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Abstract: Asphaltene aggregation affects the entire production chain of petrochemical

industry, which also poses environmental challenges for oil pollution remediation. The

aggregation process has been investigated for decades, but it remains unclear how the

free energy of asphaltene association in solvents is correlated with its molecular

structure. In this study, dimerization energy of 28 types of asphaltenes in water and

toluene were calculated using the umbrella sampling method. Structural parameters

related to the atom types and functional groups were screened to identify the factors

most influencing the dimerization energy using multiple linear regression, multi-layer

perceptron and support vector regression. Results demonstrated that the influences of

molecular structure on asphaltene association in water was nonlinear, while attempts to

capture the relationship using linear regression had large error. The linkage per aromatic

ring, number of aromatic carbons and aliphatic chains were the top three factors

accounting for 52% of the dimerization energy variation in water. Asphaltene

dimerization in toluene was dominated by the content of sulfur in aromatic rings and

the number of aromatic carbons which contributed to 55% of the energy variation. To

the best of our knowledge, this was the first study successfully predicting asphaltene

dimerization using molecular structure (R > 0.9) and quantifying simultaneously the

relative importance of each structural parameter. The proposed modelling approach

supported the decision making on the number of structural parameters to investigate for

predicting asphaltene aggregation.

Keywords: Asphaltene aggregation; PMF; Multiple linear regression; Multi-layer

perceptron; Support vector regression
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1. Introduction

Asphaltenes are the largest, heaviest and most polar fraction of crude oil, which usually

contain poly-condensed aromatic ring linked by aliphatic chains and heteroatoms like

nitrogen, sulfur and oxygen. Such structural properties make them easy to aggregate,

flocculate and deposit even at low concentrations, which affects the entire production

chain of petrochemical industry.1 A large number of studies have been carried out to

address the flow-assurance issues arose from asphaltene aggregation.2 Our recent

studies also demonstrated the environmental significance of asphaltene aggregation

process on the fate and transport of oil pollutants in the contaminated soils. For example,

asphaltene aggregates could form porous network in which the small oil molecules are

sequestrated and become difficult to remove. 3 They also have the tendency to co-

aggregate with the soil organic matter (SOM), a key component of soil responsible for

the persistence of recalcitrant residual oils in the oil-soil matrix, at the oil-water

interface and in the bulk water.4 The formation of asphaltene-humic acids complex

decrease the diffusion coefficient and increases the hydrophilicity of the asphaltenes in

the clay pores.5 These findings highlight the potential role of asphaltene aggregation on

the extractability and bioavailability of the residual oil in the aged soil.

Successful prediction of asphaltene macro-scale behaviour requires an understanding

of the aggregation in terms of micro-scale mechanism and aggregation strength.

Without this fundamental knowledge, any attempt to model the environmental

behaviour of asphaltenes will be incomplete or inaccurate. Previous studies indicated

that asphaltene aggregation is influenced by many factors such as the molecular
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structure and concentration of asphaltenes,6-8 temperature and pressure,9, 10 and solvent

types.11, 12 Among these factors, the molecular structure of asphaltenes are of particular

interest due to the great diversity and complexity of asphaltene from various sources.13

For instance, it was estimated that the number of rings in a single asphaltene fused ring

system can range from a few rings to up to 20 rings.13

Several studies have been carried out to investigate the relationship between asphaltene

aggregation and its molecular structure using molecular simulation techniques such as

classical molecular mechanics, molecular dynamics (MD) simulation and density

functional theory method in quantum mechanics. Generally, the π-π interaction between 

poly-aromatic rings was acknowledged as the main association force.4, 14-16 The lower

