conditions expected as a 

result of climate change. This would have multiple beneficial effects, such as 

decreasing land-use requirements and improving water and nitrogen use efficiency 

(Beatty et al., 2015). Progress in this area has been slow to date, however (Furbank 

et al., 2015), and international organic standards currently prohibit the use of genetic 

modification as their use is seen to be in conflict with organic principles and 

consumer expectation.      

With regard to organic livestock production, increasing outputs per unit of land is 

likely to require a change to international organic standards, for example to relax 

upper stocking rate limits, which are currently deployed to promote animal welfare 

and reduce reliance on external inputs. It may also be necessary to revisit exclusion 

criteria concerning the use of certain manufactured feedstuffs (e.g. synthetic amino 

acids for poultry).   Adjusting standards in this area could also allow for synergies 

between cropping and livestock dominated systems, i.e. surplus manure produced 
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by more intensive livestock systems could be exported to arable-dominated systems 

requiring readily available sources of N (Wilkins, 2008).  Allowing for greater 

flexibility in other organic standards, for example with regard to the current 

requirements for providing animals unfettered access to range, could also help to 

improve the productivity of organic farming and reduce the associated land 

requirements. This would be of particular value to the poultry sector, both in terms of 

overcoming stocking density limitations and as a means to reducing organic poultry 

mortality rates and disease/predation pressures, as these are elevated in outdoor 

systems (van de Weerd et al., 2009; Weeks et al., 2016).   

Adapting breeding programmes to produce animals better suited to organic farming 

and standards could also be beneficial. In particular, adapting monogastric breeds 

for organic management (i.e. developing breeds suited to longer rearing periods and 

increased reliance on feed foraged from the range and/or using dual purpose 

breeds) could be considered to reduce the high metabolic pressure created by 

combining organic diets with breeds more suited to intensive conventional systems, 

and other factors conflicting with the IFOAM organic principles (e.g. discard of male 

chicks in egg production systems, van de Weerd et al., 2009).  

7.5.3 Organic farming’s contribution to GHG mitigation and energy 

efficiency  

The results from this study also highlight the extent to which organic farming 

practices can lead to improvements in GHG mitigation and fossil-energy efficiency. 

In particular, for cereal cropping systems and ruminant agriculture, the application of 

organic farming practices would undoubtedly reduce the reliance on energy-hungry 

inputs such as manufactured N fertiliser and concentrate feed and save their 

associated N2O emissions. The potential benefits that could arise from the wider 

application of certain organic management practices, such as producing grass 

swards incorporating clover and other legumes as a means to reducing reliance on 

artificial nitrogen inputs make such practices worthy of further research.   Also worthy 

of further investigation are the benefits associated with the wider application of mixed 

farming approaches, commonly applied in organic management, as a means to 

optimising the efficiencies that can be achieved through a closer integration of crop 
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and livestock operations (Wilkins, 2008). The improvements offered by organic 

management in the dairy sector, in terms of fossil energy efficiency, also highlights 

the potential benefits of a reduced reliance on concentrate feeds. However, benefits 

in the above areas need to be set against the requirements for additional land 

resulting from reduced yields per hectare or unit of livestock, as observed in this 

study.  

The benefits of soil carbon sequestration for organic systems have also been 

highlighted by this study. Soil carbon accumulation could offset between 4% and 

38% of GHG emissions resulting from food production when accounting for domestic 

production, imports and CO2 from overseas land use change. The main routes to 

increased soil carbon concentrations in organically managed soils are the use of 

ley/arable rotations and the application of organic manures and composts (Gattinger 

et al., 2012). Current initiatives promoting lower-input farming approaches may lead 

to a greater uptake of these practices, which could allow the non-organic sector to 

capture some of the advantages of organic farming in terms of soil carbon 

accumulation. It should also be noted that the bulk of any increase in soil carbon 

concentrations is likely to occur in the early years following organic conversion, and 

Gattinger et al. (2012) found that soil carbon sequestration rates within organic 

systems were only significantly higher in studies of 20 years or less. In addition, the 

primary GHG impacts of overseas land use changes are also likely to occur in the 

first 20 years of conversion from the previous land-use (Williams et al., 2014).  In 

consequence, the net benefits of organic systems, in terms of carbon sequestration 

could be, over the longer term, close to zero, depending on the amount of carbon 

sequestered and/or lost following a change in practices.  

7.5.4 Methodological critique 

There are a number of limitations to the scope of this study that should also be 

considered. For example the uncertainties that exist in the area of soil carbon 

sequestration, particularly annual rates of accumulation and saturation points, as 

well as N2O emissions can vary greatly depending on local environmental conditions 

and farm practices.  Such uncertainties hinder the development of accurate 

estimates in both areas (Reay et al., 2012; Smith, 2004).  Whilst time constraints 
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prevented the estimation of statistical uncertainties in this study, the results provide a 

centre-ground estimate, indicative of the nature and general magnitude of the 

change that might be expected from widespread organic conversion.  Although some 

margin of error in these estimates must be accepted, the estimations can be taken 

as robust, especially where very large-scale differences between conventional and 

organic are projected.  It is recognised that the focus on GHG emissions and fossil 

energy use also does not provide a full picture of the extent to which organic  farming 

systems can contribute towards multi-objective and internationally binding 

sustainability targets (e.g. the Sustainable Development Goals outlined post-

Rio+20).  For example, the study has not been able to take into account some other 

benefits that might arise out of a full organic conversion with regard to an increase in 

on-farm biodiversity or rural development and reductions in pesticide use (Lampkin 

et al., 2015).  

7.6 Conclusions 

An environmental assessment of the impacts of a 100% conversion to organic 

farming in England and Wales revealed that whilst considerable improvements in 

resource use efficiency could be obtained following a switch to organic production 

methods, reduced outputs would mean that more imports would be required to 

maintain food supply. A major expansion in agricultural cultivation overseas, to make 

up for domestic supply shortfalls, could result, leading to an increase in GHG 

emissions from the associated land use change. Some or all of this GHG increase 

resulting from LUC could be avoided if it were possible to increase the commodity 

supply, for export to the UK market, by means of yield increases on existing 

organically-managed arable land. The carbon sequestration benefits obtained 

following a conversion to organic farming could also help to offset emissions 

increases from the increased production area/intensity, although these benefits 

would be time-limited and their scale uncertain. Replacing oilseed rape with 

sunflowers, or another oilseed crop, could also help to reduce the land requirements 

of organic farming. Some routes to increasing the volume of outputs (productivity) 

from organic production would require changes in international organic standards. 

Changes to diet would also help to enhance the feasibility of a large-scale organic 

conversion. 
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CHAPTER 8. DISCUSSION  

In this chapter, the results from the work are summarised against the hypotheses set 

in section 1.2. The implications of the results are also discussed with particular 

regard to current policies addressing the development of sustainable food systems in 

the UK.  Potential consequences for the organic sector are also discussed from 

regulatory and farm management perspectives.  Alternative approaches and 

potential areas for future work are considered before overall conclusions are drawn 

based on the outcomes from preceding chapters. 

8.1 Summary of key results in relation to the study hypotheses  

8.1.1 Hypothesis 1 

A 100% conversion of agriculture in England and Wales to organic practices will not 

significantly reduce the levels of production for major arable and horticultural crops 

and livestock products. 

The first null hypothesis posed in section 1.2 can be rejected as Chapter 6 reveals 

that a widespread conversion to organic farming would result in a major reduction in 

productivity for most crop and livestock products.  The production of major cereals 

(e.g. wheat, barley) would be particularly affected due to lower yields (e.g. organic 

yields were only 51% of conventional in the case of wheat) and reduced cropping 

areas as a result of the need for fertility building leys in organic rotations.  Outdoor 

vegetable production would be less affected due to an increased presence of 

vegetable crops in organic rotations and smaller yield gaps for organic crops of this 

type.  For livestock products, reductions in food production would also be severe, 

particularly for poultry (meat and eggs) and pork as a result of lower stocking 

densities and limited feed availability under a 100% organic scenario. Milk production 

would also be substantially reduced, reaching approximately two-thirds of the 

production levels under conventional management, as a result of lower stocking 

rates and reduced milk yields on organic dairy farms. Conversely beef and sheep 

meat production would increase as a result of increased ruminant livestock numbers 

on organic farms, resulting from an increased uptake of clover/grass leys, particularly 

in eastern, cropping-dominated areas of England.  Total food outputs reached only 

64% of conventional production levels under organic farming when expressed as 
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total metabolisable energy (ME), suggesting that a widespread adoption of organic 

practices would necessitate a major increase in food imports and/or a substantial 

change in national diets.   

8.1.2 Hypothesis 2 

A 100% conversion of agriculture in England and Wales to organic practices will not 

result in a net increase in greenhouse gas emissions. 

The second null-hypothesis can be partly rejected.  Although a 100% conversion to 

organic farming in England and Wales could result in reduced greenhouse gas 

impacts through savings in non-renewable resource-use and avoided nitrous oxide 

(N2O) emissions from manufactured-N fertiliser, savings in these areas are likely to 

be offset by emissions arising from Land Use Change (LUC), resulting from an 

overseas expansion of agricultural areas, which may be required to redress domestic 

supply shortfalls under a 100% organic scenario.  Nevertheless, organic farming 

systems can result in lower greenhouse gas emissions when considering production 

alone (i.e. without considering emissions from LUC) and the carbon sequestration 

benefits that organic farming systems provide could help to offset the impacts of an 

increased agricultural area.  The wider adoption of clover/grass leys and N-fixing 

cover crops could represent an effective and sustainable management option for 

reducing the greenhouse gas impacts of agriculture in England and Wales. 

8.1.3 Hypothesis 3 

A 100% conversion of agriculture in England and Wales to organic practices will 

result in less fossil-fuel use per kg of product  

The third hypothesis posed within this study can be partly accepted.  Although the 

low-input nature of organic systems means that most crops and livestock products 

will be more energy-efficient per unit of product, lower yields / outputs for many 

organic crops and livestock can lead to worse performance.  In particular outdoor 

vegetable crops requiring flame-treatment within organic systems (e.g. carrots, 

potatoes) can be less energy efficient due to the high rates of fossil fuel use and 

lower yields. Ruminant livestock production is often more energy-efficient under 

organic management due to the energy efficient practice of producing forage in 
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grass-clover leys, whereas monogastric livestock production tends to perform worse 

as a result of inferior feed conversion and higher mortality rates.   

8.1.4 Hypothesis 4 

A 100% conversion of agriculture in England and Wales to organic practices will 

result in less fossil-fuel use per hectare of land 

The fourth hypothesis can be accepted, although there are some exceptions (e.g. 

when the energy content of organic matter/compost used on organic holdings is 

accounted for) over 80% of the per unit of land area comparisons shown in Chapter 

4 revealed lower energy use in organic production through a reduced reliance on 

manufactured N fertiliser and concentrate feed. 

8.2 Key messages for food and agriculture policy  

The results indicate that whilst organic farming can reduce greenhouse gas 

emissions, particularly through improvements in fossil fuel efficiency, the likely 

expansion in agricultural area that would accompany a widespread adoption of 

organic methods in England and Wales, to compensate for supply shortfalls, could 

offset any benefits in this area. Studies comparing the effects of “land-sparing” and 

“land-sharing” have drawn similar conclusions, i.e. that the environmental impacts 

from lower yielding forms of agriculture can be greater than more intensive 

production systems, due to the need for more cultivated land (Green et al., 2005).  

Although such comparisons can miss ‘real-world’ effects (in particular the effect of 

economic drivers on agricultural expansion, Perfecto and Vandermeer, 2010), the 

conclusions drawn still support the need for more production from fewer resources, 

as one part of any progress towards ‘Sustainable Intensification’ (Foresight, 2011).  

The results from this study suggest that a widespread conversion to organic farming 

could conflict with such objectives and industry roadmaps promoting greenhouse gas 

mitigation in England and Wales agriculture (e.g. the Greenhouse Gas Action Plan, 

Greenhouse Gas Action Plan Partnership, 2012).  The results also support the 

suggestion that recent estimates of the organic/conventional crop-yield gap (e.g. de 

Ponti et al., 2012; Seufert et al., 2012; Ponisio et al., 2015) are likely to be 

misleading, as these do not consider the additional land required to support organic 
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production, with particular regard to the fertility-building ley phase within crop 

rotations (Connor, 2013).   

Despite this finding, it is possible that the lower yields obtained within organic 

systems represent a ‘sustainable optimum’ when considering the right balance 

between a healthy economy, a healthy population and a healthy environment 

(Doherty et al., 2017).  It is also possible that a shift to typical “organic diets” could 

help to “manage and not just meet demand” (Ingram, 2017), in particular through 

lowering meat consumption (higher rates of vegetarianism have been observed in 

consumers frequently buying organic food products, Hamzaoui Essoussi and Zahaf, 

2008) although regular ‘organic consumers’ are a small, self-selecting population 

and how the whole population would respond to being offered only organically 

produced food is unknown.  The methods commonly used on organic farms could 

also have greater potential to be successfully woven within agricultural landscapes, 

compared to separate agricultural intensification and/or land conservation measures.   

Such an approach challenges the view that environmental protection and food-

production are diametrically opposed, instead viewing agricultural systems as part of 

an integrated whole that can support economically and environmentally viable 

production systems producing healthy, nutritious food at an affordable price 

(McIntyre et al., 2008).    

With the right adjustments at a societal level, it may therefore be possible to ensure 

that a widespread adoption of organic production becomes feasible. These 

adjustments would require a long-term dialogue with the public on the future of the 

countryside and the importance of dietary change from a range of environmental and 

human health perspectives. As the main route to market in the UK, retailers could 

have a key role to play in this context and could be encouraged to take a more active 

role in the implementation of sustainable food systems, for example though Defra’s 

25 year plan for the future of food and farming in the UK (Doherty et al., 2017).   

It is also possible that UK policy could support the uptake of “organic practices” 

within conventional farming (e.g. within integrated farming approaches) to avoid the 

yield reductions associated with certified-organic farming, whilst obtaining some of 

the benefits associated with a reduced use of manufactured inputs (e.g. through the 

use of clover in grassland to replace or reduce the use of manufactured N fertiliser in 
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ruminant livestock farming).  Combining the carbon sequestration benefits of organic 

practices with conventional agriculture could also be considered, particularly in view 

of the UK Government’s commitment to join the ‘4 per 1000’ initiative first proposed 

at the Conference of the Parties 2016 (Minasny et al., 2017).  In particular the mixed 

farming approaches commonly found on organic farms, which provide greater 

opportunities for the application of manure on cultivated land, and the use of ley-

arable crop rotations, are worthy of further consideration in this context.  However, 

the sequestration benefits that can accrue are time limited and reversible, as well as 

being highly dependent on the starting position15.  

8.2.1 The importance of context specificity 

The results from this study also highlight the importance of farm system type when 

comparing organic and non-organic production. For example on cereal producing 

farms in Eastern areas of England, where wheat yields are consistently over 7 t ha-1 

yr-1, the “opportunity cost” of implementing organic practices is likely to be high, due 

to the drop in yield and a consequent increase in imports.  Conversely in grassland 

dominated areas, the adoption of organic methods may increase production 

efficiencies, without substantially increasing land-use requirements (organically 

managed grass/clover leys can even outyield pure ryegrass swards, depending on 

the amount of artificial N applied in the conventional system, Lampkin et al., 2005).  

Developing targeted region-specific support programmes for the development of the 

sector may therefore be appropriate, as seen in Italy and Spain (Sanders et al., 

2011). 

The results also highlight the potential benefit of increasing the organic land-areas 

within the UK field-vegetable sector. The organic yield-gap for these systems is 

lower than other field crops, such as milling wheat, and increases in uptake may help 

to encourage fresh vegetable consumption within the UK, as a result of perceived 

health benefits relating to nutrition and pesticide residue avoidance (Magnusson et 

al., 2003; Yiridoe et al., 2005; Petersen et al., 2013).  Increasing the levels of 

domestic organic vegetable supply could present difficulties in terms of resource use 
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 In practice, the highest SOC sequestration rate suggested by Gattinger et al. (2012) of 0.45 Mg C ha
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would result in a 9 g C kg
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 soil in 20 yr, assuming a bulk density of 1g/cm

3
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conventional arable soil with 2% organic carbon increasing to 3% in 20 years 
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however, with particular regard to manure and land-availability (Chapters 5 and 6).   

The results from Chapter 4 also highlight that organic glasshouse vegetable, apple 

and potato production systems are generally less efficient than conventional 

production in terms of fossil fuel use, as a result of lower yields and similar or higher 

inputs per hectare.  These lower efficiencies could be improved by revisiting the 

currently high cosmetic standards within the retail sector and/or by developing 

varieties better suited to low-input systems. 

8.3 Key messages for public health policy 

Although the focus of this study was on the impact of a 100% conversion on national 

production, fossil energy use and greenhouse gas emissions, it is possible to draw 

some tentative conclusions on the extent to which an organic scenario would align 

with policy drivers for the promotion of public health in the context of national 

“Eatwell” recommendations and the associated food groups16 (Macdiarmid et al. 

