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Abstract  

Whilst direct observation methodologies can describe back-transport of supra-micron particles, 

present technologies are unable to discriminate sub-micron particles, which are primarily 

responsible for membrane fouling. In this study we therefore introduce a fluorescence enabled 

direct visual observation (RLF-DVO) methodology to permit visual characterisation of sub-micron 

particle transport during cross-flow filtration. Particle discrimination was achievable for particle 

diameters exceeding 0.25 µm; however, this was dependent upon particle concentration and the 

cross-flow velocity employed. Nevertheless, this is considerably below the detection limit of current 

techniques (around 3 µm). During filtration of a binary dispersion comprised of sub-micron particles, 

deposition was observed before a change in transmembrane pressure was detected, which 

underpins the important role of direct observation for fouling diagnosis. Based on observations 

made during this study, recommendations are proposed that will further improve resolution. 

Importantly, this study demonstrates RLF-DVO can provide real-time description of sub-micron 

particle transport during cross-flow filtration.  
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1. Introduction 

Membrane bioreactors (MBRs) are an advanced wastewater treatment technology that enables 

process intensification and as the ultrafiltration membrane can achieve excellent separation, MBRs 

are capable of meeting particularly challenging discharge standards (Judd, 2011). Process 

intensification is fostered through using the membrane for enhanced particulate rejection, which 

allows solids retention time to be decoupled from hydraulic retention time. However, this promotes 

particle polarisation at the membrane wall which constrains hydraulic productivity (Jiang et al., 

2007). Consequently, gas or liquid pumping is used to introduce shear at the membrane wall, to 

promote particle back-transport into the bulk, as a means to sustain productivity. This membrane 

‘fouling’ phenomenon has been the focus of extensive research as the energy penalty incurred for 

introducing shear, coupled with the need to specify excess membrane area to compensate for the 

reduction in hydraulic productivity, imposes added cost that constitutes a significant barrier to the 

wider deployment of MBRs (Judd, 2011).  

The particle matrix is heterogeneous both in size distribution and origin but broadly contains 

soluble microbial products (SMP), which are around 0.1 to 1 µm in size, single cell bacteria (0.1 to 5 

µm in size), and flocs which comprise of cells and cell fragments embedded in a polymeric network 

of extracellular polymeric substances (EPS), which are around 5 to 100 µm in size. Several studies 

have demonstrated that the colloidal (approximate classification, 1.5 to 0.45 µm) and soluble (often 

classified as <0.45 µm) fractions primarily contribute to fouling (Bouhabila et al., 2001; Grelier et al., 

2005; Li et al., 2005b; Itonaga, et al., 2004; Bae and Tak., 2005). The principal constituents of these 

particle sub-groups are high molecular weight protein and polysaccharide compounds that are 

commonly below 1µm in size (Figure 1).            

Whilst their contribution to membrane fouling is well recognised, the explicit mechanisms 

which govern membrane fouling by this discrete sub-micron particle group are less well understood 

[3-5]. This can be accounted for by the complex particle-particle and particle-membrane interactions 

that occur within the polarised region adjacent to the membrane surface (Neemann et al., 2014). 



Furthermore, the combination of drag and convective forces imposed on the particle system when 

under filtration, introduce complex hydrodynamic behaviour that is known to promote 

heterogeneous fouling layer morphologies (Neemann et al., 2013, Martin et al., 2014). Specifically, as 

these compounds are generally colloidal in nature, their transport is primarily controlled by 

Brownian motion and as such the shear forces applied to the membrane surface are insufficient to 

provide back-transport toward the bulk which results in preferential colloidal deposition at the 

membrane (McAdam et al., 2011).  

