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Abstract: Growing public awareness of the environmental impact of coal combustion has raised serious

concerns about the various hazardous trace elements produced by coal firing. Arsenic deserves special attention

due to its toxicity, volatility, bioaccumulation in the environment, and potential carcinogenic properties. As the

main anthropogenic source of arsenic is coal combustion, its behavior in power plants is of concern. Unlike

mercury, arsenic behavior in coal combustion has not been subjected to systematic, in-depth research. Different

researchers have reached opposing conclusions about the behavior of arsenic in combustion systems and as yet

there is relatively little research on arsenic-removal technologies.

In this paper, the volatilization, transformation, and emission behavior of arsenic and its removal

technologies are discussed in depth. Factors affecting the volatilization characteristics of arsenic are summarized,

including temperature, pressure, mode of occurrence of arsenic, coal rank, mineral matter, and the sulfur and

chlorine content of the fuel. The behavior of arsenic during oxy-fuel combustion and the effect of combustion

atmosphere (O2, CO2, SO2 and H2O(g)) are also reviewed in detail.

In order to better understand the pathway of arsenic in a power plant environment, a particular focus in this

work is the transformation mechanism of ultra-fine ash particles and the partitioning behavior of arsenic. Finally,

the effects of air pollution control devices (APCDs) on arsenic emissions are examined, along with the
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effectiveness of flue gas arsenic removal technologies with different kinds of adsorbents, including

calcium-based adsorbents, metal oxides, activated carbon, and fly ash.

Keywords: arsenic; coal combustion; volatilization; transformation; emission; removal
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1 Introduction

Although renewable and nuclear energy sources are becoming increasingly important for our future energy

demand, coal combustion is still the dominant source for power generation in the energy mix in the foreseeable

future. With increasing public awareness of the environmental impact of coal combustion, serious concerns have

been raised regarding the emissions of various hazardous trace elements from power plants, such as mercury,

arsenic, lead, and cadmium [1]. Among the most harmful elements, arsenic is receiving increasing attention due

to its toxicity, volatility, bioaccumulation in the environment (enriched in biomass such as in hyperaccumulator

plants [2-4]), and potential carcinogenic properties. Arsenic can affect the gastrointestinal tract, circulatory

system, liver, kidneys, and skin [5]. Nearly all types of arsenic compounds are toxic, with As3+ being 50 times

more toxic than As5+. Inorganic arsenic exposure in humans is also strongly associated with lung cancer, while

ingestion of inorganic arsenic can cause skin cancer [6]. Incidents on adverse health risks resulting from arsenic

contamination in the environment have been reported in many countries. It has been reported that more than

3000 cases of arseniasis in villages in Guizhou (a typical area of arsenic contamination in China, which can also

be found in other parts of the world) were caused by the use of locally mined high arsenic coal. In addition,

arsenic is the main cause of denitrification catalyst poisoning in selective catalytic reduction (SCR) systems [7-9].

In 2011, the US Environmental Protection Agency (EPA) [10] announced the first formal nationwide regulatory

standard to "limit toxic gas emissions of power plants", including an emission limitation for arsenic.
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Subsequently, in 2016, the EPA [11] published the latest national emission standards for hazardous air pollutants

from coal- and oil-fired electric utility steam generating units. The emission limits for arsenic in various sources

are listed in Table 1 below.

Table 1: Arsenic emission limits for various sources, EPA [11]

Arsenic emission source

Emission limits for existing electric

utility steam generating units

(EGUs)

Emission limits for new or

reconstructed electric utility steam

generating units (EGUs)

Coal-fired unit not low rank virgin coal 9.08 μg/kWh 1.362 μg/kWh 

Coal-fired unit low rank virgin coal 9.08 μg/kWh 1.362 μg/kWh 

IGCC unit 9.08 μg/kWh 9.08 μg/kWh 

Liquid oil-fired unit—continental (excluding

limited-use liquid oil-fired subcategory units)
13.62 μg/kWh 1.362 μg/kWh 

Liquid oil-fired unit—non-continental (excluding

limited-use liquid oil-fired sub-category units)
36.32 μg/kWh 27.24 μg/kWh 

Solid oil-derived fuel-fired unit 2.27 μg/kWh 1.362 μg/kWh 

These strict emission limits underscore the need to study the volatility and transformation behavior of

arsenic during coal combustion.

2 Arsenic in coal

2.1 Concentration of arsenic in coals around the world

The concentrations of arsenic in coals around the world are shown in Table 2. Due to the differences in

post-depositional processes and coalification processes [12-17], large variations in arsenic content occur.

Table 2: Arsenic concentration in the world
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Country, coal
Number of

samples

Content of As in

coal, μg/g 
Reference

Slovakia, in Prievidza district 19 up to 1540 Keegan et al. [18]

Ukraine, the Donets Basin 32.7 average Kizilshtein and Kolodhkov [19]

Thailand, Mae Moh Mine 3.07-515 Wongyai et al. [20]

Turkey, the Gokler coal field 170-3854 Karayigit et al. [21]

USA, the Danville Coal Member in Indiana 0.5-43 Mastalerz and Drobniak [22]

USA, the Springfield Coal Member in Indiana 1-50 Mastalerz and Drobniak [22]

USA, from the Middle Pennsylvanian Breathitt

Group Fire Clay coal bed
11 1-418 Ruppert et al. [23]

Bulgaria, Dobrudza coal basin 14 2-50 Eskenazy [24]

Canada, the Elk Valley coal field 8-108 Goodarzi et al. [25]

Pakistan, two sites of Thar coalfield 40 18- 22.2 Ali et al. [26]

Greece, lignite samples from Domeniko coal

deposit (Upper Miocene) in Elassona basin
38 11-40 Pentari et al. [27]

India, Makum coalfield 0.04-0.24 Mukherjee and Srivastava [28]

China, Permian-Carboniferous and Jurassic

coals
0.1-94 Luo [29]

China, coals from each province 1018 4.7 average Luo [29]

China, southwest Guizhou Province 30-534 Luo [29]

China, southwestern area up to 35000 Ding et al. [30]

Although for most coals the average concentration of arsenic is 0.5-80 μg/g [15], some, for example those 

in southwestern China, have an extremely high concentration. The flue gas generated by high arsenic coals may
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cause serious poisoning and deactivation of the SCR catalysts. Moreover, dispersion of arsenic-enriched fly ash

can also contaminate soil and groundwater with resultant local arsenic poisoning.

2.2 Speciation of arsenic

Arsenic in coal occurs in three dominant forms: pyrite, organic, and arsenate [31-33]. Chen et al. [34]

analyzed 147 Chinese coal samples from different coal-forming ages and ranks, and found that inorganic arsenic

mainly occurred with sulfur in pyrite, especially as a substitute for sulfur in pyrite-type compounds [35-38].

Using chemical analyses from an electron probe micro-analyzer (EPMA), Savage et al. [39] suggested most

arsenic was present in solid solution in pyrite, rather than in micro-inclusions of separate arsenic phases. Filby et

al. [40] found that arsenic was always associated with inorganic elements. However, Goodarzi [41-43] suggested

that for some Canadian coals arsenic had an organic association, while a strong organic association for arsenic

was also suggested for a Texas lignite [44]. Factor analysis of 350 shale samples from the Illinois coal basin

revealed association of arsenic with pyrite and organic matter [45].

Guo et al. [46] chose three Chinese coals to study the thermal stabilities of arsenic. Yunnan(YN) coal

contained much more arsenic and sulfur than Datong (DT) and Yima (YM) coals. X-ray diffraction (XRD)

results showed that the main mineral components in DT and YM coals were quartz and silicates, and in YN coal

were pyrite and arsenopyrite. This was demonstrated by using scanning electron microscopy-energy dispersive

X-ray (SEM-EDX) (Figure 1(a)) and Time-of-Flight Secondary Ion Mass Spectrometry(TOF-SIMS) techniques

(Figure 1(b)). Note that the tested char sample was obtained after four extraction steps, in which the speciation of

ion exchangeable, arsenic bound to carbonates, arsenic bound to Fe–Mn oxides and organic-bound had been

removed. The arsenic remaining in the residual product included arsenic associated with detrital silicate,

aluminosilicate minerals, resistant sulfur compounds, and refractory organic materials[46].
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(a) SEM-EDX (b) TOF-SIMS spectrum

Figure 1: SEM-EDX results and TOF-SIMS spectrum of YN char after extraction procedure[46]

The valence state of arsenic in coal was also studied to determine its possible speciation. Zhao et al. [47]

found that arsenic occurred as arsenate and arsenite, rather than in the form of sulfide or other arsenic-containing

minerals. In addition, X-ray absorption near edge structure (XANES) spectrum of arsenic in a Wyodak coal

sample showed that the arsenic in the coal consisted of about 50% As3+ (assumed to be carboxyl bound) and 50%

arsenate [48]. With XANES spectroscopy, Shah et al. [49] found 65% As5+, 25% As3+ and 10% arsenic/pyrite in

a representative bituminous coal from a power station in New South Wales, Australia. For a bituminous coal in a

Canadian power plant, arsenic in raw coal was reported to be dominated by arsenate (54%), arsenical pyrite

(FeAsS) (24%) and an arsenite (As +3 -O) species (12%) [50].

Regardless of the variation of arsenic content and occurrence forms in different coals, it is generally

accepted that pyrite-associated arsenic represents the major occurrence of arsenic in coal. The ratio of arsenic

speciation in decreasing order is pyritic>arsenate>organic, and in terms of the valence state: As5+> As3+.
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3 Factors affecting arsenic volatilization during coal combustion

The volatilization behavior of arsenic is closely linked to the devolatilization and char combustion

processes, which are highly affected by the composition of a coal (as expressed in terms of ultimate/proximate

analysis, minerals, and S and Cl content), the arsenic content in coal and the mode in which it occurs, and the

surrounding environment (temperature, atmosphere, pressure) [51-56].

3.1 Temperature

Clarke [57] noted that temperature was the main factor affecting arsenic volatilization in coal. The current

consensus is that the volatilization proportion of arsenic increases with temperature [46, 52, 55-60]. Senior et al.

[56] reported that in bench-scale combustion experiments using bituminous and subbituminous pulverized coals,

40% to 80% of the initial arsenic content was vaporized at 1150ºC. Based on the concentrations of arsenic in the

coal and bottom ash, Senior et al. [61] calculated the volatility of arsenic from eight pulverized coal power plants

and found the degree of vaporization varied from 55% to 98% in the combustion zone (1400-1500ºC). In a study

by Liu et al [62], seven coals with different ranks were burned in a high-temperature tube furnace and 54% to

99% of the initial arsenic in the coals was found to completely vaporize during the combustion process (1500ºC).

However, Zeng [63] found that, only 36% on average of the initial arsenic in 23 coals vaporized in a

laboratory-scale combustion system at 1480ºC with 20% O2 [63].

The temperature staged volatilization characteristics of arsenic as reported in the literature [46, 52, 59, 62,

64], are given in Table 3.

Table 3: Staged volatility behavior of arsenic with temperature
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Temperature

range/ºC

Experimental

condition
Coal samples Staged volatility behavior Authors

300-1000 pyrolysis

Three Chinese coals

Vad = 26.91% - 36.78%

500-700ºC, fastest

at >700ºC, little effect
Guo et al. [46]

350-900 pyrolysis

One lignite coal (Yima coal)

Vdaf = 40.19%

350-500ºC, fast

>500ºC, low
Lu et al. [59]

600-1000 combustion

High-arsenic coals

Vad = 6% - 30%

700-900ºC, fastest Dai and Li [52]

300-1200 pyrolysis

Haizi (HZ) mine in southwest Guizhou

13 coals average arsenic content: 814 μg/g

Vad = 5.49% - 16.7%

<450ºC, fast

900-1000ºC, fast
Wei et al. [64]

600-1500 combustion
2 anthracites, 3 bituminous coals, and 2

lignite

800-900ºC one mass loss

rate peak; >1000ºC

another mass loss rate

peak, details see Figure 2

Liu et al. [62]

Vad: the content of volatile on air dried basis

Vdaf: the content of volatile on dry ash free basis

Table 3 shows that the volatilization characteristics of arsenic are markedly different at different

temperature ranges. To better describe the staged volatility behavior, the volatilization rate of arsenic was

calculated over the range 25-1500ºC (where 25ºC stands for the ambient condition when no arsenic is volatilized)

in the work of Liu et al. [62] (see Figure 2). For all the coals in Figure 2, two mass loss peaks of arsenic loss and

three temperature zones were observed to be important: <600ºC, 600-1000ºC, and >1000ºC.
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Figure 2: Arsenic mass loss rate of different coals at 25--1500°C [62]

No consistent conclusions have been reached on the staged temperature zones (Table 3), which may be due

to differences in coal type, experimental parameters and other factors. Further research is needed to determine

how specific arsenic compounds behave at different temperature ranges, as well as the possible factors affecting

this behavior.

