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A B S T R A C T

A probabilistic modelling approach was developed and applied to investigate the energy and environmental
performance of an innovative sanitation system, the “Nano-membrane Toilet” (NMT). The system treats human
excreta via an advanced energy and water recovery island with the aim of addressing current and future sani-
tation demands. Due to the complex design and inherent characteristics of the system’s input material, there are
a number of stochastic variables which may significantly affect the system’s performance. The non-intrusive
probabilistic approach adopted in this study combines a finite number of deterministic thermodynamic process
simulations with an artificial neural network (ANN) approximation model and Monte Carlo simulations (MCS) to
assess the effect of system uncertainties on the predicted performance of the NMT system. The joint probability
distributions of the process performance indicators suggest a Stirling Engine (SE) power output in the range of
61.5–73W with a high confidence interval (CI) of 95%. In addition, there is high probability (with 95% CI) that
the NMT system can achieve positive net power output between 15.8 and 35W. A sensitivity study reveals the
system power performance is mostly affected by SE heater temperature. Investigation into the environmental
performance of the NMT design, including water recovery and CO2/NOx emissions, suggests significant en-
vironmental benefits compared to conventional systems. Results of the probabilistic analysis can better inform
future improvements on the system design and operational strategy and this probabilistic assessment framework
can also be applied to similar complex engineering systems.

1. Introduction

In many developing countries, providing people with access to safe
drinking water and hygienic sanitation facility is a key challenge to
prevent the spread of infectious diseases. Globally, it is estimated
around 2.4 billion people currently have no access to adequate sanita-
tion facilities [1]. The conventional water flush toilet, widely available
in the developed countries, is an inefficient use of water resources and
requires intensive use of energy [2]. In addition, it requires public in-
frastructure including water supply, sewer and waste water treatment
works, therefore is not feasible for low-income developing regions, in-
cluding Sub-Saharan Africa. In densely populated urban areas, in-
creasing the coverage of improved sanitation facilities is of particular
urgency, due to the potential scale of disease outbreak. Sustainable ‘off-
grid’ decentralised sanitation technologies are widely promoted by
many international initiatives [3], as they are more suitable for regions
with poor infrastructure. Sanitation systems such as rainwater-flushed-

toilets, waterless urinals and composting toilets have been suggested in
various studies as potential solutions to reduce or eliminate the use of
potable water and improve rural health conditions [3,4]. Despite the
availability of such technologies, there remain significant technical and
societal barriers which hinder the wide application of these sanitation
technologies. Therefore, there are still strong technological and hu-
manitarian incentives for the development of novel sanitation systems
to improve the quality of life and disease control.

The ‘Reinvent the Toilet Challenge’ of the Bill and Melinda Gates
Foundation is set to develop affordable, next-generation sanitary sys-
tems that can work without connection to external water, energy or
sewerage systems [5]. The Nano-membrane toilet (NMT) project de-
veloped at Cranfield University provides an example of such an in-
novative solution for an off-grid, household-scale toilet that is able to
treat human waste safely onsite [6]. The NMT unit is designed to op-
erate without external energy and water supply under steady condi-
tions. It integrates a membrane to recover clean water from urine and a
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compact energy conversion system to treat human faeces thermally.
Recent studies confirmed that gasification and combustion are viable
thermochemical technologies for the conversion of settled solids from
human excreta into chemical or thermal energy [2,7,8]. Thus, the NMT
has the potential to achieve self-sustained operation if energy recovery
is optimised. Similarly to the development of any novel integrated
process, process modelling is essential at the design stage to optimise
the NMT system. Previous modelling efforts have focused on using
thermodynamic equilibrium models [7], to simulate the thermo-
chemical conversion of human faecal matter and to explore the ther-
modynamic viability of the NMT concept. Similar thermodynamic
models have been applied widely to examine the conversion of various
feedstocks including refinery sludge, sewage sludge and manure
[9–11]. The traditional approach using deterministic data can reliably
predict the system’s performance under any specified operating condi-
tions and feedstock characteristics. This provides insights into complex
processes and allows the identification of critical parameters and op-
timum operating conditions [12,13]. A key limitation of such de-
terministic models is that they do not consider the effect of un-
certainties of the input variables that are inherent in real life
engineering systems, which are particularly relevant in the context of
the NMT system, considering the highly stochastic properties of input
variables (e.g. faeces and urine composition). Therefore, performance
assessment using the deterministic approach provides an evaluation of
the response of the system subject to fixed characteristic input values;
however, it does not provide a definitive representation of the actual
system’s performance that is often subjected to random fluctuations in
the external and internal operating conditions [14].