Direct Observation (DO) describes a group of methodologies that enable non-invasive 

characterisation of particles contained within the ‘critical’ polarised region which forms adjacent to 

the membrane during real-time filtration (Autin et al., 2016). Zhang et al. (2006) used Direct 

Observation Through Membrane (DOTM) to study particle-particle interaction within bidisperse 

suspensions, comprised of particles ranging 3 to 10 µm in diameter. The authors demonstrated that 

the critical flux of smaller particles increased, ostensibly due to the larger particles augmenting shear 

induced diffusivity of the smaller particles. Marselina et al. (2009) developed Direct Visual 

Observation (DVO) which oriented the camera tangentially to a hollow fibre membrane. As such, the 

DVO method permitted new information to be determined, as the velocity profiles of particles near 

the membrane surface could be quantified during filtration, enabling classification of both stagnant 

and fluidised regions within the subsequently formed deposit. Whilst both studies provide significant 

insight into particle-particle interaction and particle back-transport, the techniques rely on visible 

light for detection, which limits quantitation to particles around 3 µm or greater in diameter (Le-

Clech et al., 2007). Consequently, the sub-micron particle fraction, which is recognised to form more 

tenacious foulant layers, has not been well studied. This is important as the enhancement in mass 

transport provided within micron sized binary dispersions, previously reported using DOTM (Li et al., 

2000; Zhang et al., 2006), is in contradiction to previous research which evidenced a reduction in 

critical flux in a binary dispersion comprised sub-micron particles (Madaeni et al., 2006). 



Within other disciplines, reflected light fluorescence (RLF) has been used to enhance particle 

resolution through employing light of a prescribed wavelength to excite an auto-fluorescing 

fluorochrome. For example, in aquatic microbiology, RLF has been used to enable counting of viruses 

below 1 µm in size (Noble and Fuhrman, 1998). In this study, we therefore propose to integrate 

reflected light fluorescence into DVO methodology to enable, for the first time, the direct 

measurement of sub-micron particles within binary dispersions, undergoing filtration. Specifically, 

we will: (i) demonstrate RLF-DVO for the characterisation of sub-micron particles; (ii) use RLF-DVO to 

quantify particle back-transport of sub-micron and super-micron particles; (iii) compare classical 

pressure based and deposition based methods for the determination of critical flux in binary 

dispersions comprised of sub-micron particles.  

 

2. Materials and methods 

2.1 Experimental Set-up 

The microscope was equipped with reflected light fluorescence (RLF) detection to provide emission 

at specific wavelengths (DM5500B, Leica Microsystems, Milton Keynes, UK). A digital high speed 

camera (DFC365 FX, Leica Microsystems, Milton Keynes, UK) was mounted on the microscope for 

image collection and analysed using Leica Application Suite software and VideoStudio software for 

particle tracking (Ulead, Malavida). A crossflow filtration cell was mounted onto the microscope 

stage; a viewing window was routed into the top of the cell to enable imaging. A PVDF hollow fibre 

membrane with fitted within the channel and operated in an ‘out-to-in’ filtration mode. The 

ultrafiltration (0.04 µm) hollow fibre membrane had an outside diameter of 0.0019 m, and an active 

surface area of 0.00125 m2 (Zeeweed, GE Power and Water, Ontario, USA). The ‘fluid-gap’ between 

the outer fibre wall and the viewing window was around 2.5 mm. The filtration cell was fitted with 

pressure transducers with a reported sensitivity of <0.25% of range, on the retentate (0–1 barg) and 

permeate (+0.5 to -0.5 barg) channel to measure transmembrane pressure (TMP). Critical flux (Jc) 

was experimentally determined by assuming TMP of the suspension remain equal to the TMP of 



clean water at the corresponding flux provided there is no deposition (Field et al., 1995). Particle 

polarisation will occur at the membrane wall once the convective force (applied by the permeate 

pump) exceeds the force applied by diffusive back-transport. Back-transport is described by 

Brownian diffusion (Eq. 1), shear induced diffusion (Eq. 2), which refers to particle motion induced 

by particle-particle interaction in a shear flow [Rusconi and Stone, 2008, Tardieu et al., 1998), and 

inertial lift (Eq. 3), which describes convective interaction between particles and the surrounding 

undisturbed flow field (Li et al., 2000; Tardieu et al., 1998): 
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Numerous models have been derived to predict packing efficiency in binary dispersions. In the 