Shen et al. [65] tested the temporal volatilization rate of arsenic in a fluidized bed with an on-line analysis

system of trace elements in flue gas. The system allowed continuous monitoring of the vaporized arsenic based

on inductively coupled plasma optical emission spectroscopy (ICP-OES). The experimental scheme is shown in

Figure 3.

Figure 3: Fluidized bed combustor with online analysis system of arsenic in flue gas[65]
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The release rate of arsenic over time is shown in Figure 4. Results showed that temperature had a significant

positive effect and that as temperature increased from 600 to 850ºC, the release rate of arsenic became more

rapid with a resulting higher releasing peak. At the same time, the peak time was shortened due to more intense

combustion taking place. A similar phenomenon was observed by Liu et al. [66], who also studied the temporal

volatilization of arsenic by changing the residence time of the raw coal.

Figure 4: Release rate of arsenic from coal combustion[65]

Similarly, Wang and Tomita [55] suggested that arsenic was significantly volatilized during combustion at a

rapid-heating rate of 500ºC/min, whereas only minimal quantities were emitted during combustion with a

slow-heating rate of 5-10ºC/min, indicating that heating rate also affects arsenic volatilization. Moreover, to date

the majority of combustion experiments have been conducted at temperatures below 1100°C due to the

temperature limitations imposed by conventional tube furnaces. By contrast, the combustion temperature in a

pulverized-coal boiler is generally above 1400ºC and the heating rate can be as high as 500ºC/s. This clearly

indicates that further study on the effects of heating rate are required to evaluate volatilization characteristics at

high temperatures and provide reference data for power plants.

3.2 Mode of occurrence of arsenic in coal

While it is clear from the above that the proportions of arsenic volatilized in coals can vary considerably in
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the combustion zone (1400-1500ºC), it is reasonable to assume that this is related to the chemical speciation of

the arsenic and its mode of occurrence in the coal.

In the study by Guo et al. [46], the arsenic in coals and the coal-derived pyrolysis chars were classified into

five forms: ion exchangeable, carbonates-bound, Fe-Mn oxide-bound, organic matter-bound, and arsenic

remaining in residue. Compared to raw coal, the decreased arsenic found in the forms bound to organic matter

and bound to Fe-Mn oxides in the chars produced at 1000ºC suggested that arsenic in these forms was unstable

during pyrolysis. Moreover, some of the arsenic remaining in the char residue could be expected to vaporize

during pyrolysis at 1000ºC. Bool and Helble [58] reported that pyritic arsenic vaporized along with the

decomposition of pyrite to pyrrhotite, and the organically-bound arsenic vaporized along with coal

devolatilization. Arsenic in beneficiated Pittsburgh No. 8 coal existed partly combined with pyrite and partly in

other chemical forms that were soluble in dilute HCl (including ion-exchanged arsenic)[58]. According to Liu et

al. [67], arsenic in coal was divided into exchangeable, organic, sulfide and residual. With the sequential

chemical extraction method [67], the modes of occurrence of arsenic in coals and ash were determined [60] and

used to explain the staged volatility behavior of arsenic. Taking Kaiyuan (KY) coal (lignite, Yunnan province,

China) as an example, the speciation ratios of arsenic in raw coal and ash are shown in Figure 5.
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Figure 5: Speciation ratio of arsenic in raw coal and ash [60]
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Using the speciation transformation results of arsenic at different temperatures in Figure 5, Liu et al. [62]

concluded that arsenic that vaporized at lower than 600ºC was mainly organically bound, while arsenic

vaporized at 800-900ºC was mainly due to the decomposition or oxidation of arsenic in sulfide forms. However,

due to the lack of proven and reliable technology to study arsenic adsorption and the lack of temperature

programming desorption similar to that available for mercury speciation determination, the specific arsenic

compounds corresponding to different temperature zones have not been finally determined.

It is generally accepted that exchangeable and organic-bound arsenic are easily vaporized during the

devolatilization of coal, and arsenic bound to Fe-Mn oxides and pyrite is unstable and tends to vaporize at

temperatures lower than 1000ºC, while arsenates are very stable and usually decompose at relatively high

temperatures. In this case, it can be expected that coals with a large proportion of unstable arsenic compounds

will have higher volatilization ratios at a specific temperature, while arsenic in coals with a large number of

stable arsenates is difficult to vaporize at low temperatures.

3.3 Coal rank

The effect of coal rank on the volatilization of arsenic is complex. The sequential extraction results of Liu et

al. [62] indicated that coals with lower rank tended to have a higher proportion of arsenic species that more

easily vaporized, which resulted in the higher arsenic volatilization ratio of lignite coals than anthracite under the

same temperature conditions [62]. However, according to Senior et al. [61] who summarized the testing results

of several full-scale plants equipped with different boiler types and coals, no obvious relationship was found

between arsenic volatility and coal rank. For example, the vaporized fraction of arsenic was 55.2% when burning

lignite while 74.3% when burning subbituminous coal based on the same tangential boiler type [61]. Liu et al.

[68] studied the pyrolysis process of coal during underground coal gasification. In their work, the arsenic content
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from coal to char, and coal to ash were both tested. Results discussed the two processes. For the first process

(coal to char), it was found that from coal to char, arsenic volatility was highest for lignite, with bituminous coal

next, and anthracite being the least volatile (Figure 6). The main reason appeared to be that lignite had the

highest content of volatiles, which promoted rapid coal combustion and oxygen diffusion into the char pores,

thus improving the reaction rates and trace element volatilization. For the second process (coal to ash), they

suggested that over the entire volatility range from coal to char to ash, coal rank had little effect on final arsenic

volatilization. As can be seen in Figure 6, the volatilization ratio of arsenic was approximately 60% for both

anthracite and bituminous coal, while a smaller volatilization ratio was obtained in lignite. In the study of Liu et

al. [62], instead of dividing according to coal rank, coals were divided into two groups: arsenic>4μg/g and 

arsenic<4μg/g. Results showed that at a given temperature the group with the higher arsenic concentration 

tended to have larger arsenic volatility levels.

Figure 6: Comparison of volatility of arsenic during underground coal gasification of different rank of coals (a:

transformation of coal to char, b: transformation of char to ash) [68]

3.4 Mineral matter

Many researchers have investigated the effects of different metallic elements (Ca, Fe, Mg, Al, Na, K and

others) on arsenic volatilization and tried to develop correlations between arsenic and these elements. It is widely

accepted that Ca inhibits the volatilization of arsenic [54, 58, 69-71]. Jadhav and Fan [71] studied the adsorption

of arsenic in the gas phase by CaO, and determined using XRD that Ca3(AsO4)2 and Ca3As2O7 were formed.
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However, the existence of the two compounds needs to be confirmed in future experiments. Lu et al. [59]

compared the arsenic behavior in YimaD (a demineralized sample of Yima) coal with and without CaO addition.

The effects of CaO on arsenic volatility are shown in Table 4.

Table 4: Effect of added CaO on the volatility of arsenic during pyrolysis of YimaD coal [59]

Temp./oC

Without CaO With CaO
Restraining

efficiency, %
Content, μg`g-1 Volatility, % Content, μg`g-1 Volatility, %

600 15.2 69.2 15.5 65.4 3.8

700 16.2 69.3 18.6 59.4 9.9

800 16.3 69.4 22.4 46.1 23.4

900 15.8 72.8 21.8 58.3 14.6

It appears that the capture efficiency of CaO depended on the pyrolysis temperature and increased from

3.8% at 600ºC to 23.4% at 800ºC. This indicated that higher temperatures promoted the retention of arsenic by

CaO, which was presumably caused by the formation of As–Ca compounds such as calcium arsenate.

Thermodynamic analysis by Wang and Tomita [55] showed that stable Ca3(AsO4)2 was generated at relatively

low temperatures and only decomposed above 1450ºC. Experimental results obtained by Lundholm et al. [72]

showed that, while the arsenic volatilization decreased when calcium was present, it was lower than that

predicted by thermodynamic equilibrium calculations, which indicated transport and/or chemical reaction rate

limitations.

As discussed in Section 2.2, the main chemical speciation of arsenic in coal is pyrite, suggesting that the

behavior of arsenic has a close connection with iron. Some researchers have studied the capture of arsenic by

mineral iron [32, 55, 58, 73, 74]. An equilibrium thermodynamic model suggested by Bool and Helble [58]
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showed that the condensed arsenic species in acid (high-Si) fly ash from bituminous Pittsburgh No. 8 coal

consisted mainly of Fe3(AsO4)2, while in alkali (high-Ca) fly ash from subbituminous Black Thunder coal it

appeared as Ca3(AsO4)2. However, Yudovich and Ketris [32] suggested that iron-arsenate did not occur due to

kinetic limitations, because iron was likely to be absorbed into a silicate glass. A thermodynamic analysis by

Wang and Tomita [55] showed FeAsO4 was generated and only decomposed above 1000ºC. In the work of

Díaz-Somoano et al. [73], the equilibrium composition considering arsenic-iron interactions showed that stable

FeAsO4 existed at 400-800ºC. Seames and Wendt [74] studied the concentration of arsenic and iron in fly ash

collected from the electrostatic precipitator (ESP) outlet in a coal-fired power plant. A strong positive

relationship was found between arsenic and iron. In addition, Zhang et al. [75] conducted As2O3(g) adsorption

experiments with different metal oxides. The results showed that the arsenic adsorption efficiency of Fe2O3 was

around 57% and was significantly higher than for other metal oxides, also revealing that Fe2O3 and As2O3

reacted to form stable arsenates.

A correlation between arsenic and other minerals has also been reported [73, 76]. Thermodynamic results

from Díaz-Somoano et al. [73] showed the formation of aluminum arsenate was possible even at high

temperatures (>1400ºC) and sodium and potassium arsenates were stable below 900ºC. Magnesium arsenate was

also stable from 600ºC to 1100ºC. An increase in arsenic volatility was only observed when silicon was

considered in the equilibrium calculations. Contreras et al. [76] also reported that the presence of silicon had a

positive effect on arsenic volatility.

3.5 Sulfur and chlorine

The content and mode of occurrence of sulfur in coal might be expected to impact arsenic volatilization. Lu

et al. [59] studied arsenic volatility along with SO2 release experiments; the results indicated that although
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arsenic levels were often associated with sulfur content, especially inorganic sulfur in coal, it was difficult to

correlate the volatilization behaviors of arsenic and sulfur. Some researchers have found that the volatilization

proportion of arsenic was reduced in coals with higher sulfur content [77-79]. However, this conclusion is not

confirmed by the necessary experimental studies. Contreras et al. [76] found the volatilization proportion of

arsenic might be higher for coal with high calcium content, because sulfur was more likely to react with calcium

in ash, thus reducing arsenic capture. In addition, sulfur and arsenic in coal may have competed with the active

sites of CaO. However the opposite conclusions were drawn about the reaction order of CaO+As2O3(g) and

CaO+SO2(g)[69, 71, 80, 81]. Moreover, some researchers mentioned that Cl or Br could also react with calcium,

which could change the final effect of sulfur on arsenic[82]. To determine the effect of sulfur on arsenic

volatilization, the online release curves of SO2 were compared to the simultaneous release curve of arsenic

(obtained indirectly through changing the residence time of raw coal in the tube furnace) during coal combustion

in the work of Liu et al. [66]. The simultaneous volatilization characteristics of arsenic and sulfur were observed

at both 900ºC and 1300ºC as seen in Figure 7, demonstrating that arsenic volatilization had a strong correlation

with sulfur. Also, these authors found that coals with higher sulfur content tended to have a larger proportion of

sulfide-bound arsenic, which provided support for the positive effect of sulfur on arsenic volatilization. More

quantitative conclusions can be expected with the further development of online arsenic testing technology in the

future.
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Figure 7: Simultaneous volatilization of arsenic and SO2 during isothermal coal combustion [66]

(a)GZA coal at 900ºC; (b)GZA coal at 1300ºC; (c)GZB coal at 900ºC; (d) GZB coal at 1300ºC; (e) KY coal

at 900ºC; (f)KY coal at 1300ºC

Although the mechanism of decomposition of pyrite during coal combustion at different temperatures has

been reported many times [83-87], the mechanism by which arsenopyrite decomposes has received relatively

little attention [39, 88-90]. While possible chemical reactions regarding arsenopyrite decomposition have been

simulated using thermodynamic simulation software [55], the specific reaction temperatures and reaction kinetic

constant k value have not been reported.