This study presents the probabilistic thermodynamic performance
assessment of the energy and water recovery system of the NMT based
on an improved thermodynamic model of the NMT system. The system
uncertainties arising from the stochastic characteristics of the input
variables and their impact on the predicted performance of the NMT
system were evaluated using an updated version of the probabilistic
performance framework [15,16] as shown in Fig. 1. This probabilistic
modelling approach constitutes a non-intrusive formulation that se-
quentially combines a finite number of deterministic thermodynamic
process simulations using artificial neural network (ANN) approxima-
tion models and Monte Carlo simulations (MCS) to map the response
domain of the system under varying inputs. The outcomes of the ana-
lysis can enable a better interpretation of the system performance and
support decisions for further optimisation from a design, operation and
maintenance perspective. Novelty of this work is on the fact that the

developed framework can be further applied in relevant complex en-
gineering systems where uncertainties of inputs can significantly affect
their performance and the use of ANNs can allow for confident eva-
luation of probabilities taking into account non-linear behaviour of
performance indicators with respect to these uncertain inputs.

2. Methodology

2.1. Deterministic process & model description

The thermodynamic performance of the energy and water recovery
system of the NMT unit is evaluated using a high fidelity deterministic
process model, which is a revised version of the model described earlier
by the authors [7]. All the processes both in the original and revised
schemes were modelled in Aspen Plus simulation software (AspenTech
Ltd., UK) using the thermodynamic equilibrium. The conceptual design
of the NMT is shown in Fig. 2. Briefly, the urine, unbound water and
partially-recovered bound water are first separated from human excreta
by physical settlement to yield the supernatant and settled wet solids.
The supernatant (primarily urine) is then purified by a hollow-fibre
membrane to remove pathogens and odorous chemicals, whilst the
settled wet solids are partially-dried in a dryer heated using the hot
exhaust gas leaving the combustor, before entering a combustor for
energy generation. This combustion process uses an excess of air to
complete the conversion of the chemical energy in the settled solids to
thermal energy. A SE is attached to the wall of the combustor (hot-end)
and recovers thermal energy to generate electricity [17]. Membrane
liquid-solid separation SE and the combustor enable the NMT unit to
achieve its operational heat and power requirement, therefore main-
taining a self-sustained operation.

Previous studies from this research group [2,7] have considered the
use of steady-state process modelling to describe the conceptual energy
and water recovery systems of the NMT. The models described in these
studies consider: (i) the faecal solids and resulting ash to be non-con-
ventional streams, and the gases to have ideal behaviour; (ii) the solid
transportation of the settled solids via a conveying and dewatering
screw with specific power requirement of 200 J/kgsettledsolids; (iii) the
drying of the settled solids in a stoichiometric reactor coupled to a flash
separator which receives the waste heat from the exhaust gas of the
combustor; and, (iv) the thermochemical conversion of the partially-
dried settled solids in a combustor using Yield and Gibbs minimisation-
based reactors. Furthermore, the Pseudo-Stirling engine is considered to
be an ideal cycle with an isentropic compressor and expander, and there

Nomenclature

φ neuron output
θ artificial neural network layer bias
y artificial neural network output
f neuron activation function
ER equivalence ratio

wi artificial neural network node weight
ui stochastic variable
eNOx specific NOx emissions (in mg NOx kW he−1)
eCO2 specific CO2 emission (in mg CO2 kW he-1)
ṁNOx rate of NOx emission (kg s−1)
ṁCO2 rate of CO2 emission (kg s−1)
Ẇnet net power output of the integrated system
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Fig. 1. Overview of the probabilistic performance assessment framework.
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is a supply of air from a compressor fan to cool the engine.
In this study, a number of modifications to the previous model were