2011).  These national guidelines recommend increases in starchy carbohydrate,  

vegetable and fruit consumption and reductions in meat consumption within the UK 

(Macdiarmid et al. 2011).  Although the 100% organic scenarios presented in this 

study align with these recommendations in terms of reducing meat production and 

availability, the increase in beef and lamb production under a 100% organic scenario 

could conflict with national recommendations to reduce intake of saturated fats.  In 

addition, the ‘missing protein’ resulting from reduced meat production under an 

organic scenario would need to be replaced, although some reductions in this area 

could be envisaged given the current over-consumption (Hess et al. 2015). If diets 

were to remain the same however, the effect of addressing the shortfall in meat 

production through increased imports could be disastrous from an environmental 

standpoint (Chapter 7).  Replacing animal protein with alternative sources such as 

beans, peas, insect meal, algae or sorghum could represent a much healthier and 

more sustainable option, although consumer acceptance is likely to present a barrier, 

particularly in view of commercial interests and the cultural significance of meat in 

society (Boland et al., 2013; Day, 2013; de Boer et al., 2014; Verbeke, 2015).  An 

increase in fish consumption could also help to tackle the “protein gap” whilst 
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 The Eatwell food groups include: 1. Fruits and vegetables, 2. Bread, rice, potatoes and other starch food, 3.  
Meat, fish, eggs, beans and other non-dairy sources of protein, 4. Milk and dairy products, 5. Food and drink 
high in fat or sugar (Macdiarmid et al. 2011)  
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addressing recommendations for increased intake of omega 3 fatty acids 

(Macdiarmid et al. 2011), although the potential impact of changing the 

supply/demand for fish in England and Wales was not addressed in this study.  The 

reduction in starchy carbohydrate production under organic management also 

represents a conflict with Eatwell recommendations, which state that over 50% of 

food energy should come from this source, particularly as a reduced availability of 

these foodstuffs could drive-up costs of staple foods such as bread and rice in 

England and Wales.  In contrast, the increased potato supply should make prices 

fall, but potatoes need to be cooked in low fat ways to keep them in the “healthy” 

complex carbohydrate group.  The drop in milk production under 100% organic 

management may also lead negative health effects in terms of the intake of iron, 

zinc, vitamin B12 and calcium.  There is also evidence to suggest that iodine 

concentrations in organic milk are significantly lower, which may lead to adverse 

effects on neurological development in infants (Bath et al. 2012). 

Health benefits may also accrue from higher concentrations of antioxidants and 

lower pesticide residues in food, and improved fatty acid profiles in milk, following a 

switch to organic production and consumption (Benbrook et al., 2013; Barański et al., 

2014).  Reduced antibiotic resistance and transfer of resistant bacteria from animals 

to humans could also result from lower rates of antibiotic use in livestock farming 

under a 100% organic scenario17, as recent studies have confirmed lower levels of 

resistant E. coli in organic pigs and a decrease in the prevalence of antibiotic-

resistant Salmonella in organic poultry (Mie et al., 2017). Whether such benefits 

would extend to the general population is less clear due to a lack of studies 

comparing clinical outcomes from the consumption of organic food (Smith-Spangler 

et al. 2016, Tang et al. 2017) although organic pork and chicken meat has been 

found to be less likely to harbour resistant bacteria (Mie et al., 2017).  At the same 

time increased consumption of organic meat in the winter may present a risk factor 

for Campylobacter infection management (Smith-Spangler et al. 2012) and reduced 

antibiotic usage may present animal welfare challenges (e.g. with respect to mastitis 

control in organic dairy farming, Hovi et al. 2003).  Nevertheless the extent of the 
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 Although organic standards allow some use of antibiotics, withdrawl periods are longer than those applied 
within the non-organic sector, and animal products may no-longer be sold as organic following a defined 
number of treatments (Mie et al., 2017, Österberg et al. 2016, Smith-Spangler et al. 2012). 
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challenge faced by increased antibiotic resistance is alarming (over 10 million deaths 

per year will be attributable antibiotic resistance by 2050 according to a recent 

estimate, Tang et al. 2017) and this could be partly addressed through a broader 

adoption of organic methods (changes in farming practice would only represent a 

partial solution, as routine antibiotic use in the human population is unlikely to be 

greatly affected, Mie et al. 2017).  

Reduced levels of nitrogen leaching in organic farming could also lead to improved 

water quality, although organic farming can perform worse in this area when impacts 

are expressed per kilogram of product (Tuomisto et al., 2012).  Improved farmer 

wellbeing could also result from a widespread conversion, in particular through 

increased rates of employment, reduced pesticide exposure and improved social 

cohesion in rural areas (Reganold and Wachter, 2016) although increased labour 

requirements may pose a challenge as agriculture is currently an unattractive career 

option in the UK, due to a general perception of labour intensive working conditions 

and low pay (National Centre for Universities and Business, 2015). The UK’s exit 

from the EU is also likely to create migrant labour shortages, an issue which is likely 

to be particularly relevant for labour intensive areas such as horticulture (Grant et al. 

2016, Sumption, 2017).   

Looking closely at how areas such as public health and agricultural subsidy can be 

integrated successfully could be an important part of ensuring a successful 

implementation of ‘organic methods’ in food and farming systems.  There has also 

been considerable discussion on the role for education and public information 

campaigns in creating economic conditions conducive to sustainable and healthy 

consumption, although it seems likely that there are no quick fixes in this area and a 

multi-stranded, long-term approach is likely to be required to effect change.   

8.4 Key messages for the organic sector 

The results presented in this thesis can also inform the continuing development of 

the organic sector, by highlighting some of the challenges that could be faced 

following an expansion of organic production.  In line with previous studies (e.g. 

Seufert et al., 2012), a common theme has been lower productivity within organic 

rotations, as a result of lower nitrogen availability.  Results from Chapter 6 illustrate 

that improving the supply of nitrogen within organic rotations could help to improve 
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the productivity of organic farming across a range of system types, in particular for 

‘staple’ crops such as wheat and sugar beet, which reached 50% and 80% of the 

non-organic baseline under a ‘high-N-fixation’ scenario.  Crop breeding programmes 

could also help to improve yields through the development of varieties better suited 

to low-input systems (over 95% of organic crop production currently relies on 

varieties bred for high-input conventional systems, van Beuren et al. 2011). Ongoing 

research within the EU Horizon 2020 Programme could help to address this issue, 

for example through work taking place within the DIVERSify18 project which aims to 

identify optimal crop species mixtures as a means to improve yield stability, reduce 

pest and disease damage, and enhance stress resilience in organic and low-input 

agriculture.    

Results from the NDICEA modelling also illustrate the importance of effective clover-

ley establishment in maintaining an adequate supply of N over an organic rotation 

(Chapter 5) with poor performance in this area leading to negative N balances over a 

rotation, particularly within the stockless organic systems which do not have a ‘back-

up’ N supply in the form of livestock manure (Smith et al., 2016). Improving the 

timing of ley establishment and cultivation would also help to improve the productivity 

of organic systems, and serve to address some of the challenges associated with the 

synchronisation of N availability and uptake in organic farming (Chapter 5 and 

Torstensson et al., 2006).   

The area of land that must be devoted to fertility building under organic management 

also presents a significant challenge when comparing total productivity within organic 

and non-organic agriculture.  Studies that have assessed the organic/non-organic 

yield gap have missed this important issue by focussing on individual crops, rather 

than farming systems (Connor, 2013), although lower outputs from organic farms 

were confirmed by Lampkin et al. (2015), who compared the net-productivity of 

organic and non-organic farms within the UK Farm Business Survey (FBS).  Chapter 

6 illustrates that reducing fertility building-ley areas within organic rotations could 

help to improve the productivity of organic systems at a national level, although the 

wider adoption of such intensive approaches may lead to soil-N deficits, as illustrated 
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  Designing InnoVative plant teams for Ecosystem Resilience and agricultural Sustainability.  Project website: 
https://www.plant-teams.eu/  
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within the ‘stockless’ examples in Chapter 5.  Pests, diseases and weeds may also 

increase, as the ley represents the primary method of controlling these factors 

(Lampkin, 2002), although herbicide resistance has led to some weeds becoming a 

serious issue in non-organic production, leading conventional farmers to adopt 

organic practices (e.g. the use of ley periods for blackgrass control, Alopecurus 

myosuroides, Moss and Lutman, 2013). 

Intensifying livestock management could also improve the productivity of organic 

farming.  At higher stocking rates, outputs from organic production increased 

considerably (e.g. milk production reached 90% of the non-organic baseline within a 

“high-stocking rate” scenario – Chapter 6).  Intensifying poultry production also 

improved the performance of the sector in terms of total food output, although the 

production gap between organic and conventional for this livestock sector remained 

relatively large.  Switching or combining modern broiler and layer breeds with geese 

farming on organic land may also improve the productivity and resource use 

efficiency of the sector, in particular as geese are able to graze grass-ley areas and 

can assist with weed control in some organic field crops such as potatoes 

(Hermansen et al. 2002).    

Further improvements in the productivity of organic poultry are likely to require a 

change in international organic standards, in particular to allow for increased bird 

numbers per hectare and the use of synthetic amino acids in feed, the prohibition of 

which can negatively affect feed conversion rates, mortality and N excretion (van de 

Weerd et al., 2009; Dekker et al., 2012; Steenfeldt and Hammershøj, 2015).  Results 

from the energy efficiency study have also served to highlight the problems 

encountered when combining low-input modes of farming with high genetic 

potentials within the poultry sector, underlining the importance of focusing organic 

breeding and/or system redesign efforts on this problematic area.  These and other 

issues relating to the sustainability of the organic livestock sector are discussed in 

Appendix A.  

Increased manure availability from more intensive livestock production could help to 

make organic systems more productive, particularly if this measure were combined 

with reduced areas of fertility building ley in organic rotations. Chapter 6 illustrates 

that higher stocking rates on organic farms could improve the productivity of both 
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crops and livestock at a national level, whereas at lower stocking rates, the net 

production of N-hungry crops such as potatoes and sugar beet reduced 

considerably.  Allowing for greater use of imported manure from other countries 

could also help to improve food outputs under an organic scenario, although the 

economics and disease risks associated with transporting manures and slurries over 

long distances may be prohibitive.  Such approaches could also result in decreased 

organic N stocks in the country exporting the manure, and may therefore be 

unsustainable in the longer term.  Chapter 5 also highlights the potential benefits that 

sewage sludge application could provide in terms of improving P and carbon 

balances within organic rotations, and the current prohibition of sewage sludge 

application within international organic standards seems to represent an outdated 

and unjustified directive, that is unnecessarily penalising organic producers and 

potentially affecting the long-term sustainability of the sector (Smith et al., 2016). 

With the advent of the “Organic 3.0” initiative and a new EC organic regulation there 

may be opportunities to revisit organic standards with regard to contentious areas 

such as the prohibition on synthetic amino acids and sewage sludge (Arbenz et al., 

2016).   Although the latest proposal for the new EC regulation was poorly received 

due to a lack of detail and clarity in its specifications, it is possible that a provision to 

supplement or amend its elements through ‘delegated acts’ may allow for greater 

flexibility in the use of imports, although these provisions may be double-edged if the 

Commission seeks to make amendments without adequate stakeholder consultation 

(Padel and Woodward, 2014). The new organic regulation is expected to come into 

force in 2018 or 2019, following a period of extensive consultation with IFOAM and 

its members.  

From a developmental perspective, the work presented also raises a question on the 

future direction of the organic sector, specifically what the organic sector is ‘for’ in the 

21st Century and whether the current organic standards are fit for purpose.  In this 

context it is pertinent to recognise that the early proponents of organic farming (e.g. 

Albert Howard, Lady Eve Balfour, Rachel Carson) suggested an alternative mode of 

agriculture as a result of the perceived risks and observed damage to ecosystems 

resulting from the use of manufactured fertiliser and pesticides between 1915 and 

the early 1960s.  Whilst conventional farming has moved on considerably since this 

period, both in terms the technology and knowledge applied, it could be argued that 
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the organic sector has not adapted to the same extent.  This lack of development 

has led to some unintended outcomes, for example with regard to the use of 

‘permitted inputs’ in organic farming (e.g. copper based fungicides which are still 

used in modern organic systems, despite the considerable human and ecosystem 

health risks, and the fact that safer products have been available for some time, 

Edwards-Jones and Howells, 2001; Trewavas, 2001).  If the overarching aim of 

organic farming is to create “integrated, humane, environmentally and economically 

sustainable production systems” (Lampkin et al., 2015) it could be argued that such 

outdated rules and regulations compromise the core objectives of the sector by 

ignoring latest developments in order to maintain a mode of agriculture that is 

considered more ‘natural’ (Trewavas, 2004).  Such outdated and inappropriate 

standards are also likely to contribute to the yield gap in organic farming systems, 

whereas a more flexible approach, i.e. one that takes into account new technological 

developments and the radically changed conventional alternative, could help to 

address some of the key challenges that are faced by organic producers with 

particular regard to soil health, N availability and pest and disease incidence 

(Trewavas, 2004).  It may also be possible to envisage a “graded” or “ranked” 

approach to organic certification, where some of the currently-prohibited inputs are 

permitted at lower-levels of compliance. Such an approach could allow for 

substantial improvements in the environmental efficiency of farming, capturing the 

‘best of both worlds’ through a combined approach of organic production methods 

and application of the best available technology  

At the same time the maintenance of soil fertility,  closed nutrient cycling and other 

core principles of organic farming are currently under-represented in organic 

regulations which instead focus on the distinction between ‘natural’ versus 

‘manufactured’ inputs, a development that can be traced to the purchasing 

motivations of ‘organic consumers’ (Seufert et al., 2017).  This reductionist approach 

to standard setting may lead to organic farming being defined by the lowest common 

denominator, i.e. as a system that meets the burgeoning consumer demand through 

input substitution rather than sustainable system design (Seufert et al., 2017).  If 

organic farming is to play a useful role in the development of sustainable agricultural 

systems it will be necessary to think again about the sector’s aims (i.e. whether 

organic farming is about meeting consumer demand for pesticide-free food or the 
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development of a holistic and integrated approach to improving soil, ecosystem and 

human health, Seufert et al., 2017). Once these aims are clarified, the sector could 

ensure that they are more adequately met through a consistent approach to 

international standards, and thereby help increase consumer confidence and 

producer uptake (Seufert et al., 2017). 

8.4.1 How likely is a 100% organic scenario? 

Although the study presented suggests that the impacts of a 100% organic 

conversion on food supply could be severe, it is necessary to consider how likely 

such an extreme scenario really is within a modern food systems context.  Although 

the current small size of the sector would suggest that organic farming is likely to 

remain a niche area for the foreseeable future (organic farmland makes up less than 

1% of the global agricultural area, Willer and Lernoud, 2016) organic represents one 

of the fastest growing food sectors (Seufert et al., 2017) although the senstivity of the 

market to prevailing economic conditions was illustrated by the sharp contraction in 

UK organic land following the economic crisis in 2008/9, which affected consumers’ 

willingness to pay more for food (Soil Association, 2012).   

Despite such sensitivities, an exploration of the barriers to and drivers for a 100% 

conversion warrants further consideration, in particular to determine how further 

expansion of organic farming could be encouraged in line with the aims of national 

action plans (e.g. Scotland’s ‘Organic Ambitions’19 and France’s action plan for 

Agroecology20).  With this in mind, an international panel of 27 experts from EU 

government departments, agri-business, research and organic advocacy 

organisations gathered in Paris, France in May 2017 to discuss the drivers, barriers 

and impacts related to a 100% uptake of organic farming.  The group also 

considered the likely impacts of the scenario from a food security and long-term 

sustainability perspective. The results from this discussion are summarised in Table 

8.1. 

 

                                            
19

 http://www.gov.scot/Publications/2016/01/4353  

20
 https://agroecology-appg.org/ourwork/presentation-on-the-french-agroecology-action-plan/  

http://www.gov.scot/Publications/2016/01/4353
https://agroecology-appg.org/ourwork/presentation-on-the-french-agroecology-action-plan/
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Table 8.1: Summary of key drivers, barriers and impacts associated with a '100% 

organic' conversion scenario.  Source: expert workshop held at INRA Paris in May 

2017. 

 Drivers Barriers Impacts 

Food scandals (e.g.  ‘horsegate’ 

in the UK) 

Resistance to change in 

‘conventional’ agriculture 

More vegetables but less meat 

overall 

Investment in R&D for 

development of organic systems 

Use of GMOs in conventional 

farming leading to ‘contamination’ 

of organic crops / livestock 

More agricultural land (land 

expansion) 

CAP reform encouraging greater 

diversity in crop rotations via 

agricultural subsidies 

Organic / conventional yield gap Less unemployment, in particular 

through ‘new-actors’ within the 

value chain 

Easier certification Uncertainty – particularly in  

organic market and future climate 

Increased yield variability 

Environmental / energy crises Lack of a focus on a wide range 

of ecosystem services in 

agricultural research 

Increase in farmer revenue and 

profitability 

Increased profitability following 

conversion process 

Costs of certification More ‘closed’ food production 

systems 

Perceived health benefits (e.g. 

pesticide residue avoidance, 

improved antioxidant content in 

foods) 

Increased labour requirements 

on organic farms 

Increased arduous manual labour 

on farms 

Reduced human health costs 

(individual and collective) 

The results from the discussion suggest that whilst considerable drivers currently 

exist for the continued growth of the sector, considerable barriers are likely to limit 

the extent to which organic agriculture can become prevalent within an individual 

country or region.  In particular the costs of conversion, uncertainty over organic 

yields and the development of the organic market and resistance to uptake were 

listed as primary limiting factors.  Although policy support (e.g. via the CAP and 

country-specific action plans) may help to overcome these issues, the present 

uncertainty over the impacts of a large-scale conversion, combined with social and 

economic barriers, present considerable challenges to the expansion of the sector.   
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In addition the driver of increased profitability may be an illusion created by the 

current niche status of the sector - if organic farming becomes a ‘new-norm’ then any 

advantage or disadvantage in terms of price premia is likely to be eradicated.  The 

impact of reduced human health costs is also under-supported in scientific literature.  