In the case of the large Zhundong coal field, which has recently opened in Xinjiang province in China, the

high chloride content of its coal has raised wide concern [91-97]. While chlorine can cause pipeline corrosion, a

greater concern is that it may also combine with arsenic and generate highly volatile AsCl3 gas. Its volatilization,

and thus the study of the effect of chlorine on arsenic volatilization are of significant importance to this major

project. Using thermodynamic analysis, Contreras et al. [76] found that for high-chlorine concentrations AsCl3(g)

became the dominant arsenic species at 800ºC, while for low-chlorine-content fuels, AsO2(g) was the dominant

(c) (d)

(e) (f)
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species, as shown in Figure 8. However, this study was limited to a simulation of the impact of chlorine on

arsenic release and confirmatory experiments have not yet been reported.

Figure 8: Chlorine effect on equilibrium distributions of major arsenic species at 800ºC [76]

3.6 Pressure

Pressure affects the flue gas equilibrium composition and may result in major changes in the proportions of

equilibrium species. In the work of Liu et al. [68], high pressure was shown to lead to the formation and

enhancement of the reduced species and increased condensation temperature of the volatile elements. The

results of Contreras et al. [76] showed that at 800ºC, the proportion of the gaseous arsenic species increased as

pressure increased, with a decrease in AsO2(g) concentration and an increase in As4O10(g), as shown in Figure 9.

Figure 9: Equilibrium compositions for arsenic under different pressures at 800ºC [76]

The effect of pressure on arsenic components during underground coal gasification was modelled by Liu et

al. [68]. Results showed that when pressure increased from 0.12 MPa to 3 MPa, the percentage of AsH3(g)
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increased markedly and it became the dominant species below 1250ºC, while AsH(g) was the main gas species

above 1250ºC, indicating that the effect of the reducing atmosphere was enhanced at higher pressures. Moreover,

the percentage of AsS(g) decreased sharply with increasing pressure, which indicated that sulfide species were

not favoured at high pressures. The calculation results at 0.12 MPa and 3 MPa are shown in Figure 10.

Figure 10: Equilibrium compositions of arsenic under oxygen-steam gasification

(a) 0.12MPa and (b) 3MPa [68]

Overall, research on the effect of pressure on arsenic volatilization is still limited to thermodynamic

simulation; and no related experiments have been reported.

3.7 Oxy-fuel combustion

Oxy-fuel combustion is a process that uses oxygen mixed with recycled flue gas for coal combustion to

deliver a CO2-rich flue gas for direct sequestration and/or storage [98, 99]. CO2 is more easily captured under

oxy-fuel conditions than in conventional air combustion and other air pollutants such as SO2 and NOx are

reduced [100-106]. As a consequence, this technology offers near near-zero emission of air pollutants, allowing

it to meet stringent emission regulations. The high CO2 partial pressure in an oxy-fuel boiler has been

hypothesized to promote higher CO levels than would be observed in conventional air-fired boilers [107, 108]; if

so, this could lead to a more intensive reducing atmosphere at the surface of carbon particles, causing oxides to

be reduced to unstable sub-oxides. Changes in gas composition during oxy-fuel combustion involve modification
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of the operating conditions of the particle- and gas-cleaning devices compared to those in conventional air-fired

pulverized coal power plants. Consequently, the physical, mineral, chemical, and leaching properties of residues

(slag/bottom ash, fly ash, and flue gas desulfurization (FGD) gypsum) as well as the fate of trace elements in oxy

combustion may be different from those observed in conventional air-fired power plants [109, 110]. In support of

this hypothesis, Wang et al. [111] reported oxy combustion increased the concentration of trace elements

measured in particulate matter (PM).

Due to the large difference between oxy and air combustion atmospheres, arsenic volatilization

characteristics observed for conventional air combustion may not apply to oxy combustion. In fact, arsenic

volatility during oxy combustion is strongly affected by the elevated concentrations of various gases in the boiler

atmosphere, such as O2, CO2, SO2 and H2O(g).

3.7.1 O2

Wang et al. [111] conducted an oxy combustion test at 1500ºC in a high-temperature drop-tube furnace and

sampled at 135ºC to analyze the characteristics of trace elements in the particulates. This work showed that

higher O2 concentrations under oxy combustion induced lower trace element concentration in the form of fine

PM. However, the work of Low and Zhang [112] showed that increased oxygen partial pressure favored the

vaporization of arsenic, due to the increased particle temperature under elevated oxygen content. O2/CO2

combustion experiments conducted by Liu et al. [113] with a tube furnace showed that the effect of O2 changed

with temperature. At <900ºC, higher O2 partial pressures led to more intense coal combustion and a larger

volatile proportion of arsenic, irrespective of CO2 content, while at >900ºC, the effect of O2 was smaller. It

appeared that higher O2 partial pressure promoted arsenic vaporization and further reduced its concentration in

particles.
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3.7.2 CO2

In the case of reducing conditions associated with the high concentration of CO2 in oxy-fuel combustion,

some studies have calculated the arsenic compounds produced under different excess air ratios via

thermodynamic equilibrium analysis [68, 113-115]. Chatain et al. [114] found that under reducing conditions the

volatilization of arsenic at 800ºC decreased due to the decrease in volatile oxides concentration. Yan et al. [115]

simulated the migration of trace elements over a temperature range of 127-1527ºC with various excess air ratios

from 0.6 to 1.2. They found that arsenic was easier to vaporize under a reducing atmosphere since trace elements

were more likely to generate unstable compounds such as volatile sub-oxides and sulfides. Liu et al. [68]

reported that the form of gaseous arsenic was mainly AsO(g) in oxidizing atmosphere at relatively high

temperatures, but in reducing atmosphere As(g) became the primary species above 1450ºC. Liu et al. [113]

conducted thermodynamic analysis to study the equilibrium components of calcium arsenate (Ca3(AsO4)2) and

ferric arsenate (FeAsO4) with O2/C molar ratio of 1.2 (oxidizing atmosphere) or 0.8 (reducing atmosphere), as

shown in Figure 11.
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Figure 11: Equilibrium composition of arsenates in oxidizing and reducing atmospheres [113]

Figure 11 indicates that arsenic compounds with high oxidation states were reduced to compounds with

lower oxidation states in a reducing atmosphere, as expected. For example, FeAsO4 was reduced to FeAs and

FeAs2. However, the arsenic compounds with lower oxidation states had poor thermal stability, and readily

decomposed into secondary oxides or elemental arsenic under high-temperature conditions [55], leading to the

rapid volatilization of arsenic.

Some researchers have also studied the effects of oxy-fuel combustion on arsenic experimentally. Using a

typical Chinese bituminous coal, the experiments of Wang et al. [111] indicated that oxy combustion with higher

CO2 content increased arsenic concentrations in PM as compared to air combustion, as seen in Figure 12.

Figure 12: Arsenic concentration in various PM fractions under air combustion and oxy-fuel combustion with

different oxygen concentrations. (oxyL: 21% O2/79% CO2 oxyH: 29% O2/71% CO2) [111]
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Low and Zhang [112] did pyrolysis experiments in N2 and CO2 atmospheres in a lab-scale drop-tube

furnace at 1500ºC to study the effect of CO2 on arsenic behavior. The results are shown in Figure 13. The

substitution of N2 by CO2 for oxy-fuel combustion caused little change to the emission and speciation of arsenic

at the initial step of coal combustion and pyrolysis.

Figure 13: Evolution of As speciation upon pyrolysis of (a) DBC (bituminous coal from Datong, China), (b)

Brazilian lignite and (c) As-doped VBC (brown coal from Victoria, Australia) in pure N2 or CO2 [112]

Roy et al. [116] simulated the equilibrium composition of arsenic compounds of three lignites under oxy

combustion atmosphere using FactSage software. The results showed that at low temperature the distribution of

toxic arsenic species in oxy-fuel combustion was almost the same as in air combustion. Contreras et al. [117]

simulated the arsenic evaporation characteristics for different CO2 concentrations under oxy combustion

atmosphere using HSC Chemistry software [118] and also found arsenic vaporization did not increase under

oxy-firing.

Zhuang and Pavlish [119] studied the behavior of hazardous air pollutants in a 200-kW oxygen-fired coal

combustion power plant with different flue gas recycling (FGR) systems, as shown in Figure 14.
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Figure 14: A 200 kW oxygen-fired coal combustion power plant with two different scenarios of FGR [119]

In contrast to Wang et al. [111], who found that higher CO2 content increased arsenic concentrations in PM

with diameter in the micrometer range, Zhuang and Pavlish [119] reported that compared with air firing, arsenic

showed lower concentrations on fly ash during 21% O2/79% CO2 combustion with the recycled flue gas coming

from the ESP outlet or the wet scrubber outlet (Figure 15), which indicated that oxy combustion increased the

arsenic volatilization.

Figure 15: Comparison of arsenic size distributions under air combustion and oxy-coal combustion [119]

Currently, it is difficult to determine whether CO2 has a positive or negative role in arsenic volatilization

under oxy-fuel combustion and it is clear that further study is needed.

3.7.3 SO2 and H2O(g)
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Wang et al. [111] reported the effects of SO2 and H2O on trace element distribution under oxy combustion

atmosphere at 1500ºC. The results are shown in Figure 16. SO2 reduced the total amount and concentration of

trace elements in PM under oxy combustion, while H2O(g) enhanced both the mass of the PM, and the trace

element mass in the PM. The results indicated that SO2 promoted the volatilization of arsenic during oxy-fuel

combustion, while H2O(g) reduced it.

Figure 16: Concentration distribution of arsenic in PM fractions under oxy-fuel combustion with different

SO2 and H2O(g) concentrations. OXYH + SO2(500) is 29% O2/71% CO2 with 500 ppm SO2; OXYH +

SO2(1500) is 29% O2/71% CO2 with 1500 ppm SO2; OXYH + H2O(10) is 29% O2/10% H2O/61%CO2;

OXYH + H2O(30) is 29% O2/30% H2O/41% CO2 [111]

However, given that only limited information is available on the effect of SO2 and H2O(g) on arsenic

volatilization during oxy-fuel combustion, more research is needed on this subject.

The coal particles burned in circulating fluidized bed (CFB) boilers are larger than those in pulverized coal

boilers and it is known that particle size is an important factor during coal combustion since it affects the ignition,

burnout of coals and PM formation, as well as the volatilization of arsenic. Unfortunately, the effect of particle

size on arsenic volatilization is still largely unstudied.

4 Transformation of arsenic during post-combustion

Volatile arsenic compounds in the flue gas gradually condense as the temperature decreases. Some volatile

arsenic components may condense on the surface of fly ash, react with substances in fly ash, or be absorbed by
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fly ash and captured by the ESP. Only a small amount of arsenic passes through the FGD system and is finally

emitted to the atmosphere. Once combustion gases are carried downstream from the combustion zone of a

coal-fired boiler, the key factors affecting the final trace constituent transformation/partitioning behavior are the

conversion of vaporized components into various solid forms and their collection along with the fly ash. Gaseous

arsenic will experience adsorption, condensation, and chemical transformation as the flue gas cools [15, 120].