found to be necessary to achieve a more accurate simulation of real
operational conditions. In the updated model, SE is modelled as a closed
regenerative cycle, where the working fluid continuously operates
within the expansion and compression spaces with net conversion of the
heat energy to mechanical work. In addition, the compressor fan for an
air supply to cool the SE was removed from the design to reduce system
energy demand. To further improve the heat efficiency of the system,
the heater component of the SE receives heat directly via conduction
from the combustor wall rather than from the hot flue gas. As such, the
heater and cooler components are modelled with HEATER blocks at
temperatures of 600 °C and 50 °C respectively. The regenerator is

modelled using a HeatX block with a hot/cold outlet temperature ap-
proach of 10 °C. The heater temperature is assumed to be the tem-
perature of the working fluid and the maximum operating temperature
of the SE. In addition, the combustor is modelled with a restricted
temperature approach of 600 °C which ensures that the unit reaches the
minimum temperature for the conversion of the partially-dried settled
solids. To improve overall energy efficiency, 40% (on mass basis) of the
exhaust flue gas is recycled back into the dryer to improve water re-
moval in the settled solids. When leaving the dryer, the residual heat in
the flue gas (∼60 °C) is used to preheat the supernatant to the tem-
perature desirable for the hollow-fibre membrane that recovers water
from the supernatant (illustrated as the red dotted line in Fig. 2). Si-
milarly to the previous work, a simplified membrane water separation
modelling approach was adopted as described by Hanak et al. [7] to
account for the polypropylene membrane with a parallel flow config-
uration of a typical surface area of 0.5 m2.

An auxiliary energy requirement of 1643 J/kgsettledsolids is con-
sidered to accommodate the energy requirements for ignition, control
and automation. A faeces generation rate of 0.21 kg/cap/day and urine
generation rate of 1.5 dm3/cap/day are considered as the daily treat-
ment requirement. These estimations are based on the range of values
reported in [18–21] and apply to a domestic-scale toilet in a ten-people
household. The compositions of the settled solids and the supernatant
are summarised in Table 1 and the detailed operational conditions of
the considered system are listed in Table 2.

2.2. Probabilistic modelling approach

The probabilistic assessment framework developed in this study
comprises seven definitive stages (Fig. 1). These stages are connected
discretely, allowing for high fidelity tools to be employed and alle-
viating the need for an integrated probabilistic performance assessment
model. Firstly, the process model of the system was developed in Aspen
Plus, adopting modifications as described in Section 2.1. Secondly, key
input variables and performance indicators of the process model were

Fig. 2. An optimised energy and water recovery system for the Nano Membrane Toilet.

Table 1
Human excreta composition.

Settled Solids [2] Supernatant [22]

Component Dry Basis
(wt.%)

Component As received (wt.
%)

Proximate Analysis Mass concentration
Fixed carbon 0 Water 97.2
Volatile matter 82.6 Urea 1.38
Ash 17.4 Sodium chloride 0.82
Moisture (as received

basis (wt.%))
77.0 Potassium chloride 0.17

Dry Basis
(wt.%)

Potassium sulphate 0.27

Ultimate analysis Magnesium sulphate 0.08
Carbon 50.8 Magnesium

carbonate
0.01

Hydrogen 6.8 Potassium
bicarbonate

0.07

Oxygen 20.9 Lysine 0.01
Nitrogen 4.1 Asparagine 0.01
Ash 17.4 Phenol 0.03
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identified. Subsequently, stochastic variables in the process model and
their statistical representation were assigned. Then, the approximation
model was developed by mapping the response domain of the complex
system based on the design matrix generated from the process model.
Finally, a probabilistic performance assessment was conducted using a
series of MCS to generate the joint probability density curves for the key
process performance indicators. This was achieved by estimating the
values of these indicators using the input dataset that contains one
million sets that have been randomly generated according to the as-
signed distributions of the input variables. The selected resolution was
determined sufficient following a sampling convergence study.