Although some recent studies have found improved antioxidant contents and lower 

pesticide residues in organic food (Benbrook et al., 2013; Barański et al., 2014) 

others have found a lack of evidence for any nutritional benefit (Smith-Spangler et al. 

2012).  The expert discussions also overlooked the increase in on-farm pests and 

diseases that may result from a widespread conversion to organic farming.  In this 

context it is important to note that most organic units within the UK operate within a 

‘sea’ of conventional farming, i.e. farms where pests and diseases are controlled 

through the use of pesticides (Hole et al. 2005).  Without this preventative ‘buffer’ in 

place it is possible that the pest and disease burden resulting from a 100% 

conversion to organic farming may increase to the point that current organic yields 

become unsustainable.  Conversely, it may be possible that a large-scale uptake of 

organic farming provides sufficient biological diversity for natural methods of pest 

and disease control to become established at a wider scale and ‘self-regulate’ 

disease and pest burdens associated with a widespread uptake of organic practices.  

The current small size of the UK organic sector prevents an empirical assessment of 

such effects, however it may be possible to investigate the influence of a wider-

uptake in some other European countries (e.g. in Austria and Sweden, where 

organic land makes up 19% and 16% of the total agricultural area, Willer and 

Lernoud, 2016). It should also be noted that whilst on-farm employment within an 

individual country would be likely to increase under a 100% organic scenario, as a 

result of increased labour requirements, this could be offset by a reduction in 

employment within the food processing sector, due to an increased reliance on food 

imports processed overseas.   

It is interesting to note that the impacts predicted by the group (Table 8.1) are 

broadly in line with the results described in in Chapters 4, 6 and 7 of this study, 

concerning the’ human labour cost, increase in agricultural land areas and the 

overall effect on meat and vegetable production.  The broader costs and benefits 

highlighted through this exercise (e.g. relating to human health and the development 
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of more closed production systems) also serve to highlight the somewhat limited 

assessment approach. 

8.5 Study limitations and alternative approaches  

This approach taken within this study, while more detailed and nuanced than much 

that has gone before, was inevitably somewhat limited by resources, time and data 

availability. As a result, the methods included some assumptions that were 

necessary given the scale of the study and the presence of ‘unknown quantities’.  

The latter issue particularly affected the choice of objective function within the linear 

programming model (i.e. maximisation of food production as metabolisable energy – 

ME) as it was considered to be infeasible to predict the economic conditions that 

would prevail under a 100% organic conversion.  The linear programming approach 

could therefore be considered unrealistic, as it does not adequately represent the 

business goals of farmers.  An alternative approach could follow a more ‘traditional’ 

route, i.e. applying economic variables, constraints and parameters specific to the 

organic sector to maximise the profitability of UK agriculture, under organic 

constraints (e.g. concerning stocking rate or necessary crop rotations).   

Financial data on the UK organic sector are readily available from a range of sources 

(for example within the organic sample of the Farm Business Survey, and the 

Organic Farm Management Handbook (Lampkin et al., 2014) and could be applied in 

such a development although due to uncertainties over the price that would be paid 

for agricultural commodities in a 100% organic scenario, a considerable range of 

values would need to be explored. Alternatively the optimisation modelling approach 

could be adapted to minimise the difference between observed outputs of 

agricultural commodities within a given region, and the outputs from the same region 

under organic conditions (an approach suggested in Jones and Crane (2009).  

Whilst this approach could allow for greater flexibility in terms of the area of land 

allocated to each farm type within a given region, it may present an unrealistic 

scenario given the tendency of non-organic farmers to maintain the same or a similar 

enterprise mix post conversion (Howlett et al., 2002).  Constraints concerning land-

suitability would also need to be introduced to avoid erroneous allocation of land-

uses (e.g. arable farming in the uplands).   
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A much simpler approach would entail the application of a static, spreadsheet-based 

model representing typical organic farms across the available land-base within 

individual regions.  Capturing the effect of soil and rainfall class and/or the transfer of 

manure and livestock feed between farms could present difficulties within such an 

approach. In addition the model would be dependent on user-assumptions 

concerning the intensity of production in a given region with regard to stocking rates 

and crop area (although this could be informed by regional level data from the FBS, 

the model would be unable to vary the levels of production endogenously). 

Alternatively current levels of non-organic production could be adjusted manually, 

based on the difference between conventional and NDICEA-adjusted organic yields.  

This would build on one of the approaches applied by Jones and Crane (2009) which 

relied on FBS data to estimate organic/conventional yield differentials and applied 

these as ratios to the national levels of production for key crops and livestock 

products.  As mentioned in Chapter 6 the FBS is known to over-represent larger, 

more commercial farms. Using more representative organic yields could improve the 

accuracy of the productivity estimates presented in Jones and Crane (2009), 

although this approach would also miss farm trade-interactions (e.g. with regard to 

livestock manure and feed). 

It should also be noted that whilst the approach taken in this study was somewhat 

limited, it does provide an updated and improved estimate of the production and 

environmental impacts associated with a 100% conversion to organic farming in 

England and Wales.  In particular through the biophysical constraints implemented 

within the OLUM, the assessment approach allows for the limited supply of N, 

livestock feed and agricultural land across a range of organic farming systems.  The 

greenhouse gas assessment also allows for a more considered and detailed 

overview of the impacts that could be incurred following an adoption of organic 

management across England and Wales, and includes conservative estimates of the 

soil carbon accumulation and land use change that could occur under a range of 

scenarios.  The discussion of the results derived within this thesis also provides an 

objective and balanced overview of the benefits and dis-benefits of the organic 

approach and useful recommendations on areas where the sector could improve 

current practice. 
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8.6 Recommendations for future work 

The work presented has also highlighted some potential areas for future work, with 

regard to the modelling approach and the data that has been derived.  Potential 

developments are briefly outlined in the following section.  

8.6.1 Developments to the OLUM 

A constructive and useful development of the OLUM could entail an adjustment of 

the model’s structure and data sources, to allow for its application in other countries, 

or at a global scale.  The latter approach could involve the substitution of UK regions 

with broader geographies (e.g. Western Europe, Africa, and Central Asia).  Whilst 

this would considerably increase the model’s size and data requirements, it would 

help to provide a more accurate assessment of the impacts of a 100% conversion by 

covering areas where non-organic crop yields and livestock productivities are 

relatively low compared to the UK.  It has been suggested that the application of 

organic farming methods may actually increase yields and reduce net crop losses in 

such areas (e.g. in Sub-Saharan Africa) in particular by improving soil health and 

resilience to the effects of climate change (Auerbach et al., 2013).   

Fundamental changes in the OLUM structure could also be applied to explore the 

effect of optimising public goods or ecosystem service delivery from agriculture 

under constraints of a minimum food supply, rather than the current approach of 

maximising food output.  This could involve a conversion of ecosystem services to 

monetary values, building on the work of Chatterton et al. (2015) who quantified the 

net-ecosystem value of the UK livestock sector by attributing monetary costs and 

benefits  to a range of ‘provisioning’, ‘regulating’, ‘cultural’  and ‘supporting’ services 

(i.e. categories used to classify ecosystem service provision within the Millennium 

Ecosystem Service Assessment).    

8.6.2 Developments to the NDICEA-based yield adjustments 

The yield modelling approaches could also be developed to incorporate a wider 

range of factors. Within this study only the effect of soil type and rainfall conditions 

were captured, as both can influence N availability within organic systems, and are 

therefore highly likely to affect crop-yield.  Other factors such as pest and disease 

incidence, weed burdens and soil compaction are also likely to affect productivity in 
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organic and non-organic systems (Lampkin, 2002).  In addition some soil types may 

be better suited to certain crops than others (e.g. carrots and other root crops are 

likely to be easier to establish on lighter soils).  These and other factors could be 

incorporated within an updated version of the NDICEA model, or a new model 

tailored to organic systems.   

Despite its limitations, Chapter 5 demonstrates that the NDICEA model represents a 

very useful learning framework for organic farmers, and its performance on a range 

of sites across the UK is an encouraging sign. The further development and 

application of the model could therefore be encouraged, to help organic farmers 

operating in the UK optimise performance with respect to nitrogen-use efficiency and 

P and K balances. A useful development could also involve the incorporation of two 

of the modelling approaches used within this study (i.e. dynamic nitrogen modelling 

and static land-use modelling).  Introducing a temporal component to the OLUM 

could be required as part of this.  This could be achieved by adding the algorithms 

used within NDICEA to the OLUM, in addition to data sources on local environmental 

criteria (e.g. daily rainfall, temperature and evapotranspiration).    

8.6.3 Developments to the scope of the assessment  

The spatial resolution of the assessment approach could also be improved to allow 

for calculations of production over a 5km2 or 1km2 grid, potentially resulting in greater 

accuracy in the land-use/food output and environmental impact predictions. A 

simpler and less labour intensive adaption could involve adding other plant and 

livestock nutrient requirements to the nutrient balance calculations (e.g. with regard 

to P and K supply/demand per tonne of product) within the OLUM to explore the 

extent to which over/under supply of these nutrients could influence total productivity 

and environmental performance.   Similarly, results from LCA-based greenhouse gas 

and fossil energy use assessments could be incorporated directly within the OLUM 

(i.e. as kg CO2 eq per tonne of product) in order to explore the effect of alternative 

scenarios such as “minimisation of greenhouse gas emissions” or “maximisation of 

fossil energy efficiency” to further explore trade-offs between production and 

environmental impact.   

Alternatively, the OLUM’s objective function could be adapted to focus on the 

provision of safe, healthy food, building on recommendations within recent projects 
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on the contribution of defined food groups to the UK’s national diet (Macdiarmid et 

al., 2011).  Expanding the OLUM to consider the effect of changes in the food 

system in England and Wales could also reveal useful insights, e.g. the extent to 

which a reduction in food waste could make a 100% organic conversion scenario 

more feasible.  This approach could allow for an exploration of tensions between 

health and sustainable production, in particular through an assessment of the extent 

to which changes in the agricultural industry would influence national-food 

consumption and public health, or vice versa. The latter would make the model more 

economic in its focus, and other models may be better suited to assessment of this 

kind (e.g. IMPACCT and CAPRI - also developed in GAMS – see Chapter 3).   

The greenhouse gas and fossil energy-use assessments presented in Chapter 7 

could also be expanded to consider a broader range of environmental criteria such 

as eutrophication, pesticide and water use.  The Cranfield Agri-LCA provides a basis 

for such assessments, and additional chapters / papers could apply the same data 

sources used within this study to explore the relative impact of organic agriculture 

using these additional assessment criteria. The biodiversity impact associated with 

the change in land-use following a switch to organic production methods could also 

be assessed in an LCA framework through an application of characterisation factors 

developed by Knudsen et al. (2017).  

The approach to assessing soil carbon sequestration within this study is also fairly 

rudimentary, i.e. “flat rates” were applied to the domestic and overseas land areas 

based on the sequestration rates reported in Gattinger et al. (2012).  A more detailed 

assessment approach could consider the C-stock changes that would occur 

following the widespread implementation of organic rotations and cropping systems 

through an application of biophysical models (e.g. Roth-C which has been calibrated 

for a range of agri-climatic zones,  Coleman and Jenkinson, 1996).  Future work 

could also consider whether the carbon sequestration benefits obtained through the 

implementation of organic practices could be allocated to individual crops and/or 

livestock products, and therefore expressed on a ‘kilogram of product’ basis.  Others 

have achieved this by considering the addition of carbon from manure and 

above/below-ground crop biomass within a range of organic rotations (e.g. Knudsen 

et al., 2014).  The lack of a consistent framework for the allocation of soil-carbon 
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stock changes in product carbon footprints using an LCA framework hinders 

developments in this direction (Goglio et al., 2015). 
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CONCLUSIONS  

The aims and objectives of this research were to investigate the extent to which a 

widespread conversion to organic farming would meet demands for a more 

productive yet lower environmental impact agriculture in England and Wales.  The 

results revealed that whilst organic agriculture can offer some improvements in 

resource-use efficiency, a widespread conversion would result in a major drop in 

productivity, in particular as a result of limited N availability, lower stocking densities 

and a major increase in the land area devoted to fertility building ley crops.  In 

addition, whilst fossil energy use is likely to be reduced within a 100% organic 

scenario, the greenhouse gas benefits obtained through a reduced use of 

manufactured inputs would be offset by an increase in cultivated land-areas, and the 

associated emissions from land-use change.   

At the same time, the results reveal that considerable improvements in fossil energy 

and greenhouse gas efficiency are possible within some farming systems where 

yield reductions are lessened, i.e. within ruminant agriculture and some outdoor 

cropping systems, although the differences between the systems are often marginal 

(organic agriculture does not currently offer a radical alternative to most systems 

operating in the UK).  The results also suggest that reducing the area of fertility 

building ley within organic rotations could considerably improve the outputs from 

organic farming, although positive N balances in such intensive rotations may be 

difficult to maintain (Chapter 5).  Revisions to organic standards with particular 

regard to the use of permitted inputs may also help to address lower productivity and 

environmental efficiencies within some particularly problematic areas (e.g. organic 

poultry production, Chapter 7). 

From a nutrient management perspective, the results from this study conflict with 

generic claims that organic farming can foster improvements in soil quality as many 

of the crop rotations assessed in Chapter 5 were deficient in P and K and the 

stockless organic rotations struggled to maintain a positive N balance, particularly on 

wetter and lighter soils. In particular, the results from Chapter 5 suggest that organic 

cropping systems are inherently more vulnerable to poor ley and/or cover crop 

establishment, due to a reliance on these sources of fertility which release nutrients 

in response to environmental conditions rather than crop demand.  The deficits of 
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phosphorus observed in Chapter 5 could be partly addressed by allowing sewage 

sludge application on certified land although this would require a change in 

international organic standards, whilst potassium deficits could be offset by 

weathering of mineral reserves, depending on the site and management conditions.  

The energy efficiency study (Chapter 4) also highlights that any claims that organic 

farming is more energy efficient than conventional should make note of some 

important exceptions by crop and livestock type with particular regard to monogastric 

livestock, although the same study found that the commonly held view that organic 

farmers’ require more fossil-fuel for crop cultivation may not be justified. 

The system-level modelling approaches applied within this study have demonstrated 

the value of applying a range of  assessment methods to better-understand the 

trade-offs associated with contrasting food production scenarios and the importance 

of functional units in determining the relative impacts of organic and non-organic 

farming.  The results from this study also concur with recommendations to take a 

food-systems perspective, to understand the full-impacts of contrasting land-

management practices and diets, through consideration of broader supply and 

demand aspects (e.g. the extent of any complementarity between organic 

production, food waste reduction and healthy consumption habits) although the 

consideration of these broader elements was beyond the scope of this study. 

In summary the results from this study suggest that generic claims that organic 

agricultural systems have an intrinsic potential to reduce GHG emissions are 

misguided, as they do not consider (a) the expansion in agricultural area that a 

widespread adoption of organic farming entails, or (b) reductions in resource-use 

efficiency for some important crops and livestock products and (c) limits to soil 

carbon accumulation over time.  Despite this some organic systems can clearly offer 

improvements in resource use efficiency, in particular through lower fossil energy 

requirements, although integrated approaches, incorporating the best of organic and 

conventional production methods, could offer optimal solutions for the development 

of environmentally sustainable food and farming.      
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Appendix A Book chapter: Can conversion to organic 

methods contribute to GHG mitigation and improved 

energy efficiency in livestock production? 

A.1 Abstract 

Central objectives of organic farming are reduced external inputs and increased 

long-term sustainability.  Whilst there may be local improvements in resource 

efficiency, the extent to which organic livestock systems contribute to net 

greenhouse gas mitigation and fossil energy efficiency gains depends on the 

livestock type, the unit of comparison, and the system boundaries  in time and 

space.   This chapter explores these questions and gives examples where organic 

systems could be improved.  It considers soil carbon sequestration in organic 

livestock systems. Individual cases are used to show how organic producers are 

implementing measures to improve environmental efficiency in practice. Challenges 

and opportunities for the sector are discussed from research, farm-practice and 

regulatory perspectives.  

A.2 Introduction 

Livestock’s contribution to global warming accounts for about 18% of global 

greenhouse gas emissions, and over 80% of agricultural land is currently used for 

livestock production (Smith et al., 2013; Steinfeld et al., 2006).  Consequently, 

livestock systems represent the main component of agriculture’s global warming 

impact (Idel, 2013) although the relative contributions vary considerably by species 

and production system, with ruminant livestock particularly significant, as a result of 

the global warming potential of methane (CH4) from enteric fermentation (see Figure 

A.1), which is now considered to be at least 28 times greater than CO2 over 100 

years (Trottier, 2015).  With over 25 million domestic ruminants added to the planet 

each year over the past 50 years, CH4 emissions from livestock production are 

increasing and ruminants account for about a quarter of anthropogenic CH4 

emissions (Ripple et al., 2014).  Greenhouse gas emissions from monogastric 

livestock are considerably less, although still significant, resulting mainly from CH4 

and nitrous oxide (N2O) emissions from stored manure and fertiliser used in feed 

production.   Increasing demand for livestock feed is also driving emissions, and 
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deforestation for soy production in the global south is the largest single contributory 

factor in emissions associated with livestock production (Steinfeld et al., 2006). 