Cavern model, there is an assumption that small particles fill the cavities remaining in a packed bed 

constructed by large particles: 
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where Ø is the volume fraction of particles, and the subscript L represents large particles. An 

alternate proposition is that some small particles are replaced by several large particles in a packed 

bed constructed mostly of small particles. The packing density can also be estimated by material 

balance (Hwang and Lin, 2016; German, 1989): 
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where the subscript s represents small particles. As both cake porosity and particle volume fraction 

are smaller than one, the cakes formed by dual-size particles have smaller porosity than that of a 



uniform-sized mono-dispersion. The lowest porosity can be given by the intersection point of the 

curves plotted using (4) and (5): 

Lsav
              (6) 

The final average volume fraction, Øav can then be estimated by 1-Ɛav and can be applied to estimate 

mf in a binary particle suspension. 

 

2.2 Chemicals used 

Fluorochrome enabled latex microspheres were used as candidate particles (from 0.25 to 10 µm), 

which are hard dyed to limit bleeding (Firefli™, Thermo Fisher Scientific, US). Green microspheres 

were used for mono-dispersion testing which have an excitation/emission spectrum of 468/508 nm. 

Red 3µm microspheres were used for binary testing which exhibit excitation/ emission at 542/612 

nm. Model solutions were prepared from microsphere concentrates containing 1% solids and diluted 

to the desired concentration in ultrapure water (Purelab Option – S7/15, 18.2 MΩ cm-1 and TOC < 3 

ppb) to which 20 mM sodium chloride) and 1 mM sodium hydrogen carbonate were added to 

increase ionic strength and buffering capacity of the water (Fisher Scientific, Loughborough, UK). 

Unless otherwise stated, experiments were run for 3h using a flux (J) of 100 l m-2 h-1, and an initial 

particle concentration of 25 mg l-1 at a cross flow velocity (VL) of 11 mm s-1.  

 

3. Results 

3.1 Verification of particle identification and fouling characterisation in mono-dispersions 

Using RLF-DVO, particle visualisation was initially undertaken to define the operating conditions at 

which discrete particles of fixed diameters could be determined (Table 1). Individual particle 

determination of 0.1 µm particles, could only be determined when crossflow velocity approached 

stagnation (0 m s-1). For particles diameters between 0.25 and 1 µm, particle discretisation was 

similarly dependent upon cross flow velocity but also particle concentration. Discrimination of 3 µm 

particles was independent of concentration or crossflow velocity. For subsequent experiments, VL 



was fixed to 0.011 m s-1 which ensured good resolution for particle diameters exceeding 0.5 µm 

across a range on solution concentrations and is analogous to that successfully applied in earlier 

experiments (Autin and McAdam, 2015; Autin et al., 2016).  

Fouling assessment was undertaken for mono-dispersions with particle diameters 0.25, 0.5, 

1, 3, 5, 10 µm (Figure 3). For the smallest particle sizes, starting at a particle diameter of 0.25 µm, 

dP/dt was observed to increase as particle diameter increased. Conversely, for the large particle 

sizes, dP/dt was observed to increase as particle size reduced. The highest fouling rate was recorded 

for the mono-dispersion comprised of 1 µm diameter particles. Fouling data was compared to back-

transport velocity modelling which evidenced a minimum backtransport velocity at 1 µm, which is 

coincident with measurement of the highest dP/dt. Particle back-transport velocity for 0.5 and 3 µm 

mono-dispersions were measured between 10 and 150 µm from the membrane surface (Figure 4). 

Higher particle velocities were determined further from the membrane surface. Back-transport 

velocities appeared similar for both 0.5 and 3 µm mono-dispersions, and were considerably below 

the crossflow velocity of 11000 µm s-1. 