H/C ratio and the higher molecular weight and aromaticity were also proved to favour

the asphaltene aggregation.17, 18 However, the contribution of some other structural

parameters to the asphaltene aggregation varied against studies with different

simulation conditions. For example, hydrogen bonding has been proposed as one of the

driving forces for asphaltene association in toluene or crude oil, 15, 19 but in other studies

the intermolecular hydrogen bonds were not observed during the asphaltene

dimerization in vacuum condition.20 According to the modified Yen model,21 the steric

repulsion between aliphatic side chains was a force limiting asphaltene aggregation in

toluene or heptane. In contrast other studies demonstrated that the asphaltene

aggregates formation in water was favored by the very long or very short side chains in

the asphaltene molecules.22

Another issue that was less taken into account in previous studies was the existence of
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co-factors effects among the molecular structure parameters. For example, the same

backbone structure was used by only changing the side-chain length,22 but actually the

varied side-chain length also led to the changes in the molecular weight and the ratio of

hydrogen to carbon which might have synergistic or antagonistic effects on the

asphaltene aggregation. If the side-chain length was investigated without changing the

latter two parameters, then the number of chains had to be altered to keep mass balance.

When more than one structural parameter varied simultaneously, the relative

contribution of each parameter to the binding energy of two asphaltene molecules

remained unelucidated. To the best of our knowledge, this was mainly due to the lack

of statistical data. As a way forward it is suggested to develop multi-factor regression

to evaluate the importance of concomitant molecular structure parameters on the

strength of asphaltene dimerization.

Quantitative structure-property relationship (QSPR) modeling is a useful tool to predict

the relationships between molecular structures and the properties.23 One challenge is

the selection of a number of molecular models for asphaltenes with different structures,

which is then used to calculate the free energy for the binding of each pair of asphaltenes

and to establish mathematical models correlating these energies with the structural

parameters. Although the asphaltenes are complex heterogeneous fractions, a variety of

asphaltene model molecules have been proposed by many research groups that can

mimic the properties of asphaltenes,24 making it possible to address the above issue. In

the present study, 28 asphaltene models from the literatures were selected to explore

the relationship between asphaltene dimerization and its molecular structure using
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conventional statistical methods (e.g. multiple linear regression) and machine learning

methods (e.g. multi-layer perceptron and support vector regression) that have been

successfully used in our previous studies for predicting environmental phenomenon.25-

27 Specific objectives of this study were to screen structural parameters that were

significant to the asphaltene dimerization, predict asphaltene dimerization by structural

parameter, and quantify the relative importance of each structural parameter to the

asphaltene dimerization.

2. Methodology

2.1 Molecular dynamics simulation

MD simulations were performed using the GROMACS 5.1 software,28 while the

molecular interactions was calculated by the CHARMM36 force field.29, 30 As shown

in Fig. 1, 28 types of asphaltene molecules with different structures were selected from

literatures.6, 11, 22, 31-34 Each molecule contained a single polyaromatic core with side

chains, because previous experiments evidenced that such “continental model” was the

dominant asphaltene architecture, providing the main aspects proposed by the Yen-

Mullins model.35 For example, using the Laser desorption laser ionization mass spectra,

Sabbah et al.36 demonstrated that all the 23 types of model compounds having one

aromatic core showed little or no fragmentation, which well-mimicked the behavior

observed for the 2 petroleum asphaltene samples. However, all model compounds with

more than one aromatic core showed energy-dependent fragmentation, suggesting that

the “archipelago models” were not dominant in asphaltenes. Recently, using the atomic
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force microscopy and scanning tunnelling microscopy, Schuler et al.37 measured the

structure of more than 100 asphaltene molecules, which also concluded that a single

aromatic core was the dominant asphaltene architecture although in some cases the

“archipelago structure” was also present.

The free energy of dimerization of asphaltene molecules in water and toluene was

obtained using the umbrella sampling method.6, 38 A step-by-step guide for the umbrella

sampling was available from the Gromacs tutorials website

(http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin/gmx-

tutorials/umbrella/index.html). Before umbrella sampling, the configuration of each

asphaltene dimer was obtained from a 2 ns MD simulation, where each two asphaltene

molecules were randomly placed in a simulation box (4 nm × 4 nm × 4 nm) filled with

water or toluene. The coordinates of asphaltene dimer at the end of MD simulation was

extracted and located in the edge of a new simulation box (4 nm × 4 nm × 7.5 nm) with

the aromatic rings parallel to the x-y plane. The simulation box was filled with water

and toluene, respectively. It was then equilibrated by running MD simulation at NVT

and NPT ensemble for 1 ns, respectively, where the asphaltenes were kept restrained.

