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A vast variety of population-based optimization techniques have been formulated in recent years for use in different engineering
applications, most of which are inspired by natural processes taking place in our environment. However, the mathematical and
statistical analysis of these algorithms is still lacking.This paper addresses a comparative performance analysis on some of the most
important nature-inspired optimization algorithms with a different basis for the complex high-dimensional curve/surface fitting
problems. As a case study, the point cloud of an in-hand gas turbine compressor blademeasured by touch trigger probes is optimally
fitted using B-spline curves. In order to determine the optimum number/location of a set of Bezier/NURBS control points for all
segments of the airfoil profiles, five dissimilar population-based evolutionary and swarm optimization techniques are employed.
To comprehensively peruse and to fairly compare the obtained results, parametric and nonparametric statistical evaluations as
the mathematical study are presented before designing an experiment. Results illuminate a number of advantages/disadvantages
of each optimization method for such complex geometries’ parameterization from several different points of view. In terms of
application, the final appropriate parametric representation of geometries is an essential, significant component of aerodynamic
profile optimization processes as well as reverse engineering purposes.

1. Introduction

The turbomachinery blades’ aerodynamic profile and struc-
tural strength play an important role in improvement of
energy conversion efficiency as well as the reliability and
availability of the machine in both land-based and aero
applications. From aerodynamic point of view, geometry-
based blade design optimization is of utmost importance for
further enhancement of turbomachinery performance. On
the other hand, a robust and precise reverse engineering of
existing blades could alsomaintain their performance as near
as possible to the reference design. In this way, precise and
proper geometry modeling and parameterization of current
blades are the first and sometimes the most important step
in both optimization and reverse engineeringmissions which
also, in turn, need an optimization effort [1, 2].

At the same time, recent advances in both mathe-
matical tools and optimization techniques enable further
improvement in geometric modeling procedure. Irrespective
of the goal of blade profile parameterization, that is, its
use in inverse aerodynamic design or in its application to
a direct numerical optimization, there are several param-
eterization methods with different impacts on the revers-
ing/optimization process. For free-form shapes, however,
parametric curves/surfaces including Bezier [3], B-spline,
and nonuniform rational B-spline (NURBS) [4] are generally
used as the most suitable ones. For the parameterization
of blade/airfoil shapes, specifically, though there exists no
unique way, NURBS curves/surfaces [1, 5, 6] and Bezier
curves [7, 8] can be mentioned as the significant and
commonly used methods. Some other methodologies also
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exist, for example, PARSEC method [9] and Hicks-Henne
functions [10], for this application.

As mentioned above, a proper and precise curve fitting
requires an unavoidable optimization mission. The nonlin-
ear nature of sophisticated geometries, like turbomachinery
blades’ shape, and availability of high-speed parallel com-
puters for massive computation have resulted in the use
of non-gradient-based and guided random search method-
ologies in curve/surface fitting problems [11–14]. On the
other hand, a vast variety of population-based optimization
techniques have been formulated in recent decades, some
of which are inspired by natural processes taking place in
our environment. Genetic algorithms (GAs) [15], particle
swarm optimization (PSO) [16], and ant colony optimization
(ACO) [17] are some such methods that have already been
used in various engineering optimization problems, from the
development of optimum control systems [18] to curve fitting
and geometric modeling [11, 14].

Among these optimization techniques, genetic algorithm
and differential evolution (DE) [19] are the most successfully
used strategies in curve fitting optimization of airfoils’ geom-
etry parameterized by NURBS/Bezier curves. While GA and
real-coded genetic algorithm (RCGA) are stochastic search
and population-based optimization algorithms that mimic
Darwin’s theory of biological evolution, DE is a relatively
newer evolutionary method in engineering applications and
requires only a few user-defined parameters.

PSO and invasive weed optimization (IWO) [20] are
other population-based optimization methods inspired by
social and ecological behavior. The PSO algorithm is based
on the simulation of the social behavior of birds flocking, fish
schooling, and animals herding to let them adjust to their
environment, find rich sources of food, and keep away from
other predatory animals by using information sharing and
social cognitive intelligence. IWO is also another derivative-
free metaheuristic method originally formulated based on
the concept of the natural social behaviour of colonizing
weeds. These swarm intelligence approaches have demon-
strated their high capability in parameters’ optimization for
nonlinear multidisciplinary problems.

In this paper, a study on a gas turbine compressor airfoil
shape parameterization and optimum curve fitting as a main
step to blade geometry optimization has been reported. For
this purpose, two most important curve parameterization
methods, that is, Bezier and NURBS curves, have been
applied within the five above-mentioned population-based
optimization loops (GA, RCGA, DE, PSO, and IWO) so that
the best alternative solutions from different points of view
can be discovered. To achieve this goal, the parametric proce-
dures involving independence, normality and homoscedas-
ticity are firstly discussed.Then, the nonparametric statistical
analysis including Quade and Friedman aligned comparison
tests, by applying several different post hoc procedures, are
brought to perform a rigorous comparison among the perfor-
mance of the optimization algorithms. After that, designing
an experiment is done for each algorithm to finally illustrate
the effectiveness of the proposed algorithms.

In the rest of the article, the theory behind the Bezier
and nonuniform rational B-spline curves and different airfoil

geometric representation techniques are first described in
Section 2. In Section 3, the problem which will be solved is
clearly defined. This section involves the problem statement
and explanation of the formulation, fitness function, and
flowchart considered for the optimization processes. Then,
the well-organized optimization techniques for optimum
curve fitting used in this research are explained in Section 4.
The first subsection focuses on evolutionary optimization
techniques (GA, RCGA, and DE), and the second considers
swarm intelligence and colonizing techniques (PSO and
IWO). Section 5 discusses the adjusted parameters for the
optimization algorithms, followed by the statistical analysis,
experimental results, discussions, and comparison. Finally,
conclusion and future works have been presented in the last
section of the article.

2. Airfoil Geometric Modelling:
Techniques and Tools

The turbomachinery blade shape parameterization addresses
the two-dimensional airfoil profile construction from either
the direct handling of curves of airfoil shapes or the superpo-
sition of the camber line and thickness distribution around
it. Between these two different approaches of geometry
definition, however, many designers have considered distinct
parameterized curves for the suction surface (SS), pressure
surface (PS), leading edge (LE), and trailing edge (TE) of a
blade section. In this article, direct handling of the curves of
the airfoil shape has been used by dividing the profile from
the hub to the shroud into five sections as shown in Figure 1.
This article focuses on only the first section, that is, the blade
hub section (depicted in Figure 1(b)).

As the first step, a standard coordinate measuring
machine equipped with touch trigger probes has been
employed to measure 2D point cloud of compressor blade in-
hand (Figure 1(a), top). These measured points’ coordinates
have been used to fit the airfoil sketches using NURBS
and Bezier curves. To achieve this purpose, after indicat-
ing the digitized points of the airfoil profile and choosing
the approach for airfoil shape modeling, four curves will
separately be fitted to any airfoil shape. In this way, the
accuracy and robustness of the created geometric model can
be managed by controlling the curve parameters like number
of Bezier/NURBS control points (CPs) and/or curve order.

