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ABSTRACT: We have developed a novel process to convert
low molecular weight microcrystalline cellulose into stiff
regenerated cellulose fibers using a dry-jet wet fiber spinning
process. Highly aligned cellulose fibers were spun from
optically anisotropic microcrystalline cellulose/1-ethyl-3-meth-
ylimidazolium diethyl phosphate (EMImDEP) solutions. As
the cellulose concentration increased from 7.6 to 12.4 wt %,
the solution texture changed from completely isotropic to
weakly nematic. Higher concentration solutions (>15 wt %)
showed strongly optically anisotropic patterns, with clearing
temperatures ranging from 80 to 90 °C. Cellulose fibers were
spun from 12.4, 15.2, and 18.0 wt % cellulose solutions. The
physical properties of these fibers were studied by scanning electron microscopy (SEM), wide angle X-ray diffraction (WAXD),
and tensile testing. The 18.0 wt % cellulose fibers, with an average diameter of ∼20 μm, possessed a high Young’s modulus up to
∼22 GPa, moderately high tensile strength of ∼305 MPa, as well as high alignment of cellulose chains along the fiber axis
confirmed by X-ray diffraction. This process presents a new route to convert microcrystalline cellulose, which is usually used for
low mechanical performance applications (matrix for pharmaceutical tablets and food ingredients, etc.) into stiff fibers which can
potentially be used for high-performance composite materials.
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■ INTRODUCTION

Cellulose is a polysaccharide consisting of long linear chains of
β-(1, 4)-D-glucose units,1 which is the most abundant and
renewable polymer in the world with an annual biosphere
production about 90 × 109 metric tons.1 As a biopolymer, it
possesses desirable mechanical properties,1 such as high
molecular order, as well as excellent renewability, biodegrad-
ability, and biocompatibility.2 However, the multiple hydroxyl
groups on cellulose form intra- and inter-molecular, hydrogen
bonding, holding the chains firmly together side-by-side thus
making it relatively insoluble in most traditional solvents such
as water, ethanol, and acids.1,3 In addition, hydrophobic
interactions may contribute to this insolubility.4

The viscose and lyocell processes are the two main methods
for manufacturing regenerated cellulose fibers. The viscose
process requires multiple manufacturing steps including the use
of chemical derivatization using high aggressive solvents such as
sodium hydroxide and carbon disulfide. This makes the process
more expensive and environmentally hazardous.5 The lyocell

process (which uses N-methylmorpholine N-oxide, NMMO, as
a solvent) has been proposed as an alternative to the viscose
process. The solvent used in this process is thermally unstable
and requires significant financial investment in safety
technology. Over the past decade, a new generation of solvents
for cellulose called ionic liquids (ILs) have attracted much
attention for their chemical and thermal stabilities,6 high
decomposition points, low vapor pressures, low flammability,7

excellent recoverability (>99.5%), and reusability.8 The anions
in ILs can form hydrogen bonds with hydroxyl hydrogen and
oxygen atoms in cellulose, which break down the hydrogen
bonding network thus contributing to the dissolution of
cellulose.3

Unlike the viscose process, the ionic liquids can dissolve
cellulose in one-step without the need for chemical
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derivatization. They are thermally more stable than the NMMO
used in the lyocell process and the filaments used do not
fibrillate. Ionic liquids are expensive solvents, but due to their
less aggressive nature (unlike solvents used in the viscose and
lyocell processes), their ability to dissolve cellulose in one step,
and their higher thermal stability, they do not require large
financial investment in safety and auxiliary equipment. They
can be easily recycled with high recycling efficiency. Hence they
can potentially be an attractive alternative to the traditional
viscose process in spite of their high initial cost.
Recently, some researchers have reported the formation of

optically anisotropic solutions by dissolving cellulose in ILs.9,10

It is well-known that anisotropic solutions can significantly
improve the spinnability of fibers;11 the regenerated fibers
produced from such solutions possess excellent mechanical
properties due to their intrinsic, highly oriented, and rigid
molecular backbones as well as strong intermolecular hydrogen
bonds.12 Northolt et al. produced very good quality cellulose
fibers from an anisotropic solution of cellulose in phosphoric
acid with a modulus of 44 GPa and tensile strength of 1.7
GPa.13 However, a relatively complex mixing process was used
in their study, involving orthophosphoric acid, pyrophosphoric
acid, polyphosphoric acid, phosphorus pentoxide, and water.
In this study, a low molecular weight microcrystalline

cellulose, which is usually used for applications requiring low
mechanical properties (medical tablets, food-stuffs, etc.), is used
to spin fibers with a high tensile modulus from optically
anisotropic solutions, using a phosphate-based ionic liquid as a
solvent. The concentration of microcrystalline cellulose
dissolved in the ionic liquid was optimized to achieve optically
anisotropic solutions to improve the alignment of cellulose
chains. Similarly, a high fiber extrusion/winding ratio was used
to further improve this alignment to obtain high modulus
cellulose fibers. The manufacturing process established in this
study has great potential to produce regenerated cellulose fibers
for the composites industry by introducing sustainable and
renewable fibers with enhanced mechanical performance.