The center of mass (COM) pulling was employed to generate a series of initial

configurations for each umbrella window. The COM of one asphaltene molecules was

pulled along the Z-axis at the rate of 2.6 nm ns-1 for 1 ns, while the other one was

restrained with a harmonic force constant of 1000 kJ mol-1 nm-2. Approximately 35

windows were selected with a space of 0.05 nm between two consecutive distances

from the resulted pulling simulation. For each window, separate MD simulation (10 ns)
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was performed using the biased umbrella potentials to restrain the molecules within the

window. The potential of mean force (PMF) was calculated from unbiased probability

distributions of the systems with the weighted histogram analysis method.39 The free

energy for asphaltene dimerization was obtained from the PMF curves, which was

defined as the free energy when two asphaltene monomers moved from very far away

(i.e., distance larger than 1.8 nm when the interaction between two monomers was

negligible) to the most stable state with the lowest energy. Accordingly to previous

studies, the most stable structure of asphaltenes dimers were formed when the two

monomers were parallel stacked and the distance between each other was about 0.4

nm.4, 40, 41 The absolute values of the dimerization energy were used for the following

data processing and results discussions. A larger value suggested an easier aggregation

of asphaltenes. Throughout simulations, the temperature (298 K) and pressure (1 bar)

were controlled using the V-rescale thermostat42 and Parrinello-Rahman method43,

respectively.

2.2 Data preprocessing

Structural parameters definition: In order to gain insights into the influence of

molecular structures on the binding energy of asphaltene dimer, eleven molecular

structural parameters were selected as follows: molecular weight (MW), number of

aromatic carbons (N Aro-C), number of aliphatic chains (N chains), number of aliphatic

carbons (N Ali-C), number of carbons in the longest chains (N Ali-CL), mass percentage of

heteroatoms in the aliphatic chains (HA%) , mass percentage of N in the aromatic ring
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(N%), mass percentage of S in the aromatic ring (S%), the number of hydroxyl groups

(NOH), the ratio of hydrogen to carbon (H/C), number of carboxyl groups (NCOOH), and

the linkage per aromatic ring where a linkage was counted when each two aromatic

rings shared one edge (Nlink/ Naro).

Normalization: To eliminate the effects from the units of different variables during

regression, the data was standardized to the same scale with Z-score normalization

according to the following equation:

��
∗ =

�� − �̅

�

where ��
∗ and �� represent the standardized value and initial value of the variable,

�̅ is the mean value of the variable, � is the standard error of the variable. The

standardized value of each parameter obeyed a normal distribution.

Cluster analysis: Cluster analysis was performed to split the dataset into several

classes using the WEKA program package44 with the expectation maximization

algorithm.45 The molecular structures were similar in one class and different from that

in other classes. Molecules (80%) were randomly selected from each class for

regression, while the remaining 20% molecules were used for external validation.

Structural parameters screening: when multiple influence factors coexisted, there

might be multicollinearity among them, which would impact the accuracy of regression

model and should be removed before model development. The first step was to carry

out bivariate correlation between each two parameters and between each parameter and

the dimerization free energy. If the correlation coefficient between two parameters

exceed 0.95, the one with poorer correlation with the dimerization free energy was
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removed and the other was retained.46 Next step was to perform stepwise multiple linear

regression (SMLR) to identify the significant parameters to the dimerization free energy

among the above screened parameters.47, 48 Briefly, partial F-statistics were computed

for each parameter and the one with the highest F-value was inserted into the model.