 

3.2 Fouling characterisation in binary dispersions  

Critical flux (Jc) assessment was undertaken on mono-dispersions and bi-dispersions, using pressure 

as a surrogate determination of fouling (Figure 5). For the 3 µm mono-dispersion, increasing bulk 

concentration reduced Jc considerably. Lower Jc was attained with the 0.25, 0.5 and 1 µm mono-

dispersions. Critical flux measured within the binary dispersion, was similar to that of the 0.25 µm 

mono-dispersion. Assessment of the binary dispersion comprising 0.5 and 3 µm diameter particles, 

evidenced a reduction in Jc. In contrast, for the binary dispersion comprised of 1 and 3 µm diameter 

particles, Jc increased and was increasingly evident at higher particle concentrations. Particle 

deposition of the 0.5 and 3 µm bi-dispersion was evaluated during critical flux analysis through 

quantitation of cake height (Hc) (Figure 6). Deposition was evidenced from the outset of filtration.  

  



4.  Discussion 

Within this study, the application of fluorescence enabled direct visual observation has been 

evidenced to permit the quantification of particle back transport for dispersions comprised of sub-

micron particles. There have previously been very few studies of binary dispersions comprised of 

sub-micron particles, due to method detection limits of existing methodologies (Le-Clech et al., 

2007). Particle back-transport velocities of 0.5 and 3 µm particles were within the range reported by 

Marselina et al. (2009) for bentonite particles exposed to a CFV of 15 mm s-1. The authors similarly 

noted particle velocity to increase further from the membrane (below the nominal CFV), which was 

accounted for by the heterogeneous distribution of fluid velocity within the channel. In this study, 

particle velocity for 0.5 and 3 µm particles was similar. Caldwell (2000) described an analogous 

separation problem in which small and large particles ‘co-eluted’ during field-flow fractionation 

(FFF), where a flatsheet crossflow filtration cell is used to replace packed columns for the 

chromatographic separation of particles. Sub-micron particles are driven by the field toward the 

membrane, increasing the particle wall concentration, which increases the opposing diffusive flux 

proportionately until an equilibrium is reached with field-driven transport toward the wall (Giddings, 

2000). The result is a particle cloud which comprises of an equilibrium distribution whose 

concentration declines exponentially with distance from the membrane wall (Giddings, 2000). 

Consequently, whilst 0.5 and 3 µm particle velocities are quantitatively similar within this 

hydrodynamic range, the different primary back-transport mechanisms impose contrasting particle 

distributions within the flow. This was visually illustrated when operated at analogous particle 

volume fractions (Figure 7). For dilute suspensions of large particles exposed to high shear, 

preferential segregation from the membrane surface is promoted (Krompcamp et al., 2006). In this 

study, wall shear rate was constrained to ensure visibility of individual particles. It is proposed that 

limited accumulation of 3 µm particles at the wall could have also been promoted by the wide ‘fluid 

gap’ adopted (2.5mm) which reduced the probability for particles migrating to the wall from the 

faster stream-lines in the centre of the channel. In FFF, a 250 µm channel height is used to ensure 



particle migration is controlled through both convective and diffusive forces (Giddings, 2000). The 

recommended breadth to thickness aspect ratio (b/w) for FFF is ~100 (Barman et al., 1993). For 

comparison, the present b/w is around 2. Decreasing channel depth will increase b/w to 24, which 

will extend the parabolic flow profile in the radial direction, thereby improving particle distribution. 

The consequential impact will be the improved control over particle migration, enabling more 

refined governance of particle deposition, providing improved and significant insight into particle-

particle interaction and particle deposition of the sub-micron particle fraction, which is the critical 

particle fraction to influence fouling in cross-flow filtration.      

Analysis of mono-dispersions indicated 1 µm diameter particles presented the highest 

fouling rate. This was coincident with the onset of the minimum back-transport velocity and is 

analogous to earlier description of ultrafiltration for silica particle suspensions between 0.025 and 20 

µm (Fane, 1984). Evaluation of particle deposition during critical flux determination of binary 

dispersions, demonstrated particle deposition was noted by RLF-DVO in advance of TMP detection 

