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Existing mathematical design models for small solar-powered electric unmanned aerial vehicles (UAVs) only focus on mass,
performance, and aerodynamic analyses. Presently, UAV designs have low endurance. The current study aims to improve the
shortcomings of existing UAV design models. Three new design aspects (i.e., electric propulsion, sensitivity, and trend analysis),
three improved design properties (i.e., mass, aerodynamics, and mission profile), and a design feature (i.e., solar irradiance) are
incorporated to enhance the existing small solar UAV design model. A design validation experiment established that the use of
the proposed mathematical design model may at least improve power consumption-to-take-off mass ratio by 25% than that of
previously designed UAVs. UAVs powered by solar (solar and battery) and nonsolar (battery-only) energy were also compared,
showing that nonsolar UAVs can generally carry more payloads at a particular time and place than solar UAVs with sufficient
endurance requirement. The investigation also identified that the payload results in the highest effect on the maximum take-off
weight, followed by the battery, structure, and propulsion weight with the three new design aspects (i.e., electric propulsion,
sensitivity, and trend analysis) for sizing consideration to optimize UAV designs.

1. Introduction

In recent years, awareness of the potential of unmanned
aerial vehicles (UAVs) for multiple missions has increased
the level of research into improving UAV design and tech-
nologies. Studies found that electric- or fossil fuel-powered
UAVs have inadequate flying hours for various tasks.
Increased focus has been placed recently on developing
hybrid-powered electric UAVs, especially with the combina-
tion of solar energy and battery or fuel cells in a battery-
powered system. The current study considers the pros and
cons of various power systems [1–6] and examines the design
and development of solar cells in battery-powered UAVs.

Formore than a decade, small solar- and battery-powered
electric UAVs were the subject of research and development
[1, 5–19]. Seven small solar UAVs (i.e., So Long, Sky-Sailor,
Sun-Sailor, Sun Surfer, AtlantikSolar AS-2, University of
Minnesota’s SUAV, and Cranfield University’s Solar UAV)
weighing less than 20 kg have been developed to date. As a

prominent researcher in this field, Noth [14, 20] developed
a mathematical design model for sizing solar-powered elec-
tric UAVs. However, this mathematical design model focuses
only on the conceptual design stage in estimating the general
sizing of UAV configurations.

Noth [14, 20] focused on the 3 sizing elements of mass,
aerodynamics, and performance. Design characteristics,
such as aircraft power consumption and cruise speed, must
also be optimized to ensure that the required long endur-
ance of the UAVs for 24 hours of real surveillance and
mapping applications is achieved. The current study aims
to improve the design properties, which requires further
in-depth work, such as solar irradiance, mission profile,
and aerodynamic characteristics. Research gaps in electric
propulsion sizing, sensitivity studies, and trend analysis
have also been identified.

A synthesized UAV mathematical design model suitable
for sizing and configuration design of small solar-powered
and battery-powered electric systems was developed to fulfill
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the previously mentioned requirements. This comprehensive
expansion work, based on various studies [21–23], considers
nine design properties (i.e., mass sizing, aerodynamics, per-
formance, stability and control, mission profile, solar irradi-
ance, electric propulsion, sensitivity studies, and trend
analysis) to improve the current design model.

The proposed mathematical model was initially quasi-
validated using existing UAV data via rigorous computer
modeling and analyses. The validity of the mathematical
model was deemed satisfactory after achieving a lower error
in the model’s conceptual design than in the actual UAV
design using the empirical database. An actual solar-
powered electric UAV [1] was also designed, developed,
and flight-tested to further quasi-validate this model. The
comprehensive design model is developed in this study to
further minimize assumptions and simplify previous designs.

2. Mathematical Design Model

The developed solar-powered electric UAV mathematical
design model and its algorithm flowchart are illustrated in
Figures 1 and 2, respectively. The model contains the nine
design components mentioned earlier. Three design compo-
nents, namely, mass estimation, aerodynamic estimation,
and performance analysis, were initially developed by Noth
[14]. Performance analysis is the only design component
that was maintained based on the specifications developed
by Noth.