The contribution of livestock to global warming is set to increase as world 

populations and food demand continues to grow, and there is a need for more 

efficient production and consumption by global populations (Smith, 2013).   Some 

commentators have called for a shift towards lower-meat diets, but it is recognised 

that a complete conversion to vegetarian or vegan diets could have unintended 

consequences (Garnett, 2009; Hallström et al., 2015).  Livestock systems provide a 

range of ecosystem services, ranging from aesthetic value to employment 

(Chatterton et al., 2015; Rodríguez-Ortega et al., 2014), and livestock may be grazed 

on land unsuited for crop production.  Soil carbon sequestration under ruminants on 

such land, through improved grassland management and carbon cycling in manure 

deposition, may be an effective greenhouse gas mitigation option if the net gains 

exceed increases in CH4 emissions, but there is a finite upper limit to sequestration 

in permanent grassland. Developments in this area are pertinent to the 4 per 1000 

initiative to promote soil carbon sequestration (Minasny et al., 2017).  The role of 

mixed crop-livestock farming systems in improving environmental efficiencies has 

also been emphasised within studies exploring the relative performance of 

specialised and integrated crop-livestock systems, with recent trends towards the 

separation of these components in agricultural systems exemplifying the need for 

more integrated approaches (Lemaire et al., 2014; Wilkins, 2008). 
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Figure A.1: Greenhouse gas emissions from the various emission sources associated 

with the dominant forms of livestock production in the EU-27.                                           

Emissions caused by direct or indirect land use change, such as deforestation in 

Brazil or conversion of pasture and scrubland in Argentina, were not included given 

the complexity of the processes, drivers and sectors involved. Source: Lesschen et 

al. (2011) 

Within this setting, organic farms represent an approach to production that places a 

special emphasis on reduced inputs (e.g. with regard to concentrate feed and crop 

protection products) and mixed farming (Lampkin et al., 2015).  These approaches 

are enforced by organic standards which have been developed in-line with four key 

organic principles defined by the International Federation of Organic Agriculture 

Movements (i.e. Health, Ecology, Fairness, Care, IFOAM, 2005).   As a result of this 

emphasis the diverse range of approaches applied on many organic farms can lead 

to improvements in resource-use efficiency, as a result of reduced inputs per unit of 

output, and increased soil organic carbon (SOC) concentrations in arable soils 

(Reganold and Wachter, 2016).  Despite these benefits, the environmental 

performance of organic livestock production relative to conventional/non-organic is 

still a matter of some debate, and can depend greatly on the livestock type and the 

unit of comparison (Lampkin et al., 2015).  For most organic livestock products, 

reduced inputs per hectare result in lower greenhouse gas and fossil energy use per 

unit of land area, whereas impacts per unit of product can be worse (see Figure A.2 

and Figure A.3). This is particularly so for monogastric livestock, where the 
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requirement for essential amino acids presents a particular challenge because, 

unlike ruminants, pigs and poultry are unable to produce their own and certified 

organic producers are unable to feed the synthetic amino acids commonly used in 

conventional systems (van de Weerd et al., 2009).  Difficulties in this area contribute 

to less efficient feed conversion and increased mortality rates in organic poultry 

production and can increase environmental impacts per unit of product compared to 

full-housed or free-range systems (Leinonen et al., 2012a, b).  Similarly pig 

production systems can perform worse as a result of inappropriate breeds, lower 

stocking densities and less output per hectare (Van der Werf et al., 2007).  Reduced 

milk yields, longer rearing periods, and higher feed conversion ratios on organic 

dairy farms can also lead to worse performance per litre of product (de Boer, 2003; 

Williams et al., 2006).   Additionally, it has been suggested that the lower yields from 

organic farming may result in increased agricultural land-areas, and greater impacts 

on biodiversity (Green et al., 2005) although more intensive, higher yielding 

measures  suggested as an alternative may also lead to expansion of agricultural 

areas as a result of market-forces (e.g. lowered commodity prices that result from 

over-production can encourage increased areas of production to ensure a viable 

economc return, Perfecto and Vandermeer, 2010). 

 

Figure A.2: Results from a review of Life Cycle Assessment (LCA) studies comparing 

the global warming potential of organic/non-organic production.  Impacts of organic 

production are expressed as a percentage of non-organic per unit of area (left) and 

per unit of product (right).  Values in parenthesis refer to number of studies within 

each product category.  Adapted from Meier et al. (2015) 

Although organic systems can therefore provide useful examples of improved 

environmental performance, the extent of the difference can depend greatly on the 

systems being compared (in particular the system boundaries), data sources and 

20%

30%

40%

50%

60%

70%

80%

90%

100%

Beef (3) Pork (3) Poultry  (4) Milk (10)G
lo

b
al

 w
ar

m
in

g 
p

o
te

n
ti

al
 -

o
rg

an
ic

 a
s 

%
 

o
f 

co
n

ve
n

ti
o

n
al

Livestock product

40%

60%

80%

100%

120%

140%

160%

180%

Beef (3) Pork (3) Poultry  (4) Milk (10)G
lo

b
al

 w
ar

m
in

g 
p

o
te

n
ti

al
 -

o
rg

an
ic

 a
s 

%
 

o
f 

co
n

ve
n

ti
o

n
al

Livestock product



 

287 

 

variation in environmental factors and/or typical practices between countries or 

regions. This chapter will provide examples of this variation and highlight particular 

challenges and innovative solutions identified within the sector.  Examples of 

innovation in practice will also be given through case study portraits of producers 

already adopting measures that are leading to gains in environmental efficiency with 

respect to greenhouse gas mitigation and fossil energy use.    

A.3 Greenhouse emission mitigation and energy efficiency in      

organic farming 

This section gives examples of greenhouse gas mitigation and improved energy 

efficiency through organic livestock farming, and highlights particular challenges for 

the sector with regard to livestock feeding, manure-management and farm system 

design. 

A.3.1 Improved feeding for greenhouse gas mitigation in organic 

livestock farming 

As outlined above, organic systems focus on reduced inputs to create resilient and 

sustainable systems. This approach distinguishes organic farming from other modes 

of production that focus on single aspects.   In practice, this systems approach leads 

to the application of production methods that can encourage a good biological 

balance and create a self-regulating farm with respect to livestock feed supply and 

demand, although it is recognised that this often cannot be absolutely attained 

(Lampkin et al., 2015).  In livestock farming, these approaches lead to adoption of 

practices that endeavour to meet physiological needs of animals whilst reducing 

environmental burdens created through the use of imported feed.  The production of 

meat/milk from forage is therefore a central tenet of the organic approach, and the 

EU organic standards dictate that at least 60% of the diet (on a dry matter basis) for 

ruminants shall be forage based.  Although many European cattle production 

systems are already adopting forage-based diets, an emphasis on pasture-fed 

livestock within organic production limits the use of crops for feed, and lower 

concentrate-feed rates are generally found in organic ruminant livestock systems 

(Lund and Algers, 2003).   
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Figure A.3: Fossil energy efficiency of organic and conventional livestock production 

- results from 21 comparative studies. Organic performs better below the line, worse 

above the line. Note the ‘trend-line’ is x=y for the purposes of illustrating the relative 

performance for each product type and is not a line of best fit. Production units were 

not constant across the studies compared. Adapted from Smith et al. (2014) 

This approach limits the amount of resource used in the production of feed crops,  

which currently poses a substantial challenge to global warming and food security  
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(33% of global arable land is used for livestock feed production, Ripple et al., 2014) 

and contributes to land clearing and subsequent soil degradation (El-Hage Scialabba 

and Müller-Lindenlauf, 2010).  The common use of clover and other nitrogen-fixing 

legumes in temporary grassland within organic systems also allows for the 

avoidance of manufactured nitrogen fertiliser, and the associated fossil energy input, 

leading to substantial improvements in production energy efficiency per unit of 

product (see Figure A.3) whilst supplying the ruminant animal’s protein and energy 

consumption requirements in a manner that can help to promote improved animal 

health (Lund and Algers, 2003).  

Organic production methods can therefore help to offset the impacts associated with 

the recent growth in feedlot-based production, which are particularly evident in South 

American countries such as Argentina and Brazil (Deblitz, 2012; Malau-Aduli and 

Holman, 2014), areas where emissions from deforestation are already particularly 

relevant (Deblitz, 2012; Flysjö et al., 2012; Malau-Aduli and Holman, 2014) although 

it should be noted that high concentrate-feed systems can still outperform organic 

production in environmental terms, as a result of increased outputs, better weight 

gain efficiency and improved manure management (Peters et al., 2010; Ross et al., 

2014).  The reliance on forage in organic systems can also lead to higher CH4 

emissions per kilogram of product, as a result of increased dry matter intakes and 

reduced digestibility compared to systems feeding high-levels of concentrate 

(Williams et al., 2006) although others note the severe difficulties relating to health 

and longevity that can occur in cereal/concentrate intensive systems (e.g. through 

increased incidence of acidosis)  which may, paradoxically,  lead to an increase in 

herd size and greater emissions overall (Novak and Fiorelli, 2009).  Such issues are 

less likely to be present in non-organic grassland-dominated systems, however the 

increasing popularity of cereal based beef production at a global level, makes the 

increased resource-use efficiency of less input-intensive approaches an important 

consideration (Deblitz, 2012; Lynch et al., 2011; Smith et al., 2015).   Lower 

replacement rates on organic dairy farms can also lead to reduced greenhouse 

gases if dairy calves produced are used for beef production, with the increased 

longevity of organic herds reducing or offsetting the emissions associated with the 

unproductive rearing of dairy cows and the need for suckler cows (Flysjö et al., 2012; 

Idel, 2013) although this is dependent  on there being demand for milk (the supply 
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from suckler beef and associated GHGs would increase, if the demand for milk falls 

and the demand for meat increases).   

As outlined above, organic pig and poultry production can also perform worse than 

conventional systems, in terms of greenhouse gas and fossil energy efficiency, as a 

result of poorer feed conversion.  In particular this relates to the inability of 

monogastic animals to produce their own amino acids as part of the digestion 

process. Although non-organic production systems can overcome this through 

supplementation with limiting synthetic amino acids (in particular methionine and 

lysine) their use is currently prohibited in organic systems.  An imbalanced supply of 

amino acids in organic poultry production can therefore result, despite the high 

protein concentration of soy and approved oilseed meals, as they are still deficient in 

essential amino acids.  In addition to affecting productive performance, this approach 

can lead to increased nitrogen output in excreta, through overfeeding of protein, and 

increased nitrogen losses in the outdoor run (Steenfeldt and Hammershøj, 2015).  

Higher mortality rates can also occur in organic systems as a result of increased 

metabolic energy requirements, predation pressures and greater incidence of feather 

pecking as a result of untrimmed beaks (Dekker et al., 2012).  Similarly the use of 

high protein feedstuffs in organic pig production systems can result in increased 

nitrogen losses, whilst limited amino acid supply, increased occurrence of coccidiosis 

and internal/external parasites through access to an outdoor area reduces feed 

efficiency and increases N and N2O losses via leaching and denitrifcation (Edwards, 

2005; Halberg et al., 2010; Hovi et al., 2003; Strid Eriksson et al., 2005). 

Performance in this area could be improved by making better use of the range to 

supply nutritional requirements,  thereby reducing the need for imported feed and 

excessive protein inputs.  Recent work completed within the Core Organic 2 project 

Improved Contribution of local feed to support 100% Organic feed supply to Pigs and 

Poultry (ICOPP) highlighted that herbage can meet 50% of the maintenance energy 

of dry sows, with lucerne and other legumes representing particularly promising 

crops due to their high protein, lysine and methionine contents (Crawley, 2015). 

Alternative crops such as quinoa also offer potential for improving feed efficiencies in 

organic farming with particular regard to the balanced supply of limiting amino acids 

(Steenfeldt and Hammershøj, 2015).  A study of six poultry meat farms in central 

Italy also highlighted the potential benefits of slower growing strains, which can 

https://www.google.co.uk/search?q=coccidiosis&spell=1&sa=X&ved=0ahUKEwjB7qfCtbvTAhURbVAKHQ93APwQvwUIIigA
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better utilise the natural environment through foraging behaviour.  The same study 

highlighted the need for a greater emphasis on the benefits provided by ranging 

areas with regard to ration formulation (Castellini et al., 2012).  A lack of suitable 

breeds hinders developments in this direction however,  and improvements in this 

area are likely to be necessary for environmental and animal welfare improvements 

to be realised within the organic sector (van de Weerd et al., 2009). 

Inbalanced diets can also present an issue for ruminant livestock,  in particular when 

animals consuming lush pastures take in amounts of protein far exceeding their 

requirements, which in turn leads to increased N2O loss following excretion (Eckard 

et al., 2010).  Balancing the high protein forages often found in organic systems (e.g. 

red clover and lucerne) with other feedstuffs that have a higher energy-to-protein 

ratio (e.g. maize or cereal silages) or providing high-energy supplements (e.g. 

concentrates and sugar processing by-products) could help to reduce losses 

associated with high protein diets in organic feeding regimes,  although a balance 

needs to be achieved in order to minimise consumption of human-edible 

components (Dijkstra et al., 2011; Eckard et al., 2010).  A lack of availabity of 

organic low protein/high energy processing residues (e.g. sugar beet pulp, brewers 

grains) as a result of the small size of the sector also limits developments in this 

area.  Breeding animals with improved nitrogen use effiency could also help to foster 

improvements in nitrogen efficiency, and the use of older animals in dairy farming 

may help to reduce N excretion per kg of milk, as a greater proportion of the protein 

consumed is used for milk production, as opposed to maintenance (Børsting et al., 

2003).   

A.3.2 Manure and slurry management 

The development of healthy, stable and fertile soils is a key objective of the organic 

approach. Use of farmyard manure is therefore a key element of organic farming 

systems (Lampkin et al., 2015). Whilst this approach avoids the emissions and fossil 

energy use associated with fertiliser manufacture, and can lead to increased soil 

organic matter (SOM) contents, it can result in greater impacts on the environment 

compared to the use of mineral N fertiliser as a result of difficulties in synchronising 

N availability with crop demand, resulting in nitrate-N leaching, and, in wet soils, N2O 

emissions due to high concentrations of N and organic C together (Rodrigues et al., 
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2006).  Furthermore,  the application of manure incurs high ammonia emissions and 

is more difficult to use with low loss application systems compared to slurry. The 

deep litter animal bedding approach commonly applied on organic units can also 

contribute to greater losses from the system through N2O release as a result of 

anaerobic conditions created through compaction by animals (Chadwick et al., 

2011).  Deep litter bedding systems may also result in greater amounts of CH4 

compared to slurry  systems, due to increased temperatures in the deep litter stack 

and compaction from animals which results in anoxic conditions and degradation of 

organic matter (Monteny et al., 2001).  Moving towards slurry based systems within 

the sector could therefore help to improve performance with respect to greenhouse 

gas mitigation - particularly where slurry stores are covered - although such a shift 

may present a conflict with the organic principles and standards which prescribe 

minimum requirements for the provision of dry-litter and non-slatted floor areas in 

housing to reduce stress (Chadwick et al., 2011; Novak and Fiorelli, 2009).   

Applying anaerobic digestion on organic farms could also help to improve nitrogen 

use efficiency, by providing a readily available-N source that can help to meet crop 

demands at times of peak demand whilst reducing the CH4 emissions associated 

with the storage of manure (Novak and Fiorelli, 2009).  The benefits in terms of N 

efficiency are maximised with the use of low-loss application methods. Anaerobic 

digestion, however, converts organic matter into biogas so that less is available to 

the soil, and although the biogas also offsets the need for fossil energy, the use of 

such approaches could be seen to be in conflict with core organic principles, which 

give emphasis to the importance of developing long-term soil health instead of 

feeding plants directly. Such practices may also encourage the presence of 

nitrophilious weeds on the farm through increased nitrogen availability (Stinner et al., 

2008). 

A.3.3 Integrated approaches and sustainable landscape design 

As mentioned above, the greater diversity in organic farming systems can lead to a 

more integrated production system that allows farmers to spread manure produced 

by livestock on cropping areas within the same farm.  This can help to avoid the 

stockpiling of nutrients in the form of manure and slurry, often seen in conventional 

livestock farms, which can lead to greenhouse gas emissions and other 

environmental problems (El-Hage Scialabba and Müller-Lindenlauf, 2010). In 
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addition a more holistic and integrated approach can help to reduce the climate-

related impacts resulting from the production of animal feed, by ensuring that a 

greater proportion of animals’ nutritional requirements are met by forage produced 

on-farm (Idel, 2013).   At the same time the use of ruminants in farming systems can 

help to improve degraded land through manure returns, and improved rotational 

grazing practices. The associated gains in SOC represent an important greenhouse 

gas mitigation measure that could be applied across a range of agri-climatic zones to 

create lower-impact, resilient and adaptive systems (Idel, 2013; Smith, 2014).  It is 

also important to consider the benefits that such integrated systems provide in terms 

of converting forage to edible food, and the current positioning of ruminants as poor 

convertors of feed seems to overlook the human-edible component of livestock diets 

in determining feed conversion efficiencies (Wilkinson, 2011).  Wilkins (2008) also 

highlights the benefits that could be obtained through a widespread adoption of 

integrated approaches, in terms of nutrient and energy-use efficiency, and in 

particular the potential role of ‘mixed farming at a distance’ (i.e. transfer of manures 

from specialised livestock to cropping farms).  Although many organic farms are 

already applying such integrated approaches, the transfer of manure between 

cropping and livestock farms could become increasingly relevant to the sector, if 

current trends towards specialisation continue (Guthman, 2014).   