(Figure 6). Such discontinuity has been previously observed in the study of super-micron 

suspensions. The authors ascribed the TMP ‘lag time’ to low pressure transducer sensitivity, 

insufficient particle accumulation to impose a detectable increase in pressure, and the low specific 

resistance provided by the foulant (Zhang et al., 2006). Importantly, this evidences the powerful 

resolution of this RLF-DVO methodology, compared to conventional methods, in enabling the 

characterisation of sub-micron particle deposition. Krompcamp et al. (2006) reported that only small 

particles in super-micron bi-dispersions under cross-flow were deposited at the membrane, as these 

have lower critical fluxes (Li et al., 1998) and proposed that Jc of the small particles could be 

provided by: 

𝐽𝑐 = 0.072𝛾0 (
∅𝑤𝑎4

∅𝑏𝐿
)
1/3

          (7) 

For the specified shear rate, their model estimates Jc of 0.5, 1.4 and 3.4 L m-2 h-1 for 0.25, 0.5 and 1 

µm particles respectively which provides supportive explanation for early deposition in this study 

(Figure 6). Higher particle back-transport could have been achieved by increasing shear rate, 



particularly for binary dispersions comprised of 1 µm particles. However, RLF-DVO is currently 

limited to shear rates <50 s-1 to ensure measurement of particles as individual entities. The proposed 

changes to the aspect ratio, specifically reducing the distance between the outer fibre wall and 

viewing window, will also reduce the overall distance to the microscope objective. Whilst the current 

set-up dimensions were within the working distance of the lens (11 mm; Autin et al., 2016), this will 

inevitably improve resolution, enabling individual particle identification at higher velocities and 

across a broader range of concentration and particle size ranges than presently possible (Table 1), 

helping to further advance understanding of sub-micron particle interactions in complex dispersions.      

The particle deposition visually observed in binary dispersions, indicates that by definition, 

the critical flux was exceeded near the onset of filtration. Consequently, the TMP data provides 

indicative information of cake formation in the ‘super-critical’ state (i.e. post-particle deposition) 

rather than a definitive force-balance determination (Figure 5). For 0.25 µm particles, Jc was 

ostensibly similar between the mono-dispersion and bi-dispersion. It is proposed that the 

preferential deposition of 0.25 µm particles in the bi-dispersion resulted in the formation of a cake 

with similar characteristics (Krompcamp et al., 2006). Increasing sub-micron particle diameter from 

0.25 to 0.5 µm reduced Jc of the bi-dispersion. Madaeni (1998) similarly identified that Jc of a bi-

dispersion comprising sub-micron particles was below Jc of the mono-dispersion (50 nm gold-sol, 1 

µm latex). The authors used invasive imaging to evidence that large particles within the cake 

increased packing density and hence deposition resistance; this phenomenon being dependent upon 

the particle fraction. In the transition from 0.25 to 0.5 µm, sub-micron particle number in the bulk 

decreased by almost an order of magnitude and the relative proportion of 3 µm particles increased 

from 0.058% to 0.46%. This particle number fraction is the same order as Madaeni et al. (1998). The 

estimated porosity for the 0.5 µm mono-dispersion was 0.33, compared to only 0.23 for the bi-

dispersion, which is similar to cakes produced from bi-dispersions with particle size ratios of 0.01 to 

0.06  (Madaeni et al., 1998). The Jc of 1 and 3 µm bi-dispersion was above the Jc of the mono-

dispersion (Figure 5) and is analogous to observations by Zhang et al. (2006) for super-micron binary 



dispersions in which SID dominated back-transport (ranging 3 to 10 µm). Whilst the specific 

mechanisms require elucidation, it is apparent that in the super-critical state (i.e. post-particle 

deposition), the impact of bigger particles is dependent upon the relative particle number fraction in 

the cake. 