In the mass estimation, the study by Mueller et al. [22]
was further adopted. The component mass was divided into
the following basic elements, namely, structure, battery,
solar, electric propulsion, control system, and payload, as
shown in (1), respectively. The aircraft’s total take-off weight
WTOmax may be expressed as a combination of the empty
weight and payload weight, as shown in (2), respectively,

because a pure electric UAV does not have a variable weight
during flight.

WTOmax =WStruct +WBatt +WSolar +WElectric

+WCtrl +WPay Max,
1

WTOmax =WEmpty +WPay Max 2

The relevant coefficient in predicting the empty weight of
an electric UAV that weighs less than 15 kg is given in (3).
This equation is determined using regression analysis by
collecting all possible measurements of 83 small electric
UAVs. These 83 small UAVs, including solar-, battery-, fuel
cell-, and hydrogen-powered electric UAVs, weigh less than
14 kg. The parameters gathered include weights, wing area
(S), wing span (b), aspect ratio (AR), height, total length,
root, and tip chord length of both the wing and tail surfaces.
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Figure 1: Solar-powered electric UAV design element.
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Figure 2: UAV design algorithm flowchart.
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WEmpty = 0 79 × b18 9012S−9 4755AR−9 4558W0 99
TOmax 3

Similarly, in aerodynamic estimation, specific lift and
drag coefficient estimation was performed based on various
wing and horizontal tail airfoil characteristics [21]. However,
the fuselage and vertical tail characteristics have yet to be
incorporated in this study. Additional power is incorporated
into the mission power requirement, specifically by defin-
ing the maximum power consumption during maneuver
PManeuver at total mission power, compensating for the drag
increment that remains unaccounted due to the fuselage and
vertical tail.

The Reynolds number (RN) is a major factor in aerody-
namic analysis. The RN range for an aircraft depends on
the mean aerodynamic chord length (c), airspeed (V), air
density ρ , and viscosity μ . Equation (4) [21] defines the
relation between these parameters.

RN =
Vcρ
μ

4

The aerodynamic submodel also predicts the lift coeffi-
cient by using a well-known theoretical estimation [21], as
shown in (5). In level flight, the aircraft lift is equal to the
take-off weight. Because the air density, airspeed, and wing
area are known, the lift coefficient, CL, may be estimated.

CL =
L

1/2ρV2S
=

WTOmax
1/2ρV2S

5

The drag coefficient CD can be estimated using (6) [21],
where the aircraft zero-lift-drag coefficient CDo can be
obtained from the airfoil polar data at each RN. A linear
interpolation is performed on these airfoil data to obtain
CDo for a specific RN, angle of attack, and airspeed of an air-
craft. Again, the vertical tail and fuselage drag component
were not accounted since most high-endurance and light-
weight UAVs have narrow fuselage. In addition, most of
these UAVs are hand-launched, thus without a landing gear.

CD = CDo W + CDi W + CDo HT + CDi HT 6

Then, with the CL calculated at each RN using (4) earlier,
the lift and drag may also be determined using

L =
1
2
ρV2SCL, 7

D =
1
2
ρV2SCD 8

Apart from the mass and aerodynamic estimation, the
solar irradiance and mission profile were also incorporated.
Integrations of these two design components have been
detailed. Solar irradiance estimates include details such as
specific time of the day, date of the year, and latitude and lon-
gitude coordinates [24] instead of a simplified average value
of solar irradiance data for a particular day in a nearby major
city. This estimation has enabled the prediction of the usabil-
ity of a solar-powered aircraft in various parts of the world
and its operation duration throughout the year.

The amount of solar irradiance Irmax that strikes the
Earth, as given in (9), is critical in designing a solar-
powered UAV. The power available through the solar
module facilitates the sufficiency of the solar energy har-
nessed for the power required. The equation is adopted from
[23–27], which begins by determining the input parameters,
including the day of the year, latitude, longitude, and altitude
of the place of interest.