4.1 Distribution of arsenic in power plants

Figure 17: A typical pulverized coal combustion system and related equipment

Figure 17 shows a typical pulverized coal combustion system and related equipment. A summary of the data

on the distribution of arsenic in raw coal, ash, and flue gas from such a system is presented in Table 5.

Table 5: Distribution of arsenic in power plants

Power Plants Coal
Raw coal

μg/g 

Bottom ash

μg/g 

ESP/FF fly

ash, μg/g 

Flue gas,

μg/m3
Balance Source

A Brazilian power plant

(Presidente Me ´dici Power

Plant or UTPM-446 MW)

A high ash feed coal (Ad:

49.7%, Var: 23.1%)
4.4 1.8 11.5 ---- ---- Pires and Querol [121]

Shizuishan Power Plant Vdaf: 30.62; Ad: 39.32% 5.35 1.59 5.67 ---- ---- Song et al. [122]
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Two Finnish coal-fired

power plants

Plant SB, Var: 29.4% 4.1 <10 39 ---- 125%
Aunela-Tapola et al.

[123]
Plant HB, Var: 29.6% 6.3 5.2 32 ---- 113%

Two 660 MW boilers with

a low-temperature

economizer (LTE)

A mixed coal: Var:31.02%

S: 2.38%
16.42

0.304

based on the

initial coal

9.093

based on the

initial coal

---- 57.30% Wang et al. [124]

An underfed stoker unit

with approximately 50 kW

capacity

1100-1250ºC

Var: 9.26% 1.6 7.9 31 Nd 27%

Li et al. [125]Var: 36.44% 4.3 11 46 Nd 36%

Var: 37.18% 1.4 2.4 18 Nd 22%

CFB, 50 kW

Waikato coal

Ad: 3.5% 0.86

5.5 11 38

---- Clemens et al. [126]5.9 9.5 33

4.8 8.9 34

1400 MW coal-fired power

Ad: 27.3%

45.7 10.4 169.6 18.4

79.1%

Otero-Rey et al. [127]Ad: 22.3% 64.4%

Ad: 22.8% 60.2%

220 MW installed capacity

and equipped with

tangential burners

Ad: 34.67%

41.9±2.4 172.3±12.3 9.8±1.7 19.5±2.4

83.47%

Reddy et al. [128]Ad: 32.51% 84.20%

Ad: 36.25% 83.26%

Three 440t/h CFB with

ESP/FF and WFGD

Petroleum coke and coal

blends

Var: 22.40%, Aar: 16.8% 3.79 21.80 23.30 0.97 114.2%

Duan et al. [129]Var: 18.07%, Aar: 11.41% 3.05 36.60 13.64 0.32 80.0%

Var: 18.07%, Aar: 11.41% 3.05 29.00 17.25 0.31 86.0%

Ad: ash content in coal on dry basis; Var: volatile content in coal on as received basis; Vdaf: volatile content in coal on

dry ash free basis; Nd: not found; ----: not measured.

Many researchers have calculated the mass balance ratio of arsenic by measuring the arsenic concentration



29

in solid products, without considering the gas phase. In the work of Aunela-Tapola et al. [123], two Finnish

coal-fired power plants (SB and HB) were experimentally investigated with regard to the distribution of arsenic.

The mass balances of arsenic in two bituminous coals in SB and HB, were 125% and 113%, respectively. Only

22% to 36% arsenic recovery was obtained by Li et al. [125] when testing three lignites. For a mixed coal in two

660 MW boilers with a low-temperature economizer (LTE), the mass balance of arsenic was only 57.3% [124].

The relatively low mass balance of arsenic was mainly due to arsenic in the flue gas and ultrafine particles (<0.2

μm) not being accounted for. Unlike laboratory experiments, the sampling process in an industrial system can 

experience significant deviation; hence, these mass balance values must be considered acceptable. Moreover,

mass imbalances may arise because arsenic can condense or be absorbed on interior surfaces of equipment such

as heating surfaces [130].

Only a few researchers have studied the mass balances of arsenic considering both solid and gaseous

arsenic. Clemens et al. [126] studied Waikato coal under fluidized bed combustion (50-kW capacity). Although

this study took the gaseous arsenic into account, it did not give the specific mass balance figures. The arsenic

concentration in flue gas was 18.4 μg/m3 in the work of Otero-Rey et al. [127], where 60.2% to 79.1% of arsenic

mass balance was obtained. Reddy et al. [128] researched the emission characteristics of arsenic at a 220-MW

power plant equipped with tangential burners burning three types of coal with arsenic content of 41.9±2.4 μg/g. 

The mass balance of arsenic in the three coals was in the range of 83.26% to 84.20%. However, the arsenic

balance considering all phases was lower than 100%; one possible reason is that the sampling of arsenic in flue

gas was not done using online sampling techniques. Here, the sampling method was liquid sampling, using

absorption bottles. During flue gas sampling, the flue gas was cooled continuously as it passed from the flue into

the absorption bottle, which may have caused some of the arsenic in the flue gas to condense on the pipes.
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However, the metal inner wall of the sampling gun could not be acid washed, which likely resulted in the loss of

arsenic in the gas phase. In general, such problems ensure that the mass balance results of arsenic considering the

gas phase are typically much less than 100% [127, 128].

4.2 Enrichment of arsenic on fine particles

Trace elements can be categorized into three main groups with regard to their partitioning during coal

combustion [13, 57, 131-137]. Elements such as As, Cd, Pb, Sb, and Se are in group II and are found

concentrated more on the fine-grained fly ash particles [31]. Thus, most of the generated arsenic vapor is

captured by fly ash and tends to accumulate on the surface of the smaller particles of the fly ash, which here

refers to those particles whose aerodynamic diameter is less than 10 μm [138-144]. 

Querol et al. [145] tested the content and distribution of 23 trace elements in the fuel (organic and/or

inorganic affinities) and in the combustion wastes (partition and volatility) during combustion in a large power

station. Results showed that arsenic exhibited segregation in the fly ash (fly ash/slag concentration ratio > 1.5).

Likewise, Liu et al. [146] found that while the arsenic concentration in the feed coal of a coal-fired power plant

in the Yanzhou area of Shandong was only 2.3 μg/g, arsenic concentration was three times higher in the fly ash 

(7.0 μg/g). Zhao et al. [53] reported a bimodal distribution of arsenic associated with particulates during the 

combustion of high-arsenic coals from the Guizhou province of China. When the temperature increased from

1100°C to 1400°C, an emission of arsenic in PM with diameter less than 1μm (PM1) increased from 0.07 

mg/Nm3 to 0.25 mg/Nm3. Based on the enrichment factor proposed by Ratafia-Brown [147], Tang et al. [148]

tested the enrichment factors of arsenic in fly ash collected from four hoppers in one of the utility boilers from

the Luohe Power Plant (LH#1), in Anhui Province, China (as shown in Figure 18). From electric field 1 to

electric field 4, the enrichment factors of arsenic increased sharply from 0.6 to 4.4, indicating that arsenic tended
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to be enriched in smaller particle sizes.

Figure 18: Variation of enrichment factors in fly ash collected from four hoppers at the LH#1 boiler [148]

Studies of arsenic partitioning conducted over the past 40 years have been focused on the enrichment of

arsenic in the submicron fly ash particulate. The findings of these studies are reported in Table 6.

Table 6: Arsenic enrichment in submicron fly ash particulate grouped by coal type and the size of the

facility

Coal type/source Boiler size Method Source

Field studies

B Ill./Ky. 290 MWe [c] FA BA Klein et al. [149]

B U 350 MWe [c] f(dp), ESP-O Gladney et al. [150]

B Poland 17.2 kg/s [c] FA BA Kauppinen and Pakkan [151]

B US, Austral. 115-645 MWe RE FA BA Meij et al. [120]

S Spain 1050 MWe [c] f(dp), ESP ash Querol et al. [13]

B UK 2000 MWe [c] FA BA Martinez [152]

B Illinois U RE FA BA Demir et al. [153]

B Poland 160, 113 MWe RE FA BA Aunela-Tapola et al. [123]

B Netherlands 600 MWe [c] FA BA Sandelin and Backman [154]
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B Finland 560 MWe [c] FA BA Sandelin and Backman [49]

U Slovakia U [c] FA BA Keegan et al. [18]

B China U [c] FA BA Liu et al. [146]

B India 220 MWe [c] FA, BA Reddy et al. [128]

U China 300 MWe [c] FA BA RE Guo et al. [155]

B Australia 660 MWe [c] FA BA Shah et al. [49]

B U 795 MWe [c] FA BA ESP-I Cheng et al. [156]

B Indian U [c] FA BA Pandey et al. [157]

U U [c] FA BA RE ESP Córdoba et al. [158]

U Brazil 857 MWe [c] FA BA Quispe et al. [159]

U Balingian U [c] FA BA Sia and Abdullah [160]

U China 300, 600 MWe [c] FA BA RE Tang et al. [70]

U China U [c] f(dp) Jin et al. [142]

U China U [c] FA BA RE Tang et al. [148]

U China U [c] FA Hu et al. [161]

Laboratory- and pilot-scale studies

L North Dakota Lab 17 kW RE f(dp) Linak and Peterson [162]

U
90 kWth oxy combustion pilot

plant
[c] FA BA Font et al. [163]

A, B China 2.5 MW CFB combustor [c] f(dp) FA BA Lunbo et al. [164]

Bench-scale (drop-tube) studies
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B, S, L US 20% O2 RE f(dp) Quann [165]

B Illinois (b) 10.5% O2 [c] f(dp) Helble [166]

B, S Pitt., Wyo. SR 1.2 [c] f(dp) Bool and Helble [58]

L Montana 20% O2 [c] f(dp) Neville and Sarofim [167]

B USA SR=1.2/0.9 [c] f(dp), FA Senior et al. [56]

A, B China 20% O2 [c] f(dp), FA Zhao et al. [53]

A, B China 50% O2 [c] f(dp), FA Zhao et al. [53]

B Australia 21% O2 [c] FA Jiao et al. [168]

B, bituminous; S, subbituminous; L, lignite; Br, brown coal; BA, bottom ash; FA, fly ash; ESP-I, ESP inlet;

ESP-O, ESP outlet; U, unspecified. [c] FA BA means in the literature the concentrations of fly ash and bottom ash

were tested. [c] f(dp) means concentration measured as function of particle size. RE, relative enrichment factor as

defined by Meij et al. [120]. Table represents expansion of studies summarized by Helble [169]

4.2.1 Factors affecting arsenic enrichment

Effect of temperature. Quann et al.[170] studied the size distribution of fly ash at 1780ºC and 2180ºC. The

amount of submicron aerosol increased markedly from 4% of total fly ash at 1780ºC to 20% at 2180ºC, showing

that increasing temperature enhanced the formation of submicron aerosol particles. Results supported the

hypothesis that the enrichment of the smaller ash particles in more volatile species such as arsenic was due to a

process of vaporization and re-condensation of mineral constituents. Senior et al. [171] showed flame

temperature had a dramatic impact on the amount of certain trace elements such as arsenic and selenium in the

submicron ash, indicating that these elements vaporized during the combustion process. However, the amount of

vaporization was not sensitive to the coal grind. In the work of Seames and Wendt [74], size-segregated

ash-laden aerosol samples were isokinetically collected to study the correlations between arsenic and major

elements (as functions of particle size); results showed increasing combustion temperature increased the
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availability of active sites and the partitioning of arsenic and selenium onto fly ash particles.