■ EXPERIMENTAL METHODS

Materials and Dissolution Method. Highly pure microcrystal-
line cellulose (MCC), VIVAPUR101, with a viscosity-averaged degree
of polymerization (DP) between 200 and 220,9,14 was purchased from
JRS Pharma GmbH & Co. KG (Rosenberg, Germany). Ionic liquid
(IL) 1-ethyl-3-methylimidazolium diethyl phosphate (EMImDEP) was
purchased from Sigma-Aldrich (713392, Gillingham, UK). A magnetic
stirrer hot plate (Fisher Scientific, Loughborough, UK) with an oil
bath was used for the preparation of cellulose solutions. The
dissolution process was carried out in a fume hood. 7.6 (2.3), 12.4
(3.7), 15.2 (4.6), and 18.0 wt % (5.4 g) of cellulose were added to 30 g
EMImDEP and heated at 95 °C with magnetic stirring at 100 rpm for
24 h, respectively.
Characterization of Cellulose/EMImDEP Solutions. Small

amounts of 7.6, 12.4, 15.2, and 18.0 wt % cellulose/EMImDEP
solutions were pressed to form thin films between two glass slides.14

These films were placed on a Linkam PE120 thermoelectrically
controlled stage connected to an EHEIM professional 3 water filter for
cooling. The observation of optical anisotropy and clearing temper-
atures of cellulose solution films was conducted using an Olympus
BX51 polarized optical microscope with a PixeLINK PL-B625 camera
with a × 10 objective. The films were heated at a heating rate of 10
°C/min from 25 to 90 °C (±0.1 °C), maintaining a fixed temperature
for 5 min before taking the polarized optical micrographs. Micrographs
were taken at 25 °C first, then at 10 °C increments from 30 to 60 °C,
and then at 5 °C increments from 60 to 90 °C (see Supporting
Information Figures S1−3).

Fiber Spinning of Cellulose. Specifically designed fiber spinning
equipment (Rondol, UK), which consists of a vertical ram extruder, a
water bath, and a haul-off unit, was used for the dry-jet wet fiber
spinning of the regenerated cellulose fibers (Figure 1).

The 7.6, 12.4, 15.2, and 18.0 wt % cellulose/EMImDEP solutions
were transferred into a removable extruder barrel and degassed in a
vacuum oven at 80 °C for 18 h to remove bubbles before spinning.
After evacuation, the solution in the extruder barrel was put back into
the extruder which was also heated to 80 °C. Fiber spinning started 5
min after the solution was transferred into the extruder. All solutions
were injected through a 150 μm-diameter nozzle into the water bath.
The air gap between the nozzle and the surface of the water bath was 3
cm. We were unable to form continuous fibers with the 7.6 wt %
cellulose/EMImDEP solution. Therefore, only cellulose fibers spun
from 12.4, 15.2, and 18.0 wt % cellulose/EMImDEP solutions are
reported. The extrusion velocity (V1) was 0.4 m/s while the haul off
unit was continuously winding the coagulated fiber downstream at a
winding velocity (V2) of 2.1 m/s (draw ratio = 5.3). After spinning, the
fibers were immersed in tap water for 2 days to remove the ionic liquid
solvent, with a change of water every 24 h. Then the fibers were rolled
and dried in a fume hood for a further 48 h.

Characterization of Cellulose Fibers. The solvent was
completely removed during processing, which was confirmed via
FTIR in a previous study.15

The diameter measurements and the observations of the outer
surfaces of cellulose fibers were carried out using a TM3030 Plus
Tabletop scanning electron microscope produced by HITACHI
(Berkshire, UK). Five filaments of each of the 12.4, 15.2, and 18.0
wt % cellulose fibers were mounted onto a sample holder, without
silver coating. Three scanning electron microscopy (SEM) images
from three different locations of each fiber filament were obtained.
From these images, three diameters were measured from three
different locations along each filament using the ImageJ software
package. Thus, 45 different locations’ diameters were measured for
12.4, 15.2, and 18.0 wt % cellulose fibers, respectively. Average SEM
diameters and standard deviations were then determined (see
Supporting Information Figure S4). The outer surfaces of 12.4, 15.2,
and 18.0 wt % cellulose fibers were also observed from these SEM
micrographs.

To observe the cross sections of the fibers before and after tensile
testing, SEM analysis was conducted. All fiber filaments were prepared
using an Agar Scientific high-resolution sputter coater with 15 nm-
thick silver coating. The cross sections of fibers before tensile testing
were obtained using liquid nitrogen. The cross-sectional areas of
coated filaments were revealed (see Supporting Information Figure
S5) and further observed using a JEOL IT300 SEM.