Here, the theory behind thesemathematicalmethods and
the characteristics of each will be briefly described.

2.1. Bezier Curves. The Bezier curve, proposed by Bezier
in the early 1960s [21], is defined by the vertices of a
polygon which enclose the final fitted curve. Bezier curves
use the Bernstein polynomial function,𝐵

𝑖,𝑛
(𝑢) as the blending

function [22]:

𝐵
𝑖,𝑛 (𝑢) = (

𝑛

𝑖
) 𝑢
𝑖
(1 − 𝑢)

𝑛−𝑖
, (1)

where 𝑛 is the degree of the curve, 𝑢 is the parameter of the
function, and 𝑖 = 0, 1, . . . , 𝑛.
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Figure 1: Measured points cloud for a section along the blade span, and four distinct segments of the airfoil for the curve fitting problem (a).
Gas turbine compressor blade sections-view from the top (b).

When this blending function is applied to the vertices of
the polygon, the Bezier curve equation is found as

𝑃 (𝑢) =

𝑛

∑

𝑖=0

(
𝑛

𝑖
) 𝑢
𝑖
(1 − 𝑢)

𝑛−𝑖
𝑃
𝑖
, (2)

where 𝑃
𝑖
is the position vector of the 𝑖th control vertex. For

a Bezier curve of degree 𝑛, the number of CPs that control
the shape of the curve is (𝑛 + 1). In other words, it can
be concluded that Bezier curves are affected by these two
main parameters: the polynomial degree and the number of
CPs. On the other hand, (2) shows that the degree of the
Bezier curve is determined by the number of CPs. Another
challenging property of a Bezier curve is that any CPs affect
the shape of the entire curve.The third important property of
a Bezier curve is its convex hull property, which means that
these curves are completely situated inside their own convex
hull, constructed by the polygons.

2.2. Nonuniform Rational B-Spline (NURBS) Curves. One of
the major drawbacks of Bezier curves is that the curve degree
is directly determined by the number of CPs. In addition,
each CP has an impact on the shape of the whole curve.
This becomes of specific concern when only some minor
modifications on some specific places on the blade sections
are required.Therefore, using B-spline curves is an alternative
because of their local modification property.

In the early 1970s, Cox [23] and de Boor [24] suggested
new blending functions𝑁

𝑖,𝑘
(𝑢) expressed as

𝑁
𝑖,𝑘 (𝑢) =

(𝑢 − 𝑡
𝑖
)𝑁
𝑖,𝑘−1 (𝑢)

𝑡
𝑖+𝑘−1

− 𝑡
𝑖

+
(𝑡
𝑖+𝑘

− 𝑢)𝑁
𝑖+1,𝑘−1 (𝑢)

𝑡
𝑖+𝑘

− 𝑡
𝑖+1

,

(3)

where 𝑁
𝑖,1
(𝑢) is equal to 1 for 𝑡

𝑖
≤ 𝑢 ≤ 𝑡

𝑖+1
and equal to zero

otherwise.
Based on this equation, the B-spline curve is defined as

follows:

𝑃 (𝑢) =

𝑛

∑

𝑖=0

𝑁
𝑖,𝑘 (𝑢) 𝑃𝑖. (4)

In these equations, 𝑛 is the number of CPs, 𝑘 is the order
of the curve, 𝑛 + 𝑘 + 1 is the number of knot values, and 0/0

is assumed to be equal to zero. The gap between neighboring
knots, in this specific definition, is always uniform.Therefore,
the extracting curve is called a uniform B-spline curve.
However, as these curves are used for a shape optimization
process, some knot values may be added/deleted resulting in
nonuniform gaps between the knots. These new generated
nonperiodic/nonuniform curves are also properly matched
with computer-aided design (CAD) systems. In the end,
a nonuniform rational B-spline curve (NURBS), which is
similar to nonuniform B-spline curves, is defined by the
following equation:

𝑃 (𝑢) =
∑
𝑛

𝑖=0
𝑤
𝑖
𝑁
𝑖,𝑘 (𝑢) 𝑃𝑖

∑
𝑛

𝑖=0
𝑤
𝑖
𝑁
𝑖,𝑘 (𝑢)

, (5)

where 𝑛 is the number of CPs, 𝑘 is the order of curve, 𝑘 + 𝑛 is
the number of knots,𝑃

𝑖
areCPs, and𝑤

𝑖
are the corresponding

weights of CPs. A Bezier curve can also be considered as a
specific type of NURBS representation. NURBS curves have
a number of significant characteristics including

(i) numerical stability (due to the independence of poly-
nomial degree from number of CPs),

(ii) local shape control or local modification property
(because of the influence range of each CP),

(iii) coincidence of endpoints with first/last CPs,
(iv) convex hull property (like Bezier curves),
(v) more versatile modification of the created curve,
(vi) exact presentation of conic curves (circles, ellipses,

etc.).

The above-mentioned characteristics are important, par-
ticularly when a researcher faces a real case study. For
example, the last distinction can really be helpful for our
specific problem in the case where the designer wants to
construct two circles/ellipses for trailing/leading edges of the
airfoil shape. In the present work, these two segments have
also beenmodeled by free-form curves just like the other two
segments.

Depending on whether the purpose of the designer is to
create a completely new airfoil design or tomake someminor
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aerodynamic improvements to the existing blade profile, a
global geometry modeling approach or a localized parame-
terization method can be used, respectively. Considering a
number of the important advantages for NURBS represen-
tation mentioned above and because of the prospective goal
of the present continuing research to slightly improve the
shape of the existing turbomachinery blades for some specific
objectives in upcoming works, the application of NURBS
curves seems to be more reasonable. Indeed, their affine
invariance and local control property make them appropriate
for such geometry handling.The comparison between Bezier
and NURBS curves would be discussed further in the results
section of the paper.

3. Problem Statement and
Applied Methodology

After skimming the background of Bezier/NURBS curves,
the optimum data fitting problem using the defined tools and
the planned approach is made clear in this section.

When the digitized points are available, model con-
struction is continued by airfoil segmentation and CAD
modeling. Segmentation subdivides themeasured points into
areas for various individual features [25], and CADmodeling
identifies geometric features from the measured points and
merges the identified features into a complete CADmodel. As
stated before, the airfoil shape is divided into four segments
including LE, TE, PS, and SS in this work. Consequently, four
optimum Bezier/NURBS curves will separately be fitted to
any airfoil shape and then merged together by enforcing 𝐶

2-
continuity between the segments.

Concerning the NURBS curve fitting specifically, various
fitting schemes have been developed so far. Some researchers
have identified both the CPs and the weights of a NURBS
curve simultaneously byminimizing the sumof the squares of
the distances from the measured points to the corresponding
fitted curve points, while others have focused only on the
optimization of the CPs’ location. Regarding the airfoil shape
modeling, a third-order NURBS curve/surface has recently
been employed to describe the suitable parametric geometry
of 2D airfoil and 3D blades.