Effect of minerals. Senior et al. [172] concluded that the composition differences among size-segregated

coal samples of different density were mainly due to the density differences between minerals, especially pyrite,

and the organic portion of the coal. The high-density fractions were enriched in pyrite or substances associated

with pyrite. According to the experiment results of Senior et al.[172], arsenic and iron were concentrated in the

high-density fraction of 45-63-mm particle size cut of Pittsburgh coal. In addition, it has been reported that the

calcium present in fly ash may interact with arsenic vapor, resulting in the enrichment of arsenic [69]. Chemical

associations between arsenic and calcium or iron were inferred by Seames and Wendt [74] through PM sampling

with a Berner low-pressure impactor in a 17-kW downflow laboratory combustor. The correlation between

arsenic and calcium/iron in ash particles is shown in Figure 19 [74], which indicates that both iron and calcium

could provide sites for arsenic association.

Figure 19: Typical differential distribution cross correlation result: arsenic in ash particles versus calcium and

iron (Pittsburgh coal) [74]

Competition of sulfur and arsenic. Seames and Wendt [74] tested the effects of sulfur on arsenic partitioning

in a 17-kW vertical downflow combustor with 2 kg/h coal premixed with air (stoichiometric ratio, SR = 1.2).

Doping SO2 with the primary combustion air, the total arsenic concentration recovered on particles during
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Kentucky coal combustion, <0.973, 0.973-1.96, 1.96-3.77, and 3.77-7.33 μm in size, pooled together, decreased 

from a total of 695 μg/m3 (no added SO2) to 78 μg/m3 (with SO2 addition). Figure 20 shows the transformation

of arsenic compounds with sulfur in coal. Sulfur was thought to compete with these surface reactions of minerals

and arsenic, which decreased arsenic partitioning onto fly ash surfaces.

Figure 20: Regimes for arsenic speciation during pulverized coal combustion [74]

Equipment (Low-temperature economizer(LTE)). Wang et al. [124] measured PM and trace elements from a

coal-fired power plant with ESP, equipped with a Low-temperature economizer (LTE). The enrichment factors of

trace elements in PM0.2-0.5 (diameter range 0.2-0.5µm) were markedly higher than those of PM0.5-1.0 (diameter

range 0.5-1.0µm), showing arsenic tended to be enriched in fine particles. Particularly, with the LTE operating,

the enrichment factor of arsenic in PM0.2-0.5 decreased sharply from 42 to 32, as shown in Figure 21. A possible

reason is that with the LTE on, a lower flue gas temperature (100-108ºC) was obtained than with the LTE

non-operational (138-146ºC), which significantly reduced the amount of PM at the outlet of the ESP. As a result,

the concentration of arsenic in fine PM was reduced. In addition, the decreasing enrichment factor order of trace

elements (As>Cd>Cr>Pb>Mn) indicated that trace elements with higher volatility had an increased enrichment

in the fine particles [120, 173, 174].
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Figure 21: The enrichment factors of trace elements in PM0.5-1.0 and PM0.2-0.5[124], where LTE is

Low-temperature economizer

Difference between bench- and pilot-scale results. The concentration of arsenic in submicron particles at the

ESP inlet emphasized the difference between pilot-scale tests and laboratory results, as shown in Figure 22 [171].

According to Senior et al. [171], the amount of ash in the vaporization mode as well as the amounts of several

refractory elements (Ca, Fe, and Co) in the laboratory combustor [56] were similar to the pilot-scale study [171].

Thus, they concluded that the flame conditions in the two systems were similar. In this case, the results of

laboratory and pilot-scale tests were compared to study the transformation of arsenic. In the laboratory sample at

1150ºC, 25% of arsenic was found in the submicron mode, while in the submicron sample from the pilot-scale

combustion facility less than 5% of arsenic was found. The possible reason is that more chemical condensation

took place in the pilot-scale test, which caused arsenic present in the gas to condense preferentially on larger ash

particles, not on the submicron ash.
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Figure 22: Comparison of As and Se in the submicron mode from the laboratory combustor sampled at 1150ºC

[56] and the pilot combustor sampled at the ESP inlet [171]

Arsenic enrichment in fine ash is affected by many factors. Further studies are needed to obtain consistent

conclusions on the effect of each factor, as well as the reactions between arsenic and fly ash. In addition, the

available fly ash surface area for arsenic condensation/adsorption is also required information for the purpose of

predicting the partitioning of arsenic, thereby reducing toxic emissions in combustion systems.

4.3 Speciation transformation of arsenic

Total concentrations of trace elements in raw coal and ash samples and their partitioning in coal-fired power

stations have been extensively studied in the last few years, with diverse analytical methods [175]. Speciation of

individual trace elements, however, requires more specific analytical measurement techniques, which are

significantly different from those applicable to the determination of total elemental concentration [139, 176-182].

X-ray absorption fine structure (XAFS) spectroscopy has been widely used to determine the speciation of trace

elements in solid phases [88, 183]. In recent years, XANES and extended X-ray absorption fine structure

(EXAFS) spectroscopy, which are more sensitive to the local structural environment of an element, have begun

to be used in speciation studies of trace elements.

Arsenic XANES and arsenic EXAFS spectra by Zielinski et al. [139] indicated that most arsenic in the coal
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was contained in a generation of arsenic-bearing pyrite (arsenian pyrite (FeS2-As), arsenopyrite (FeAsS), or As

substitutes for S in pyrite (Fe(AsxS1-x)2)), while most (95%) of the arsenic was present as As5+ in fly ash. The

majority of arsenic in a highly alkaline (pH = 12.7) fly ash was present as As5+ in calcium arsenate (Ca3(AsO4)2).

While in a highly acidic (pH = 3.0) fly ash, arsenic was associated with some combination of iron oxide,

oxyhydroxide, or sulfate. Shah et al. [49] tested the arsenic speciation in feed coal and combustion products. In

coal 65% As5+, 25% As3+ and 10% As/pyrite were found, while in the fly ash, 90% of arsenic was found as the

less toxic As5+ and 10% as As3+. The arsenic XANES spectra of coal and fly ash samples determined by these

workers are shown in Figure 23. This finding is consistent with the previous studies that arsenic in fly ash was

mainly present as As5+ with lower concentrations of As3+ [184-186]. This was partly caused by the interaction of

As2O3(g) in the As3+ form with CaO in fly ash, which formed the stable As5+ compounds [76, 81, 187-189].

Figure 23: Arsenic XANES spectra of coal and fly ash samples [49]

In the work of Goodarzi et al. [50], a medium volatile bituminous coal with an ash content of 34 wt.% was

combusted in a 150-MW Canadian power plant. The distribution of arsenic in feed coals, ash, and stack-emitted

materials was determined with XANES spectroscopy. Results showed, first, that arsenic in the feed coal was
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dominated by arsenate (54%), followed by arsenical pyrite (FeAsS) (24%) and an arsenite (As3+ –O) species

(12%) (Figure 24(a)). It is possible that the As5+ and As3+ species were derived by oxidation of the arsenical

pyrite [180]. Second, the content of arsenic in bottom ash was quite low, while a majority of arsenic (>90%) in

fly ash was present as As5+ (as shown in Figure 24(b)). Third, more than 99% of total arsenic was captured by the

particulate removal devices.

(a) milled coal (b) ash samples from power plant

Figure 24: Arsenic XANES spectrum of milled coal and ash samples from power plant. Zero-point of energy

corresponds to 11,867 eV[50]

In the work of Luo et al. [141], both arsenic K-edge XANES and EXAFS spectra were collected for the

speciation determination in five fly ash samples. A comparison of arsenic K-edge XANES spectra of the samples

to spectra of oxidation-state standards demonstrated that arsenic was predominantly As5+ in all samples.

Furthermore, mansfieldite (AlAsO4·2H2O) [190], calcium arsenate [Ca3(AsO4)2] [191], and calcium

pyroarsenate (Ca2As2O7) [192] were considered as the possible As5+ speciation in fly ash.

An improved graphite furnace atomic absorption spectrometry(GFAAS) method, complemented by thermal



40

gravimetric analyzer/differential scanning calorimeter(TGA/DSC) experiments, was first used to study trace

element partitioning from mineral exclusions by Raeva et al. [193]. However, this method had limitations for

trace element and inorganic matrix speciation because samples had to be introduced into the furnace in a

homogeneous form. Thus water-insoluble matrices, e.g. quartz and pyrite, could not be tested.

According to the studies noted above, most of the arsenic in ash was present as As5+. With regard to the

arsenic speciation in flue gas, Germani and Zoller [194] concluded that the arsenic was mainly present as As4O6

by measuring the As4O6 and As0 in flue gas. Here, 0.7 to 52% of the total in-stack concentration of arsenic in the

vapor phase was reported as As2O3 by Ratafia-Brown [147].

4.4 Transformation mechanism

4.4.1 Fly ash formation and particle size distribution

The transformation behavior of arsenic is closely related to fly ash formation, particle size distribution, and

migration evolution of minerals. The fundamental formation mechanism of coal ash is shown in Figure 25 [195].

The process was divided into two parts: coal with included minerals; and coal with excluded minerals. Residual

ash ranging from 1-100 μm was formed from excluded minerals or fusion of included minerals. Sub-micron ash 

ranging from 0.01-1 μm was formed by vaporization, followed by homogeneous condensation, heterogeneous 

condensation, coagulation and aggregation, or extensive fragmentation of minerals. The size distribution of fly

ash particles was thought to be influenced by several factors, including combustion environment, coal properties,

and residence time.
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Figure 25: Ash formation mechanisms during coal combustion; the dotted line circles indicate reducing

atmospheres (adapted from [195])

Effect of coal properties. It has been reported that higher rates of char fragmentation resulted in smaller fly

ash particle size [196]. Tang et al. [197] reported that vitrinite particles (with higher H:C) produced highly

porous char with severe fragmentation during combustion, which in turn, resulted in formation of fine ash.

According to Buhre et al. [198], most of the evaporated water-soluble inorganic matter (mostly present in low

rank coals or black liquor) and organically-associated inorganic matter contributed to the formation of PM1. In

addition, experiments on the effects of alkalis[199-201] and sulfur [202, 203] in raw coals were conducted in

drop-tube furnace to study the formation of PM1. Higher alkalis and sulfur content were expected to improve the
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amount of PM1, especially particles under 0.6μm. Char produced by different types of coal may also have 

caused particle size distribution differences [204]. The experiments of Attalla et al. [195] showed that, compared

to lignite, much more extensive fragmentation took place in bituminous coals, resulting in a narrower size

distribution of particles. In addition, the particle size of coal char showed a greater influence on fragmentation in

bituminous coals [195].

Effect of residence time. It is also possible that some larger mineral particles may be only partly melted due

to the short residence time in the boiler, forming fly ash particles with non-spherical shapes. When the load is

reduced, the temperature and flue gas flow rate in the boiler decrease accordingly. As a result, the residence time

of particles is extended. It seems reasonable to expect that with longer particle residence time, more melting will

occur in pulverized coal boilers. In that case, the vaporization proportion of fly ash aerosols would increase to

some extent and enhance the concentration of fine particulate matter in the fly ash. In addition, the physical

properties of mineral particles can be expected to affect the particle size distribution. Mineral particles with

relatively high melting points could leave the pulverized coal boiler without entering the vapor phase. Moreover,

non-volatile species may appear in the vapor phase due to association with organic material, and some volatile

elements may be trapped within the liquid matrix material [196].

Effect of combustion environment. Combustion environment and flame temperature have already been

shown to affect fine-ash formation. A reducing and high-temperature environment caused evaporation of

inorganic matter, including both trace and major elements from the coal matrix [205]. Also, a CO2-rich

environment has been shown to reduce the fragmentation of carbonate minerals. As mentioned in Section 4.2,

higher char particle temperatures during the combustion or gasification of coal may cause higher vaporization of

inorganic matter and thus enhanced concentration of fine particles.
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In general, it can be expected that with a higher rate of char fragmentation, longer residence time, and

higher flame temperature, a larger proportion of fine particles will be generated, which will enhance the

enrichment of arsenic in fly ash.

4.4.2 Arsenic partitioning pathway

Senior et al. [206] pointed out that the transformation of arsenic in coal to ash was actually the process of

arsenic migrating into the different size fractions of ash, namely arsenic partitioning, based on the formation and

deposition of fine particles.