Wide angle X-ray diffraction (WAXD) patterns of single fiber
filaments were obtained with an exposure time of 10 h. A SAXSLAB
GANESHA 300 XL SAXS system in the School of Physics at
University of Bristol was used for this study, consisting of an X-ray
generator producing Cu Kα radiation with a wavelength of 0.154 nm, a
sample stage and a detector inside a vacuum chamber, as well as data
reduction and analysis software (SAXSGUI and IDL). The beam stop
was 2 mm, the beam size was 0.8 mm, and the sample-to-detector

Figure 1. Schematic of dry-jet wet fiber spinning process for cellulose
fiber with constant extrusion velocity (V1) and winding velocity (V2).
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distance was set at 100 mm. Single fiber filaments were mounted
straight and tight on a sample holder, which was located on the sample
stage between the X-ray generator and detector.
Mechanical Properties of Cellulose Fibers. Three gauge

lengths (12, 20, and 30 mm) of fibers were used for mechanical
properties measurements to account for machine compliance and end
effects (see Supporting Information Figure S6 and S7), according to
ASTM standard C1557. Tensile testing was carried out using a Dia-
Stron LEX820 single fiber tester (Hampshire, UK), containing a 20 N
capacity load cell with a resolution of 0.5 mN. The tensile samples
were prepared by mounting a single fiber filament between two plastic
tabs. These tabs were located on a 20-slot linear plastic cassette with
three different gauge lengths of 12, 20, and 30 mm. Every single fiber
filament was located straight and tightly on tabs using DYMAX 3193
UV adhesive (Wiesbaden, Germany). The tabs were clamped
horizontally between a fixed jaw and a movable jaw on the fiber
tester. All tensile samples were tested at the same strain rate of 10%/
min. Tensile testing was controlled using the UvWin PC application.
Tensile load and displacement data points were recorded automatically
with an interval of 50 ms during the testing. Tensile strength and
breaking strain were calculated from these data using eqs 1 and 2,
where σ is the tensile stress, ε is the tensile strain, F is the tensile load,
d is the fiber diameter, A is the fiber cross-sectional area, l is the
displacement, and l0 is the initial gauge length.
Ten samples for each gauge length were prepared and tested to

failure for 12.4, 15.2, and 18.0 wt % cellulose fibers, respectively.

σ
π

= =
F

A

F

d

4
2 (1)

ε =
l

l0 (2)

The goal of this work is to use the cellulose fibers as renewable and
high stiffness reinforcement in composites. The effect of water
absorption in cellulose fibers embedded in a polymer matrix is not
going to be as high as for cellulose fibers used in clothing and textiles,
where they will regularly be washed. Nevertheless, we believe water
absorption can play an important effect even in cellulose fibers
embedded in composites. To study the effects of water on the
properties of cellulose fibers, 18.0 wt % cellulose fibers were
submerged in water for 24 h. Ten wet 18.0 wt % fiber filaments
were mounted and glued on plastic tablets with a gauge length of 20
mm using UV adhesive, which took about 1 h. After this preparation,
the ten fiber filaments became almost dry. Their diameters were
measured using a SEM method. The ten filament samples were tested
to failure.

■ RESULTS

Anisotropy Study of Cellulose/EMImDEP Solutions.
The cellulose/solvent solution films were observed with a
polarized optical microscope. When the solutions are heated
above the clearing temperature (Tc),

16 the solution becomes
isotropic, and the anisotropy pattern disappears. To study Tc,
7.6, 12.4, 15.2, and 18.0 wt % cellulose/EMImDEP solutions
were heated from 25 to 90 °C, while polarized optical
micrographs were taken at different temperatures, respectively.
The anisotropy of cellulose/EMImDEP solutions diminished
gradually as the temperature increased and finally disappeared
at Tc.
When the concentration of cellulose was 7.6 wt %, the

solution was isotropic and appeared completely dark between
crossed polarizers at 25 and 80 °C (Figure 2A). When the
concentration of cellulose rose to 12.4 wt %, a weakly nematic
texture appeared at 25 °C and disappeared at 80 °C (Figure
2B). When the concentration of cellulose further increased to
15.2 wt %, strong optical planar textures as a typical sign of
anisotropy were observed at 25 °C and also disappeared at 80

°C (Figure 2C). When the concentration of cellulose rose to
18.0 wt %, the optical planar textures of cellulose/EMImDEP
solutions became even stronger at 25 °C compared to 15.2 wt
% solutions, and the textures still existed after the solution was
heated to 80 °C (Figure 2D). The Tc of 18.0 wt % cellulose/
EMImDEP solution was found to be between 85 and 90 °C
(Figure 3). The Tc for 12.4 and 15.2 wt % solutions were found
to be lower than 18 wt % cellulose solution (see Supporting
Information Figures S1 and S2).