The process model indicates that there are 13 key input variables

(Table 3) that influence the performance of the energy and water re-
covery systems of the NMT. A sensitivity study was conducted using
a± 10% increase or decrease in the mean value of the key statistical
parameters of the stochastic variables to determine their effect on the
five key process performance indicators: SE power output, net system
power output, water recovery performance, CO2 and NOx emissions.
The variables were assumed to be normally distributed since the dis-
tribution of the random variables was not known and the optimum
specifications have not yet been identified. This generalisation of the
stochastic variables using normal distribution is widely applied in the
study of unknown real-valued random variables. In this probabilistic
study, the distribution may not be the closest representation of the
stochastic variables included, it is nevertheless the best available so-
lution to gain more quantitative insights on the relationships between
input and output variables. In addition, the probabilistic approach en-
ables sensitivity analysis to be carried out to reveal the level of con-
tribution of each stochastic variable to the system performance un-
certainties. Therefore, more critical variables identified in a sensitivity
analysis can be further studied in order to define them more accurately.

Due to expected high uncertainties in operational parameters, a
reliability approach based on MCS was used in this study to generate
representative samples from stochastic distributions. There are other
reliability methods including first and second order reliability methods
(FORM/SORM); however, compared with MCS, these methods

Table 2
Initial design conditions for the revised energy and water recovery system.

Parameter Value

Equivalent ratio (ER) 1.1
Specific power requirement for screw conveyor (J/kgsettledsolids) 200
Auxiliary power requirement (J/kgsettledsolids) 1643
Isentropic efficiency of air fan (%) 90.0
Mechanical efficiency of air fan (%) 99.8
Sweep Air Mass Flow (kg/day) 54.9
Combustor Restricted Approach Temperature (°C) 600
Dryer Temperature (°C) 105
Fraction of Exhaust Vented (%) 60
Exhaust Temperature (°C) 280
Desired moisture content of dried solids (wt.%) 20
Air preheater approach temperature (°C) 25
Settled solids per cap per day (g) 210
Supernatant per cap per day (dm3) 1.46
Supernatant outlet temperature (°C) 55
Stirling Engine Working Fluid Temperature/Heater Temperature (°C) 600
Stirling Engine Cooler Temperature (°C) 50

Table 3
Stochastic variables and their distribution.

Variable Nominal value Variation

Faeces per capita per day 210 g/cap/day 15%
Urine per capita per day 1.46 dm3/cap/day 15%
Equivalence Ratio (ER) 1.1 5%
Desired moisture content of dried solids 20% 10%
Stirling engine working fluid temperature 600 °C 5%
Stirling engine cooler temperature 50 °C 5%
Combustion Temperature 600 °C 10%
Preheated Air Supply 25 °C 10%
Faeces Ash/Volatile Matter Ratio 0.21 10%
Fraction of Exhaust Vented 60% 10%
Dryer Temperature 105 °C 10%
Exhaust Temperature 280 °C 10%
Sweep Air Mass Flow 54.86 kg/day 10%

Table 4
Deterministic performance indicators of the conceptual energy and water recovery
systems of the NMT.

Indicator Value

Adiabatic Flame Temperature (oC) 1367.2
Exhaust Gas Temperature (oC) 280
Dryer Temperature (oC) 105
Stirling Engine Power Output (W) 65.8
Stirling Engine Power Consumption (W) 397
Stirling Engine Efficiency (%) 16.8
Dryer Heat Requirement (W) 41.2
NMT Net Power Output (W) 22.3
NMT Heat Input (W) 88.8
NMT Net Efficiency (%) 25.1
Water Recovery Efficiency (%) 74.1
Total CO2 and CO emissions (kg/kgsettled solids) 0.42
Total NOx (kg/kgsettled solids) 0.02

a) Neural network training performance  

b) Training and test data error histogram 
Fig. 3. ANN training performance.
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introduce one more stage of approximation leading to further un-
certainties in the derived solution.

2.3. Stochastic response approximation model using artificial neural
network

The ANN method was adopted to develop a robust approximation
model that can provide the process input for probabilistic assessment.
This method was selected, since stochastic analysis with direct simu-
lations requires a large number of iterations and high computational
effort – processes that could not be achieved directly in the Aspen Plus
environment. For this reason, the study utilises the deterministic

process model described in Section 2.1 to generate the design matrix,
which in turn was used to develop the approximation model. Such a
model links the process input variables to the output variables, the
latter of which can be considered as input variables to the deterministic
model.