Irmax =
1 + 0 033cos 0 017203DN π/180 sin SOLALT π/180

3 6 1000/4 8708

9

No previous work has estimated in detail the UAV solar
power usage of the mission profile (i.e., not only cruise but
also the other mission profile phases, such as climb, loiter/
maneuver, and descent). The effects of gust wind speed and
direction were disregarded. The power required PRequired
for a level flight determined by the definition of the wing area
is shown in (10) [21]. This calculation has not taken into con-
sideration the flight path angle, the efficiency of the electric
propulsion system, and the additional power consumption
of the aircraft from the control system and payload.

PRequired =
CD

CL

2AR WTOmax
3

ρCLb
2 10

The power consumption of each mission profile phase is
determined based on the flight path angle, as proposed by
Sherwin [28]. Detailed mission profile power sizing is crucial
especially when designing an aircraft for high endurance. The
percentage of time spent on a 24-hour mission during cruise
may be higher in comparison with that on a one-hour mis-
sion. Regardless of mission endurance, the climb and descent
phase is similar. Thus, an appropriate ratio portion of each
mission profile phase has been considered which includes
climb, cruise, maneuver, and descent, as shown in (11) in
respective order, instead of assuming that the aircraft only
flies in level flight. The time fraction defined is intended for
a specific mission study. This mathematical design model is
assumed to be applicable only for an unmanned aircraft
without a landing gear to achieve maximum endurance or
range by flying, primarily, in level flight.

PTotal‐Mission =
0 1
60

PClimb +
59 5
60

PCruise

+
0 3
60

PManeuver +
0 1
60

PDescent

11

The stability and control analysis measures the tail plane
and boom length to ensure that the UAV is statically stable.
This design property ensures the viability of the overall
aircraft design-sizing simulation results. Determining the
stability and controllability of the designed UAV plays a sig-
nificant role in developing a well-designed UAV. Only static
stability and control have been considered in this research.
No work has yet been done on aircraft dynamics, which is
recommended for further studies.
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In the proposed method, the parameters evaluated are the
center of gravity (i.e., cg) range, trimmed elevator deflection
angle, and trimmed angle of attack. The airfoil moment coef-
ficient data are obtained by linear interpolation, as performed
in the aerodynamic estimation, to determine these parame-
ters. With these values and tail area SHT and tail moment
arm length lHT , the tail volume ratio (VHT) is estimated
using (12). Also, the tail zero-lift-pitching moment coeffi-
cient CMo HT is then estimated using (13) [21], where
CLα HT is the lift curve slope of the tail, εo is the downwash
angle at zero lift, iW is the wing incidence angle, and iHT is
the tail incidence angle.

VHT =
lHT
c

SHT
S

, 12

CMo HT =VHTCLα HT εo + iW + iHT 13

The aircraft’s trimmed angles of attack αtrim and elevator
deflection angles elevtrim are estimated. The aircraft’s zero-
lift-pitching moment coefficient CMo is first determined
using (14) [21], where CMo W is the wing zero-lift-pitching
moment coefficient. The trimmed angle of attack and eleva-
tor deflection angle can be calculated using (15) and (16)
[21], where CMcgα is the moment coefficient curve slope.
Determining the aircraft’s trimmed angle of attack at various
elevator deflection angles gives a guideline to the required
elevator deflection angle range that is within the allowable
airplane angle of attack. Determining the elevator deflection
range guarantees controllability by avoiding excessive pitch
up (which can lead to stall) and pitch down.

CMo = CMo W + CMo HT, 14

αtrim =
CMo
CMcgα

, 15

elevtrim =
CMo + CMcgααW
VHTCLα HT

16

The current practices of propulsion system selection for
common electrically driven UAVs are imprecise. This pro-
pulsion sizing process gets more complex in a solar-
augmented UAV. Yet, UAV designers commonly use the
standard combination sets of the electric motor, gearbox,
electronic speed controller, propeller, and battery recom-
mended by model aircraft part manufacturers or suppliers
for a specific UAV weight range. This process typically yields
a margin of approximately 25% between the lower and upper
weight for a given standard combination set.