Diameter Measurements of Cellulose Fibers. To obtain
a reliable measurement of fiber diameter we used two separate
methods, namely SEM and optical microscopy of fiber cross
sections embedded in the epoxy matrix.
SEM images of 12.4, 15.2, and 18.0 wt % cellulose are shown

in Figure 4A−I. Their average diameters as obtained from
images are given in Table 1. With the same draw ratio, no
significant differences in the average diameters were observed
for 12.4 wt % (22.0 ± 1.4 μm), 15.2 wt % (23.1 ± 1.1 μm), and

Figure 2. Typical polarized optical micrographs of (A) 7.6, (B) 12.4,
(C) 15.2, and (D) 18.0 wt % cellulose/EMImDEP solutions at 25 and
80 °C.

Figure 3. Typical anisotropy transition of 18.0 wt % cellulose/
EMImDEP solution heated from 25 to 90 °C.
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18.0 wt % (20.8 ± 3.0 μm) fibers (see Supporting Information
Figures S4 and S5).
In the optical microscopy measurement method, the average

cross-sectional area of 6−8 randomly selected filaments of 12.4,
15.2, and 18.0 wt % cellulose fibers mounted in resin molds
(see Figure S5 in the Supporting Information) were measured.
The results of these cross section measurements were similar to
the cross-sectional areas calculated using SEM diameters (Table
1). Hence we believe that our diameter measurements are
accurate enough for this study.
Outer Surface Observation of Cellulose Fibers. SEM

micrographs of the outer surfaces of cellulose fibers were taken
(Figure 4C, F, and I). For 12.4 wt % fibers, there were obvious
serrations on the outer surface (Figure 4C), as seen for viscose
fibers.17 For a 15.2 wt % fiber, the serrations seem to diminish
in size (Figure 4F), but for the 18.0 wt % fiber, the serrations
are not present at all and a smooth outer surface is observed
(Figure 4I). It is known that the solution dope concentration
affects the counter diffusion process between ionic liquid and
water in the coagulation bath, which further influences the
microscopic structures and mechanical properties of spun
fibers.18 This might be the reason why the fiber outer surface
became smoother and the serrations reduced as the cellulose
concentration was increased to 18.0 wt %. And the smoother
outer surface of 18.0 wt % fiber also contributes to its better
mechanical performance compared to 12.4 and 15.2 wt %
fibers. We have not done a comprehensive surface defect
analysis of the fibers for 12.4%, but it is likely that there are
surface defects on fibers spun from 12 wt % cellulose solution
which may contribute to the reduction in the mechanical
properties.
SEM Analyses for Fracturing Cross sections of

Cellulose Fibers. The cross sections (perpendicular to the
fiber axis) of the cellulose fibers before (Figure 5A−C) and

after (Figure 6A−F) tensile testing were observed using SEM.
Before tensile testing, all cross-sectional shapes of the fibers

appear close to circular, similar to NMMO-type fibers, and
different to the serrated shape of viscose fibers. All fibers seem
to have the uniform structure throughout the cross-section
without any visible large size voids. After tensile testing, the
cross sections of cellulose fibers remain circular without
obvious necking behavior (Figure 6). As demonstrated, the
cellulose fibers are more apt to lateral slitting like NMMO
fibers instead of ductile fracture like viscose fibers,19 as the
increase of cellulose concentration (Figure 6).

Figure 4. Typical SEM micrographs of (A−C) 12.4, (D−F) 15.2, and
(G−I) 18.0 wt % cellulose fibers for diameter measurement and outer
surface observation.

Table 1. Average SEM Diameter, Average Optical Microscopy Diameter Calculated from Resin Cross-Sectional Area, SEM
Cross-Sectional Area, and Resin Cross-Sectional Area of 12.4, 15.2, and 18.0 wt % Cellulose Fibers

material SEM diameter (μm) optical microscopy diameter (μm) SEM cross-sectional area (μm2) resin cross-sectional area (μm2)

12.4 wt % cellulose fibers 22.0 (±1.4) 22.2 (±0.4) 380.4 (±20.1) 388.1 (±14.7)

15.2 wt % cellulose fibers 23.1 (±1.1) 24.7 (±0.7) 419.2 (±36.6) 481.0 (±25.7)

18.0 wt % cellulose fibers 20.8 (±3.0) 20.2 (±0.8) 348.1 (±100.2) 322.1 (±26.9)

Figure 5. Typical SEM images of cross sections of (A) 12.4, (B) 15.2,
and (C) 18.0 wt % cellulose fibers fractured using liquid nitrogen.