The partial F-statistics were computed again for all the remaining parameters and the

one with the highest F-value was added to the model if the corresponding F-value

exceeded a specified threshold value. These two parameters in the model were

evaluated with partial F-test to see if each one was still significant. The parameter was

removed from the model if it was no longer significant. This procedure was repeated

for the remaining parameters until no more parameters yielded a partial F-value greater

than the threshold and all parameters in the model remained significant.49 The

parameters screening process was carried out with the SPSS (version 22.0), from which

the selected parameters were used for regression models building in the next subsection.

2. 3 Regression and validation

Multiple linear regression (MLR): MLR was employed to predict the relationship

between the molecular structure parameters and the binding energy, which could be

expressed by the following equation: y = ���� + ���� +⋯+ ���� + ��, where the

�� , 	�� ,…, 	�� were the regression coefficients, and 	�� was the intercede of the

regression line.

Multi-layer perceptron (MLP): MLP is one of the most commonly used artificial

neural network (ANN) models, consisting of an input layer, hidden layers and an output
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layer. Each layer consists of nodes that are connected with a certain weight to every

node in the following layer. Except for the input nodes, each node is a nonlinear

activation function that enables the network to compute complex nonlinear problems.

The connection weights are changed after each data passing through the nodes in the

network using the 'back propagation' technique. By this way, the error in the output

compared to the expected result is minimized. This process is termed as training, which

stops automatically when no more decrease in the errors of cross-validation samples.

To seek for the model with high precision, two parameters are optimized by trial and

error during the training process including (i) the learning rate, which controls the

degree of changes in the connection weights during each iteration,50 and (ii) the number

of nodes in the hidden layer, which ranges from (2n1/2 + m) to (2n + 1) where n and m

represented the number of input node and output node, respectively.51

Support vector regression (SVR): SVR is a regression technique with excellent

performances in regression and time series prediction application, which is capable of

rearranging the input data from nonlinear to linear using mathematical functions known

as kernels. In this study, the SMOreg with a RBF kernel or poly-kernel function was

also used to develop regression model, which could transform nominal attributes into

binary ones and had been successfully applied to predict the QSPR models.52, 53 The

complexity parameter, which determines the trade-off between the model complexity

and the tolerance of errors, was optimized by a number of trials.

Validation: The 10-fold cross-validation was used to test the performance of the

models.54 Briefly, the datasets used for training were evenly split into 10 folds. The
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instances from 9 folds were used for training while the remaining one fold was used for

testing. This process was repeated 10 times using a different fold for testing at each

cycle. The effectiveness of the model training was assessed by the correlation

coefficient (R) and root mean squared error (RMSE). To validate the predictability of

the model, these two parameters were also calculated for those validation datasets not

used in the training process.
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3. Results and discussion

3.1 Free energy for asphaltene dimerization

Fig. 2 shows the changes in the PMF during the dimerization process of 28 asphaltene

molecules in water and toluene, respectively. Despite the variances in the shape of the

PMF curves, the deepest well of all the PMF curves were observed at 0.3 ~ 0.5 nm,

which corresponded to the separation distance between the centers of mass of each two

asphaltene molecules parallel stacking due to the π-π interactions in the aromatic 

regions.4, 55, 56 It suggested that such type of stacking required low energy for asphaltene

dimerization and therefore offered the stable configuration for the asphaltene dimers in

both water and toluene. By a closer examination of the structure of asphaltene dimers

at different positions on the PMF curves (two examples are shown in Fig. 3), we noted

that the stacking manner between the two monomers changed by rotation during pulling

process. In other words, if two monomers were initially located as the T-shape stacking,

they would spontaneously transform to the parallel stacking when they moved closer to

each other.