Multiple combination sets are recommended, clearly
indicating the wide range of flexibility and combination
applicable to a specific unmanned aircraft. Thus, preevalu-
ated sets of electric propulsion systems are obviously subop-
timal options for aircraft designers. Electric propulsion
analysis has been developed to optimize aircraft power and
combination selection (i.e., battery, electronic speed control-
ler, and electric motor and propeller sizes) of the propulsion
system based on the desired aircraft performance.

In the current work, the electric propulsion system sizing
is given by [29]. The electric motor efficiency ef fMotor can
be estimated using (17) where PMotor‐Out is the power out of
the motor and PMotor‐In is the power into the motor from
the battery. Then, the power from the electric motor to the
propeller PProp‐In can be estimated using the motor voltage
VMotor and motor current IMotor as shown in (18). Mean-
while, the required power from the propeller PProp‐Req
based on the simulated propeller diameter Diam and pitch
Pitch size and propeller revolution per minute RPM can
be evaluated as given in (19).

ef fMotor =
PMotor‐Out
PMotor‐In

, 17

PProp‐In = ef fMotorVMotorIMotor, 18

PProp‐Req =
0 5ρ
g

RPM
60

3
0 0254Diam 4 0 0254Pitch

19

Here, the error difference between the input and required
propeller power can be determined, where within ±10% is
preferred. This error difference limits and ensures that a suit-
able range of the propeller is obtained. In addition, the ideal
performance occurs when the pitching velocity of the propel-
ler VProp‐Pitch given in (20) should be within 2.5 and three
times the aircraft stall speed [29]. The thrust of the propeller
ThrustPr op estimated using (21) must be more than 25% of
the maximum take-off mass of the UAV to have reasonable
climb and acceleration capabilities.

VProp‐Pitch =
RPM
60

0 0254Pitch , 20

ThrustProp =
PProp‐Req

gVProp‐Pitch
21

Once a list of a simulated propeller’s diameter and pitch
size combination has been produced with the criteria listed
above, the optimized propeller size is chosen based on the
least propeller tip static velocity VProp‐Tip‐Static . This veloc-
ity, estimated using (22), can provide the optimum propeller
size combination for a better UAV performance in terms of
high endurance and long range.

VProp‐Tip‐Static = π
RPM
60

0 0254Diam 22

UAV performance analysis may be conducted to predict
the effectiveness of the to-be-designed aircraft. The main
performance criteria that are considered are velocity, stall
velocity VStall , required thrust TRequired , available energy
EAvailable , and required power PRequired . The VmaxCell is
the maximum voltage of a battery cell, SCell is the number
of battery cells in series, PCell is the number of battery cells
in parallel, and QCell is the capacity of each battery cell. These
performance analyses are computed using (23), (24), (25),
(26), and (27) in respective order.
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V =
WTOmax
1/2 ρCLS

, 23

VStall =
WTOmax

1/2 ρCLmax WS
, 24

TRequired =
WTOmax
CL/CD

, 25

EAvailable =VmaxCellSCellPCellQCell, 26

PRequired = TRequiredV =
CD

CL

2WTOmax
3

ρCLS
27

Stall velocity estimation is important prior to flight test-
ing to prevent the aircraft from stalling. Ensuring that the
available power is greater than the required power is crucial,
not only for the aircraft to take-off and/or climb easily but for
the anticipation of any gusts during flight. The excess avail-
able power PExcess can be estimated using (28) where the
initial power of a mission PInitialise Guess is guessed. This
initial power will be iterated to ensure that the error differ-
ence between the initial guess and actual mission power
(11) is within ±10%.

PExcess = PInitialise Guess − PRequired 28

The rate of climb and rate of optimal glide sink evalua-
tion give a rough estimation of the required time to achieve
the desired altitude. These parameters can be calculated using
(29) and (30) in respective order [21].

Rate of climb =
PExcess
WTOmax

, 29

Rate of optimal glide sink =
V
L/D

30

Finally, the aircraft’s endurance and range are deter-
mined. These two variables of aircraft electric propulsion
capability for solar and battery flight are identified using an
assumption of no wind and estimated using (31) and (32)
[23–27]. Studies will be conducted using the performance
criteria trade and optimization. This process will improve
the aircraft design configuration and optimize its capabilities.