3.1. Objective Function Formulation. In this paper, the best
CPs of both Bezier and NURBS curves among the candi-
dates are searched for by using the least squares method.
Although the proposed method can automatically determine
the appropriate CPs, both number and location, at the
same time, these optimal CPs will only be searched in a
predefined range—based on the existing knowledge about the
constraints of airfoil shape at hand—to save time and CPU
efforts. Therefore, the CPs of these curves can be utilized
as characteristic points. This procedure clearly needs an
optimization effort due to the lack of knowledge about the
exact position of the proper CPs at the first stage of curve
fitting problem. Hence, the objective function which should
beminimized is the sum of distances between the fitted curve
and the original scanned data points. In such an optimization

Data points
Bezier/NURBS fitted curve
Control polygon

Figure 2: Errors between the original measured points and fitted
curve.

process, Bezier/NURBS CPs are the design variables, in fact,
that have to be forced to the optimal locations.

The above-mentioned procedure is more clearly depicted
in Figure 2 and (6):

𝐸 =

𝑛

∑

𝑖=1

𝐶𝑖 − 𝑃 (𝑢
𝑖
)
 , (6)

where 𝐶
𝑖
are the original data points, 𝑛 is the number of

measured data points, and 𝑃(𝑢
𝑖
) are corresponding points on

the fitted Bezier/NURBS curve.
The airfoil (as a profile section of the compressor blade)

considered in this study consists of four Bezier/NURBS
curves for four segments, andnineCPs identify each segment.
Each CP has two coordinates 𝑥 and 𝑦, and so this will lead
to a total number of 72 design variables. Since the optimum
curve fitting problem is separately solved for the mentioned
segments of airfoil (SS, PS, LE, and TE), the strategy to fix the
intersection points of the segments through the optimization
process can force the chord of the airfoil to be constant. In
this way, 16 parameters are known and fixed. Another 16
parameters are also determined by enforcing 𝐶

2-continuity
at the intersections of the segments. As a result, 40 variables
will remain for the optimization algorithms as the design
parameters. In addition, the rational upper bounds and lower
bounds should be defined for variations of the parameters to
have an effective and efficient optimization route.

All optimization techniques in this paper have been used
to locate the optimal position of the CPs for a set of open
Bezier and/or NURBS curves according to the objective
function represented in (6). Based on that, the objective is
minimization of the sum of the errors 𝐸. Figure 3 depicts the
flowchart of the performed optimal curve fitting procedure in
this study.

4. Planned Optimization Algorithms

This section briefly discusses the procedures, operators, and
logic of all optimization algorithms used in this study. For
this purpose, the optimization techniques are conceptually
divided into two main categories based on their characteris-
tics: (1) evolutionary algorithms involving genetic algorithm
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Figure 3: Bezier/NURBS optimum curve fitting flowchart.

and differential evolution and (2) swarm intelligence and
colonized algorithms including particle swarm and invasive
weed optimization methods (Figure 4).

4.1. Evolutionary Optimization Technique. As mentioned
earlier, two evolutionary optimization methods customized
and specialized by the authors are used to optimally fit
the parametric curves to the airfoil point cloud. As the
algorithms are based on Darwin’s theory of evolution, the
optimization uses different mechanisms and operators to
search for individuals that best adapt to the environment. In
other words, individuals with a higher level of fitness have a
greater chance to survive and continue in the optimization
process.

4.1.1. Genetic Algorithm (GA). GA was introduced by Hol-
land [15] as a probabilistic global searchmethod. Its operation
is based on the combination and generation of DNAs and
chromosomes and it mimics the metaphor of natural biolog-
ical evolution. GA operates on a population of individuals
(potential solutions), each of which is an encoded string
(chromosome), containing the decision variables (genes).

The structure of a GA is composed of an iterative proce-
dure through the following key steps [26], as also depicted in
Figure 4:

(i) creating an initial population of airfoil shapes with
consideration of the existing experience,

(ii) evaluation of the fitting performance of each profile
in the population,

(iii) selection of the best-fitted airfoils’ segments and
reproduction of a new population,

(iv) application of genetic operators, that is, crossover and
mutation,

(v) iteration of steps II to IV until the maximum number
of generations is reached.

The fitness value is associated with each individual,
expressing the performance of any airfoil shapes created with
respect to a fitting error function that should beminimized (𝐸
in (6)). Also, the positive effect ofmutation is the preservation
of genetic diversity and the fact that the local minima can be
avoided. Following the evaluation of the fitness of all profiles
in the population, the genetic operators are repeatedly applied
to produce a new population of airfoil shapes.

In addition, a real coding approach, instead of the stan-
dard GA coding strategy that is a binary pattern, is also used
in this study. Using this approach, more adequate mutation
operators can be defined while the destructive effects of
crossover are reduced, specifically for a set of data points in
the 𝑥-𝑦 coordinate. Furthermore, the errors regarding the
CPs’ locations caused by discretization are avoided [14]. The
reproduction approach here is the roulette wheel method,
in which the probability of choosing a certain individual is
proportional to its fitness.

4.1.2. Differential Evolution (DE). DE is one of the newly
emerging, but well-known, stochastic parallel direct search
methods as well as a kind of population-based optimization
algorithm. DE was presented by Price and Storn in 1997
[19], as an evolutionary algorithm designed for solving
continuous optimization problems. DE can be used to find
approximate solutions for many practical problems having
objective functions that are nondifferentiable, noncontinu-
ous, nonlinear, noisy, flat, and multidimensional or having
many local minima, constraints, or stochasticity. DE uses
mutation and crossover operators and a selection method to
generate the population of the next generation [27].

As illustrated in Figure 4, DE procedure involves the
following steps:

(i) 𝑁 individuals are created randomly,
(ii) every individual of the population (each set of CPs for

the problem in hand) undergoes mutation operation
with scale factor (SF) a positive real number typically
less than 1,

(iii) mutation vector and target vector undergo crossover
operation with crossover rate (CR), and

(iv) trial vector is evaluated and compared with the fitness
value of the target vector. The vector with the greater



6 Mathematical Problems in Engineering

Initializing

Initializing

Initializing

Initializing

Mutation

Velocities 
calculation

Recombination

New positions 
calculation

Selection

Reproduction 

Selection

Evaluation and
updating

Mutation and 
crossover

Competitive 
exclusion

DE

PSO

GA

IWO
and spatial

Evaluation

Evaluation

Figure 4: Key similarities and differences among DE, PSO, GA, and IWO procedures.

fitness value (the fitter CPs’ set) enters the next
generation.

Recombination incorporates successful solutions from
the previous generation, and mutation expands the search
space, as in GA. Mutation, recombination, and selection
continue until some stopping criterion is reached.

The present paper proposes an alternative method by
implementing a DE algorithm for the curve fitting problem.
This proposed method is compared with the result obtained
from the GA method in the last section of the paper.

4.2. Swarm Intelligence Technique. The theoretical bases for
two swarm intelligence methods employed in the compara-
tive study are described in this section.