Whether the mixed approaches used in organic production always offers a more 

efficient alternative when such aspects are considered is still a matter of debate, 

particularly given the environmental potential of integrated approaches that adopt 

both organic and non-organic practices (Reganold and Wachter, 2016).  In addition 

there is certainly scope for improving performance in complex mixed crop and 

livestock (e.g. through model-based support and multiple-objective optimisation, 

Groot et al., 2012) and organic systems may fail to reach to economy of scale 

realised through more intensive, specialised production systems.  However the 

flexibility inherent in mixed crop-livestock systems typically found within the sector 

constitutes a real strength that could allow for greater long-term environmentally 

sustainability in livestock production, in the face of fluctuating climatic conditions 

(Altieri et al., 2015). 
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The diverse, systems approach applied in the organic sector can also offer improved 

performance when considering a range of ecosystem services, and it has been 

suggested that the reduced outputs from organic and agroecological systems may 

represent a ‘sustainable optimum’ when broader environmental, economic and social 

objectives are considered (e.g. with respect to resilience to extreme weather events 

and human health, Altieri et al., 2015; Reganold and Wachter, 2016).  With these 

broader elements in mind there have been calls to move away from assessments 

that focus on single agricultural products and individual environmental impacts 

categories such as greenhouse gas emissions, towards system-level comparisons 

that utilise a range of qualitative and quantitative assessment methods to capture 

externalities and trade-offs between multiple dimensions such as soil, human health 

and the effects of adopting new technologies (Garnett, 2014). There have also been 

calls to consider the role of waste reduction and human diets in improving the 

sustainability of food systems, with a recent study suggesting that the widespread 

implementation of demand-side measures could reduce food-related greenhouse 

gas emissions by approximately 45%, compared to a 2050 baseline (Bajzelj et al., 

2014).  Another recent study has highlighted that diets that have a low greenhouse 

gas impact are likely to be in-line with dietary guidelines for most nutrients, 

suggesting a possible synergy between human health and greenhouse gas 

mitigation (Bälter et al., 2017). Affecting behavioural change towards healthy and 

sustainable diets presents a challenge however, and an integrated approach of 

economic incentives and improved information provision is likely to be required for 

real progress to be made in this area (Bajzelj et al., 2014; Macdiarmid et al., 2011).  

A.3.4 Organic livestock systems and carbon sequestration 

As outlined above, livestock production is the largest contributor to agricultural land-

use, and if all land used for livestock production were used for carbon sequestration, 

25–470% of the greenhouse gas emissions associated with food production could be 

offset (Ripple et al., 2014; Schmidinger and Stehfest, 2012; Smith et al., 2013).  At 

the same time livestock can indirectly contribute to increased soil carbon 

concentrations, in particular through manure deposition and improved grassland 

management (Smith, 2004) although management options that increase soil carbon 

concentrations may reduce outputs per hectare, and subsequently lead to increased 

demand for land and emissions from land-use change following agricultural 
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expansion (Paustian et al., 2004; Powlson et al., 2011; Smith et al., 2013).  Carbon 

sequestration in agricultural soils is also finite, as soils will reach a new steady state 

over time, and the process is reversible (i.e. the majority of any carbon that is built up 

over time will be released following cultivation, Powlson et al., 2011). Full-

greenhouse gas accounting should also be applied when considering the impacts of 

individual practices, as some measures that increase soil carbon accumulation may 

result in increased emissions from other sources (e.g. increased N2O emissions from 

fertiliser use, Paustian et al., 2004).  

Despite lower yields in organic livestock production, a meta-analysis conducted in 

2010 confirmed a 2.2% average annual increase in soil carbon contents within 

organic systems as a result of increased amounts of organic fertiliser (i.e. livestock 

manure and/or composts) and diverse rotations incorporating fertility building leys 

(Leifeld and Fuhrer, 2010).  A review of field studies carried out in the US also found 

that legume and manure based organic management resulted in similar levels of 

SOM increase and that the ley period alone is more significant than additions of 

manure, in terms of soil carbon contents (Marriott and Wander, 2006).    Improved 

rotational grazing practices also have the potential to sequester carbon by 

encouraging productivity and below-ground biomass, particularly on degraded land, 

although the benefits that can be obtained in this area may have been exaggerated 

in some cases (Nordborg, 2016). 

A study carried out by the Swiss Research Institute of Organic Agriculture (FiBL) 

built on the work by Leifeld and Fuhrer (2010) by reviewing 74 studies to identify 

differences in SOC sequestration under organic and non-organic management.   The 

results from this work revealed significantly higher SOC concentrations 

(+0.18±0.06% points), stocks (3.50 ±1.08 Mg C ha−1) and sequestration rates (0.45 ± 

0.21 Mg C ha−1 yr−1) compared with non-organic management (mean values ± 95% 

confidence interval).  As with the study by Leifeld and Fuhrer (2010), the prime 

cause was found to be the use of ley/arable rotations and the application of organic 

fertilisers (Gattinger et al., 2012).  Despite this observed benefit, Leifeld and Fuhrer 

(2010) highlight that the amount of organic fertiliser used in many organic systems 

generally exceeds that applied in conventional systems, and as the manure will 

generally be applied to agricultural land, organic systems cannot be considered to 
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provide a net benefit.  Leifeld and Fuhrer (2010) also state that a truly unbiased 

comparison should be based on similar organic fertiliser application rates, and crop 

rotations incorporating fertility building leys, as neither of these aspects are unique to 

organic farming systems.  Whilst this is true, an experiment of this kind would lose 

the significance of the farming system. In reality organic farmers are more likely to be 

using manures and a fertility building periods in their crop rotation as European 

organic regulations dictate that the fertility of the soil should be maintained and 

increased through crop rotations including legumes, and through application of such 

materials.  Certification bodies, such as the Soil Association in the UK, also require 

certified producers to include a balance of cropping and grass/clover leys in their 

crop rotations in order to create balanced systems.  In addition, when Gattinger et al. 

(2012) limited the assessment to organic farms receiving zero net-inputs, significant, 

positive differences in SOC concentrations and stocks were still found (0.13 ± 0.09% 

points and 2.16 ± 1.65 Mg C ha−1, respectively) although differences for 

sequestration rates were no-longer statistically significant  (0.27 ± 0.37 Mg C ha−1 

yr−1). 

As mentioned above any increase in soil carbon concentrations resulting from the 

adoption of such practices is finite and is likely to occur within the first 20 years 

following a shift in land-management, as a new steady-state is reached (Gattinger et 

al. 2012 found that differences in sequestration rates between the systems were only 

significant within the first 20 years of conversion).  Long-term studies have also 

highlighted that the rate of SOC accumulation over time is non-linear and will differ 

according to the previous land use and the amount of organic material that has been 

applied.  For instance the 140-year Broadbalk Experiment at Rothamsted Research, 

UK, found that on the ‘farmyard manure’ plots the rate of increase was greatest in 

the early years of application, and reduced over-time as the soil approached a new 

state of equilibrium (Powlson et al., 2011).  It is therefore critical that the initial, large 

gains in soil carbon sequestration, resulting from the addition of manures or other 

organic materials, are not extrapolated year on year under an assumption that the 

same increase will be observed indefinitely (Powlson et al., 2011). This view is 

supported by Smith et al. (2007) who highlight that terrestrial biomass sources only 

remove carbon from the atmosphere until the maximum capacity for the ecosystem 

is reached – which may take 15 to 33 years, according to the management practice 
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and farming system. This phenomenon is referred to as ‘sink saturation’ (see Figure 

A.4).    

 

Figure A.4: The accumulation of total organic carbon in the topsoil (0-23cm) of silty 

clay loam soils at Rothamsted, UK, under three treatments: no fertilizers or manure 

applied since 1844;  P, K, Mg plus 144 kg N ha−1 since 1852; farmyard manure at 35 t 

ha−1 fresh weight applied since 1885 plus 96 kg N ha−1 since 1968. Source: Powlson et 

al. (2011).  Amount of manure applied (35 tonnes per hectare) is equivalent to manure 

generated by 5 x beef suckler cattle over 6 months housed period – author’s 

calculation based on Defra RB209 (Defra, 2010) 

The concept of a saturation point is challenged somewhat by Soussana et al. (2007) 

who carried out an assessment of the greenhouse gas budget of nine European 

grassland sites using an eddy-covariance method which measures the Net 

Ecosystem Exchange (NEE) of carbon at a fine temporal resolution (see Gilmanov et 

al., 2007 for more details on the approach).  Losses of carbon as CH4 were also 

recorded in situ across all sites, whilst imports and exports of organic-C as manure, 

animal body-mass and harvested plant biomass were recorded and accounted for 

on-top of the NEE.  The study therefore provides a comprehensive assessment of C 

imports and exports of a range of permanent and temporary grassland sites (Smith, 

2014).  The results revealed that established grassland sites showed a large sink 

potential through a negative carbon balance (i.e. carbon imports to the grassland 

system exceeded exports) whereas the newly sown grass-clover mixtures displayed 

a net loss for one year out of two.  This challenges the conventional wisdom that 

permanent grassland systems tend to be at an equilibrium value (i.e. at the sink-
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saturation point referred to in Figure A.4) and that newly-sown grasslands can store 

more carbon than established pastures (Soussana et al., 2007) although others have 

noted that perpetual increases in soil carbon concentrations under long-

term/permanent grassland are untenable given results from long-term trials/surveys 

(Smith, 2014).     

A.3.5 Agroforestry in organic livestock and GHG mitigation 

Farming systems incorporating trees and livestock can also encourage improved 

greenhouse gas mitigation, and the uptake of these practices is encouraged within 

different standards for organic agriculture.  In particular, the adoption of these 

systems has the potential to reduce pressure on existing forests and can improve 

carbon sequestration in agriculture through the generation of above and below 

ground biomass (Lampkin et al., 2015).  Improved efficiency of livestock production 

can also be encouraged through the uptake of agroforestry, in particular through 

improved weight gains from increased shade, which limits high body temperatures 

and the associated appetite suppression (Smith et al., 2012) although the trees 

occupy land that could be used for forage/feed production.   Improved nitrogen use 

efficiency in feed crop production can also be encouraged through deposition of leaf 

litter by tree species that produce high amounts of leaf biomass (e.g. hybrid poplar), 

which can reduce the need for mineral fertiliser and the associated N2O emissions 

(Thevathasan and Gordon, 2004) and decreased nitrogen leaching in agroforestry 

systems may have the potential to reduce N2O from denitrification in surface water 

(Smith et al., 2012).  The ammonia (NH3) abatement potential of agroforestry 

systems has also been highlighted through a recent project which illustrated the 

benefits of enhanced tree cover in agricultural landscapes (Bealey et al., 2013).  

Despite the benefits that accrue in these areas, current uptake of agroforestry in 

livestock systems is low and a lack of targeted financial support is hindering the 

development of the sector in many countries. In the present climate uptake may 

therefore be limited to less intensive farms and those within the organic sector. 
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A.4  Examples of Innovation in Practice: livestock farmers   

progressing towards greenhouse gas mitigation 

In this section, examples of innovative farmers operating in the UK are given to 

provide an overview of how greenhouse gas mitigation measures are being applied 

to improve performance. Each of the farm businesses described are already 

applying research in practice to achieve progress towards environmental and 

economic efficiency and each represents an example of farmer-led system 

development. 

A.4.1 Case study 1: Organic Dairy Farmer in Shropshire:  incorporating 

trees with livestock 

Tim Downes runs a 300 cow spring calving dairy herd in the west of England and is 

currently making good use of trees on his land to obtain benefits in the following 

areas:  

 N leaching - trees are helping to keep vital nutrients in the field, potentially 

helping to reduce indirect N2O emissions from denitrification 

 Improved grass growth in the spring - trees are providing increased shelter 

and temperature regulation, potentially helping to improve pasture productivity  

 Renewable energy - the farmhouse is now completely self-sufficient for 

woodfuel  harvested from the on-farm woodland and shelterbelts  

 

A recent project has involved Tim planting a dedicated area of sycamore, hornbeam, 

lime and elm as a nutritional trial which will eventually supplement the herd’s 

nutrition. A separate paddock consisting of crack and white willows will also be used 

to investigate the potential benefits that may be provided through anti-inflammatory 

properties provided by salicylic acid in the willow trees, which could help cows with 

mastitis and other conditions.  Tim will also be investigating whether the trees help to 

improve parasite control on the farm by increasing the tannin content of the livestock 

diets.   
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Figure A.5: a new agroforestry project has been established at Tim Downes’s organic 

dairy farming operation in Shropshire, UK, which will investigate the potential benefits 

that trees may provide in terms of nutrition and livestock health 

A.4.2 Case study 2: The Lakes Free Range Egg Company:  

 encouraging better use of the range through silvopoultry 

Tree planting has also been used to promote environmental benefits at the Lakes 

Free Range Eggs Company in Cumbria where over 200,000 trees have been 

planted over 2400 hectares.  Benefits observed include: 

 Improved egg quality (i.e. increased percentage of class A eggs) encouraged 

through reduced stress and increased ranging behaviour (Bright and Joret, 

2012) 

 Reduced mortality as a result of increased cover - trees protect against 

predation and climatic extremes through canopy cover whilst encouraging 

ranging outside which reduces indoor stocking rates, feather pecking and 

mortality rates (Bright et al., 2011; Bright and Joret, 2012)  

 Carbon storage in above and belowground biomass (Bright et al., 2011).   

Fast growing species such as poplar and willow have been combined with slower 

growing natives such as oak and maple to create a highly biodiverse approach to 

range management.  Whilst trees in the range cannot replace the need for bought in 

feed, David Brass, CEO, believes that they play a valuable role in promoting the 
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welfare of animals and that the associated business case is strong, with the results 

in terms of improved product quality more-than paying off the cost of establishment. 

 

Figure A.6: a diverse mix of trees at The Lakes Free Range Egg Company. The trees 

encourage better use of the range, improve product quality and reduce mortality rates 

whilst promoting carbon sequestration and helping to offset the emissions associated 

with feed imports.     

A.4.3 Case study 3:  Fordhall Farm: 100% pasture fed livestock 

As outlined above moving towards grass based diets is a central tenet of the organic 

approach, and this method is exemplified by the 100% forage system being applied 

at Fordhall Farm in Shropshire. Arthur Hollins developed the “foggage” feeding 

approach where a diverse grassland mixture accumulates enough grass in the 

growing season to sustain cattle outdoors all year round.  Benefits of this approach 

include: 

 Very low fossil energy use in forage production as animals graze all-year (as 

some of the soils cannot support all-winter stocking, livestock are moved to 

sandy hills during wetter months and to the wetlands during the dry summer 

months) 

 Reduced risk of poaching through the tight root structure of the highly-diverse 

permanent grassland  
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 The permanent grassland also provides a substantial carbon sink - although 

the soil carbon accumulation rate is likely to be low as the grass was 

established over 65 years ago 

Although the 100% forage system reduces the costs and environmental burdens 

associated with feed inputs, slower growing cattle will emit more CH4 per unit of 

liveweight gain.   

 

Figure A.7: diverse, herbal leys established over 70+ years are an essential part of 

maintaining a 100% forage system at Fordhall Farm  

 

A.4.4 Case Study 4:   Pound Farm: building soil organic matter  through 

composting and effective rotation design 

The maintenance and improvement of soil health is central to the organic approach 

and practices that can promote developments in this area have been applied on 

Pound Farm, in South West England for over 15 years.  Grass clover leys are used 

on over 30% of the cultivated area, and composted manure and imported green-

waste compost have been regularly applied since the farm converted to organic 

status.  Whole crop cereal silage has also been used to provide for the cattle’s 

nutritional requirements and to reduce imported feed usage.  Potential benefits of 

these practices include: 

 Reduced energy and greenhouse gas burdens from the production and 

transport of imported feed 
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 Reduced N excretion through a balance of protein and energy in livestock 

rations  

 Improved soil carbon sequestration over time (see Figure A.8) 

 Improved soil biological life 

 

Figure A.8: Soil Organic Matter (SOM) records from Pound Farm collected over 16 

years (average data from 4 fields) 

A.5 Challenges and opportunities in research and development 

In spite of the mitigation and carbon sequestration benefits that can accrue from the 

practices described in the above case-studies, accounting for the greenhouse gas 

saving that can result from their adoption presents a challenge.  In particular there is 

a divergence over the unit of comparison that should be applied when comparing 

individual practices and system-level approaches such as organic management.  

Although many commentators suggest that expressing impacts per unit of food 

produced is the most logical approach, in view of the need to produce more from 

less resource (Leifeld and Fuhrer, 2010) others highlight that focusing on impacts 

per unit of product can create a “blind spot” by hiding the increased impacts 

associated with imports and the additional land-use associated with their production 

(Salou et al., 2017) although this does not occur when authentic life cycle 

assessment is applied in the analysis. It has therefore been suggested that the focus 

should shift from simple production factors and instead consider how land 
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management can be adapted to promote healthy and sustainable economies 

(McIntyre et al., 2008).  Whilst combining greenhouse gas and fossil energy 

assessments with ecosystem service evaluation can provide a useful method of 

capturing these broader elements (Chatterton et al., 2015) further developments are 

required in this area to effectively quantify performance and ensure that trade-offs 

are minimised.   