Figure 6. Typical SEM images of fractured surfaces of (A and B) 12.4,
(C and D) 15.2, and (E and F) 18.0 wt % cellulose fibers after tensile
testing.
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Wide Angle X-ray Diffraction of Cellulose Fibers.
Figure 7A−C shows the two-dimensional WAXD diffraction

patterns for single cellulose fibers. A narrow strip of intensity
on each WAXD pattern was taken for the regrouping, which
was much less than the radial width of all peaks. Radial
scanning data (intensity against 2θ) were obtained and are
reported in Figure 7D. The Bragg peaks shown only occur for a
cellulose II structure, a widely known crystal structure of
regenerated cellulose after dissolution.8,20

Two Bragg peaks appear at 20.6° and 21.6° corresponding to
the reflection planes (110) and (020) respectively, and a small
peak at 28.8° corresponding to the (103) plane. A secondary
peak appears at 12.7° corresponding to the cellulose (1 ̅10)
plane, indicating a structural transformation into cellulose II
(Figure 7B). The shift of the main (110) peak from 22.5° of
cellulose I to 20.6° of regenerated cellulose is evidence for a
nonrecoverable change in the cellulose lattice structure after
regeneration due to the diffused IL.21

For regenerated cellulose, cellulose II is the most common
structure, possessing an ideal monoclinic P21 structure with
unit parameters of a = 0.801 nm, b = 0.904 nm, c = 1.036 nm, α
= β = 90°, and γ = 117.1°.22 Unit cell dimensions were
calculated for our fibers using the measured q-spaces of the
(1 ̅10), (110), (002), (020), and (103) planes from the WAXD
patterns. The measured unit parameters of cellulose in our
fibers were found to be a = 0.78 nm, b = 0.90 nm, c = 1.03 nm,
and γ = 117.2° for the 12.4 wt % fiber, a = 0.78 nm, b = 0.90
nm, c = 1.03 nm, and γ = 116.9° for the 15.2 wt % fiber, and a =
0.78 nm, b = 0.90 nm, c = 1.03 nm, and γ = 116.0° for the 18.0
wt % fiber. Our values appear to differ somewhat to those
published in the literature (particularly for the a-axis) which
may be due to a large number of diffraction intensities
overlapping each other in the X-ray data for the cellulose II
structure.23

The fraction of crystalline material in cellulose fibers, or
crystallinity, can be estimated using the crystallinity index (CrI)
developed by Segal24 in eq 3, for the comparison of similar
structure materials prepared by similar methods.

=
−

×
I I

I
CrI(%) 100total am

total (3)

where Itotal is the total scattered intensity at the main peak, and
the Iam is the minimum scattered intensity between the main
and secondary peaks for cellulose.25 To use CrI, an assumption
that there is only a single crystalline phase along with an
amorphous phase has been applied.26 For cellulose II structure
in regenerated cellulose fibers in our work, the main peak
appears as a doublet composed of (110) and (002) peaks at
20.6° and 21.6°, and the secondary peak appears at 12.7°
corresponding to (1 ̅10) plane

27,28 (Figure 7D). Therefore, the
CrI of 12.4, 15.2, and 18.0 wt % cellulose fibers are calculated
using I110 and Iam (Figure 7D) after subtraction of the
background signal measured without cellulose, which are
65.0%, 66.8%, and 64.4% correspondingly (Table 2). It appears
that the cellulose fibers with different cellulose concentrations
in this work have similar crystallinities (∼65%) when produced
under the same condition. The CrI of cellulose in our fibers are
similar to the cellulose fibers regenerated by Rehatekar et al.8

In a stretched fiber, the cellulose chains have a preferred
orientation with their longitudinal axes parallel to the
deformation direction, which appear as concentrated intensity
as two arcs in the diffraction ring, in the azimuthal direction

Figure 7. Typical WAXD patterns of (A) 12.4, (B) 15.2, and (C) 18.0
wt % cellulose fibers, as well as their (D) radial scanning data and (E)
azimuthal scanning data from the (1 ̅10) peak.

Table 2. Degree of Polymerization (DP), Average SEM Diameter, Crystallinity Index (CrI), Full Width at Half Maximum
(FWHM), Orientation Function ( f), Magnitude of the Orientation Parameter ⟨sin2 Δϕ⟩ Data of the (1 ̅10) Azimuthal Peaks,
Best Young’s Modulus, and Corresponding Tensile Strength of 12.4, 15.2, and 18.0 wt % Cellulose Fibers, Compared to
Regenerated Cellulose Fibers Reported by Previous Researchers

material DP diameter (μm)
Young’s modulus

(GPa)
tensile strength

(MPa)
CrI
(%)

FWHM of (1 ̅10)
peak (deg)

f of (1 ̅10)
peak

⟨sin2 Δϕ⟩ (1 ̅10)
of peak

12.4 wt %
cellulose fibers

200−220 22.0 (±1.4) 14.8 (±2.3) 215.5 (±11.9) 65.0 24 0.77 0.08

15.2 wt %
cellulose fibers

200−220 23.1 (±1.1) 15.7 (±1.6) 226.4 (±10.0) 66.8 25 0.76 0.08

18.0 wt %
cellulose fibers

200−220 20.8 (±3.0) 22.4 (±1.4) 304.7 (±12.7) 64.4 21 0.80 0.07

Luo et al.9 200−220 300−400 73.8 (±2.2)