ANN is inspired by the structure of biological neural networks and
the process they utilise to solve problems [23]. As opposed to the
conventional approximation models, such as surrogate or response
surface modelling, ANN ‘learns’ the relationships between the inputs
and outputs by training [24]. It is also known to be able to reliably
represent multiple outputs considering multiple inputs [25], even if the
system’s behaviour is highly non-linear [24]. The most common

a.) Probability distribution of Stirling engine
power outputs 

b.) Probability distribution of net power outputs 
Fig. 4. Assessment of thermodynamic performance.
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structure of the ANN comprises an input layer, one hidden layer with
sigmoid neurons, and an output layer with linear neurons [24,26]. The
input to each neuron can be the network input from the input layer, the
output of the neuron in the previous layer, and an externally applied
bias [23]. The output of each neuron is the function of the weighted
sum of the neuron inputs, with the hyperbolic tangent sigmoid transfer
function (Eq. (1)) used in the hidden layer and the linear function (Eq.
(2)) used in the output layer. The weights and bias are determined in
the training process by minimising the error between the ANN outputs
and the design matrix.
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where φ is the Neuron output; θ is the ANN layer bias; wi is the ANN
node weight and ui is the stochastic variable.

Using the MATLAB Neural Network Fitting toolbox, a two-layer
feed-forward ANN with ten sigmoid hidden neurons and linear output
neurons was developed to map the system response generated from the
process model (based on the design matrix inputs). To ensure an ac-
curate prediction by the ANN, the data in the design matrix were di-
vided between training (70%), validation (15%) and testing (15%)
samples. Neural network training was performed to adjust the weights
of all the connecting nodes until the desired network performance was
reached. The evaluation of network performance is essentially a non-
linear optimisation process and the objective function involves mini-
misation of an error function, e.g. mean squared error (MSE). In this
study, the Bayesian regularisation training algorithm was used to obtain
the optimal values of the adjustable parameters, weights and biases.
The MSE performance function (Eq. 3) was used to assess the network
performance.
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where, zi = the targets, yi= network outputs and N=data size.

2.4. Performance assessment

The design goal of the NMT unit is to generate a sufficient amount of
electricity for the entire system to become self-sustained and this is in
addition to the need for maximum water recovery efficiency from the
system. As such, the key performance indicators considered in this

study for the deterministic and probabilistic process models are: (i)
power output of the SE (WS), which indicates the mechanical work
recovered from the waste heat; (ii) net power output of the entire
system (Wnet), which indicates any excess power available after the
systems’ power requirements are satisfied; (iii) water recovery effi-
ciency (ηWRE); and (iv) net emissions including CO2 and NOx (re-
presented as NO2 in the ASPEN model). The indicators were obtained
using Eqs. (4-7).
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where WDRYER, WCRUSHER, WSWPAIR, WFEEDER, WURPUMP, WAIRFAN, WMEMB,
WAUX are the power requirement (W) for the dryer, crusher, sweep-air
pump, settled solids feeder, urine pump, compressor air fan, membrane
and auxiliary components respectively. m ṁ MEMB and ̇ URHEATER
represent the mass flow of membrane outlet and supernatant heater re-
spectively, while v vMEMB and ̇ URHEATER refer to the vapour fraction
of the membrane outlet and supernatant heater respectively.
m ṁ URINE and ̇ FAECES represent the mass flow of water in urine and
faeces respectively. mĊ is the moisture content of the faeces (wt.%).
e eandCO NOx2 correspond to specific emissions, while m ṁ and ̇CO NOx2 are
the net emissions in g/hour for CO2 and NOx respectively.

3. Results

3.1. Deterministic performance assessment

The performance assessment of the conceptual energy and water
recovery system of the NMT from the deterministic process simulation,
is presented in Table 4.

The results show that the main energy-intensive component of the
NMT system is the dryer, which requires 41.2W, i.e. ∼62% of the SE
power output. This value is the energy required to reduce the moisture
content of the faeces from 77 to 20wt% (as received basis). Other
system components for transportation, ignition, control and automation
require∼2.3 Wh/kgsettled solids. As such, the net efficiency of the NMT is
deduced to be ∼25% at net power output of 22.3W per hour of op-
erating the system. In this case, the equilibrium model assumes that the
fuel is completely converted to energy, and the combustor reaches an
adiabatic flame temperature of 1367.2 °C under a restricted tempera-
ture approach of 600 °C.