The importance of the long-term impacts of contrasting farming systems has also 

been highlighted in the context of climate change research and the predicted 

increases in drought and flooding (Altieri et al., 2015).  In this respect there is 

evidence that organic farming can provide a more resilient system, in particular 

through improved soil health and associated water retention (Lampkin et al., 2015).   

Challenges are also faced in research on the costs/benefits associated with changes 

in soil carbon stocks within farming systems.  Although it is possible to account for 

soil carbon sequestration gains on a unit of area or country basis, the non-linear 

nature of any increase, site specific variation, and various timeframes used as a 

basis for the as assessment, can make it difficult to express benefits per unit of 

agricultural product on a consistent basis (Petersen et al., 2013).   

Research also has a key role to play in the development of more sustainable farming 

practices within the organic livestock sector.  In particular, adapting monogastric 

breeds for organic management (i.e. developing breeds suited to longer rearing 

periods and increased reliance on feed foraged from the range and/or using dual 

purpose breeds) would help to reduce the high metabolic pressure created by 

combining organic diets with breeds more suited to intensive conventional systems, 

and other factors conflicting with the IFOAM organic principles  (e.g. discard of male 

chicks in egg production systems, van de Weerd et al., 2009).  It is also clear that 

organic management practices could play a key role in reducing greenhouse gas 

emissions within the non-organic agriculture sector, and integrated approaches to 

livestock management can offer a highly efficient approach to production that can 

achieve some of the benefits of lower-inputs without sacrificing as much productivity.    

From a regulatory perspective, adjusting the organic standards could also allow for 

improvements in the relative performance of the monogastric livestock sector, in 

particular as higher mortality rates and disease/predation pressures are associated 

with outdoor systems (van de Weerd et al., 2009; Weeks et al., 2016).  As part of the 
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IFOAM-led ‘Organic 3.0’ initiative, there is scope to review the role of organic 

standards in encouraging best practice against multiple sustainability objectives, as 

part of the next phase in the sector’s development (Arbenz et al., 2016).  

Table A.1 below summarises some of the methodological, farm-level and policy 

challenges and opportunities facing the organic sector that could be addressed to 

improve performance from a greenhouse gas mitigation and fossil energy efficiency 

perspective: 

Table A.1. Challenges and opportunities within the organic livestock sector from a 

greenhouse gas mitigation and fossil energy efficiency perspective 

Focus area Challenges Opportunities 

Research History of reductionist approaches to GHG / 

fossil energy use assessment (i.e. focusing 

on impacts for a single product) 

 

Lack of awareness on the extent to which 

organic / agroecological approaches can be 

successfully interwoven in current food 

systems 

 

Lack of consensus on accounting for soil 

carbon sequestration benefit that can be 

obtained from grassland / manure  

 

Developments in farm and food system-level 

assessment approaches 

 

Growing interest in farmer-focussed research (e.g. 

through the EU Horizon 2020 programme) will help to 

embed greenhouse gas research in ‘real-world’ 

contexts  

 

 

Increasing interest in this area following COP 21 and 

the 4 per 1000 initiative   

On-farm 

 

 

 

 

 

 

 

Lower rates of productivity leading to worse 

performance per unit of product, particularly 

within poultry sector 

 

 

 

 

 

 

Opportunities to improve uptake of targeted feeding 

measures on organic farms to increase feed 

conversion efficiency and reduce imports (e.g. phased 

feeding, sex segregation).   

Continuing growth of organic and free range sector 

may encourage further development of slow growing 

strains in monogastric livestock 
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On-farm  

(continued 

from previous 

page)  

Manure management on many organic farms 

leading to high rates of N loss and ‘leaky’ 

systems 

 

Specialisation and ‘conventionalization’ 

within some organic farming systems 

 

Lack of organic feed availability with 

particular regard to high-quality protein and 

100% organic feed supply regulation (due to 

be implemented in 2018) 

Wider application of nutrient management planning 

tools to improve on-farm nutrient management and 

improved storage / composting  

 

Opportunities for ‘mixed farming at a distance’ e.g. 

through manure banks and use of digestate from 

anaerobic digestion as an effective fertiliser 

  

Developments in alternative protein and amino acid 

sources (e.g. insect larvae, algae) 

 

Policy and 

regulative 

Constraints induced by organic standards 

with regard to feed and nutrition (e.g. 

prohibition on use of pure amino acids) 

 

Lack of policy support for uptake of organic 

farming in some countries 

 

 

IFOAM Organic 3.0 initiative recognises the 

importance of moving from process to outcome based 

indicators in ensuring the development of the sector 

and that this may require flexibility in standard setting 

Development of action plans for agroecology and 

organic farming (e.g. in France and Scotland) may 

encourage other countries to follow suit to support 

development of the sector and new entrants  

 

Although many of the opportunities described in Table A.1 may be desirable from an 

environmental standpoint, they may also be difficult to achieve in the short-to-

medium term.  In particular implementation of a more flexible approach to organic 

standards could be a slow process in view of conflicting priorities, particularly with 

regard to ‘no-go’ areas.  Encouraging greater integration of crop and livestock 

production systems can also present economic and logistical challenges where 

specialised farms are situated at some distance apart.  Ensuring that stakeholders 

are actively engaged in research and policy developments can help to ensure 

efficacy of any changes whilst making sure that multiple voices are heard and end-

user needs met. 
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A.6 Summary and outlook 

Organic livestock systems can offer an improved approach to livestock production 

from a greenhouse gas and resource efficiency perspective, when performance is 

compared on a land-area basis. Differences between organic and non-organic 

systems are less apparent when comparisons are made per unit of product, with 

lower rates of production on organic farms offsetting the use of fossil-fuel intensive 

inputs in conventional production, particularly within the monogastric livestock sector.  

Although the scope to scale-up a less productive form of agriculture has therefore 

been questioned by some commentators, who have highlighted increasing food 

demands from growing populations, others highlight a critical need to adjust what we 

eat and the amount we waste, pointing out that changes in these areas could have a 

much greater impact on food security and greenhouse gas mitigation than improving 

the efficiency of agricultural production, and potentially allow for the broader adoption 

of more sustainable practices (Smith, 2013; Tittonell, 2014). The degree of 

complementarity between sustainable production and consumption habits is still 

unclear however and there is a pressing need to account for real-world complexity in 

farming systems, particularly in smallholder farming, on which most of the world’s 

hungry currently rely (Horlings and Marsden, 2011).  In addition, an assessment of 

the carbon sequestration benefits that can accrue from organic management has 

been entirely absent from many comparative studies, and whilst this may be a 

difficult area to assess, the potential benefits are such that it should not be ignored.  

It is also clear that there is considerable scope for improvement within organic 

livestock farming. In particular ensuring that animals’ diets are optimised through 

balanced energy and protein levels will help to avoid excessive N2O emissions whilst 

potentially ameliorating the CH4 generation associated with higher forage diets.  

Developments in organic breeding and range management could also help to 

improve resource efficiency within monogastric livestock management and greater 

flexibility in standard setting has the potential to address some of the challenges 

faced in this area.  Improved manure management on organic farms could also help 

to improve nitrogen use efficiency whilst reducing losses of CH4 and providing a 

valuable source of income.  It should also be remembered that no-single farming 

system will be able to feed the world whilst reducing greenhouse gas emissions to a 

safe level, and that integrated approaches adopting the best-of-organic and non-
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organic approaches may offer optimal solutions.  Whether such systems could be 

considered to be ‘organic’ if they adhere to the IFOAM principles is a matter of 

considerable debate however a flexible and innovative approach is likely to be 

required within both the organic and non-organic sectors if real improvements are to 

be scaled-up.  

A.7 Sources of further information  

More details on many of the issues presented here can be found on the University of 

Oxford and Oxford Martin Programme’s Food Climate Research Network:  

http://www.fcrn.org.uk and through the Round Table on Organic Agriculture and 

Climate Change, an initiative founded in 2009 at the United Nations Climate Change 

Conference: http://www.organicandclimate.org 

The online resource hub Agricology also provide a useful repository of information on 

mitigation options, carbon footprinting tools and farmer case studies:  

https://www.agricology.co.uk/.    

Scotland’s Rural College also provide a range of information sources and case 

studies on this topic through their Farming for a Better Climate Programme: 

https://www.sruc.ac.uk/info/120175/farming_for_a_better_climate 

The Organic Research Centre have also devoted a section of their website to 

information on agroforestry, which provides details of relevant publications and links 

to relevant websites in this area: 

http://www.organicresearchcentre.com/?go=Research%20and%20development&pag

e=Agroforestry 
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Appendix B Crop groups used within Optimal Land Use 

Model (OLUM) and associated yields 

B.1 Crop groups 

Within the Optimal Land Use Model (OLUM) crops were grouped by their growth 

characteristics, similar nutrient requirements and pest/disease susceptibility (e.g. 

root vegetables, cereal crops, top-fruit) using the subset feature in GAMS21.  Crop 

group categories are summarised in Table B.1 to Table B.3 below: 

Table B.1: Crop groups and associated crop types – arable and pasture 

Cereals Peas  and 

beans 

Forage 1 Forage 2 Heavy 

feeders 

Pasture 

Winter 

wheat 

Field beans Grass/clover Forage 

maize 

Potatoes Permanent 

pasture 

Winter 

barley 

Peas – field Red clover Fodder beet Sugar beet Rough 

grazing 

Spring 

wheat 

Peas – 

vining 

 Whole crop 

cereal 

Oilseed 

rape 

 

Spring 

Barley 

     

Oats      

Triticale      

Rye      

 

                                            
21

 General Algebraic Modelling System (GAMS).  GAMS Development Corporation. 

http://www.gams.com/ 

 

http://www.gams.com/
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Within each group crops were listed as ‘stocked’ (i.e. with a manure-N requirement) 

or ‘stockless’ (i.e. no manure-N requirement) and by their end use (i.e. livestock feed 

or human consumption). 

Table B.2: Crop groups – vegetables 

Brassicas Root 

veg 

Salad Veg 

legumes 

Protected 

crops 

Cucurbits Other 

Cabbage Beetroot Lettuce Peas Tomatoes Pumpkins Other - 

horticulture 

Broccoli Carrots Spinach Climbing 

beans 

Cucumbers Courgettes  

 Onions   Peppers   

 Leeks   Lettuce - 

indoor 

  

 Parsnips      

 Turnips      

 

Table B.3: Crop groups – fruits 

Top fruit Soft fruit 

Apples Strawberries 

Pears Other 

Cider apples  

Cooker apples  
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B.2 Crop yield data 

Crop yields were derived through application of the NDICEA model (Nitrogen 

Dynamics In Crop Rotations in Ecological Agriculture) and typical organic rotations 

(see Table 2.2: Typical organic rotations assessed within NDICEA, in Chapter 2: 

Overview of Methods Applied in Thesis).  NDICEA has been shown to be an 

accurate tool for predicting N availability in organic cropping systems on a range of 

soil types and rainfall zones in the UK (Smith et al., 2016).   

 

Figure B.1: Overview of the NDICEA model components and interactions 

The NDICEA model consists of three modules, illustrated in Figure B.1.  Within the 

first module, soil water dynamics are simulated taking into account irrigation, rainfall, 

evapotranspiration, capillary rise and percolation.  The second component deals with 

the mineralisation of nitrogen within SOM, organic manure and crop residue.  The 

third component deals with inorganic nitrogen dynamics, including inputs from 

mineralisation, atmospheric deposition, fertilisers, irrigation, biological fixation, and 

losses from the system in terms or denitrification, leaching and crop uptake.   A 

calibration feature allows for automatic adjustment of 46 parameters which affect N-

Water: topsoil and 
subsoil 

Soil properties: topsoil 
and subsoil

Inorganic nitrogen

INPUT DATA: OUTPUTS:

Rainfall
Evapotranspiration
Irrigation

Soil organic matter 
Organic fertiliser
Soil texture
Soil pH
Temperature

Inorganic fertiliser
Atmospheric deposits
Irrigation
Maximum N fixation rate
Mineral N measurements 

N Leaching

Denitrification

Volatilisation

N available for 
crop uptake 

Crop N uptake

Organic 
Matter fluxes

Mineral balance 
(P,K)

MODEL COMPONENTS:

organic N 
mineralised

Mineral N 
to organic 
matter

Percolation 
and capillary 

rise

Calibration
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loss pathways such as leaching and denitrification (Swain et al., 2015).  The 

automatic calibration feature is implemented by entering soil mineral N and soil 

organic matter (SOM) measurements taken from the site to be assessed (Smith et 

al., 2016; Swain et al., 2015; Van der Burgt et al., 2006).  NDICEA aims to provide a 

learning tool to determine the efficacy of alternative rotation scenarios from a 

nitrogen use efficiency perspective and whether target yields are infeasible because 

of insufficient nitrogen (Van der Burgt et al., 2006).    

NDICEA is particularly well-suited to assessing N availability within organic systems 

as a result of the wide range of ley-management, cover-crop and organic fertiliser 

options available within the model interface.  This allows for greater flexibility in 

designing diverse rotations and assessing their nitrogen use efficiency, compared to 

other tools such as PLANET (Smith et al., 2009).  

As the model is target-oriented, average yield input data were adjusted manually in-

line with nitrogen availability over the course of a rotation, as described in Chapter 2.  

B.3 Results from yield adjustments with NDICEA   

Average yield data for a range of example crops are shown in Figure B.2 to Figure 

B.4 below: 

 

Figure B.2: Adjusted yield for organic crops grown under a range of rainfall 

conditions (avg. N fix scenario only)  error bars = s.d. 
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Figure B.3: Adjusted yield for organic crops grown on a range of soil types (avg. N fix 

scenario only) error bars = s.d.  Organic = high organic matter soil (i.e. >15% organic 

matter) 

 

Figure B.4: Adjusted yield for organic crops by N fixation rate within NDICEA. Error 

bars = s.d. 
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For all crops higher yields were found under dry conditions and on heavy and 

organic soil types. Adjusting the N fixation rate had the greatest effect on potential 

yield (Figure B.4).  For all rotations total product removal was significantly higher on 

dry soils in relation to wet and very wet conditions (P<0.01).  Product removal was 

also significantly higher for heavy and organic soils compared to light and medium 

soil types respectively (P<0.05).   

B.3.1 Pasture yields 

As the focus of NDICEA is on rotational systems (Van der Burgt et al., 2006) a 

separate model was applied to estimate pasture yields. Linear regression equations 

were calculated based on the relationship between grassland yield and site class 

using data reported in Brockman (1994), see Figure B.5: 

 

Figure B.5: Linear regression equations defined for conserved/ensiled and grazed 

grassland outputs by site class, based on yields and class descriptions in Brockman 

(1994) 

The regression model was applied for a range of site classes, with each class 

defined by soil type, altitude and annual rainfall using a method derived from  

Williams et al. (2006):      
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     (1) 

Site class 𝜔 = S +  +  

Where: 

 S  1 for heavy soils, 2 for medium soils, 3 for light soils 

  2 if altitude >300m, 1 if altitude >100m,  else zero 

And: 

 0.225 + 1.95 (z/100) -0.5 ( z / 100)2 

z  0.4R   where R = annual rainfall 

 

For the purpose of this study the altitude categories >300m and >100 were used to 

represent Severely Disadvantaged Areas (SDA) and Less Favoured Area (LFA) 

respectively.   

 

Site classes were produced for the grassland-dominated organic conversion trial at 

the University of Wales, Aberystwyth (Haggar and Padel, 1996) and for the long-term 

organic systems trial at Scotland’s Rural College (SRUC,Taylor et al., 2006) using 

the method described above. Grassland yield estimates were produced using the 

regression model described in Figure B.5 and compared to the recorded values from 

both experimental sites (Figure B.6 and Figure B.7):  
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Figure B.6: Comparison of modelled permanent grassland outputs and recorded 

yields from Ty Gwyn Organic Dairy Conversion project (Haggar and Padel (1996) 

 

 

Figure B.7: Comparison of modelled grassland outputs and average cut/grazed yields 

from SRUC (Taylor et al. 2006) 

Modelled outputs were close to the recorded values at both sites (i.e. within 1-2 

tonnes-DM ha-1 yr-1). Grassland yields were therefore estimated for each of the 16 

land classes described in Figure 1. Outputs for each class (tonnes of DM ha-1yr-1) 

are displayed in Table B.4 below: 
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Table B.4: Modelled pasture yields for each land class and altitude (>300m = SDA, 

>100m = LFA).  Average yield of grazed and conserved grass (tonnes dry matter ha-1 

yr-1).  Organic = high organic matter soil (i.e. >15% organic matter) 

 

Non LFA 

Rainfall/soil 
type Organic Heavy Medium  Light 

dry 6.0 6.8 6.0 5.2 

medium 6.2 7.0 6.2 5.4 

wet 6.5 7.3 6.5 5.7 

very wet 8.0 8.8 8.0 7.2 

     
 

LFA 

Rainfall/soil 
type Organic Heavy Medium  Light 

dry 5.2 6.0 5.2 4.4 

medium 5.4 6.2 5.4 4.6 

wet 5.7 6.5 5.7 4.9 

very wet 7.2 8.0 7.2 6.4 

     
 

SDA 

Rainfall/soil 
type Organic Heavy Medium  Light 

dry 3.2 5.2 5.1 5.0 

medium 3.4 5.2 5.1 5.1 

wet 3.7 5.3 5.2 5.1 

Very wet 5.3 5.4 5.3 5.3 
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Appendix C Optimal Land Use Model (OLUM) description 

A Linear Programming (LP) approach was selected to assess the production and 

land use impacts of a 100% organic England and Wales.  LP is an optimisation 

method used for maximising an objective subject to other constraints (Jones and 

Salter, 2013).  LP approaches have been widely applied for the assessment of policy 

and/or changes in environmental factors (e.g. CO2 concentrations and temperature, 

Audsley et al., 2006).   