Ratafia-Brown [147] identified five physical-chemical processes that controlled trace element partitioning

and determined their final physical form, namely: heterogeneous condensation on the existing fly ash particles

and heat exchange surfaces (Pathway 1); homogeneous condensation (nucleation) and coalescence as submicron

aerosols if local supersaturating conditions exist (Pathway 2); physical/chemical adsorption on fly ash particles

(Pathway 3); homogeneous and heterogeneous chemical reaction among trace elements, fly ash, and flue gas

constituents (Pathway 4); remaining in the vapor phase for species with high vapor pressure at typical boiler exit

temperature (Pathway 5).

All the pathways except Pathway 5 are volatility-dependent, supporting the hypothesis that the

volatilization process provides the critical input for the transformation of arsenic.

4.5 Partitioning model

Thermodynamic equilibrium calculations, which consider coal as a homogenous material, have been widely

used to predict the transformation of arsenic compounds in coal [72, 76, 207-210]. Although various factors have

been considered, such as temperature, pressure, atmosphere, and other interactions, the calculation results are
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thermodynamic ones; they do not account for the reaction kinetics and heterogeneous nature of coal [76]. In the

early 1990’s, Linak and Wendt [211, 212] began to place emphasis on prediction of the size-segregated

distribution of trace metals in power plants. It was found that the partitioning of trace elements on sized fly ash

was controlled by fuel composition and combustion conditions. Subsequently, the nucleation, film condensation,

and coagulation processes that govern the particle size distribution of multiple toxic metals in practical

combustion environments were experimentally and theoretically explored by Davis et al. [213]. The

size-fractionated fine particles were shown to be in good agreement with aerosol dynamics theory. Helble [169]

developed a model of trace element emissions with the input data of fundamental laboratory results on trace

element partitioning. The model indicated that with element incorporation and size-dependent partitioning and

penetration, the predicted arsenic concentration in flue gas could be improved by more than 25%. Subsequently,

Senior el al. [61] developed a one-dimensional model to predict the behavior of arsenic in the post-combustion

region as a function of gas residence time. Heterogeneous condensation and surface reaction of arsenic on fly ash

as well as the effect of SO2 on arsenic partitioning were considered in the model. The model assumed that the

particle size distribution of fly ash did not change with temperature and time. More recently, James et al. [214]

developed a computational fluid dynamics model of arsenic partitioning. Previously developed mathematical

approaches, combined with pyritic mineral transformation mechanisms, excluding fragmentation, and recently

determined experimental speciation details, were employed to predict trace element partitioning and spatial

evolution during combustion. However, they only considered the particle size distribution of fly ash, and not the

interaction and impact of arsenic and other elements. In future, more effort is required to develop a model of

arsenic partitioning in which the particle size distribution of fly ash with gas residence time, the

heterogenous/homogeneous condensation of arsenic, and the reactions between arsenic and other species could
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all be included.

Zeng et al. [215] established the first quantitative physicochemical model for vaporization of arsenic during

coal pyrolysis and combustion. The vaporization process for arsenic consists of three consecutive processes:

transport of molecules or atoms through the bulk pyrite liquid (melt) to the melt/gas interface, vaporization of

arsenic on the surface of melts, and transport of molecules/atoms through the pores of the char to the atmosphere.

The controlling step is diffusion through the melt. Raeva et al. [216] presented a new method for the direct

measurement of kinetic parameters under conditions that simulated the vaporization of inorganic material during

coal combustion. This method was used to generate key physical property data which were necessary for

modeling and assessment of the vaporization behavior of trace elements.

However, the model of arsenic volatilization is far from well-developed and trace elements may be in the

form of organically associated material (incorporated into the organic structure of the coal), inclusions, or

exclusions [217, 218]. The volatilization characteristics of arsenic in various forms are significantly different.

For example, arsenic in the exclusion form is easily released into the atmosphere with the combustion of coal,

while arsenic which is organically associated with coal is always going to be released by devolatilization,

particle fragmentation, char combustion, and burnout. Because char simultaneously reacts with the oxygen in the

surrounding environment, vaporization of arsenic that is organically associated with coal may occur mainly in a

reducing atmosphere, as shown in Fig. 25 (represented by dotted line circles). That is to say, arsenic in different

forms shows different volatilization characteristics along with the combustion of coal particles. However, the

current models of arsenic volatilization do not separate organic-, inclusive-, and exclusive-related arsenic forms.

These models typically assume a uniform dispersion of inclusive-related material within the char particle [219].

One reason for this is that it is not physically possible to utilize real coal particles to generate data for these three
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forms separately. In addition, the model results for volatilization of arsenic under micro-environmental

conditions cannot be confirmed in actual furnace combustion experiments. The arsenic volatilization model

requires further improvement to establish the partitioning behavior of arsenic.

5 Emission of arsenic in coal-fired power plants

5.1 Collaborative control of arsenic by ESP and FGD equipment

The application of air pollution control devices (APCDs) in power plants can significantly affect the

redistribution of arsenic in combustion by-products and alter the route by which the elements reach the

environment [220]. A certain proportion of trace elements can be partitioned into the solid by-product (gypsum)

and water stream (e.g. gypsum slurry) after passing through flue gas desulfurization systems [221].

Particulate-bound metals can be captured by particulate control facilities such as ESPs and fabric filters. Fly ash

captured by ESP is used as a raw material for the synthesis of construction material such as cement and concrete

because of its pozzolanic properties [222]. However, the fact that arsenic is largely enriched in fly ash should not

be ignored. In addition, under more restrictive environmental regulations, most coal power stations are equipped

with FGD systems, which could control acid gas emissions and also effectively control gaseous and particulate

arsenic emissions [123]. FGD gypsum with arsenic can be used in wallboard manufacture, or for some

applications as a lime substitute [223]. FGD gypsum is also employed as a landfill material in mine

reclamation [224]. Some fly ash and FGD gypsum end up in landfill. Although FGD gypsum is regarded as

environmentally friendly at present, it could become an issue with increasing landfill closures if further uses are

not found for it [70]. Because of the wide use of fly ash and FGD gypsum, as well as the fact that they may be

arsenic carriers, a better understanding is needed of the effects of APCDs on arsenic emissions.

5.1.1 Effect of ESP
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The enrichment of arsenic on fine fly ash has been summarized in Section 4.2. However, researchers have

reached varying conclusions on gaseous arsenic removal efficiency using ESP. For example, the study of Cheng

et al. [156] on the partitioning of several trace elements in a full-scale coal combustion process in China showed

that the removal efficiency of arsenic by an ESP unit was as high as 97%. But, according to Tang et al. [70], the

average removal efficiency for arsenic was 83%, based on an investigation of two pulverized coal-fired power

plants in China that burned bituminous coal. An ESP removes trace elements presented in the form of PM, but

removal efficiencies depend on the efficiency of the ESP and the mineral content of the fly ash.

In recent years, a new dust control technology called electrostatic- fabric- integrated precipitator (EFIP) has

become increasingly common. This technology combines the advantages of ESP and the bag filler, and is

believed to be a low cost, promising, high efficiency for fine particle removal. Wang et al.[225] carried out a

full-scale field investigation on trace element emission at a power plant equipped with EFIP. The study of field

sampling results showed that the arsenic concentration contained in electrostatic precipitation ash was larger than

that in the fabric filtration ash. Also, the arsenic contained in fabric filtration ash tended to release into the

environment more easily.

5.1.2 Effect of FGD

Trace elements in the FGD system come mainly from limestone, flue gas, and PM, as well as the slurry

water. Córdoba et al. [158] studied the abatement capacity of trace elements (including arsenic) in a large

pulverized coal combustion power station equipped with a wet limestone flue gas desulfurization unit (WFGD),

concluding that the control rate of arsenic (moderately volatile element) was more than 92% [158]. Similarly,

Álvarez-Ayuso et al. [224, 226] conducted sampling experiments in a coal-fired power plant, which consisted of

feed coal, boiler slag, fly ash, limestone, FGD gypsum, process water, and waste water. Data analysis showed
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that arsenic entering the FGD system was mainly in the gaseous form, which was not consistent with the view of

Córdoba et al [158]. A possible reason is that the arsenic content of the limestone feed was relatively high in the

experiment of Córdoba et al., while arsenic content of the limestone was 1 mg/kg in the work of Álvarez-Ayuso

et al. [224].

WFGD is considered to have high collection efficiency for gaseous arsenic. Córdoba et al. [158] considered

that a large part of the arsenic (90%) was absorbed by the gypsum slurry, while the arsenic discharged from the

WFGD system was in the form of PM (6.6%) and a small portion of arsenic-bearing species was emitted in

gaseous form. Álvarez-Ayuso et al. [224] also concluded that WFGD systems had a high trapping ability for

arsenic with 96% to 100% of the gaseous arsenic trapped by the WFGD system. Meij [120] found a trapping

ability of 75%. Using on-site sampling data, Tang et al. [70] calculated a trapping ability of only 61% and

suggested that there was no relationship between operating conditions and removal capacity of gaseous arsenic.

In FGD systems, trapped arsenic most likely combined to form calcium-arsenate. Tang et al. [70] further

suggested the specific binding form was Ca3(AsO4)2.

5.2 Total emission of arsenic in power plants

Based on arsenic content in feed coals, combustion products, and desulfurization products collected in field

tests, researchers have predicted the overall arsenic emissions from power plants [70, 159]. Tang et al. [70]

investigated the distribution of arsenic (including feed coal and its combustion products) in two 600-MW

Chinese coal-fired power plants (the Luohe Power Plant and Pingwei Power Plant). Both were equipped with

ESP and FGD systems and fed with pulverized bituminous coal from the Huainan coalfields. The bottom ash, fly

ash, feed coal, limestone, FGD gypsum, and process water were collected simultaneously to calculate the total

emission and stack emission proportion of arsenic. The results showed that the average removal efficiencies of



49

arsenic by the ESP and FGD units were 83% and 61%, respectively. The average stack emission ratio of arsenic

was 6% and the total annual emissions of arsenic from the two plants were estimated at 0.46 t [70]. Quispe et al.

[159] studied the changes in mobility of arsenic in coal during combustion at a power plant in Santa Catarina,

Brazil. The power plant, equipped with ESP, generated 857 MW/h of electricity with a consumption of 200,000

tons of coal per month. Considering only the easily soluble fraction, they believed that coal ash could trap 1.7 t

of arsenic annually. Furthermore, by taking the mobile metal fraction of the combustion ash into consideration,

they estimated that the amount of arsenic which would affect the surrounding environment was 19 t per

year [159].

The differing boiler capacity, feed coals, and pollution control devices among power stations could have led

to large differences in the emission data of arsenic. An overall emission factor for arsenic into the atmosphere

was proposed by Kang et al. [54], as shown in Table 7.

Table 7: The worldwide arsenic emission factor from coal-fired power plants in ten countries [54]

Country Emitted via fly ash Emission factor for arsenic to

the atmosphere

Nationwide

emission

Reference

Bulgaria Maximum 30%-40% Vassilev and Vassileva [227]

US 3.90% Helble [169]

Spain 1.20% Otero-Rey et al. [127]

China 2.16% Guo et al. [155]

Japan 0.56% 0.251 t Ito et al. [228]

Thailand 51 mg/MWh Kuprianov [229]

Canada 0.85% Goodarzi [50]

India 1.60% Reddy et al. [128]
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Estonia 0.68g/t coal Häsänen et al. [230]

Worldwide 15-100μg/MJ 232-1550 t Nriagu and Pacyna [231]

Ash disposal, like direct emissions of gaseous arsenic, can cause harm to the environment. When large

amounts of fly ash were stored temporarily in stockpiles, or disposed of in ash landfills or lagoons [232], harmful

elements in the fly ash migrated or leached into the surrounding soil and groundwater due to the effects of acid

rain [233]. Bata et al. [234] reported that arsenic was more easily leachable than the other heavy metals in fly ash.

However, Otero-Rey et al. [235] concluded that leachable arsenic was less than 20% of total arsenic in fly ash.

Effective controls on toxic elements such as arsenic are therefore recommended before fly ash, gypsum, etc., are

used as building materials.