4.2.1. Particle Swarm Optimization (PSO). A very popular
swarm intelligence algorithm introduced by Kennedy and
Eberhart is called particle swarm optimization [28]. This
algorithm is based on the simulation of the social behavior
of flocks of birds, school of fish, and herds of animals to
let them adjust to their environment, find rich sources of
food, and keep away from other predatory animals by using
information sharing and social cognitive intelligence [29].
This algorithm generates a set of solutions in a multidimen-
sional space randomly which represent the initial swarm.
The initial swarm contains particles that move in the space
and search for the best global position over the number of
iterations. Then, iterations will be continued until the best
global position is reached.

In general, the PSO algorithm consists of threemain steps
as follows (Figure 4):

(i) generating positions and velocities of particles,
(ii) updating the velocities,
(iii) updating the positions.

In this way, each particle refers to a point in a multi-
dimensional space where its dimensions are related to the

numbers of design variables. The positions of the points as
well as the particles’ velocity change as the iterations, which
are calculated in each step, proceed. In the first step, position
𝑥
𝑖

𝑜
and velocity V𝑖

𝑜
for each point are generated randomly by

the use of upper and lower bounds of variables employing the
following equations:

𝑥
𝑖

𝑜
= 𝑥min + rand (𝑥max − 𝑥min) ,

V𝑖
𝑜
=

𝑥min + rand (𝑥max − 𝑥min)

Δ𝑡
,

(7)

where 𝑥
𝑖

𝑜
and V𝑖
𝑜
are position and velocity of the 𝑖th particle

in the first step, respectively, 𝑥min and 𝑥max are the lower and
upper bounds of the design variable, respectively, rand() is a
random number between 0 and 1, and Δ𝑡 is the time step.

The first population is distributed uniformly in the space
by this process. In the second step, PSO calculates new
velocities to move the particles from positions in time, 𝑘, to
new positions in time, 𝑘+1. In fact, PSO updates the particles’
velocities for transferring to the next positions. For calcula-
tion of the new velocities, PSO needs two important values:
the best global position of particles in the current swarm,
𝑃
𝑔

𝑘
, and the best position of each particle over all previous

and current steps, 𝑃𝑖. These values are saved in the memory
of each particle. PSO then employs these two values besides
three coefficients 𝑤, 𝑐

1
, and 𝑐

2
to calculate new velocities

for the next iteration using a random distribution function.
The three aforementioned coefficients indicate the effect of
the current motion, the particle’s own memory, and swarm
influence. Recently, some PSO approaches for optimization
purposes take the effect of neighboring positions into account
in order to improve the speed of convergence to the best
global position. In this case, a term with factor 𝑐

3
, called

neighborhood acceleration, is used in order to take this effect
into consideration [30, 31].
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Based on the above explanations, the velocity update
formula takes the following form:

V𝑖
𝑘+1

= 𝑤V𝑖
𝑘+1

+ 𝑐
1
rand

(𝑃
𝑖
− 𝑥
𝑖

𝑘
)

Δ𝑡

+ 𝑐
2
rand

(𝑃
𝑔

𝑘
− 𝑥
𝑖

𝑘
)

Δ𝑡
+ 𝑐
3
rand

(𝐿Best − 𝑥
𝑖

𝑘
)

Δ𝑡
,

(8)

where 𝑤 is the inertia factor in the range from 0.4 to 1.4, V𝑖
𝑘
is

the velocity of the 𝑖th particle in current motion, 𝑐
1
is the self-

confidence factor in the range from 1.5 to 2, 𝑐
2
is the swarm

confidence factor in the range from 2 to 2.5, 𝑐
3
is the neighbor

acceleration factor, 𝑥𝑖
𝑘
is the position of the 𝑖th particle in the

current motion, 𝑃𝑖 is the best position of the 𝑖th particle in
the current and all previous moves, 𝑃𝑔

𝑘
is the position of the

particle with the best global fitness at current move, 𝑘, and
𝐿Best is the best local neighbor position in the current move.

It is worth pointing out that when the effect of neighbor
acceleration is considered in the velocity update (𝐶

3
̸= 0) as

it has been done in this study, the PSO converges noticeably
faster. This is due to more information sharing between
particles in this way. So, taking the neighbor acceleration
factor into account is a trade-off between convergence rate
and computational time.

Lastly, using the updated velocity vectors calculated by
(8), the position of each particle is changed by the following
equation:

𝑥
𝑖

𝑘+1
= 𝑥
𝑖

𝑘
+ V𝑖
𝑘+1

Δ𝑡, (9)

where 𝑥𝑖
𝑘+1

is the new position of the 𝑖th particle in step 𝑘+1.
This algorithm is repeated until a stop criterion is reached.

The stop criteria may be an iteration number or a specified
error for the best global value.

4.2.2. Invasive Weed Optimization (IWO). Invasive weed
optimization is an ecologically inspired optimization algo-
rithm, newly developed by Mehrabian and Lucas [20]. The
algorithm is a derivative-free metaheuristic method origi-
nally formulated based on the concept of the natural social
behavior of colonizing weeds [32]. In their leading research,
they have shown the merits of IWO in finding the global
optimum of different complex multidimensional optimiza-
tion problems, which reveals that IWO is an appropriate com-
petitor for other comparatively older and well-established
techniques for population-based evolutionary computation.

IWO is implemented in this study with a problem dimen-
sion of ten and using the following procedure recursively:

(i) initializing a population (randomly spreadover the 𝑑-
dimensional problem space with random positions),

(ii) fitness evaluation for each member of the colony of
weeds to produce seeds depending on its own and the
colony’s lowest and highest fitness,

(iii) reproduction (based on plant fitness and number of
seeds),

(iv) spatial dispersal (i.e., the generated seeds are ran-
domly distributed over the search space by normally

distributed randomnumberswithmean equal to zero,
but varying standard deviation, SD),

(v) competitive exclusion (poor plants elimination).

The flowchart of the IWO method is also illustrated in
Figure 4.

The variation of the SD value with generation is defined
as follows:

SD
𝐼
= (1 −

𝐼

𝐼max
)

𝑛

(SD
𝑖
− SD
𝑓
) + SD

𝑓
, (10)

where 𝐼max is the maximum number of iterations, 𝑛 is the
nonlinear modulation index, and 𝑖 and 𝑓 refer to the initial
and final condition, respectively. The SD value is decreased
generation by generation.The decreasing rate depends on the
nonlinear modulation index value which results in grouping
fitter plants and the elimination of inappropriate plants,
representing transformation from 𝑟-selection to 𝑘-selection
mechanism [20].

After reaching the maximum number of plants, the
competitor exclusion mechanism activates in order to elim-
inate the plants with poor fitness in the generation. This
mechanism is formulated so that it gives a chance to plants
with lower fitness to reproduce, and if their offspring has a
good fitness in the colony, then they will survive. The above-
mentioned steps are repeated until the maximum number of
iterations is exceeded.

5. Implementation and Results

This section presents several illustrations of compressor
airfoil data fitting from different points of view. The goal
is to show the performance of the proposed optimization
methodologies to be used in such geometric modelling
problems and to make a comparison among them. In order
to have a fair comparison of the results, both the initial
population and the stopping criteria are set to be identical for
the relevant algorithms.