The free energy of dimerization was determined by the difference between the

minimum value of PMF (r = 0.3 ~ 0.5 nm) and the value of PMF at higher distances

when it reached a plateau (r > 1.8 nm). The calculated binding energy of asphaltenes

with different molecular structures, which ranged from 22.3 to 81.5 kJ mol-1 in water

and from 2.5 to 39.0 kJ mol-1 in toluene (Fig. 2), respectively. Particularly, the

dimerization free energy for each specific type of asphaltene was 48 - 91% lower in

toluene than in water (Fig. 2). This might be attributed to the interactions between the
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benzene ring of toluene molecules with the aromatic sheets of asphaltenes through π - 

π interaction.57 It suggested a greater tendency for asphaltenes aggregation in water than

in toluene, which was consistent with previous studies.4, 56

3.2 Bivariate correlation and structural parameters screening

A preliminary examination of the bivariate correlation indicated that the absolute value

of the Pearson correlation coefficient between the free energy of asphaltene

dimerization in water and each individual structural parameter ranged from 0.068 to

0.459 (Table 1). The mass percentage of nitrogen in the aromatic rings was

characterized as the most significant parameter (p < 0.01), while relatively less

significance was found for the mass percentage of sulfur in the aromatic rings,

molecular weight, number of aromatic carbons, linkage per aromatic ring, and number

of aliphatic chains (p < 0.05). The remaining five parameters showed insignificant

influence on the asphaltene dimerization in water (p > 0.05). By contrast, only four

parameters were identified as significant factors influencing asphaltene dimerization in

toluene including the mass percentage of sulfur in the aromatic rings, number of

aromatic carbons, ratio of hydrogen to carbon and number of carboxyl groups. It

indicated that some insignificant parameters became significant after changing the

solvent. For example, the Pearson correlation coefficient between the dimerization free

energy in toluene and the number of carboxyl groups was 0.518, which decreased to

0.053 in water (Table 1). It might be attributed to the fact that the hydrogen bonding

between the carboxylic groups of two asphaltene molecules was a driving force for its
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dimerization in toluene, but dimerization driven by this way was less in water because

the carboxylic groups in asphaltene would also form hydrogen bonds with water.

Results also demonstrated that there were significant correlation among some

independent variables. For example, the molecular weight was significantly correlated

with all the other parameters except the linkage per aromatic ring, the mass percentage

of sulfur in the aromatic rings and the number of carboxyl groups (Table 1). The number

of aliphatic carbons was highly correlated with the molecular weight, the ratio of

hydrogen to carbon and the number of carbon in the longest chains with the

corresponding Pearson correlation coefficient of 0.797, 0.883 and 0.824, respectively.

This meant that the changes in one structural parameter would result in the changes in

some other structural parameter. Therefore, when we tried to interpret the effects of one

specific structural parameter on the asphaltene aggregation, we should take into account

the multi-factor interactions between this parameter and other parameters. Moreover,

the Pearson correlation coefficients among independent variables were not large enough

to allow removing any one before input to the regression models. According to the

parameter screening protocol (see section 2.2), it remained impossible at this stage to

remove any of these structural parameters because the Pearson correlation coefficients

between each two structural parameters were all less than 0.95 (Table 1).

To reduce the parameters to a suitable number without losing any important information,

we further performed SMLR analysis using the dimerization free energy data in the

water and toluene, respectively. After removal of the non-significant parameters, seven

and five parameters were selected to correlate with dimerization energy in water and in
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toluene, respectively (Table 2). The variance inflation factor (VIF) was less than the

threshold value of 10 suggesting that the remaining parameters were of no

multicollinearity.58

According to the similarity in the molecular structure, the 28 asphaltene molecules were

divided into three representative classes by cluster analysis, in which the number of

asphaltene molecules were 8, 8 and 12, respectively. From each class, 80% molecules

were randomly selected for regression model development and the remaining molecules

were used for model validation.

3.3 Prediction of asphaltene dimerization in water

MLR: The free energy of asphaltene dimerization in water was correlated with the

screened structural parameters using the MLR model as follows: Ewater = 0.6168 NAro-C

+ 0.5819 Nlink/Naro - 0.3979 Nali-C - 0.2488 HA% - 0.4006 N% + 0.4042 S% + 0.695

Nchains - 0.0012. The R and RMSE for the training dataset calculated by 10-fold cross

validation was 0.9231 and 0.3624, respectively (Table 3). These two parameters were

about 4% lower and 80% higher for the validation dataset, respectively, compared with

that during model training. It should be noted that the energy predicted from this

equation was dimensionless due to the normalization treatment before modelling. It

could be transformed to the energy with units (kJ mol-1) using the mean value and

standard error as indicated in Section 2.2. The input and predicted free energies are

shown in Fig. 4.