The programming language GAMS (General Algebraic Modelling System, 

www.gams.com) was selected for the construction of the model.  GAMS offers 

several advantages over other common languages. In particular by allowing for 

simple model classification through the use of mathematical symbols and algebraic 

relationships it is possible to define models in unambiguous terms that can be readily 

understood and adjusted.  In addition the language includes in-built features for 

error-detection and has compatibility with Excel through a GAMS Data Exchange 

(GDX) facility.  All identifiers used within the GAMS code must also be declared and 

described with associated text before being referenced in the model, which can be of 

great assistance when returning to models after a period of absence in addition to 

helping with understanding of the modelled processes and interactions.  The large 

library of existing models and an online GAMS community 

(http://www.gamsworld.org) allows for sharing of ideas and approaches between 

those facing similar challenges (Bussieck and Meeraus, 2004). For more information 

on the language and examples of its application see http://www.gams.com/.  

C.1 Model overview and objective function 

The Optimal Land Use Model (OLUM) developed for this study takes a biophysical 

approach to modelling production and land use under an organic scenario.  The 

primary objective function is to maximise the energy output (expressed in 

metabolisable energy - ME) of farming in England and Wales, i.e. 

 

 

http://www.gamsworld.org/
http://www.gams.com/
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( 1 ) 

𝐌𝐚𝐱𝐢𝐦𝐢𝐬𝐞: 𝐙 = ∑ 𝑪𝒊𝒋

𝒏

𝒊𝒋=𝟎

∙ 𝒙𝒊𝒋    

 𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨      𝑹𝐱(𝐢𝐣)  ≤  𝐛;  𝐱(𝐢𝐣)   ≥  𝟎 

 

Where Z represents the objective variable (i.e. total food output as ME),  𝐶𝑖𝑗 is the 

energy output in of individual organic agricultural products (i) on each soil and rainfall 

class (j) and 𝑥𝑖𝑗  is activity levels (land areas for crops and livestock numbers).   𝑅𝑥𝑖𝑗 

represents the resource requirements of producing crops or livestock (𝑥𝑖𝑗) and b is 

the resource endowment and input availability vector (e.g. manure-N, land by soil 

and rainfall class).   Constraints were specified as linear inequalities and equalities 

(e.g.  A · x <  b,  A · x =  b) determined in accordance with: 

i. Availability of land by farm type and land class 

ii. Maximum/minimum crop areas (ha) by crop groups (i.e. rotation constraints) 

iii. N supply limits (including crop and livestock offtake, atmospheric deposition 

and biological nitrogen fixation by legumes) 

iv. Maximum and minimum stocking densities (livestock units per ha) 

v. Livestock numbers, with young-stock (e.g. store cattle, finishers) defined as a 

proportion of breeding stock (e.g. suckler cows, dairy cows) 

vi. Annual feed requirements by livestock feed type  in metabolisable energy and 

crude protein (CP) 

vii. Limits on the total production (tonnes) of individual crops and livestock 

products, set at 150% of the current supply on the assumption that further 

increases could not be absorbed by the market. 

C.2 Land availability constraints 

Land availability by farm type and land class were determined using data from the 

2010 June Agricultural Census (JAC) combined with a National Soil Resources 

Institute (NSRI) dataset and 30-year rainfall data from the UK Met Office.  Land 

areas for market gardens, orchards and field vegetables were also derived from the 
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JAC and treated as separate farm-types within the model.  Total land availability 

limits for each farm-type and land class were defined as shown below: 

( 2 ) 

∑ 𝑎𝑐,𝑡,𝑠,𝑟

𝑛

𝑐 =0

  =  𝐿𝑡,𝑠,𝑟        ∀  𝑡, 𝑠, 𝑟 

 

Where 𝑎𝑐,𝑡,𝑠,𝑟 is total crop area and 𝐿𝑡,𝑠,𝑟 land availability by farm type (𝑡), land class 

(𝑠) and NUTS1 region (𝑟).  An assumption is made that the area of each robust farm 

type will remain the same under organic management as evidence suggests that for 

the vast majority of farms, the dominant enterprise will remain in place post-

conversion to organic management (Howlett et al., 2002; Langer, 2002).   

The yield by soil and rainfall class was set as a parameter within the model, drawing 

on the results from the modelling with NDICEA and the coverage of each soil/rain 

class (see Appendix B). 

C.3 Maximum/minimum crop area constraints 

Limits on crop areas were defined by crop-area constraints constructed for each 

farm type, using data from three sources providing technical information to the 

organic sector (i.e. Davies and Lennartsson, 2005; Lampkin, 2002; Lampkin et al., 

2014) and crop areas reported within a three year matched sample of organic farms 

in England and Wales (Moakes et al., 2012; 2014, see Table 7 below).   Constraints 

(i.e. maximum crop areas) were defined by crop group as illustrated in equation 3: 

 

( 3 ) 

∑ 𝑎𝑔,𝑡,𝑠,𝑟

𝑛

𝑔 =0

  ≥  𝐿𝑡,𝑠,𝑟  ∙ 𝑅𝑔,𝑡       ∀  𝑡, 𝑠, 𝑟 
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Where 𝑎𝑔,𝑡,𝑠,𝑟 is total land-area by crop group (g), 𝐿𝑡,𝑠,𝑟 is land area within each farm 

type, soil/rainfall class and region (𝑡, 𝑠, 𝑟)  and 𝑅𝑔,𝑡 is the coefficient of land area (i.e. 

a proportion of utilisable agricultural area - UAA).  For the purpose of this study crop 

groups were based on growth characteristics (e.g. cereals, beans and peas, alliums, 

root vegetables - see Appendix B).  Crops were also defined as “stocked” or 

“stockless” within each group and by their end-use (i.e. livestock feed or human 

consumption).   Maximum crop-group areas were defined with the same equation 

structure, using a “less than or equal to” sign (i.e.  ≤ in place of the ≥  shown above). 

C.4 Nitrogen supply and offtake constraints 

Nitrogen supply and crop/livestock offtake was defined on a regional basis, to allow 

for transfer of manure between farms within the same area, as shown in equation 4: 

( 4 ) 

∑ ∑ ∑ 𝑐𝑜𝑐,𝑡,𝑠,𝑟

𝑛

𝑠 =1

  ∙  𝑎𝑐ℎ,𝑡,𝑠,𝑟  + ∑ ∑ ∑ 𝑙𝑖𝑣𝑛𝑙

𝑛

𝑠=1

𝑛

𝑡=1

 ∙ 𝑙𝑙,𝑡,𝑠,𝑟 

𝑛

𝑙=1

  

𝑛

𝑡=1

𝑛

𝑐=1

 

≤ ∑ ∑ ∑ 𝑓𝑥𝑐,𝑡,𝑠,𝑟

𝑛

𝑠 =1

  ∙  𝑎𝑐,𝑡,𝑠,𝑟  + ∑ ∑ ∑ 𝑙𝑢𝑙,𝑡,𝑠,𝑟

𝑛

𝑠=1

𝑛

𝑡=1

 ∙ 𝑙𝑙,𝑡,𝑠,𝑟 ∙ 𝑁𝑖𝑛𝑡 

𝑛

𝑙=1

  

𝑛

𝑡=1

𝑛

𝑐=1

  

+ ∑ ∑ ∑ 𝑖𝑚𝑝𝑙𝑡𝑠𝑟

𝑛

𝑠=1

𝑛

𝑡=1

 ∙ 𝑐𝑜𝑚𝑝𝑛     +   

𝑛

𝑙=1

∑ ∑ ∑ 𝑎𝑐,𝑡,𝑠,𝑟

𝑛

𝑠 =1

  ∙  𝑑𝑝𝑐,𝑡,𝑠,𝑟    ∀ 𝑟  

𝑛

𝑡=1

𝑛

𝑐=1

 

 

Where 𝑐𝑜𝑐,𝑡,𝑠,𝑟 is N offtake per ha by crop type,  𝑎𝑐ℎ,𝑡,𝑠,𝑟 is the area of crops destined 

for human consumption,  𝑙𝑖𝑣𝑛𝑙 is the livestock N-offtake per head of livestock 𝑙𝑙,𝑡,𝑠,𝑟.  

The term 𝑓𝑥𝑐,𝑡,𝑠,𝑟 represents N fixation per hectare of crop 𝑎𝑐,𝑡,𝑠,𝑟 , 𝑙𝑢𝑙,𝑡,𝑠,𝑟 is livestock 

units,  𝑙𝑙,𝑡,𝑠,𝑟  is livestock numbers and 𝑁𝑖𝑛𝑡 is N contained within imported 

concentrate (i.e. cereals and beans).  Imported compound feed (e.g. soy cake) is 

represented by 𝑖𝑚𝑝𝑙,𝑡,𝑠,𝑟 and 𝑐𝑜𝑚𝑝𝑛 which represents N content/tonne, based on 

feed values within Watson et al. (2010). The term 𝑑𝑝𝑐,𝑡,𝑠,𝑟 represents average 
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atmospheric nitrogen deposition values, derived from national pollution data 

downloaded from the Centre for Ecology and Hydrology (CEH) website 

(http://www.pollutantdeposition.ceh.ac.uk/).  N supply and offtake values for crops 

and livestock products were derived from Defra Fertiliser Recommendations (Defra, 

2010) and the nutrient budgeting software PLANET (version 2.2).    

To capture manure requirements for individual crops, a separate constraint was 

applied within each region, as shown in equation 5: 

( 5 ) 

 

∑ ∑ ∑ 𝑐𝑟𝑜𝑝𝑚𝑐,𝑡,𝑠,𝑟

𝑛

𝑠 =1

  ∙  𝑎𝑐,𝑡,𝑠,𝑟  ≤ ∑ ∑ ∑ 𝑙𝑖𝑣𝑚𝑙

𝑛

𝑠=1

𝑛

𝑡=1

 ∙ 𝑙𝑙,𝑡,𝑠,𝑟 

𝑛

𝑙=1

       ∀ 𝑟 

𝑛

𝑡=1

𝑛

𝑐=1

 

 

Where 𝑐𝑟𝑜𝑝𝑚𝑐,𝑡,𝑠,𝑟 represents manure-N requirements per hectare and 𝑙𝑖𝑣𝑚𝑙 total 

manure N produced over the housed period by livestock (𝑙) within each region (r).  

The amount of manure-N supplied by each livestock type was derived from 

reference figures for organic farming inspections (Schmidt et al., 2009) in addition to 

data derived from guidance on managing manure on organic farms, and information 

on Nitrogen Vulnerable Zones (NVZ) management in the UK (Defra, 2009).   Manure 

application limits per hectare were also defined, in accordance with organic 

standards which set a maximum application rate of 170 kg-N per hectare of UAA 

(Council Regulation No 889/2008, 2008): 

 

 

 

 (6) 

http://www.pollutantdeposition.ceh.ac.uk/
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∑ ∑ ∑ 𝑎𝑐,𝑡,𝑠,𝑟

𝑛

𝑠 =1

  ∙  170  ≥ ∑ ∑ ∑ 𝑙𝑙,𝑡,𝑠,𝑟

𝑛

𝑠=1

𝑛

𝑡=1

 ∙ 𝑙𝑖𝑣𝑚𝑎𝑛𝑙      ∀ 𝑟 

𝑛

𝑙=1

  

𝑛

𝑡=1

𝑛

𝑐=1

 

 

Where 𝑎𝑐,𝑡,𝑠,𝑟 is crop area,  𝑙𝑙,𝑡,𝑠,𝑟 is livestock numbers and 𝑙𝑣𝑚𝑎𝑛𝑙  is the total kg of 

manure-N applied within each region (𝑟).  

C.5 Stocking constraints 

Livestock numbers were derived for each robust farm type using a 3-year average of 

Farm Business Survey data reported in Moakes et al. (2012, 2014).  Minimum 

stocking rates were defined as shown in equation 7: 

( 7 ) 

∑ 𝑙𝑢𝑙

𝑛

𝑙 =1

 ∙  𝑙𝑙,𝑡,𝑠,𝑟   ≥ ∑ 𝑐𝑐,𝑡,𝑠,𝑟

𝑛

𝑐 =1

  ∙ 𝑠𝑟𝑚𝑖𝑛𝑡     ∀  𝑡, 𝑠, 𝑟 

 

Where 𝑙𝑢𝑙 represents livestock units, 𝑙𝑙,𝑡,𝑠,𝑟  is livestock numbers, 𝑐𝑐,𝑡,𝑠,𝑟 the cropping 

area and  𝑠𝑟𝑚𝑖𝑛𝑡 the minimum stocking rate within each farm type, soil/rain class 

and region (𝑡, 𝑠, 𝑟 ).    Minimum stocking rate constraints were removed for cereal, 

field vegetable, market garden and general cropping farms to allow for stockless 

production.   Maximum stocking rates were defined using the same equation 

structure, as shown in equation 8, where 𝑠𝑟𝑚𝑎𝑥𝑡 is the maximum rate per ha:  

 ( 8 ) 

 

∑ 𝑙𝑢𝑙

𝑛

𝑙 =1

 ∙  𝑙𝑙,𝑡,𝑠,𝑟   ≤ ∑ 𝑐𝑐,𝑡,𝑠,𝑟

𝑛

𝑐 =1

  ∙ 𝑠𝑟𝑚𝑎𝑥𝑡     ∀  𝑡, 𝑠, 𝑟 
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Livestock young/rearing stock numbers and replacements were calculated as a 

proportion of the dominant livestock type (the stock type with the highest number of 

livestock units as a proportion of the total livestock, e.g.  dairy and suckler cows on 

dairy farms and lowland grazing farms respectively).  An example of this approach is 

shown in equation 9: 

 ( 9 ) 

 

∑ ∑  ∑  ∑  𝑙𝑏𝑐,𝑙𝑔,𝑠,𝑟

𝑛

𝑟=1

𝑛

𝑠=1

 ∙ 𝑝𝑙𝑓𝑐 

𝑛

𝑙𝑔=1

 = 𝑙𝑓𝑐,𝑠,𝑟      ∀   𝑙, 𝑙𝑔, 𝑠, 𝑟 

𝑛

𝑏𝑐=1

 

 

Where  𝑙𝑏𝑐,𝑙𝑔,𝑠,𝑟  is the dominant livestock type (in this example beef suckler cattle, 

𝑏𝑐)  𝑝𝑙𝑓𝑐 is a fixed proportion defined for store cattle.  The term 𝑙𝑓𝑐,𝑠,𝑟represents total 

store cattle numbers and 𝑙𝑔 is the area of the farm-type “lowland-grazing” in each 

soil/rain class ( 𝑠 ) and region ( 𝑟 ).  

C.6 Feed supply constraints 

Total feed supply limits were defined using the following feed-groups: 

 Forage (e.g. grass/clover, fodder beet, fodder maize) 

 Concentrates (e.g. cereals, beans, peas) 

 Compound feeds  (e.g. soybeans, crop processing residues, other imported 

feed) 

The proportion of total livestock ME demand supplied by each group was calculated 

for each robust farm type, using data reported in Moakes et al. (2012, 2014, see 

Table C.3).   Based on these proportions, upper limits were specified for each region 

and robust farm type, as shown in equation 10 below: 
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( 10 ) 

∑ ∑  𝑙𝑟𝑢𝑚,𝑡,𝑠,𝑟  ∙ 𝑟𝑒𝑞𝑟𝑢𝑚 ∙ 𝑓𝑟𝑔𝑟𝑢𝑚

𝑛

𝑠=1

𝑛

𝑟𝑢𝑚=1

 ≤   ∑ ∑  𝑐𝑐𝑓,𝑡,𝑠,𝑟  ∙

𝑛

𝑠=1

𝑛

𝑐𝑓=1

  𝑐𝑟𝑜𝑝𝑒𝑛𝑐𝑓,𝑠     ∀   𝑡, 𝑟 

 

Where rum is ruminant livestock (a subset of livestock, 𝑙), 𝑟𝑒𝑞𝑟𝑢𝑚 is the total ME 

requirement,  𝑓𝑟𝑔𝑟𝑢𝑚 is the proportion of ruminant livestock ME requirement 

provided by forage,   𝑐𝑐𝑓,𝑡,𝑠,𝑟 is crop area for forage crops, 𝑐𝑓 (expressed in hectares) 

encompassing pasture, temporary grassland and other forage (e.g. fodder beet) and 

 𝑐𝑟𝑜𝑝𝑒𝑛𝑐𝑓,𝑠 is the crop energy yield (in ME) for forage crops defined by soil and 

rainfall class (s).   