Lim et al.42 5−10 11−13 280−400

He et al.36 650 5.1 204.0 (±6.0) 0.71

Rahatekar et al.8 820 23.2 (±1.8) 13.1 (±1.1) 198.0 (±25.0) 62

Sixta et al.37 1026−1133 23.4 (±3.5) ∼694.0 0.73
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(Figure 7A and B). The intensities of the diffraction rings
corresponding to the cellulose (1̅10) planes were plotted as a
function of azimuthal angle and fitted using a Lorentzian
function (Figure 7E). The full width at half-maximum (fwhm)
is the difference in the angle across the peak where the intensity
is 50% of the maximum value.29 The fwhm of cellulose peaks
corresponding to the (1 ̅10) planes were calculated as an
indication of the degree of alignment of cellulose chains in all
fibers, and found to be 24°, 25°, 21°, respectively (Table 2).
The lower the value of fwhm, the higher is the degree of
alignment of the cellulose chains.30 The regenerated cellulose
fibers appear to possess aligned cellulose chains, as exhibited by
the sharp azimuthal peaks in Figure 7E.
The “orientation parameter”, f, first proposed by Hermans,31

can be used to characterize the extent of cellulose crystallite
orientation in our fibers. This parameter is defined as the mean
coefficient of the second-order Legendre polynomial, P2(cos θ),
where θ is the polar disorientation angle of a crystallite relative
to the fiber axis and the angle brackets indicate an average over
all crystallites (eq 4).32 The cellulose crystallites would have a
perfect orientation perpendicular to the fiber axis when f =
−0.5, and a perfect orientation parallel with fiber axis when f =
1.0. For a uniaxial fiber, f may be measured directly from the
azimuthal intensity distribution, ρ(ϕ), of a paratropic peak (i.e.,
one resulting from planes parallel to the crystallite axis) in the
X-ray diffraction pattern (eq 5).

θ
θ

= ⟨ ⟩ =
⟨ ⟩−

f P (cos )
(3 cos 1)

2
2

2

(4)

∫

∫
θ

ρ ϕ ϕ ϕ ϕ

ρ ϕ ϕ ϕ
= ⟨ ⟩ = −

π

πf P
P

(cos ) ( 2)
( ) (cos )sin d

( )sin d
2

0 2

0 (5)

where the factor of −2 arises because the center of the peak is
at right angles to the fiber axis33 and only tilts of the crystallites
in the plane containing the X-ray beam and the fiber axis
broaden the diffraction peak.
Another commonly used measure34 of the orientational

order is ⟨sin2 θ⟩ which is closely related to f (eq 6), where the
angle θ is the crystallite angle. For a uniaxial fiber, this can be
measured directly from the azimuthal intensity distribution,
ρ(ϕ), of a diatropic peak (i.e., one resulting from planes
perpendicular to the crystallite axis) by eq 7.

θ⟨ ⟩ = − fsin
2

3
(1 )2

(6)

∫

∫
θ

ρ ϕ ϕ ϕ

ρ ϕ ϕ ϕ
⟨ ⟩ =

π

πsin
( )sin d

( )sin d

2 0

3

0 (7)

However, for a paratropic peak (i.e., one resulting from planes
parallel to the crystallite axis) from a uniaxial fiber the equation
becomes

∫

∫
θ ϕ

ρ ϕ ϕ ϕ ϕ

ρ ϕ ϕ ϕ
⟨ ⟩ = ⟨ Δ ⟩ =

π

πsin 2 sin 2
( )cos sin d

( )sin d

2 2 0

2

0 (8)

where, again, the factor of 2 arises because only tilts of the
crystallites in the plane broaden the diffraction peak and Δϕ is
measured from ϕ = π/2. In the literature, the spread of a
paratropic peak, ⟨sin2 Δϕ⟩, rather than the spread of the
crystallites, ⟨sin2 θ⟩, is often evaluated and used as an

experimental observable to gauge the quality of orientation.35

It can be calculated directly from f (eq 9).

ϕ⟨ Δ ⟩ =
− f

sin
(1 )

3

2

(9)

The orientation parameter values for the cellulose fibers were
calculated from the intensity distribution in a ring containing
the (1̅10) peak, with background estimated from adjacent rings
and subtracted using IDL. The value of f was calculated from eq
5. The highest orientation function ( f) value was observed for
18 wt % fibers (0.80) as shown in Table 2, indicating the very
good orientation of the cellulose chains along the fiber axis
compared to the fibers produced previously by the groups of
He36 ( f = 0.71) and Sixta37 ( f = 0.73).
For comparison with literature values, ⟨sin2 Δϕ⟩ was also

calculated using eq 9, and the results are given in Table 2. This
parameter has been previously utilized to determine the
crystalline orientation parameter of PBO (poly p-phenylene
benzobisoxazole) fibers.38 Crystalline orientation is inversely
proportional to the value of the orientation parameter, and
therefore, for a perfect orientation, ⟨sin2 Δϕ⟩ is equal to zero.
The ⟨sin2 Δϕ⟩ values for our fibers are shown in Table 2. The
lowest orientation parameter (⟨sin2 Δϕ⟩ = 0.07) i.e. highest
orientation of crystallites along the fiber axis was observed for
the 18 wt % fibers. The orientation parameter of our 18 wt %
fibers (0.07) indicates lower orientational order than the
cellulose fibers (⟨sin2 Δϕ⟩ = ∼0.01) regenerated from a liquid
crystalline cellulose solution reported in the literature.39 Lyocell
cellulose fibers have also been reported to possess a lower
orientation parameter of 0.05 at the center of the fiber,
indicating a higher crystallite orientation along the fiber axis.40