EnduranceS&B =
EAvailable
PRequired

+ 0 7tDaylight, 31

RangeS&B =V × enduranceS&B 32

In the mathematical design model, a new assessment
scheme is developed to analyze the sensitivity of various
parameters that exhibited the greatest and least effects on
the UAV design. Evaluating how the entire design changes
with parameter variations is important to ensure that the
fidelity of specific models remains acceptable when change
is introduced. Technologies were identified to considerably
enhance the design or improve the system performance.

Many components are evidently becoming smaller,
more powerful, and more highly efficient than previous
ones. A crucial approach is developed to assess the future
trends in UAV designs. This approach evaluates the rate at
which aircraft parts and component technologies are
developing and projects their achievable or potential per-
formance. The UAV mathematical design model can be used
to identify the parts that have the most significant effect
and that merit further research to yield the best prospects
in UAV development.

3. Result and Discussion

A general analysis work was conducted on the mathematical
design model that covers both solar (solar- and battery-pow-
ered) and nonsolar (battery-powered) UAV sizing. Although
this design model can be used for design estimations for large
UAVs, all calculations were explicitly focused on small hand-
launchable UAVs weighing less than 4 kg. The simulation
was also subject to UAVs that can perform a minimum of 9
hours of flight operation beginning at 12 noon on 22 June
2014 at Cranfield, United Kingdom, with an iteration sizing
accuracy of 1 cm or 1 g.

Figure 3 shows the analysis results for both solar and
nonsolar UAV configurations. The UAV take-off mass can
be improved to sustain 9 hours of flight duration at a speci-
fied payload. The take-off mass of both solar and nonsolar
UAVs nonlinearly increased with the payload. These nonlin-
ear curves are mainly due to the dependence of the mass of
the aircraft structure on the corresponding wing aspect ratio
and span.

In this study, the feasible UAV design was restricted to
the specified flight duration and payload. In this case, solar
and nonsolar UAVs must have maximum take-off masses
of 8.209 kg and 8.987 kg, respectively, and must be capable
of supporting payloads weighing 1.258 kg and 3.04 kg,
respectively, to achieve 9 hours of flight duration. The
flight duration must be decreased to increase the payload
or vice versa.

The relationship between the wing span and the mass of
the structure at a constant payload of 0.35 kg and an aspect
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Figure 3: Payload versus maximum take-off mass of the solar and
nonsolar UAVs.
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ratio of 12 is plotted in Figure 4. These data also identified
that the wing span of 2.55m is suitable for both types of
flights at an aspect ratio of 12. This innovative design
approach can be used to design and develop a single airframe
structure suitable for both solar and nonsolar configurations.

The relationship between the wing span and aspect ratio
at a constant payload of 0.35 kg is shown in Figure 5. The
solar UAV configuration showed that the wing span
increased more steeply than that of the nonsolar UAV con-
figuration. This result is a clear sign of the structure rigidity
issue. This issue is associated with the increase in wing span
and decrease in wing chord to maintain the wing area. In this
analysis criterion, the aspect ratio suitable for solar and non-
solar UAV configuration is 15.2. This value is fairly close to
the aspect ratio of 16.4 that is suitable for the actual devel-
oped UAV [1], which was designed to carry a payload of
0.54 kg or 18% of the maximum take-off mass.

On a clear sunny day, approximately 55.5W of the
solar module power can be obtained per square meter
wing area using an off-the-shelf 6% efficiency Powerfilm
MP3-37 flexible solar cell specification at a constant aspect

ratio of 12 (Figure 6). However, only some of the points
were close to the maximum achievable solar power (blue line
in Figure 6). The issue may be resolved by performing further
simulations with different aspect ratios to optimize the solar
module power achieved in solar UAV sizing.

The relationship between the mass of the payload and
battery of both solar and nonsolar UAVs (Figure 7) indi-
cates that the mass of the battery gradually increases with
payload. This result can be attributed to the minimum size
of the battery pack, which comes in multiples of 150 g±
10%. This finding proves another advantage of applying
the electric propulsion modeling as part of this design
modeling, where sizing small UAVs provides an accurate
weight prediction.