Unlike forage, concentrate and compound feed supply/usage was defined at national 

level, as shown in equation 11:  

( 11 ) 

∑ ∑  ∑  ∑  𝑙𝑙,𝑡,𝑠,𝑟

𝑛

𝑟=1

𝑛

𝑠=1

 ∙ 𝑟𝑒𝑞𝑙 

𝑛

𝑡=1

 ∙  𝑐𝑜𝑛𝑐𝑡     ≤     ∑  ∑  ∑  ∑ 𝑎𝑐𝑐,𝑡,𝑠,𝑟

𝑛

𝑟=1

𝑛

𝑠=1

 ∙

𝑛

𝑡=1

 𝑐𝑟𝑜𝑝𝑒𝑛𝑐𝑐,𝑠  

𝑛

𝑙=1

 

𝑛

𝑙=1

 

+ ∑ ∑  ∑  ∑  𝑐𝑜𝑚𝑝𝑙,𝑡,𝑠,𝑟

𝑛

𝑟=1

𝑛

𝑠=1

 ∙ 𝑐𝑜𝑚𝑝𝑀𝐽 

𝑛

𝑡=1

 

𝑛

𝑙=1

 

 

Where  𝑙𝑙,𝑡,𝑠,𝑟 is livestock numbers 𝑟𝑒𝑞𝑙 is the ME requirement and 𝑐𝑜𝑛𝑐𝑡 is the 

proportion of the feed demand within each farm type t met by concentrate and/or 

compound feed. The term 𝑎𝑐𝑐,𝑡,𝑠,𝑟 represents concentrate feed crop (𝑐𝑐) area and 

 𝑐𝑟𝑜𝑝𝑒𝑛𝑐𝑐,𝑠 the ME supply per hectare on each soil and rainfall class.   The supply 

and energy-content for compound feed is represented by  𝑐𝑜𝑚𝑝𝑙,𝑡,𝑠,𝑟 and the scalar 
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compMJ.  Protein requirements and supply were defined using a similar approach, 

as shown in equation 12: 

                   ( 12 ) 

 

∑ ∑  ∑  ∑  𝑙𝑙,𝑡,𝑠,𝑟

𝑛

𝑟=1

𝑛

𝑠=1

 ∙ 𝑝𝑟𝑜𝑡𝑟𝑒𝑞𝑙 

𝑛

𝑡=1

 ≤      ∑  ∑  ∑  ∑ 𝑎𝑙𝑐,𝑡,𝑠,𝑟

𝑛

𝑟=1

𝑛

𝑠=1

 ∙

𝑛

𝑡=1

 𝑐𝑟𝑜𝑝𝑟𝑜𝑡𝑐𝑐,𝑠  

𝑙=1

 

𝑛

𝑙=1

 

+ ∑ ∑  ∑  ∑  𝑐𝑜𝑚𝑝𝑙,𝑡,𝑠,𝑟

𝑛

𝑟=1

𝑛

𝑠=1

 ∙ 𝑐𝑜𝑚𝑝𝑟𝑜𝑡 

𝑛

𝑡=1

 

𝑛

𝑙=1

 

 

Where 𝑝𝑟𝑜𝑡𝑟𝑒𝑞𝑙 is the crude protein demand for livestock ( 𝑙𝑙,𝑡,𝑠,𝑟),  𝑎𝑙𝑐,𝑡,𝑠,𝑟 represents 

livestock feed crop area and  𝑐𝑟𝑜𝑝𝑟𝑜𝑡𝑐𝑐,𝑠   the crude protein yield of cereals and 

beans for livestock feed by soil and rainfall class (𝑠).  The supply and crude protein 

content for compound feed is represented by comp and the scalar comprot. 

Maximum contributions of concentrate and compound (i.e. imported) feed types were 

imposed to ensure an adequate feed composition and avoid harmful nutritional 

effects (e.g. from over-feeding of beans which have high tannin contents (Mueller‐

Harvey, 2006) as shown in equation 13:  

( 13 ) 

 

∑ ∑  ∑  ∑  𝑙𝑙,𝑡,𝑠,𝑟

𝑛

𝑟=1

𝑛

𝑠=1

 ∙ 𝑟𝑒𝑞𝑙 

𝑛

𝑡=1

 ∙  𝑚𝑎𝑥𝑏𝑒𝑎𝑛𝑡  ≤     ∑  ∑  ∑  ∑ 𝑎𝑏𝑝,𝑡,𝑠,𝑟

𝑛

𝑟=1

𝑛

𝑠=1

 ∙

𝑛

𝑡=1

 𝑐𝑟𝑜𝑝𝑒𝑛𝑏𝑝,𝑠  

𝑛

𝑙=1

 

𝑛

𝑙=1
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Where  𝑚𝑎𝑥𝑏𝑒𝑎𝑛𝑡 is the maximum proportion of ME supplied by beans and/or peas 

(bp) within each farm type t.  The same equation structure was applied for cereal 

crops.    

Compound feed was defined as the sum total of soya, cereal and other crop 

processing residues, and other feed as shown in equation 14 below: 

( 14 ) 

 

∑ ∑  𝑐𝑜𝑚𝑝𝑙,𝑡,𝑠,𝑟 

𝑛

𝑠=1

𝑛

𝑙=1

 = ∑ ∑ 𝑠𝑜𝑦𝑎𝑙,𝑡,𝑠,𝑟

𝑛

𝑠=1

𝑛

𝑙=1

   + ∑ ∑ 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑙,𝑡,𝑠,𝑟

𝑛

𝑠=1

𝑛

𝑙=1

   +    

 

∑ ∑  𝑜𝑡ℎ𝑒𝑟𝑙,𝑡,𝑠,𝑟 

𝑛

𝑠=1

𝑛

𝑙=1

   ∀   𝑡, 𝑟 

 

where  𝑐𝑜𝑚𝑝𝑙,𝑡,𝑠,𝑟 is total compound feed (weight in tonnes). Upper limits on 

compound feed rates were imposed by farm type and region, as shown in equation 

15: 

 ( 15 ) 

∑ ∑  𝑐𝑜𝑚𝑝𝑙,𝑡,𝑠,𝑟  ∙

𝑛

𝑠=1

𝑛

𝑙=1

 𝑐𝑜𝑚𝑝𝑀𝐽  ≤ ∑ ∑  𝑙𝑙,𝑡,𝑠,𝑟  ∙ 𝑟𝑒𝑞𝑙 ∙ 𝑐𝑜𝑚𝑝𝑙𝑖𝑚𝑡

𝑛

𝑠=1

𝑛

𝑙=1

      ∀   𝑡, 𝑟 

 

Where 𝑐𝑜𝑚𝑝𝑙,𝑡,𝑠,𝑟 and 𝑐𝑜𝑚𝑝𝑀𝐽  is the tonnage of compound feed and the energy 

content expressed as ME,  𝑟𝑒𝑞𝑙 is the ME requirement of livestock and 𝑐𝑜𝑚𝑝𝑙𝑖𝑚𝑡 is 

the proportion of ME supplied by compounds within farm type 𝑡 and region 𝑟.  To 

ensure an adequate supply of amino acids to monogastric livestock (pigs and 
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poultry) within compound feed, soya requirements were defined based on  

composition data supplied by Vitrition Organic Feeds, Edwards et al. (2002) and 

Jones et al. (2014), as shown in equation 16 below: 

( 16 ) 

∑ ∑  𝑙𝑙,𝑡,𝑠,𝑟  ∙ 𝑟𝑒𝑞𝑙 ∙ 𝑠𝑜𝑦𝑟𝑡

𝑛

𝑠=1

𝑛

𝑙=1

 =   ∑ ∑  𝑠𝑜𝑦𝑙𝑙,𝑡,𝑠,𝑟  ∙ 𝑠𝑚𝑗

𝑛

𝑠=1

𝑛

𝑙=1

      ∀   𝑡, 𝑟 

   

Where 𝑟𝑒𝑞𝑙 is the sum of the total ME requirement of livestock ( 𝑙𝑙,𝑡,𝑠,𝑟) within each 

farm type t and region,  𝑠𝑜𝑦𝑟𝑡 is the total proportion of the ME demand supplied by 

soya meal.   𝑠𝑜𝑦𝑙𝑙,𝑡,𝑠,𝑟 and 𝑠𝑚𝑗 are the total weight of soya meal and the energy 

density respectively.     The crop processing residue-component of compound feed 

was also defined as a fixed proportion,  based on the tonnes of oilseed rape, sugar 

beet, milling wheat and malting barley produced in 2010 (Defra, 2015) and tonnes of 

product recovered as wheatfeed, oilseed rape cake, sugar beet pulp and distillery 

by-products respectively (Defra Feedingstuffs Survey, 2016). 

Crop processing residue-feed was calculated as a fixed proportion based on the 

tonnes of oilseed rape, sugar beet, milling wheat and malting barley produced in 

2010 and tonnes of product recovered as wheatfeed, oilseed rape cake, sugar beet 

pulp and distillery by-products respectively, based on data within the Defra 

Compound Feedingstuffs Survey (2016): 

Table C.1: tonnes of crop-residue feed produced in UK as % of export-adjusted 

production: 

 

An overview of the OLUM and the interactions between components is presented in 

Figure C.1 below: 

By-product feedstuffs 

000' Tonnes 

produced in UK - 

2010

% of production - 

2010:

Wheatfeed 852 13%

Oilseed rape cake and meal 771 36%

Dried sugar beet pulp 274 4%

Barley distillery by products 317 16%
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Figure C.1: overview of the OLUM and interactions between components
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C.7 Example input data for Lowland Grazing Robust Farm Type  

Within the OLUM typical organic farm structures informed the development of 

constraints (e.g. with regard to stocking rates, livestock feed and crop areas).  

Farm structures were defined from a three-year matched sample reported in 

Moakes et al. (2012, 2014) with average yields used to ascertain feed-energy 

outputs at three rates of N-fixation (see Appendix B).  The total feed ME 

supplied by each farm-type was used to determine the need for import of 

concentrate and bulk feed requirements.  In cases where there was an excess 

(e.g. cropping farms with a low stocking rate) cereal and/or legume crops could 

be exported for human consumption and/or to other farms for feed supply.  An 

example of a typical farm structure is presented in Table C.2. 

Table C.2: Crop areas and outputs for Lowland Grazing Farm Type 

 

Livestock metabolisable energy (ME) requirements were drawn from industry 

data sources (Lampkin et al., 2011; The Professional Nutrient Management 

Group, 2015) and multiplied by the total number of each livestock type, as 

shown in Table C.3. 

 

2009/10 2010/11 2011/12 Average Std. dev Yield low 

Yield 

medium

Yield 

high

Sample number 26 26 34 28.7 3.8

Average farm size (ha) 107 107 138 117.3 14.6

Land use (ha)

Wheat 0 0 3.2 1.1 1.5 2.7 4.1 4.8

Barley 0.4 0.6 2.4 1.1 0.9 2.6 3.6 4.5

Other cereals 1.1 0.9 1.8 1.3 0.4 2.7 3.6 4.3

OSR 0.8 1.2 1.5

Peas/Beans 0 0 0.8 0.3 0.4 2.3 4.1 5.0

Potatoes 16.0 25.0 34.7

Sugarbeet 22.6 39.7 43.3

Horticulture 9.6 15.0 20.8

Other crops 1.1 1.4 1.6

Tillage - fodder 3.3 2.9 3.9 3.4 0.4 61.5 92.9 116.4

Grassland (grazing, hay, silage) 101 101.5 119.1 107.2 8.4

Permanent grass 79.0 71.9 80.2 77.0 3.7 2.0 5.6 7.2

Temporary grass 22.0 29.6 38.9 30.2 6.9 4.5 10.6 13.8

Fallow and land let 1.3 1.4 3.9 2.2 1.2 0.0 0.0 0.0

Rough grazing 0.2 0.2 2.8 1.1 1.2 1.4 5.3 7.0

Total area (UAA) 107.3 107.5 137.9 117.6 14.4

Total tillage area 26.8 34.0 51.0 37.3 10.1
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Table C.3: Livestock numbers and total feed requirements 

 

Feed ME supply by source was defined through official sources on feed rates 

(AHDB Dairy, 2012; Lampkin et al., 2011) and the total amount of feed-ME 

available, based on crop areas and outputs.  Where concentrate fed on farm 

exceeded the amount grown, the additional concentrate (i.e. the additional ME) 

was imported.   Imported bulk feed was defined separately to concentrate, using 

composition data from Vitrition Organic Feeds, Jones et al. (2014) and 

Newcastle University (Edwards, 2002).The proportions of feed by type were 

applied within the feed composition constraints described above to avoid over-

supply of certain feedstuffs with ant-nutritive features (e.g. beans and peas) and 

to ensure adequate supply of essential amino acids in the case of pigs and 

poultry. 
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Appendix D Eatwell Food Group allocation  

The Eatwell food groups are based on recommendation for a well-balanced diet 

and provide a structure for the development of healthy eating guidelines.  Within 

this study crops and livestock products were allocated to each group to 

compare outputs at regional and national scales (Table D.1).  The outputs of 

food as metabolisable energy (ME) under a 100% conversion to organic 

agriculture are also shown for each of the Eatwell groups (Figure D.1). 

Table D.1: Eatwell groups and crop / livestock product allocation 

Fruit and veg Starchy 
Carbohydrates 

Non-dairy 
protein  

Milk and dairy Sugary foods 

Onions and leeks Potato Red Meat Milk Sugar beet 

Beetroots Wheat Eggs     

Carrots Oats Broad beans     

Broccoli Rye Runner beans     

Cabbage Barley Green peas     

Lettuce   Dry peas     

Squash   Poultry meat     

Parsnips         

Turnips         

Tomatoes         

Cucumbers         

Peppers         

Protected salad         

Apples         

Pears     

Strawberries         

Other combined hort         
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Figure D.1: production of food as metabolisable energy (ME) for each Eatwell 

group under a 100% conversion to organic agriculture in England and Wales 
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Appendix E Data sources used for Life Cycle 

Assessment study 

E.1 Organic systems data 

A range of industry datasets were applied within the Optimal Land Use Model 

(OLUM) and the Agri-LCA models to represent technical and biological 

conditions within organic agriculture. The data sources applied are summarised 

in Table E.1. 

Table E.1: data sources used to represent organic production systems  

 

In addition organic farm structure data (i.e. land areas by crop type and stocking 

rates) were drawn from a panel of organic farms within the Farm Business 

Survey for England and Wales (i.e. values for the years 2009/10 – 2011/12 by 

Robust Farm Type, as reported by Moakes et al. (2012, 2014).   

 

Information extracted Data source Reference

Crops

Organic crop yields Ecoinvent database Frischknecht et al. (2005)
Organic Farm Management Hanbook Lampkin et al. (2012)
European Commission project report Audsley et al. (1997)

Manure and compost application rates Defra project on environmental burders of agriculture Williams et al. (2006)

Typical cultivation practices by crop type Defra project on environmental burders of agriculture Williams et al. (2006)

Livestock

Replacement rates AHDB Dairy 3 year Carbon Footprinting Study AHDB Dairy (2014)

Average milk yield/annum

Concentrate feed rates

Mortality rates Organic Farm Management Handbook Lampkin et al. (2012)

Liveweights / finsihing ages

Mortality rates LCA studies of organic poultry Leinonen et al. (2012a,b)

Eggs / year

Stocking rate

Birds / ha

Poultry deadweight Organic poultry carcass trait study Rizzi et al. (2007)

Poultry feed composition Virition organic feeds Vitrition organic feeds (2015)

Concentrate feed composition Reading University Study Jones et al. (2014)

Pig diet composition Newcastle University Organic Pig rearing guide Edwards et al. (2002)
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E.2 Non-organic systems data and imports/exports 

Data used for the non-organic comparison, and for the calculation of imports 

and exports to England and Wales are described in Table E.2. 

Table E.2: Non-organic production and import / export data sources  

 

E.3 References 

AHDB Beef and Lamb, 2013a. UK Yearbook 2013 - Cattle. Agriculture and 
Horticulture Development Board, Stoneleigh Park, UK. 

AHDB Beef and Lamb, 2013b. UK Yearbook 2013 - Sheep. Agriculture and 
Horticulture Development Board, Stoneleigh Park, UK. 

AHDB Dairy, 2012. Greenhouse gas emissions on British dairy farms. DairyCo 
carbon footprinting study: year three, Stoneleigh Park, UK. 

AHDB Pork, 2015a. The BPEX Yearbook 2014-2015. AHDB, Stoneleigh Park, 
UK. 

AHDB Pork, 2015b. Poultry Pocketbook. AHDB, Stoneleigh Park, UK. 

Defra, 2011. June Survey of Agriculture and Horticulture. Defra, London. 

Information extracted Data source Reference

Crops

Arable crop production volumes and imports / exports

Sugar production data FAO Sugar beet handbook FAO (2009)

Vegetable and fruit production volumes and imports / exports

Livestock 

Pork production, imports / exports UK annual numbers of livestock slaughtered by Country Defra (2015b)

Pork production, imports / exports The BPEX Yearbook 2014-2015 AHDB Pork (2015a)

AHDB Beef & Lamb (2013a, b)

Beef and lamb consumption and imports / exports

Poultry meat production volumes by country E&W Poultry Slaughterhouse Survey Defra (2015b)

Poultry meat and eggs, imports / exports AHDB Poultry Pocketbook AHDB Pork (2015b)

Livestock numbers June Census 2010 Defra (2011)

Eggs produced / hen LCA of egg production systems in the UK Leinonen et al. (2012a, b)

Milk production volume, imports and exports - England and Wales

Beef and lamb production volumes by country AHDB Beef Cattle and Sheep yearbook 2013

Hybu Cig Cymru Little Book of Meat Facts Hybu Cig Cymru (2012)

Defra Milk Utilisation Data Defra (2016)

Agriculture in the United Kingdom Defra (2015a)

Basic Horticultural Statistics 2013 Defra (2013)
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