Before representing the experimental illustrations, how-
ever, it is expected to compare and analyse the results in a
systematic approach recently designed and proposed [33, 34].
For this purpose, the parametric and the nonparametric sta-
tistical tests are carried out besides designing an experiment
in order to improve the performance evaluation process and
statistical confidence.

Furthermore, the experimental results are presented by
applying all optimization algorithms to the given airfoil shape
parameterization process. The following figures and tables
present the historical convergence of optimization algo-
rithms during the generations, differences between Bezier
and NURBS curves from different points of view, and their
advantages and disadvantages, static and dynamic conver-
gences of the used algorithms, fitting error in each case, and
computational efficiency.

All coding and simulation carried out in this research
have been implemented in MATLAB R2010b on a PC with
Intel(R) Xeon(R) CPU X5650 @ 2.66GHz with 2 processors
and 32.0GB RAM.
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5.1. Employment of Statistical Tests. This section outlines the
comparisons between the results obtained from the various
algorithms. Studies conducted to prove the relative merits of
the algorithms used for the curve fitting problem in hand are
presented.

With respect to the no free lunch theorem in search and
optimization, it is not possible to find one specific algorithm
being better in behaviour for any given problems. Therefore,
some criteria to select an appropriate optimization algorithm
in each problem are sought. In this regard, statistical proce-
dures including the parametric tests and nonparametric tests
could be utilized for a fair comparison between the results.
For this purpose, the required condition for the parametric
tests is firstly described based on the published studies.These
conditions are then checked for the obtained results in this
work. Subsequently, the results of a nonparametric analysis
using several methods are represented.

5.1.1. Parametric Test. In order to use the parametric test,
it is necessary to check independence, normality, and
homoscedasticity procedures.

For the problem in hand, the independence of the results
is obvious since they are independent runs of any algorithm
with randomly generated initial population. At the same
time, an observation is said to be normal when its behaviour
follows a normal or Gauss distribution with a certain average
value 𝜇 and variance 𝜎, and a normality test applied over a
sample can indicate the presence or absence of this condition
in the observed data. Lastly, the homoscedasticity condition
is to indicate a violation of the hypothesis of equality of
variance [33]. All the tests would get the related 𝑃 values
which indicate the dissimilarity of the samples with respect
to the normal shape. To do this, all the given optimization
algorithms are executed 30 times with the same initial popu-
lation. The results of fitness function values are presented in
Table 1. For the normality check of these results, theMATLAB
environment is used. A low 𝑃 value shows a nonnormal
distribution. In this paper, a level of significance 𝛼 = 10%
is considered, and so, the 𝑃 value greater than 0.1 specifies
the fulfilment of the normality condition. In other words, this
means that there is less than a 10% probability that the sample
data does not agree with our hypothesis due to random
chance.

In this study, two different tests are used for numerical
assessment of the normality. The first one is Kolmogorov-
Smirnov (K-S test) which is a distribution-free and non-
parametric test but could be modified to be employed as a
goodness of fit test. In the special case of testing for normality
of the distribution, data are standardized and compared
with a standard normal distribution. The K-S test has this
benefit to make no assumption about the distribution of data.
The second test is Shapiro-Wilk (S-W test) that compares
the ordered sample values with the corresponding order
statistics from the specified distribution.The S-W test is most
commonly used to assess a normal distribution.

Table 2 shows the results of the normality tests, which
have approached to the different results. Similar conclusion
was also mentioned by Garćıa et al. [33]. As a result, the

parametric test condition is almost fulfilled with respect
to the 𝑃 values obtained from these two different tests.
According to the S-W test, however, only some new results for
BGA intended to achieve a better normal result are obtained,
where the normality has not been satisfied.

Finally, passing these normality tests allows us to state
with 90% confidence that the data fit the normal distribution
with no significant departure from the normality.

5.1.2. Nonparametric Test. Since the research work deals with
the real values in this study and based on the promising
results from the previous section, the results of parametric
tests seem enough for a reliable statistical analysis. For more
evaluation of the all given algorithms’ behaviour, the use
of nonparametric statistics is also considered in addition to
the parametric test. The performance of any algorithm with
respect to the remaining ones is studied, and based on that, it
has been determined if these results offer better performance
for each one. Here, all results are reported with respect to the
level of significance 𝛼 = 5%.

Tables 3 and 4 represent the 𝑃 values gained by applying
post hoc method over the results of Quade and Friedman
aligned tests using several different procedures, respectively.
Using Quade test, the average ranks of RCGA, BGA, DE,
PSO, and IWO are 3, 2, 1, 4.65, and 4.35, respectively. The
rankings for the mentioned algorithms are 52.33, 47.13, 45.17,
127.30, and 105.57 using Friedman aligned test. Therefore, DE
achieves the best rank (the minimum value) among these
five algorithms. Assuming DE to be the reference algorithm,
all hypotheses are rejected according to Tables 3 and 4.
Nevertheless, BGA shows a good behaviour considering its
𝑃 values in different procedures.

To compare an optional reference algorithm with others,
Holm procedure driven 𝑃 values of the post hoc multiple
comparisons are used (Table 5). Since Holm’s procedure
rejects those hypotheses having a 𝑃 value≤0.05, all hypothe-
ses in this table are rejected (all Holm 𝑃 values are less
than or equal to 0.05). That means that DE, BGA, and
RCGA are better than PSO and IWO. Among the first three
algorithms, the best and the worst algorithms are RCGA and
DE, respectively. Also, PSO and IWOdisplay almost the same
performance giving a little bit positive concession to PSO.

Lastly, contrast estimation is obtained to calculate
approximately the performance difference of the algorithms,
two by two (Table 6).This comparison shows that DE outper-
forms other algorithms in terms of error rates, while PSO is
the worst case in this regard.

5.2. Designing of Experiment. All the algorithms were run
several times with the set of parameters based on the existing
experience in order to find the best possible solution.

5.2.1. Comparison of NURBS and Bezier Tools. To begin
with, because GA-based optimization is broadly used and
more well-known than other methods employed in the paper
and exhibited good performance in statistical analysis, this
algorithm has been selected to make a reliable comparison
between NURBS and Bezier curve fitting for airfoil shape
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Table 1: The fitness values obtained from 30 independent runs.