MLP: The well trained MLP network consisted of 7, 6 and 1 nodes in the input layer,
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hidden layer and output layer, respectively. The optimized learning rate was 0.02.

Higher or lower learning rate both resulted in larger error in the training and validation

datasets. For example, when the learning rate increased from 0.02 to 0.05, the RMSE

for the validation data almost doubled (Fig. 5). After training the data with these optimal

parameters, the R and RMSE was 0.9247 and 0.3608, respectively (Fig. 4b). Little

difference was observed in the R between training and validation data, but the RMSE

was about 14% higher in the latter.

SVR: The optimized SVR model was obtained using the complexity parameter of 1200

and the RBF Kernel with gamma of 0.008. The R for the training and validation datasets

was 0.9462 and 0.9104, respectively (Table 3). The RMSE for the training and

validation datasets was 0.3055 and 0.5173, respectively.

Model comparison: The performance of the three models for predicting the

dimerization free energy in water was compared by the RMSE for the validation dataset

(Table 3). It demonstrated that the MLP model had the best performance with the lowest

RMSE. The highest RMSE was observed in the MLR model, which was 13 - 32%

higher than that in the other two models. This finding suggested that the influences of

asphaltene molecular structure on its aggregation in water was more likely nonlinear,

while attempts to capture the relationship using a linear regression method might

resulted in larger error. Accordingly, the relative contribution of the structure

descriptors to the predictive dimerization free energy was calculated using the hidden-

input and hidden-output connection weights resulted from the MLP modelling.25 As

shown in Fig. 6a, the linkage per aromatic ring was characterized as the most important
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factor which accounted for 18% of the changes in the dimerization free energy. Similar

importance was found between the number of aromatic carbons and the number of

aliphatic chains. The least important factor was the number of aliphatic carbons which

contributed to less than 10% of the asphaltene dimerization.

3.4 Prediction of asphaltene dimerization in toluene

MLR: The free energy of asphaltene dimerization in toluene was correlated with the

five selected parameters using the MLR model as follows: Etoluene = 0.5192 NAro-C +

0.1745 Nlink/Naro + 0.5757 S% + 0.4413 NCOOH + 0.1817 Nchains - 0.0203. The R and

RMSE for the training dataset was 0.8931 and 0.4436, respectively (Table 3). For the

validation dataset, little change was found in the R while the RMSE increased by about

6%. The input and predicted free energies are shown in Fig. 7.

MLP: The well trained MLP network consisted of 5, 6 and 1 nodes in the input layer,

hidden layer and output layer, respectively. The optimized learning rate was 0.04. The

R and RMSE for the training dataset was 0.8934 and 0.4217, respectively (Table 3).

Little difference was observed in the R between training and validation data, but the

RMSE was about 10% higher in the latter.

SVR: The optimized SVR model was obtained using the polynomial kernel with

exponent of 0.72. The R for the training and validation datasets was 0.9114 and 0.8989,

respectively (Table 3). The RMSE for the training datasets was 0.3663 which increased

by 30% for the validation dataset.

Model comparison: As we did in the water, the predictability of the three models for



20

dimerization free energy in toluene was compared by the RMSE for the validation

dataset (Table 3). The highest RMSE was found in the SVR model, while very little

difference (~ 1%) was observed between MLR and MLP. Same tendency was observed

in the relative contribution of each structural parameter to the predicted dimerization

free energy between MLR and MLP (Fig. 6b). As suggested by both models, the mass

percentage of sulfur in the aromatic ring and the number of aromatic carbons were

recognized as the two most important factor which contributed to more than 55% for

the asphaltene aggregation (Fig. 6b).