5.2.1 Emission of arsenic in China

Tian et al.[236] studied the atmospheric emissions of arsenic in China from 2002 to 2010 by combining the

detailed coal consumption data, element content in coal, and the specific emission factors which were classified

by different boiler patterns and APCD configurations. The emission of arsenic from coal-fired power plants in

China is shown in Figure 26.

Figure 26: Emission of arsenic from coal-fired power plants in China, 2000-2010, data from [236]

As seen in Figure 26, the atmospheric emissions of arsenic from coal combustion in China increased from
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354.01 t in 2000 (based on 545.9 Mt coal used) to 615.70 t in 2006 (based on 1527 Mt coal used), and then

decreased gradually to 335.45 t in 2010 (based on 1591.0 Mt coal use). This decline can be mainly attributed to

the installation of APCD systems. With advanced high-efficiency-control-technology and specialized

mercury-control technology, the total amount of arsenic emitted in China was expected to decline to 215.57 t in

2020 [236].

6 Arsenic removal technologies

Power plants face enormous challenges in respect of arsenic emission control [71]. The existing particulate

control devices, such as ESP and fabric filters, are not very efficient in controlling emissions of arsenic attached

to submicron PM, let alone the arsenic in the vapor phase. Several control options are discussed below.

6.1 Removal of arsenic by calcium-based sorbents

Because of their availability and low cost, calcium-based sorbents are widely used for SO2 and CO2 capture

and many researchers have explored the adsorption properties of calcium-based sorbents, mainly CaO, Ca(OH)2,

2CaO·SiO2, and CaO·SiO2 for gaseous arsenic retention [71, 80, 81, 237, 238]. Due to differences in the specific

surface area of calcium-based materials, reported concentrations of gaseous arsenic and adsorption time vary

considerably among different studies and specific values of adsorption experiments (adsorption efficiency,

amount of arsenic captured, etc.) are difficult to compare. Therefore, only adsorption trends are considered here.

6.1.1 Effect of temperature

Temperature is an important parameter in evaluating arsenic adsorption properties of sorbents. Currently,

the focus is on the medium- and high-temperature range (400-1000ºC) under an oxidizing atmosphere. However,

there is still no unanimous conclusion about the impact of temperature and the resulting adsorption product at
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different temperatures.

Some researchers have suggested that for calcium-based adsorbents temperature has a positive effect on

arsenic adsorption [69, 80, 237]. At 400-1000ºC, Mahuli et al. [237] found that temperature could facilitate

arsenic adsorption despite the surface sintering caused by the elevated temperature. Their research indicated that

the adsorption efficiency of a low-surface-area sorbent in high temperatures could exceed that of a sorbent with

high surface area functioning at relatively low temperatures. Researchers from Tsinghua University carried out

experiments on arsenic adsorption over CaO at 400-1000ºC [80]. Their conclusions were similar; however, the

focus of their studies was on the initial reaction rate of CaO and As2O3. The experimental results of Sterling and

Helbe [69] also indicated that increased temperature could promote arsenic adsorption over CaO. Chemical

adsorption is believed to be the main process between gaseous arsenic and calcium-based adsorbent in the

medium- to high-temperature interval. To verify the adsorption type, Mahuli et al. [237] placed the post-sorption

samples under nitrogen atmosphere at 800ºC and 1000ºC for desorption. They found that arsenic content in the

samples was almost the same before and after desorption. This effectively irreversible capture reaction indicated

that chemical adsorption was dominant in the process. With respect to the adsorption product, the above

researchers have suggested that the post-sorption sample of calcium-based adsorbent was Ca3(AsO4)2 (or

Ca3As2O8).

Other researchers have suggested that increased temperature enhanced the arsenic adsorption ability of

calcium-based adsorbent within a certain temperature range. However, adsorption capacity decreased if the

temperature exceeded a certain critical value. Jadhav et al. [71] studied the adsorption properties of gaseous

arsenic over CaO at 300-900ºC. The results showed that as the temperature increased, the adsorption capacity

increased between 300ºC and 600ºC and then decreased. Related research from Chen et al. [81] presented similar
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results, and showed that temperature had positive effects on the arsenic adsorption capacity of CaO from

300-500ºC, but negative effects from 500-1050ºC. However, the findings of both groups present some problems

in terms of distinguishing post-sorption samples. Jadhav et al.[71] have suggested that the reaction product of

calcium oxide with arsenic was Ca3As2O8 at 300-600ºC and Ca2As2O7 at 700-900ºC. Ca2As2O7 has thermal

instability, which is the main reason that arsenic adsorption capacity decreased at higher temperatures. The

reaction equations are as follows[71]:

Below 600ºC:

2 3 4 6

1
As O (s) As O (g)

2
↔ (Eq.1)

( ) 4 6 2 3 2 8

1
3CaO s As O (g) O (g) Ca O (s)

2
As+ + → (Eq.2)

Between 700ºC and 900ºC:

2 3 4 6

1
As O (s) As O (g)

2
↔ (Eq.3)

( ) 4 6 2 2 2 7

1
2CaO s As O (g) O (g) Ca O (s)

2
As+ + → (Eq.4)

In the view of Chen et al. [81], the reaction product of CaO with arsenic was Ca3(AsO4)2 at all temperatures

and the main reason that the adsorption capacity of CaO on arsenic decreased from 500ºC to 1050ºC was

because Ca3(AsO4)2 generated under different temperatures had different crystal phases. Compared with the

low-temperature range, the adsorption product Ca3(AsO4)2 in the high-temperature range was less thermally

stable, and the decomposition of Ca3(AsO4)2 at 500-1050ºC led to the reduced adsorption capacity of CaO. In the

recent work of Zhang et al. [75], the conclusions of Chen et al. [81] were partially validated. Furthermore,

through thermodynamic simulation, Zhang et al. [75] found that the adsorption process (described as Eq.2) was

an exothermic reaction which could explain the temperature impact on arsenic.

The adsorption procedures for arsenic in a majority of these experiments were similar, where solid As2O3

was adopted as the arsenic source while the adsorption experiments were carried out in a secondary fixed bed
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reactor. However, the experimental results were not identical. There are many reasons for this, the most

important of which probably lies in the extremely low arsenic concentrations used in these experiments. In

addition, online detection of gas-phase arsenic is not possible at present and experimental error easily occurs

during off-line detection. What should be noted is that all researchers mentioned here believe chemical

adsorption is the dominant process in the medium- to high-temperature interval in oxidizing condition, which is

an important characteristic of arsenic adsorption over calcium-based sorbents.

6.1.2 Effect of SO2

Some researchers have explored the effect of SO2 on the arsenic adsorption process of calcium-based

sorbents. However, there is no agreement on SO2 impact to date. Li et al. [80] made an exhaustive study of

simultaneous adsorption of SO2 and As2O3 vapor and showed that SO2 did not have a significant impact on

arsenic adsorption. Two main factors could explain this. First, the reaction rate constant of CaO with gaseous

arsenic is greater than that of the desulfurization reaction, which means SO2 does not compete with As2O3 active

sites on the surface of CaO at the initial stage of the reaction. Second, they demonstrated that calcium sulfate

also has the ability to adsorb gaseous arsenic. Therefore, even if the CaO surface was completely sulfated, it

would still show some gaseous arsenic adsorption capacity.

Chen et al. [81] recently investigated the effect of SO2 on the arsenic adsorption process of calcium-based

sorbent over a wide temperature range (300-1050ºC). The results showed that SO2 could partially inhibit the

arsenic adsorption process at 300-800ºC and at 800ºC the adsorption suppression was the most pronounced.

However, as temperature increased further, the inhibitory effect of SO2 weakened. At 1050ºC a promotional

effect of SO2 on arsenic adsorption was observed. They attributed that to SO2 competing with gaseous As2O3 for

adsorption sites and the sulfation product CaSO4 occupying the active sites, weakening arsenic adsorption. The
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sulfation product may be expected to further block surface pore structure of the sorbent resulting in surface area

decrease, which would further restrict arsenic adsorption by CaO. As to the promotional effect of SO2 in the

high-temperature range, they agreed with Li et al. [80] that CaSO4 also had arsenic adsorption capacity.

The common conclusion is that CaSO4 arsenic adsorption capacity must be considered. However, there is

no unified conclusion about the SO2 impact and further studies are needed.

6.1.3 Kinetic studies

To better understand the arsenic adsorption process of calcium-based sorbents, researchers have carried out

kinetic studies. In 1997, a kinetic equation describing the reaction between CaO and As2O3 was put forward by

Mahuli et al. [237]. The reaction can be described as:

m n
s g CaO

dx
k C A

dt
= − (Eq.5)

where x is the overall conversion ratio of CaO; Cg is the concentration of the gaseous As2O3; m is the

reaction order with respect to the gaseous species; n is the reaction order based on sorbent surface area; ACaO is

the specific surface area of the sorbent; ks is the reaction rate constant; and t is the reaction time. They assumed n

= 1 and used the equation ACaO = S0(1-x) to describe sorbent surface area. Thus, the above equation could be

described as follows:

0

1
ln

1
m

s gk C S t
x

=
−

(Eq.6)

By taking the natural logarithm of both sides of Eq.6 and obtaining the relationship between ln(-ln(1-x)) and

lnCg, m≈1 was calculated. In this case, the assumption of n≈1 was verified. The apparent activation energy of the 

adsorption reaction was 43.9 kJ/mol. However, there were no specifics concerning frequency factor.

Other researchers have carried out kinetic studies of the reaction between CaO and As2O3 based on the

research of Mahuli et al. [237] These results are summarized in Table 8.
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Table 8: Comparison of specific rate constant for surface-reaction-controlled gas-solid reactions

Gas-solid reaction
Frequency

factor
Activation energy Temperature

Over all reaction

order
Reference

CaO+As2O3 43.9 kJ/mol 600ºC n=1 Mahuli et al. [237]

CaO+As2O3 1.4 mm/s 23 kJ/mol 600-1000ºC n=1

Sterling and Helble [69]2CaO·SiO2+As2O3 7.2 mm/s 28 kJ/mol 600-1000ºC n=1

CaO·SiO2+As2O3 5.5 mm/s 30 kJ/mol 600-1000ºC n=1

CaO+As2O3 600-900ºC n=0.86 Li et al. [80]

CaO+As2O3 0.9 mm/s 25.99 kJ/mol 600-900ºC n=1.1 Zhang et al. [75]

Jadhav et al. [71] proposed a novel shrinking core mechanism model to describe the reaction between CaO

and As2O3. In this model, the specific surface area and pore size were 3.2 m2/g and near 0 cm3/g respectively,

which were assumed to be low enough to ensure negligible mass transfer resistance. The conversion ratio of CaO

can be expressed as follows,

1 3(3 )(1 ) 1 (1 )n
g m pk C r t xρ = − − (Eq.7)

where x is the overall conversion ratio of CaO; rp is particle radius of CaO; ρm is the density of CaO; k is the

reaction rate constant; Cg is the concentration of the gaseous arsenic; t is the reaction time; and n is the order of

Eq.7. To eliminate the mass transfer resistance, a higher gas velocity (≈0.4 m/s) and smaller solid sorbent 

particles (<2 μm) were used in the adsorption experiments. Jadhav et al.[71] studied the effect of gaseous arsenic 

concentration as well as adsorption temperature on CaO conversion rates. By combining the Arrhenius equation

with Eq.7, they obtained activation energy of 21.34 kJ/mol and the order of reaction with respect to arsenic

concentration (n) was close to 1. They suggested that such low activation energy indicated the reaction had a

slow temperature response. It is noteworthy that the reaction time was controlled in less than 10 min in these
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experiments, which eliminated the effect of diffusion of ionic species (Ca2+ and O2-) through the product layer.

Thus, the activation energy they calculated was lower than that of Mahuli et al. [237].

Kinetic study of the adsorption reaction depends on experimental data and the kinetic model. Kinetic

parameters could be signficantly different because different kinetic equations were adopted and different

experimental parameters were applied. However, the reaction order with respect to arsenic concentration is close

to 1, which appears to be a common conclusion [69, 71, 75, 80, 237].