RCGA BGA DE PSO IWO
1 0.057 0.04081 0.037 0.8259 0.2795
2 0.0593 0.0401 0.037 0.0828 0.198
3 0.0739 0.04049 0.037 0.8142 0.3549
4 0.0537 0.042 0.037 1.8263 0.1485
5 0.0479 0.0467 0.037 1.1282 0.8118
6 0.0487 0.04077 0.037 0.9122 0.1485
7 0.072 0.04054 0.037 0.7141 0.1485
8 0.0514 0.03946 0.037 0.6595 0.866
9 0.064 0.04125 0.037 0.5901 1.4464
10 0.071 0.04348 0.037 0.8109 0.2169
11 0.0511 0.04127 0.037 0.7419 0.1485
12 0.0502 0.03894 0.037 0.1108 0.8994
13 0.0621 0.04075 0.037 1.7911 0.2255
14 0.0501 0.04204 0.037 0.7631 0.1889
15 0.0661 0.03943 0.037 0.245 0.1889
16 0.0493 0.03891 0.037 0.8892 0.1889
17 0.0534 0.03956 0.037 0.2679 0.8807
18 0.0511 0.03851 0.037 0.5432 0.7837
19 0.0522 0.03963 0.037 1.9922 0.2335
20 0.1003 0.04568 0.037 0.2032 0.1889
21 0.0592 0.04093 0.037 0.8074 0.1842
22 0.053 0.03999 0.037 0.7006 0.2008
23 0.0708 0.04271 0.037 0.7102 0.828
24 0.0624 0.03794 0.037 0.7437 0.2368
25 0.0627 0.04044 0.037 0.2942 1.5037
26 0.0645 0.04884 0.037 0.1837 1.1268
27 0.0579 0.04599 0.037 0.2674 1.1532
28 0.0531 0.04262 0.037 1.0189 0.1485
29 0.055 0.04305 0.037 1.4319 0.1775
30 0.1024 0.04206 0.037 1.717 0.2158

Table 2: Results of normality tests.

GA DE PSO IWO
P values based on K-S test 0.1066 0.1027 0.8102 0.5304
P values based on S-W test 0.0802 0.2507 0.8012 0.4304

parameterization. The best regulations for this optimization
algorithm involve 120 chromosomes as the initial population
selected from the whole solution space, and maximum
number of generations is set to 300. Selection method is
Roulette wheel, and probabilities of two-point crossover and
mutation are set to 1.0 and 0.20, respectively. In order to
make a fair comparison of the results, the termination criteria
as well as all other parameters are set to be the same for
both curve fitting tools. Finally, the real-number genes for
design variables’ definition with the method of least squares
for evaluation of curve fitting fitness were successfully used
as shown in the following illustrations.

Figure 5(a) depicts optimum parameterized curves and
their polygons for the pressure side of the airfoil using Bezier
and NURBS. This figure illustrates the good fitting with the

measured point cloud of this segment. To limit the number of
pages, other segments are not shown here, but the acceptable
coincidence is the same. The results in general show that, for
the same conditions, the NURBS curve has a better ability to
be optimally fitted on a set of data points. In other words, the
final objective value, that is, fitting error, of the curve fitting
problem by using NURBS is noticeably less than the value for
the Bezier curve fitting.

Another important characteristic that should be inves-
tigated is the local/global modification property. As shown
in Figures 5(b) and 5(c), the shape of the entire curve
represented using Bezier tool, contrary to NURBS tool, is
affected by altering only one control point. This helpful
characteristic of NURBS can be used in applications where
minormodifications to the existing blade/airfoil shape should
be considered during an optimization process. For instance,
through the aerodynamics performance enhancement of
an airfoil, the small and precise changes on the existing
geometries are typically needed so that the local modification
property of NURBS helps us in this regard. This is exactly
what is wanted to be done in the next stage of the current
research, that is, geometry optimization of a GT compressor
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Table 3: Post hoc results by Quade comparison test (reference algorithm: DE).

i Algorithms 𝑧 = (𝑅
0
− 𝑅
𝑖
)/SE P Holm Hochberg Hommel Holland Rom Finner Li

4 PSO 5.522134 0 0.0125 0.012741 0.013109 0.012741 0.045765
3 IWO 5.063582 0 0.016667 0.016952 0.016667 0.025321 0.045765
2 RCGA 3.02449 0.002491 0.025 0.025321 0.025 0.037739 0.045765
1 BGA 1.512245 0.130472 0.05 0.05 0.05 0.05 0.05

Table 4: Post hoc results by Friedman aligned comparison test (reference algorithm: DE).

i Algorithms 𝑧 = (𝑅
0
− 𝑅
𝑖
)/SE P Holm Hochberg Hommel Holland Rom Finner Li

4 PSO 7.321863 0 0.0125 0.012741 0.013109 0.012741 0.007325
3 IWO 5.384422 0 0.016667 0.016952 0.016667 0.025321 0.007325
2 RCGA 0.63888 0.522901 0.025 0.025321 0.025 0.037739 0.007325
1 BGA 0.175321 0.860828 0.05 0.05 0.05 0.05 0.05

Table 5: 𝑃 values of post hoc multiple comparisons.

i Algorithms z Unadjusted P Holm P
10 DE versus PSO 8.981462 0 0.005
9 DE versus IWO 8.164966 0 0.005556
8 BGA versus PSO 6.531973 0 0.00625
7 BGA versus IWO 5.715476 0 0.007143
6 RCGA versus DE 4.898979 0.000001 0.008333
5 RCGA versus PSO 4.082483 0.000045 0.01
4 RCGA versus IWO 3.265986 0.001091 0.0125
3 RCGA versus BGA 2.44949 0.014306 0.016667
2 BGA versus DE 2.44949 0.014306 0.025
1 PSO versus IWO 0.816497 0.414216 0.05

Table 6: Contrast estimation between averages of results consider-
ing all pairwise comparisons.

RCGA BGA DE PSO IWO
RCGA 0 0.016 0.021 −0.619 −0.226
BGA −0.016 0 0.005 −0.635 −0.243
DE −0.021 −0.005 0 −0.64 −0.248
PSO 0.619 0.635 0.64 0 0.392
IWO 0.226 0.243 0.248 −0.392 0

airfoil/blade for better performance, where designers are not
going to create geometry which is completely different from
the primary original shape.

Table 7 shows a comparison between the effects of
NURBS and Bezier properties on some implementation
criteria. The evident influence of the number of CPs on the
fitting error can be seen in the table; that is, the error drops
when the number of CPs increases for both mathematical
tools. While the degree of the NURBS curve is a predefined
value independent of the number of CPs, the degree of the
Bezier curve is increased with the rise in the number of CPs.
Hence, the fitting error in Bezier representation drops more
(from 137.6mm to 61.7mm) with an increasing number of
CPs. Nevertheless, as implied earlier in Section 2 of the paper,
when a curve of a complicated shape is represented by the

Bezier curve, many CPs should be used. This in turn results
in a higher degree Bezier curve. Higher degree functions
may cause oscillation as well as increasing the computational
burden.

Although the computational time of NURBS curve fitting
is generally higher than that of Bezier curve fitting, the results
in Table 2 show that the computational time of optimized
parameterizationwith Bezier increasesmore than three times
when the number of CPs increases from five to ten. This
rise for NURBS representation is less than two times. This
property is particularly important in this case because curves
with so many CPs should be utilized due to the complexity
of the current geometry. Therefore, independence of the
curve degree from the number of CPs in NURBS causes
a better possibility of its application into the curve/surface
parameterization of complex shapes such as turbomachinery
airfoils/blades.

As a result, the remaining implementation is done by
using NURBS representation as the tool of geometry mod-
eling in airfoil curve fitting.