The curve also shows that at a fixed wing area, the battery
mass of the solar UAV is almost a third larger than that of the
nonsolar UAV at 0.9 kg payload. This clearly shows that at
0.9 kg payload, the solar UAV wing is fully covered by the
solar module. Therefore, the mass of the battery has to be
increased to compensate the limitation with the area avail-
able for solar module placement and its weight addition to
the overall maximum take-off mass.

Similarly, Figure 8 shows the relationship between the
payload and the mass of the propulsion for both solar and
nonsolar UAVs. In this figure, the curve shows that the pro-
pulsion mass of the solar UAV is higher by almost a third
than that of the nonsolar UAV (0.9 kg payload). This result
clearly signifies the effect of propulsion mass which includes
the propeller, electric motor, electronic speed controller, gear
box, and propeller adapter at a specified payload.

The required power (total mission) for both solar and
nonsolar UAVs as a function of maximum take-off mass is
illustrated in Figure 9. Although the effect of the minimum
battery pack mass can be observed for the low UAV mass, a
smoother correlation is observed as the values increased.
Again, this result can be attributed to the minimum size of
the high-power-density lithium polymer cell, which comes
in multiples of 50 g± 10%. Since the system studied here
operates at 3 battery cells in series, a minimum battery pack
mass comes in multiples of 0.15 kg. Thus at an aircraft mass
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of 1.5 kg, the power consumption rises slowly due to the
increase in the control and propulsion system.

This UAV design model estimates that a nonsolar UAV
can only carry a maximum of 3 kg for a flight of 9 hours or
only 0.1 kg for a flight of almost 23 hours at an aspect ratio
of 12. However, a solar UAV that operates in Cranfield,
UK, during the summer can fly for 24 hours and 9 hours with
0.1 and 1.3 kg payloads, respectively.

Currently, nonsolar UAVs can carry more payload at
any particular time and place than solar UAVs, at a given
endurance requirement. However, the principal weakness
of nonsolar UAVs is their poor endurance. This weakness
can be addressed using a solar UAV, which has a high-
endurance capability.

The choice of the electrically powered UAV type
should be based on the technical requirements specified by
the customer. A solar- and battery-powered electric UAV is

preferred on missions that require flight durations of more
than 24 hours regardless of the amount of payload it can
carry. Otherwise, a battery-powered UAV may be opted for.

The needs of a solar-augmented battery-powered vehi-
cle rather than of a battery-only flight vehicle must be
evaluated carefully in terms of location and date of opera-
tion in the year. Determining the number of days a
designed solar UAV engages in full operation is necessary
for selecting the appropriate type of electrically powered
flight vehicle. This simulation was conducted specifically
for a UAV to be operated on a summer day in Cranfield.
The developed solar irradiance submodel offers an efficient
design optimization and customization process for various
UAV operating locations.

The validation results of this study involve design model-
ing based on the three new and three improvised design
properties that substantially improved the final UAV design

.
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characteristics and performance. Table 1 shows the compar-
ison of all small solar-powered UAVs to the UAV designed
using the current mathematical design model.

The UAV developed using the current design model
had a 25% smaller ratio between power consumption and
take-off mass than its closest competitor. Nevertheless, the
AtlantikSolar AS-2 UAV design is a well-designed solar-
powered UAV, yet the proposed design methodology may
be used to further improve the design. This is because
the power-to-mass ratio of the Cranfield Solar UAV is
slightly better than that of AtlantikSolar AS-2 UAV. A
detailed aircraft specification of the Cranfield Solar UAV is
specified in Table 2.

The comparison further affirms the importance and need
of the three new and three improvised design properties to
optimize the UAV final design. The optimization of power
and the propulsion system in UAVs based on the desired air-
craft performance indicates that the new electric propulsion
design properties are main contributors to the 25% reduction
in the power consumption-to-take-offmass ratio. The overall
enhancement of the developed mathematical design model
ensures that the final UAV design is improved in all aspects
of design optimization.