It was interesting to find that (i) the number of aromatic carbons was strongly correlated

with the asphaltene dimerization both in water and toluene, suggesting the attraction

between poly-aromatic cores was the main driving force in both cases; (ii) the number

of carboxyl groups had ignorable influence on the asphaltene aggregation in water, but

it significantly influence the asphaltene aggregation in toluene with about 20%

contributions. This was attributed to the hydrogen bonding phenomenon as

aforementioned in the bivariate correlation; (iii) the top two most important factors

(linkage per aromatic ring and number of aliphatic chains) for asphaltene aggregation

in water became the least important in toluene. It suggested that the interactions

between aliphatic chains contributed little to the strength of aggregation in toluene, but

played very important roles for aggregation in water. This finding was consistent with

previous study which demonstrated that the contacts between aliphatic chains in water

was 2.6 - 5.7 folds of that in toluene. 22, 59

Overall results indicated that the combination of MD simulation with machine learning
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provided a potential way to predict asphaltene dimerization using the molecular

structure parameters. It is well-acknowledged that asphaltene aggregation highly

depend upon its molecular structure and efforts have been made to identify the

sensitivity of asphaltene aggregation toward the molecular architecture. However, the

correlation between asphaltene binding energy and multiple structure parameters with

statistical significance has not been well determined. This study is one of the first

attempts to do so. Unlike conventional statistical regression methods, machine learning

approaches do not rely on any assumption of thermodynamic equation before modelling.

For example, asphaltene aggregation was often hypothesized as a first or pseudo-first

order reaction in some reported models.60, 61 Even though such approximation was

simple enough, the value of the rate constant was uncertain or even lack for asphaltenes

with various molecular structures. By contrast, there is not a parameter like rate constant

during machine learning prediction. Instead, it is able to distinguish the given data based

on their different patterns and make useful decisions in new data. Therefore, machine

learning methods do not have the issue of rate constant encountered in statistical

methods. Such methods are particularly useful to handle problems with high non-

linearity that will increase the difficulty in determining the rate constant or the form of

thermodynamic equations for asphaltene aggregation. While not all parameters

associated with the molecular architecture are necessary for understanding the

asphaltene aggregation phenomenon, its prediction still requires detailed informative

data in order to assess to what extent each parameter contribute to the aggregation. In

the approach proposed in this study, the concomitant effects of parameters were taken
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into account instead of only focusing one or two parameters by fixing the others. The

study helps to identify and reduce the number of parameters that need to focus for

predicting asphaltene aggregation.

4. Conclusions

Results demonstrated that the dimerization strength for each type of asphaltene was 48

- 91% lower in toluene than in water. Asphaltenes association in water was significantly

influenced by seven structural parameters including the linkage per aromatic ring,

number of aliphatic chains, number of aromatic carbons, number of aliphatic carbons,

mass percentage of heteroatoms in the aliphatic chains, mass percentage of N in the

aromatic ring and mass percentage of S in the aromatic ring. The first three were

characterized as the most important parameters by the MLP model (R = 0.9243) which

outperformed the MLR and SVR models. Five structural parameters were screened for

predicting asphaltene association in toluene including the mass percentage of S in the

aromatic ring, number of aromatic carbons, number of carboxyl groups, linkage per

aromatic ring and number of aliphatic chains, while the first two parameters contributed

to 55% of the energy variation for dimerization. Comparison between the two solvents

highlighted the strong contribution of the aliphatic side chains to the asphaltene

aggregation in water, which was insensitive in toluene. Overall results from this study

provided a sound basis for improving the asphaltene phase behavior prediction. Further

works are needed to investigate how microscopic predictions can be integrated into

macroscopic deposition models to allow easy integration with commercially available



23

multiphase flow prediction tools.
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Table 1 Pearson correlation matrix of different variables (** represents P < 0.01, * represents 0.01 < P < 0.05)