 

5. Conclusions 

Within this study, fluorescence enabled DVO has been evidenced to permit direct measurement of 

sub-micron particles in the binary dispersion. A limiting particle diameter of 0.1 µm was identified at 

which individual particles could not be discriminated in cross-flow. For particles exceeding 0.25 µm, 

resolution was determined to be a function of concentration and crossflow velocity. It is asserted 

that enhanced control of particle migration can be facilitated through selection of a shallower 

channel depth. Hydrodynamic conditions were selected to enable evaluation of an example binary 

dispersion compised of 0.5 and 3 micron particles, in which sub-micron particle back-transport was 

measured through direct observation for the first time. Through comparison of mono-dispersion and 

bi-dispersion data, it is suggested that particle deposition at low fluxes is primarily by sub-micron 

particles due to their lower particle critical flux. Higher shear rates could have improved back-

transport but RLF-DVO is currently limited to wall shear rates <50 s-1 to ensure single particle 

discrimination. We suggest the shallow depth channel will increase microscope resolution by 

reducing overall distance between microscope objective and membrane wall, which will enable 

higher fluid velocities to be evaluated without influencing image quality. Since RLF-DVO does not 

rely on natural light for luminescence, we consider that the methodology is equally valid for 

application to flat-sheet DOTM methods, whose membrane selection has been previously limited to 

those with a capillary pore structure as they enable light transmission. The methodology enabled 

determination of the early onset of particle deposition, before pressure measurement determined 

the critical flux which supports earlier observations of methods capable of determining super-micron 

bi-dispersions, underpinning the importance of direct observation methodologies for diagnostic 



investigation of fouling. Importantly, this study demonstrates fluorescence enabled direct 

observation can provide new insight into particle-particle and particle-membrane interactions for 

sub-micron particle transport during cross-flow filtration, which has been seldom described due to 

the limitations of previous techniques. 
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Figure 1. Particle size distribution of an anaerobic MBR used to evidence bimodal distribution, with a 

peak in the sub-micron range. This is compared the model polysaccharide Sodium Alginate, often 

used as a surrogate of SMP, whose particle size is within the sub-micron range.    
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Figure 2. Experimental set-up.  
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Figure 3. Fouling rate determined for particle mono-dispersions and compared to modelled back-

transport velocities (0.25 to 10 µm). Cb 0.01 kg m-3; VL 0.011 m s-1. 

 

Figure 4. Measured particle back-transport velocities (µm s-1) for particle mono-dispersions in the 

polarised region adjacent to the membrane. Cb 0.01 kg m-3; VL 0.011 m s-1. 

0

0.1

0.2

0.3

0.4

0.5

0

1

10

100

1000

10000

100000

1000000

0.01 0.1 1 10 100

Fo
u

lin
g 

ra
te

 (
kP

a 
h

-1
) 

B
ac

k 
tr

an
sp

o
rt

 v
e

lo
ci

ty
 (

x1
0

-1
0  

m
 s

-1
) 

Particle size (µm) 

Brownian Shear Induced Diffusion

Inertial lift Force balance

Fouling rate

0

500

1000

1500

0 50 100 150 200

B
ac

kt
ra

n
sp

o
rt

 v
e

lo
ci

ty
 (

µ
m

 s
-1

) 

Distance from the membrane (µm) 

0.5 micron monodispersion

3 micron monodispersion



(a) 

 
(b) 

 
(c) 

 
Figure 5. Critical flux (Jc) determination for mono-dispersions and binary dispersions using the flux-

step method. Cb 0.01 kg m-3; VL 0.011 m s-1. 
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Figure 6. Particle deposition determined for binary dispersions of 0.5+3 µm and 1+3 µm, when using 

the flux-step method. Cb 0.01 kg m-3; VL 0.011 m s-1. 

 

  
(a) 3µm (b) 0.5µm 
Figure 7. Raw images captured in real-time during ultrafiltration of 
mono-dispersions undergoing ultrafiltration: Cb, 10 mg l-1; CFV, 0.011 
m s-1. Magnification: 10x (3 µm); 20x (0.5 µm). 
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Table 1. Individual particle resolution for reflected light fluorescence direct observation methodology (RLF-DVO) when particles are exposed to cross-flow  

Cross-flow 
velocity (m s-1) 

Particle size under testing (µm)/ Particle concentration (mg l-1) 

0.1 0.25 0.5 1 3 

0.1 1 10 25 50 0.1 1 10 25 50 0.1 1 10 25 50 0.1 1 10 25 50 0.1 1 10 25 50 

0                          

0.001                          

0.005                          

0.011                          

0.05                          

0.1                          

 