4. Conclusion

A comprehensive UAV mathematical design model with
nine design properties was developed. This design model
consists of three new aspects of design consideration and
three improved design properties. This work substantially
enhanced the final UAV design characteristics and perfor-
mance for a high-endurance mission. Design validation
showed a 25% smaller ratio between power consumption
and take-off mass in the UAV designed using the current
mathematical design model than in previous UAVs. Solar-
(solar and battery) and nonsolar- (battery-only) powered
UAVs were also compared. The nonsolar UAV can carry
more payload at any particular time and place than a solar
UAV, at a given endurance requirement. However, the
endurance of a nonsolar UAV is its principal limitation.
This feature can be addressed by using a solar UAV with
a high-endurance performance. Payload has the highest
effect on the maximum take-off mass, followed by the bat-
tery, structure, and propulsion mass. Ultimately, the type
of an electrically powered vehicle to be selected will be
in accordance with the technical requirements specified
by the customer.
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Figure 9: Maximum take-off mass versus required power of the solar and nonsolar UAVs.

Table 1: Comparison of current and previous small solar-powered UAV designs.

Research UAV Aircraft Mass (kg) Wing span (m) Endurance (hr)
Cruise

power (W)
Power/take-off
mass (W/kg)

AcPropulsion So Long 12.8 4.75 48 95 7.42

Technion Sun-Sailor 3.6 4.2 11 40 11.11

Swiss Federal Institute of
Technology of Zurich

Sky-Sailor 2.4 3.2 27 15 6.25

Swiss Federal Institute of
Technology of Zurich

Sun Surfer 0.12 1 — 1.77 14.75

Swiss Federal Institute of
Technology of Zurich [10, 11]

AtlantikSolar AS-2 UAV 6.93 5.65 28 39.7 5.73

University of Minnesota [7, 8] SUAV:Q hybrid 3.364 4 12 30 8.92

Cranfield University Current work 3 3.7 23.0 15 5.00
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Nomenclature

WTOmax: Maximum take-off weight (N)
WStruct: Structure weight (N)
WEmpty: Empty weight (N)
WSolar: Solar power system weight (N)
WBatt: Battery weight (N)
WCtrl: Control system weight (N)
WPay Max: Maximum payload weight (N)
ef fElectric: Electric propulsion system efficiency (%)
b: Wing span (m)
c: Mean aerodynamic chord length (m)
CLmax W: Wing maximum lift coefficient
CMo HT: Tail zero-lift-pitching moment coefficient
SCell: Number of battery cells in series in a battery

pack
QCell: Battery cell’s capacity (A/hr)
PCell: Number of battery cells in parallel in a battery

pack
VmaxCell: Battery cell’s maximum voltage (V)
tDaylight: Flight duration with daylight (hr)
DN: Day number
CMo: Aircraft zero-lift-moment coefficient
CMo W: Wing zero-lift-moment coefficient
V : Airspeed (m/s)
lHT: Tail moment arm (m)

SHT: Tail area (m2)
P: Power (W)
iW: Wing incidence angle (°)
iHT: Tail incidence angle (°)
ρ: Air density (kg/m3)
g: Gravitational acceleration at the chosen

altitude (m/s2)
μ: Viscosity (kg/ms)
S: Wing area (m2)
CDo W: Wing zero-lift-drag coefficient
CDi W: Wing induced drag coefficient
AR: Aspect ratio
PProp‐In: Power input to the propeller (W)
PProp‐Out: Power output to the propeller (W)
PMotor‐In: Power input in the electric motor (W)
PMotor‐Out: Power output in the electric motor (W)
PProp−Req: Power required from the propeller (W)
EAvailable: Energy available (W/hr)
SOLALT: Solar altitude
αtrim: Trimmed aircraft’s angle of attack (°)
elevtrim: Trimmed elevator deflection (°)
VMotor: Electric motor’s operational voltage (V)
RPM: Electric motor’s shaft rotation per minute

(rpm)
IMotor: Electric motor’s current (A)
Diam: Propeller’s diameter (in)
Pitch: Propeller’s pitch (in)
VProp‐Tip‐Static: Propeller tip static velocity (m/s).
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