MW N Aro-C Nlink/ Naro N Ali-C HA% N% S% NOH H/C NCOOH N chains N Ali-CL

MW 1.000

N Aro-C
0.428* 1.000

Nlink/ Naro
0.183 -0.070 1.000

N Ali-C
0.797** -0.054 0.329* 1.000

HA% 0.461** 0.200 0.039 0.286 1.000

N% -0.475* -0.120 -0.178 -0.423* -0.309 1.000

S% -0.081 0.096 -0.277 -0.259 -0.283 -0.212 1.000

NOH
-0.166 -0.508** -0.152 0.083 -0.194 -0.182 0.115 1.000

H/C 0.621** -0.357* 0.144 0.883** 0.244 -0.287* -0.250 0.287 1.000

NCOOH
-0.189 0.095 -0.199 -0.430* -0.176 0.216 0.147 -0.138 -0.515** 1.000

N chains
0.418* -0.271 -0.128 0.511** -0.093 -0.099 0.033 0.263 0.673** -0.154 1.000

N Ali-CL
0.760** 0.057 0.346* 0.824** 0.403* -0.346* -0.287 -0.089 0.731** -0.351* 0.207 1.000

Energy in water 0.387* 0.350* 0.318* 0.170 -0.232 -0.459** 0.425* -0.139 0.002 0.053 0.346* 0.068

Energy in toluene 0.228 0.561** -0.053 -0.176 -0.134 -0.263 0.608** -0.212 -0.404* 0.518** 0.009 -0.234
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Table 2 Screening of the structural parameters by stepwise multiple linear regression

(√ represents the parameters selected for the regression; X represents the parameters deleted before input to the regression model)

Solvent MW N Aro-C Nlink/ Naro N Ali-C HA% N% S% H/C NOH NCOOH N chains N Ali-CL VIF

Water X √ √ √ √ √ √ X X X √ X 2.554

Toluene X √ √ X X X √ X X √ √ X 1.148
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Table 3 Performance comparison between MLR, MLP and SVR models

Solvent Model Parameters Training dataset Validation dataset

Water MLR R 0.9231 0.8907

RMSE 0.3624 0.6506

MLP R 0.9247 0.9243

RMSE 0.3608 0.4975

SVR R 0.9462 0.9104

RMSE 0.3055 0.5173

Toluene MLR R 0.8931 0.9061

RMSE 0.4436 0.4687

MLP R 0.8934 0.9048

RMSE 0.4217 0.4640

SVR R 0.9114 0.8989

RMSE 0.3663 0.4769
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A01 A02 A03 A04 A05 A06 A07 A08 A09 A10 A11 A12 A13 A14

Ewater 72.3 76.3 57.4 55.0 49.7 81.5 67.6 45.1 74.3 62.4 32.1 77.1 29.9 49.5

Etoluene 14.9 19.4 17.2 8.8 13.3 22.6 28.0 21.5 39.0 18.6 13.7 28.5 2.7 16.4

A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28

Ewater 81.4 22.3 34.7 49.9 72.6 65.5 52.6 47.4 39.7 43.0 51.9 48.8 40.6 42.8

Etoluene 28.0 2.5 17.6 7.9 16.8 15.8 18.6 17.3 13.4 18.7 21.3 13.8 8.1 14.6

Fig. 2 PMF curves of asphaltene dimers in (a) water and (b) toluene.

Data in the table shows the free energy of dimerization (kJ mol-1) for each type of asphaltene.
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Fig. 3 PMF and structure of asphaltene dimers in water (A06 and A17 represent two examples selected from the 28 types of asphaltenes)
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Fig. 4 Input and predicted values of asphaltene dimerization energy in water
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Fig. 5 Variation of R and RMSE for the training (TR) and validation (VR) datasets

with different learning rates during MLP training process
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Fig. 6 Relative importance of structural parameters to the asphaltene dimerization in (a) water and (b) toluene. In panel A, only the results

calculated by MLP model are shown because this model outperforms the other models.
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Fig. 7 Input and predicted values of asphaltene dimerization energy in toluene
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