Tensile Testing of Cellulose Fibers. Typical tensile
stress−strain curves for 12.4, 15.2, and 18.0 wt % cellulose
fibers with a gauge length of 20 mm are shown in Figure 8. It is

found that, as the cellulose concentration increased from 12.4
to 15.2 wt %, the mechanical properties (Young’s modulus,
tensile strength, and breaking strain) of cellulose fibers did not
show any obvious differences. As the cellulose concentration
further increased to 18.0 wt %, both Young’s modulus and
tensile strength of cellulose fibers significantly increased (Figure
8 and Table 3), while the breaking strain remained similar.
With the same increment in cellulose concentration (2.8 wt

%), the increase in Young’s modulus was significantly different
for 15.2 and 18.0 wt % cellulose fibers. When the concentration
of cellulose increased from 12.4 to 15.2 wt %, Young’s modulus
only increased slightly from 15.8 to 16.2 GPa. When the
concentration further increased to 18.0 wt %, Young’s modulus

Figure 8. Typical tensile stress−strain curves for 12.4, 15.2, and 18.0
wt % regenerated cellulose fibers.
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rose from 16.2 to 22.8 GPa. As cellulose concentration
increased from 12.4 to 18.0 wt %, the tensile strength of
cellulose fibers increased from 207.3−215.5 to 252.3−304.7
MPa. Meanwhile, the breaking strain for fiber samples with
different gauge length exhibited no change (Table 3).
After wetting in water for 24 h, the swelling of cellulose fibers

was determined by the increment of fiber diameter from 20.8 to
25.4 μm. Meanwhile, a moderate reduction on the mechanical
properties of cellulose fibers (5.9 GPa in Young’s modulus and
67 MPa in tensile strength) was also observed.

■ DISCUSSION

In this study, the cellulose/EMImDEP solution appeared
isotropic for a cellulose concentration of 7.6 wt %, weakly
nematic for a concentration of 12.4 wt % and anisotropic at
15.2 and 18.0 wt %. Song et al. studied the anisotropic
behaviors of MCC/AMImCl10 and MCC/EMImAc14 solu-
tions. Their solutions possessed similar isotropic forms at lower
concentrations (at 7 wt %), at lower threshold concentrations
(9−10 wt %) appeared to show a weak optical texture and at
higher concentrations (11−18 wt %) gave a strong optical
texture. Boerstoel et al. reported that the Tc of cellulose
solutions increases as the concentration of polymer increases,16

which is named lyotropic behavior.41 The anisotropic
appearance may be attributed to an increase in the alignment
of cellulose chains during dissolution and the resistance for the
migration into a random state; this is thought to be due to the
high shear viscosity of the cellulose/EMImDEP solution and
the large number density of cellulose.3,41 When the
concentration of cellulose in our study was 7.6 wt %, the Tc

of cellulose/EMImDEP solution was lower than room
temperature which is hard to observe under a polarized optical
microscope. When the concentration of cellulose is 12.4 wt %
or higher, the Tc of cellulose/EMImDEP solution increased
above room temperature, and the nematic texture of solution
appears under polarized light. Upon heating, the shear viscosity
of the anisotropic solution decreased while the cellulose
molecules became disordered. Finally, the solution reached an
isotropic state at Tc. This inversely proportional anisotropy−
temperature performance is named thermotropic behavior.
Under the collective effect of thermotropic and lyotropic
behaviors, the anisotropy of the cellulose solutions diminished
gradually as temperature increased and finally disappeared at 80
°C for 12.4 and 15.2 wt % solutions, while the anisotropy
disappeared at an increasing temperature of 85 < Tc < 90 °C for
18.0 wt % solution.

The Tc of 11.4 wt % cellulose/phosphoric acid solution
obtained by Boerstoel et al. was as low as 45 °C.16 Song and his
group conducted similar observations of anisotropic transitions
on 16 wt % MCC/AMImCl solutions with a similar range of 75
< Tc < 80 °C,10 as well as on 14 wt % MCC/EMImAc solution
with a range of 75 < Tc < 85 °C. Therefore, the 18.0 wt %
cellulose/EMImDEP solution prepared in this study possessed
a higher Tc than most previous studies, indicating better self-
accessibility of cellulose chains dispersed in EMImDEP.
The difference in Tc of 12.4, 15.2, and 18.0 wt % cellulose/