6.2 Removal of arsenic by metal oxide sorbents

In order to explore more efficient arsenic sorbents, Zhang et al. [75] studied gaseous arsenic adsorption on

three metal oxides (Fe2O3, CaO, and Al2O3). In Figure 27 experimental data at 600-900ºC show that Fe2O3 had a

greater adsorption capacity under the same experimental conditions.

Figure 27: Amount of arsenic captured by various metal oxide adsorbents at different temperatures[75]

Adsorption capacity of sorbents increased in the following order: Al2O3 < CaO < Fe2O3 at 600-900ºC.

Compared with CaO and Fe2O3, Al2O3 had a larger specific surface area. But adsorption capacity of Al2O3 was

the lowest. What is more, the thermal desorption experiment of post-sorption samples showed that little arsenic

loss was observed in CaO and Fe2O3. However, the arsenic content in the post-sorption sample of Al2O3 was
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only 2.21% of the original content. Zhang et al. [75] inferred from this that physical adsorption was the main

process of arsenic adsorption on Al2O3. Their XRD results also confirmed this conclusion, showing As2O3 was

detected on the Al2O3 surface. They calculated and compared kinetic parameters of CaO and Fe2O3 for arsenic

adsorption, as shown in Table 9.

Table 9: Specific rate constant for surface reaction of sorbents CaO and Fe2O3 [69]

reactant reaction order activation energy, kJ/mol frequency factor, s-1

CaO 0.8 25.99 0.009

Fe2O3 1.1 12.17 0.034

Similarly to the work of Jadhav et al. [71], Zhang et al. [75] suggested that the adsorption process was slow

in response to temperature change by comparing the kinetic parameters of CaO and Fe2O3. They proposed that

the frequency factor could describe active site quantities on the sorbent surface, in which adsorption would take

place.

Subsequently, Zhang et al. [239] developed an iron-based sorbent Fe2O3/γ-Al2O3 for gas-phase arsenic

capture, on the basis of their preliminary study. They identified the optimum operating temperature as being

around 600ºC, by carrying out adsorption experiments at 150-900ºC. SO2 was considered to have a promotional

effect on arsenic adsorption, whereas, NO was believed to have little impact. They suggested that SO2 would be

oxidized by Fe3+ on the sorbent surface, generating SO4
2- and HSO4

-, which could facilitate the oxidation of As3+

to As5+. And then, As5+ reacted with Fe2O3, which was the active ingredient of the sorbent, forming FeAsO4.

The catalytic oxidation effect of iron-based sorbents may play a significant role in the adsorption process.

However, an accurate description of the valence changes of the iron ions as well as the reaction mechanism for

the lattice oxygen are lacking in the available literature.
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In addition, Rupp et al.[240] proved that the Pd/γ-Al2O3 had the ability to remove AsH3 from a simulated

fuel gas under laboratory conditions. With a sorbent bed containing ten pounds of Pd/γ-Al2O3 held at 260℃,

nearly 100% of selenium, arsenic and mercury within a dirty fuel gas slipstream were removed. The results

indicated that arsine, phosphine and hydrogen selenide competed against each other for sorption sites. However,

the performance of Pd/γ-Al2O3 on As2O3(g) removal is still unclear.

6.3 Removal of arsenic by fly ash sorbents

A significant proportion of the gaseous arsenic in flue gas migrates into fly ash due to a condensation or

reaction process during coal combustion [241]. This means that fly ash could be used as sorbent material for

trace element removal. To explore the adsorption capacity of fly ash on arsenic, López-Antón MA et al. [187]

carried out a series of adsorption experiments in a fixed-bed reactor. Two fly ash samples were selected as

sorbents. One sample was taken from a fluidized bed combustion plant burning a mixture of coal wastes and the

other was taken from a pulverized coal power plant burning high-rank coals. Adsorption experiments at 120ºC

showed that maximum retention capacity of fly ash for gaseous arsenic was 5.3 mg/g and the corresponding

maximum adsorption efficiency was less than 20%. Díaz-Somoano et al. [73] estimated that calcium and iron in

fly ash played a key role in arsenic adsorption by measuring the content of calcium, iron and arsenic.

Díaz-Somoano et al. [73] investigated gaseous arsenic adsorption by fly ash at 120ºC, a relatively low

temperature. This was because high temperatures may cause re-carbonization of the unburned carbon in fly ash,

resulting in changes to fly ash sorbents. In addition, while 120ºC was close to the temperature at the inlet of ESP,

which was convenient for fly ash sorbent injection, gaseous arsenic was prone to condense on the tube wall at

120ºC, increasing the likelihood that such laboratory scale adsorption experiments would produce significant

errors.
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6.4 Removal of arsenic by carbon-based sorbents

As early as 1979, Wouterlood and Bowling [242] explored the possibility of using activated carbon in

gaseous arsenic removal. They found that the selected activated carbons could adsorb 25% to 45% of arsenic at

200ºC when the concentration of arsenic was 14.64-20.24 mg/L. The breakthrough time was more than 10 h

(10.75-17.5 h). Comparing the adsorption performance of four kinds of activated carbon, it was found that the

adsorption of arsenic increased with the specific surface area of the sorbent, however not in a linear fashion.

They also found that As4O6 could be efficiently desorbed by heating the adsorbent in a non-oxidizing gas. Even

after many adsorption-desorption reaction cycles, the arsenic adsorption performance did not change appreciably

(14 cycles).

Subsequently, López-Antón et al. [238] conducted arsenic adsorption experiments over activated carbon at

250ºC in an arsenic concentration of 0.4 μg/mL. They found the behavior of activated carbons in arsenic 

retention did not appear to be dependent on the porous texture of activated carbon, by comparing the adsorption

performance of different pore structures of activated carbon. The metal elements in the activated carbon, such as

calcium and iron, played a catalytic role in arsenic adsorption. Although sulfur in activated carbon will affect the

adsorption of mercury, they suggested that the sulfur content in the activated carbon would not cause any impact

on arsenic adsorption.

In summary, there are three main reasons for arsenic adsorption by activated carbon. First, the large specific

surface area and abundant pore structure of activated carbon increases the possibility of physical adsorption of

arsenic. Second, the metallic elements in activated carbon, such as calcium and iron, can play a catalytic role

during arsenic adsorption. Third, modified commercial activated carbons may contain some haloid elements,

which could facilitate arsenic adsorption. However, the raw materials and preparation processes for producing
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activated carbon are vastly different, which often leads to different and even diametrically opposite conclusions

[238, 242]. In general, the research on arsenic adsorption over activated carbon is still inconclusive.

6.5 Arsenic adsorption in oxy-fuel combustion flue gas

Due to the gas recirculation and the absence of nitrogen, the SO2 concentration in the flue gas of oxy-fuel

combustion is much higher than in air combustion. In addition, the H2O vapor concentration in oxy combustion

is particularly high. When the same kind of coal is burned, it is reported that the water vapor concentrations in

air combustion and oxy-fuel combustion are 10% and 31%, respectively [243]. Wang et al. [244] explored the

arsenic adsorption characteristic of iron-based sorbent in oxy-fuel combustion flue gas and proposed that the

adsorption mechanism followed the Mars-Maessen mechanism[245]. In oxy-fuel combustion conditions, the

high concentration of CO2 had a significant adverse effect on arsenic adsorption. However, the presence of O2 as

well as H2O(g) promoted arsenic removal in the CO2-enriched atmosphere. The increased SO2 concentration was

proved to accelerate the adsorption process with generation of active species (HSO4
-/SO4

2-), while with the

increase of SO2 concentration in flue gas, the competition between SO2 and arsenic on iron-based sorbents

adsorption was strengthened.

7 Conclusions

Coal combustion is one of the main anthropogenic sources of arsenic pollution in the environment. Due to

its high toxicity, volatility, and potentially carcinogenic properties this element is receiving increasing attention.

This paper summarized the properties of arsenic in coal, the factors affecting arsenic volatilization during coal

combustion, the transformation behavior, mechanism and model of arsenic in post-combustion processing, and

the emission and removal technologies of arsenic in power plants.
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Temperature has a positive effect on both the volatilization rate and the degree of volatilization, and

temperature-staged volatilization characteristics of arsenic. Differences in the mode of occurrence of arsenic in

coals could result in different volatilization proportions of arsenic even at the same temperature. It is generally

accepted that exchangeable and organic-bound arsenic are easily vaporized at the devolatilization stage of coal,

while arsenic bound to iron-manganese oxides and pyrite is unstable and tends to vaporize below 1000ºC. By

contrast, arsenates are very stable and usually decompose at relatively high temperatures. This indicates that

coals with a large proportion of unstable arsenic compounds will have a higher degree of volatilization. As far as

coal rank is concerned, no obvious correlation between arsenic volatility and coal rank has been found. In

addition, while they have rarely been reported, the effects of heating rate and particle size on arsenic

volatilization should be taken into consideration. Calcium, iron, magnesium, sodium and potassium tend to react

with arsenic to form stable arsenates, which inhibit the volatilization of arsenic, while aluminum and silicon may

have a positive effect on the volatilization behavior of arsenic. However, the related reactions and substances

were based on thermodynamic analysis without considering the chemical kinetics. Simultaneous release of sulfur

and arsenic were found in isothermal coal combustion, demonstrating that arsenic was closely related to sulfur in

coal. The role of chlorine was also examined. Simulation results show that higher chlorine content in coal may

promote the generation of more volatile compounds like AsCl3(g), which in turn increase the volatilization ratio

of arsenic.

Oxy-fuel combustion is a promising and advanced technology for carbon capture. Few reports discussed the

effect of CO2 on arsenic volatilization during oxy-fuel combustion, and firm conclusions cannot be drawn. On

one hand, higher CO2 content helps to generate a reducing atmosphere in the char particle neighborhood, which

could reduce arsenic oxides to more volatile sub-oxides and make the volatilization of arsenic easier. On the
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other hand, higher CO2 content inhibits mass and heat transfer, which may decrease the flame temperature and in

turn have a negative effect on arsenic volatility. To date very few experiments have been carried out on the effect

of SO2 and H2O(g) on arsenic volatility under oxy-fuel conditions.

When flue gas cools in the post combustion process, vaporized arsenic species gradually transform to

solid-phase and redistribute in bottom ash, fly ash and flue gas. The mass balance of arsenic from most studies is

less than 100%, mainly due to the condensation or absorption of arsenic on the interior surfaces of equipment in

power plants. With the application of XANES and EXAFS spectroscopy, the speciation of arsenic in feed coal

and combustion products was studied. The general view is that arsenic in fly ash is mainly present in the less

toxic As5+ form, while the speciation of arsenic in flue gas needs to be further examined. In addition, it is widely

reported that most arsenic is captured by fly ash, especially ultrafine ash particles. With higher rates of char

fragmentation, longer residence times and higher flame temperatures, more fine particles are expected to be

generated, which in turn may enhance the enrichment of arsenic in fly ash. The enrichment of arsenic on fine

particles is also affected by the sulfur content and mineral composition in the coal, and the way the combustion

system is operated. Based on the close relationship between arsenic and ash particle formation, several arsenic

partitioning models considering the particle size distribution of fly ash have been developed.

The application of APCDs can significantly affect the redistribution of arsenic in combustion by-products

and alter the route by which the elements reach the environment. ESPs remove trace elements present in the form

of PM, but not gaseous trace elements. FGD is believed to have high collection efficiency for gaseous arsenic.

However, the arsenic discharged from WFGD systems is mostly in the form of PM and a small portion of

arsenic-bearing species is emitted in the gaseous form.

Researchers have explored the adsorption properties of calcium-based adsorbent, metal oxides, activated
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carbon and fly ash for gaseous arsenic. Calcium-based sorbents have been widely investigated due to their low

cost and ready availability. The adsorption processes of these sorbents are believed to be a combination of

chemical and physical adsorption. The temperature effect on arsenic removal is complicated and there is no

generally supported conclusion. Research suggests that CaSO4 has significant arsenic adsorption capacity and

kinetic studies show that the activation energy of the reaction between CaO and As2O3 lies between 20-30 kJ/mol.

Most researchers have suggested that the overall reaction order is 1, while values of 0.86 and 1.1 were found in

two studies.
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