5.2.2. Applying Optimization Algorithms. After a GA-based
comparison of Bezier and NURBS properties and an investi-
gation of their effects on airfoil geometry parameterization,
the results obtained from all the developed optimization
methods using NURBS representation are compared here in
terms of static and dynamic convergences, final fitness values,
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Figure 5: Optimum curve fitted using Bezier and NURBS methods (a) and global (b) and local (c) modification properties of Bezier and
NURBS, respectively.

Table 7: Comparison of NURBS and Bezier properties’ effect on some implementation criteria.

5 control points 10 control points
Degree of curve Fitting error [m] Comp. burden [s] Degree of curve Fitting error [m] Comp. burden [s]

Bezier 4 0.1376 60 9 0.0617 203
NURBS 3 0.0518 287 3 0.0393 475

and computing time. This is to see whether these methods
can be successfully used in optimally solving these specific
curve fitting problems. To the best knowledge of the authors,
this is the first time that the DE and IWO algorithms have
been profitably applied to aNURBS curve fitting optimization
problem.

Table 8 shows the used parameters to adjust the algo-
rithms in hand for this comparison. All optimization pro-
cesses are terminated by the predefined number of iter-
ations. Based on previous experience, the parameters of
the algorithms are selected by trial-and-error. Furthermore,

regarding PSO and IWOalgorithms’ parameters, the problem
dimension should be set to 10 because of the specified number
of NURBS CPs to 20 (i.e., forty coordinates) for all segments
of the airfoil shape. This gives 10 design variables for each
segment.

Taking the metaheuristic nature of the algorithms used
in this part into account, RCGA, BGA, DE, PSO, and IWO
are run several times. Because of rationally convergence of
the algorithms, the final fitness values have been too close to
each other for the unique objective function and parameters
in several runs. However, all results presented in this paper
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Table 8: Evolutionary and swarm algorithms’ regulations for comparison task.

RCGA BGA DE PSO IWO
Number of Iterations 250 250 250 250 250
Population/swarm/plant size 120 120 120 180 10
Selection method Roulette wheel Stochastic uniform — — —
Crossover Two-point, 0.90 Single-point, 0.95 0.5 — —
Mutation Uniform, 0.35 Uniform, 0.30 — — —
Scale factor — — 0.5 —
Self-confidence factor — — — 1.5 —
Swarm confidence factor — — — 1.5 —
Neighbor accel. factor — — — 1.0 —
Velocity weight at the beginning — — — 0.75 —
Velocity weight at the end — — — 0.25 —
Number of plants — — — — 10
Min. Number of seeds — — — — 1
Max. Number of seeds — — — — 10
Modulation index — — — — 3
Standard deviation, initial — — — — 10
Standard deviation, final — — — — 0.001

Table 9: Static convergence of RCGA, BGA, DE, PSO, and IWO.

Iteration number in
which the best solution

is achieved

Final objective value
(sum of errors in
millimeters)

RCGA 180 50.2
BGA 144 40.8
DE 135 37.7
PSO 181 203.2
IWO 94 148.8

Table 10: Computational efficiency (average of 30 runs).

Real-coded GA Binary GA DE PSO IWO
CPU time (Sec) 240 218 216 14 23

are the mean values of those runs. Moreover, as addressed
before, all results have only been illustrated for one of the
segments (segment 2 according to Figure 1(a), bottom).

Figure 6 illustrates the convergence history for all given
algorithms. As shown in this figure, all the algorithms
converge to their optimal solutions reasonably by iterations.
Nevertheless, the DE could achieve higher fitted solutions
because its final fitness value is better than others. Table 9
represents the static convergence results for the proposed
algorithms. Clearly, DE outperforms all other algorithms—
except IWO—in terms of the static convergence behaviour
because it converges faster. In other words, iteration number
in which the best solution is achieved is lowest for IWO and
highest for PSO. Generally, evolutionary algorithms notice-
ably show better performance inminimizing the fitted errors,
while it is difficult to generally make the same conclusion or
its inverse about the static convergence property.
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Figure 6: Convergence history of all given algorithms.

Additionally, a comparison between the dynamic con-
vergence characteristics of each of the algorithms employed
has been made in Figure 7 by plotting standard deviation of
fitness values over all individuals in one generation. Dynamic
convergence is indeed an indication of the diversification
and robustness of the algorithms. This plot shows that the
proposed IWO has the smoothest dynamic convergence due
to its dual behaviour involving both mathematics-driven
and population-based procedures. On the other hand, GA
results show the highest fluctuations because of the mutation
operation. In the case of PSO and DE solutions, the standard
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Figure 7: Dynamic convergence characteristics of evolutionary and swarm intelligence algorithms.
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Figure 8: Airfoil shapes represented with optimal control points derived from evolutionary (a) and swarm intelligence (b) methodologies.

deviation variations decrease by iterations without fluctua-
tion and decays to zero in the last iterations, like IWO.

Finally, in order to confirm the effectiveness of the
planned methods to optimize the curve fitted to the airfoil
shape of GT blades, 20 optimized CPs, knot vectors, and
NURBS curves found by both evolutionary and swarm
intelligence algorithms have been shown in Figure 8. This
figure clearly illustrates a finer NURBS curve fitting on the
given data points by evolutionary optimization techniques
in comparison to the proposed swarm/colonized intelligence
approaches. The illustration demonstrates that DE has the
best performance in minimizing the fitting errors among
all other algorithms. Also, it can be seen that the IWO-
basedNURBS curve shows better agreementwith the original
measured points in comparison to the PSO-based one. Nev-
ertheless, it is worth mentioning that PSO implementation is
easier, as the number of parameters is less in comparisonwith
IWO. In other words, compared to IWO, one of the main
advantages of PSO is that this algorithm is easily employed
with few parameters to be adjusted.

Last but not least, in order to compare the computational
efficiency of all four optimization algorithms used in this
study, the CPU time is averaged over 30 independent runs

for each method. The results are shown in Table 10. It can be
understood that swarm methods demand considerably less
computational effort and have huge saving time compared
to the evolutionary ones. This would be crucial specifically
when the dimensions of the fitting problem and/or its
complexity are greater than those of the problem solved in
this study (in turbomachinery, for instance, surface fitting
in 3D geometry modeling of GT blades). Among these
methods, however, the simplicity in the implementation of
PSO results in saving computational efforts compared with
IWO. The reason is that the functioning of IWO involves
somemathematical/statistical procedures. Nonetheless, IWO
can achieve its final fitness value in less iteration than that
of the PSO (Table 9), and so it provides a huge saving in
computational costs.

6. Conclusion

This paper presents the results of a study where a binary and
real-coded genetic algorithm, a differential evolution, a parti-
cle swarm, and a newly developed invasiveweed optimization
methods were implemented using Bezier and NURBS tools
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to optimally create the well-parameterized airfoil shapes on
existing turbomachinery blades. The approach could be used
for both precise reverse engineering and aerodynamic shape
optimization purposes [35].