EMImDEP solutions also indicates that during the fiber
spinning process at 80 °C, the 12.4 and 15.2 wt % fibers
were produced from isotropic solutions, while 18.0 wt % fibers
were produced from an anisotropic solution. This could be the
reason why the mechanical properties of 18.0 wt % cellulose
fibers were significantly higher than those of 12.4 and 15.2 wt %
cellulose fibers.
The fibers reported in this study, which was regenerated

using low molecular weight (∼220) cellulose, showed
moderately high Young’s modulus (∼22 GPa) and tensile
strength (∼305 MPa). We have compared these values with
other natural polymer fibers and fiber-based materials (balsa
wood, wool, bone, worm silk and spider silk, etc.) and currently
used commercial viscose (Figure 9). The average Young’s

modulus (for 18.0 wt % fibers) is higher than all these fibers;
however, the tensile strength is lower than silk fibers from
silkworms and spiders. Our cellulose fibers also showed good
mechanical performance compared with regenerated cellulose
fibers from higher DP cellulose using ionic liquids as solvents
reported by some of the previous researchers (Table 2). The
regenerated cellulose fibers from MCC/AMImCl solution
reported by Luo et al. had a much lower tensile strength of
73.8 MPa.9 Lim et al. wet-spun cellulose fibers from a rice straw
cellulose/NMMO solution, with a much lower Young’s
modulus in the range 11.0−13.0 GPa, but tensile strength
similar to our fibers (280.0−400.0 MPa).42 He et al. dry-jet wet
spun cellulose fibers from a 14.5 wt % cellulose/AMImCl
solution (cellulose DP = 650) with Young’s moduli as low as
5.1 GPa and a lower strength of 204.0 MPa.36 Rahatekar et al.
dry-jet wet spun cellulose fibers using EMImAc from a smaller
spinneret (120 μm) at a draw ratio of 1.5, with a finer diameter
of 23.2 μm, yielding fibers with a Young’s modulus of 13.1 GPa
and strength of 198.0 MPa.8 Sixta et al. have recently

Table 3. Young’s Modulus, Tensile Strength, and Breaking
Strain of 12.4, 15.2, and 18.0 wt % Cellulose Fibers with
Different Gauge Lengths of 12, 20, and 30 mm

material

gauge
length
(mm)

Young’s
modulus
(GPa)

tensile strength
(MPa)

breaking
strain (%)

12.4 wt %
cellulose
fibers

12 13.5 (±1.5) 207.3 (±13.6) 5.0 (±0.2)

20 14.4 (±0.5) 212.2 (±16.6) 5.5 (±1.2)

30 14.8 (±2.3) 215.5 (±11.9) 5.0 (±0.1)

15.2 wt %
cellulose
fibers

12 15.0 (±2.3) 232.4 (±4.6) 4.9 (±0.1)

20 15.7 (±1.6) 226.4 (±10.0) 5.7 (±1.1)

30 14.7 (±4.6) 226.0 (±6.4) 4.7 (±0.4)

18.0 wt %
cellulose
fibers

12 19.3 (±3.1) 290.0 (±36.3) 5.6 (±0.7)

20 22.4 (±1.4) 304.7 (±12.7) 6.5 (±0.7)

30 18.9 (±3.2) 252.3 (±35.2) 5.2 (±0.8)

Figure 9. Mechanical properties of 12.4, 15.2, and 18.0 wt %
regenerated cellulose fibers, compared to natural polymer fibers (balsa,
wool, bone, worm silk, and spider silk) as well as commercial viscose
(Enka) cellulose fibers.43
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manufactured cellulosic fibers (Ioncell-F) with a very good
Young’s modulus (23.4 GPa) and tensile strength (∼694.0
MPa).37 However, they used a high DP cellulose (DP 1095)
and their spinning procedure used a different IL as a solvent,
without forming an anisotropic solution before fiber spinning.
The manufacturing method developed in this study will be very
useful to convert low molecular weight waste cellulose, which is
normally used for medical tablets, food-ingredient, etc., to fibers
with good mechanical properties which could be used in the
composite engineering industry.

■ CONCLUSIONS

We have developed a novel manufacturing method for stiff
regenerated cellulose fibers spun from an anisotropic solution
of low molecular weight cellulose dissolved in EMImDEP. The
18.0 wt % cellulose/EMImDEP solution appeared highly
anisotropic with a strong sign of anisotropy and clearing
temperature (Tc) between 85 < Tc < 90 °C. Scanning electron
microscopy graphs demonstrated that the cellulose fibers
possessed circular, dense and homogeneous cross sections,
without any visible voids. The wide angle X-ray diffraction and
mechanical testing of fibers spun from 12.4, 15.2, and 18.0 wt %
cellulose solution confirmed that 18.0 wt % cellulose fiber
possessed the highest molecular alignment and therefore
mechanical properties (Young’s modulus ∼ 22 GPa; tensile
strength ∼ 305 MPa). Despite using a low molecular weight
cellulose, we were able to achieve superior tensile modulus
from our fibers compared to previous studies which used higher
molecular weights. These findings open up a potential route to
convert low-performance cellulose waste into high-performance
engineering fibers.
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