First, the touch trigger probes are employed to measure
the point cloud of an existing gas turbine compressor blade
sections. After that, the model construction is continued by
segmentation of the measured points to four areas. Then,
CAD modeling searches for the best CPs of Bezier and
NURBS curves among the candidates by using the least-
squares fitting technique in the objective function of the
aforementioned optimization algorithms.

One important conclusion is that the NURBS curves,
because of their special properties such as local modification
and numerical stability, are certainly more suitable tools
for such complex curve/surface fitting problem in turbo-
machinery than the Bezier curves. Regarding the planned
optimization algorithms, the behavior of all the given evo-
lutionary and swarm intelligence techniques is inclusively
evaluated from both statistical and experimental points of
view. As a result, GA andDE—as two of themost well-known
evolutionary algorithms—as well as PSO and IWO—as the
swarm intelligence methods—generally showed their ability
in optimization of such complex curve fitting processes.
Nevertheless, several significant behaviour differences are
detected from a comprehensive comparison of their results.
As a result of nonparametric test, it can be concluded that the
evolutionary optimization algorithms obviously outperform
the swarm intelligence ones. At the same time, while B/RC
GA and DE demonstrate their superior performance in
terms of reaching minimum fitting error, IWO has the best
static convergence. IWO also shows the finest behaviour
in dynamic convergence, in areas where GA results exhibit
the highest fluctuations, and this is because of its mutation
operator. Also, swarm intelligence optimization methods
are observed to have a significantly better computational
efficiency than evolutionary algorithms.

Lastly, since all the results obtained from the well-
organized proposed optimization strategies demonstrate that
the final optimum fitted curves have good agreement with
the original measured points, selecting one among them to
be employed in a computer-aided geometric design opti-
mization process strongly depends on the final goals and
priorities.
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“A full parametric model for turbomachinery blade design and
optimisation,” in Proceedings of the ASME Design Engineering
Technical Conferences and Computers and Information in Engi-
neering Conference, pp. 907–914, October 2004.

[2] W. Song and A. J. Keane, “A study of shape parameterisation
methods for airfoil optimization,” American Institute of Aero-
nautics Astronautics, 2006.

[3] P. Bezier, Emploi des Machines a Commande Numerique, Mas-
son et Cie, Paris, France, 1970.

[4] G. E. Farin,NURBS fromProjectiveGeometry to Practical Use, A.
K. Peters Ltd., Natick, Mass, USA, 2nd edition, 1999.

[5] S. Pierret and C. Hirsch, “An integrated optimization system for
turbomachinery blade shape design,” in Proceedings of the RTO
AVT Symposium on Reduction of Military Vehicle Acquisition
Time and Cost through Advanced Modeling and Virtual Simu-
lation, France, 2002.

[6] A. Oyama, M.-S. Liou, and S. Obayashi, “Transonic axial flow
blade shape optimization using evolutionary algorithm and
three-dimensional Navier-stokes solver,” AIAA 2002-5642,
2002.

[7] F. Sieverding, B. Ribi, M. Casey, and M. Meyer, “Design of
industrial axial compressor blade sections for optimal range and
performance,” Journal of Turbomachinery, vol. 126, no. 2, pp.
323–331, 2004.
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[11] D. I. S. Adi, Š. M. Shamsuddin, and A. Ali, “Particle swarm opti-
mization for NURBS curve fitting,” in Proceedings of the 6th
International Conference on Computer Graphics, Imaging and
Visualization: New Advances and Trends (CGIV ’09), pp. 259–
263, August 2009.

[12] Z. Jing, F. Shaowei, and C. Hanguo, “Optimized NURBS curve
and surface fitting using simulated annealing,” in Proceedings of
the International Symposium on Computational Intelligence and
Design (ISCID ’09), pp. 324–329, December 2009.

[13] P. Pandunata and S. M. H. Shamsuddin, “Differential Evolution
optimization for Bezier curve fitting,” in Proceedings of the 7th
International Conference on Computer Graphics, Imaging and
Visualization (CGIV ’10), pp. 68–72, August 2010.

[14] F. Yoshimoto, T. Harada, and Y. Yoshimoto, “Data fitting with
a spline using a real-coded genetic algorithm,” Computer Aided
Design, vol. 35, no. 8, pp. 751–760, 2003.

[15] J. H. Holland,Adaptation in Natural and Artificial Systems, Uni-
versity of Michigan Press, Ann Arbor, Mich, USA, 1975.

[16] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm
optimization,” in Proceedings of the International Conference on
Evolutionary Computation, pp. 1945–1950, 1999.

[17] M. Dorigo, Optimization, learning and natural algorithms
[Ph.D. thesis], Politecnico di Milano, Milano, Italy, 1992.

[18] M. Montazeri and A. Safari, “Tuning of fuzzy fuel controller for
aero-engine thrust regulation and safety considerations using
genetic algorithm,” Aerospace Science and Technology, vol. 15,
no. 3, pp. 183–192, 2011.

[19] K. Price and R. Storn, “Differential evolution,” Dr. Dobb’s
Journal, pp. 18–24, 1997.

[20] A. R.Mehrabian and C. Lucas, “A novel numerical optimization
algorithm inspired from weed colonization,” Ecological Infor-
matics, vol. 1, no. 4, pp. 355–366, 2006.

[21] P. Bezier,TheMathematical Basis of the UNISURF CAD System,
Butterworths, London, UK, 1986.

[22] K. Lee, Principles of CAD/CAM/CAE Systems, Addison-Wesley
Longman, 1999.

[23] M. G. Cox, “The numerical evaluation of B-spline,” Journal of
the Institute of Mathematics and Its Applications, vol. 15, pp. 95–
108, 1972.



Mathematical Problems in Engineering 15

[24] C. de Boor, “On calculating with B-splines,” Journal of Approxi-
mation Theory, vol. 6, pp. 50–62, 1972.

[25] W. Ma and J.-P. Kruth, “NURBS curve and surface fitting for
reverse engineering,” International Journal of Advanced Manu-
facturing Technology, vol. 14, no. 12, pp. 918–927, 1998.

[26] D. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning, Addison-Wesley, 1989.

[27] U. K. Chakraborty, Advances in Differential Evolution, Springer,
2008.

[28] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proceedings of the IEEE International Conference on Neural
Networks, pp. 1942–1948, December 1995.

[29] R. C. Eberhart and Y. Shi, “Particle swarm optimization: deve-
lopments, applications and resources,” in Proceedings of the
IEEE Conference, 2001.

[30] H. T. FeiGao, “Particle swarm optimization: an efficient method
for tracing periodic orbits and controlling chaos,” in Proceedings
of the International Conference on Complex Systems and Appli-
cations, Watam Press, 2006.

[31] M. Montazeri, S. Jafari, and M. R. Ilkhani, “Application of par-
ticle swarm optimization in gas turbine engine fuel controller
gain tuning,” Engineering Optimization, vol. 44, no. 2, pp. 225–
240, 2012.

[32] A. R.Mallahzadeh,H.Oraizi, andZ.Davoodi-Rad, “Application
of the invasive weed optimization technique for antenna con-
figurations,” Progress in Electromagnetics Research, vol. 79, pp.
137–150, 2008.
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