Furthermore, the results show that the power consumption of the SE
is ∼397W per hour of operation. This energy accounts for the heat
recovered from the combustor and regenerated from the cyclic expan-
sion and compression processes. Thus, the SE power output of 65.8W
places the SE efficiency at 16.8%, a value that is within the range re-
ported in [27–29]. In terms of net emissions, the system produces
0.42 kg of CO2 emissions and 0.02 kg of NOx emissions per kg of settled
solids. This corresponds to specific CO2 emissions of 1.66mg/kW h and
specific NOx emissions of 0.08mg/kW h. Canova et al. [30] reviewed
the emission data for various technologies, including fuel-lean burn
systems, and reported some specific NOx emissions of 650–1500mg/
kW he for large electric power systems and 208mg/kW he for boilers of
different sizes and types. Goyal et al. [31] reported the specific CO2

emission index for a micro-capacity single cylinder diesel engine at fuel

Fig. 5. Probability distribution of water recovery efficiency.
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load to be 0.59 kg/kW he and 0.48 kg/kWhe under single generation
and combined heat and power mode respectively. Khatri et al. [32] on
the other hand showed that the emission rates varied from 0.12 to
0.19 kg/kW h (full to no load case) in a micro-trigeneration system. The
outcomes in this study are thus comparable to those of conventional
fuels and systems.

The above deterministic assessment and those published elsewhere
[7] predict that high water recovery efficiency and positive energy gain
can be achieved from the NMT system. However, these outcomes de-
monstrate the key design targets for the self-sustainable operation of
the NMT and provide the system’s performance under specified

operating conditions. The analysis excludes the stochastic character-
istics of the input variables and offers no information on the probability
of achieving this performance outcome (i.e. system reliability). For
instance, key variables such as settled solids and supernatant per capita
per day, as listed in Table 3, have a wide range of reported values
[2,33,34]. Rose et al. [19] report, on average, a healthy individual
generates faecal wet mass values in the range of 51–796 g/day. When
individual variation is accounted for, the range extends to 15–1505 g/
cap/day. These generation rates varied in terms of age, diet, body
weight, average daily food intake and country (as subject to economic
and health status). The study also reports a range of urine generation

a) Probability distribution of CO2 emissions 

b) Probability distribution of NOx emissions 
Fig. 6. Probability distribution of net emissions.
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rates of 0.6–2.6 dm3/cap/day. Such input variations can affect the
probabilities of achieving a specific performance indicator and cause
uncertainty in the overall performance of the NMT. This subsequently
can affect the unit’s commercialisation and market uptake. Therefore,
uncertainties that reside within the NMT unit must be appraised
alongside its environmental impacts in order to establish the wider
application of the technology. A quantitative probabilistic analysis al-
lows the further understanding of how stochastic variables influence
the outcome of the performance model by predicting the operating
envelopes of the systems’ parameters under uncertain input conditions.
The output of the analysis can inform future improvements on the unit,

both with regard to its design and its operational strategy.

3.2. Neural network performance training results

Fig. 3a exhibits the training, validation and test errors. Clearly the
final mean-square error is small, and the test set error and validation set
error have similar characteristics, indicating a model of high predictive
quality.

Training was stopped at the lowest MSE for the validation set before
the MSE started to increase (Fig. 3a), therefore there is no indication of
the onset of overfitting. Typically, during the training process the error

a) Stirling engine power output

b) Net system power output
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Fig. 7. Percentage contributions of the input variables to power outputs.
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decreases indefinitely with the increasing number of hidden nodes or
training cycles, as shown in Fig. 3a. However, a subsequently slowed
reduction in error was observed. This is attributed to the excessively
large number of training cycles due to network memorisation, in ad-
dition to the use of a large number of hidden nodes causing overfitting.
The final (optimal) neural network architecture is obtained at the onset
of the increase in test data error [35]. In addition, as shown in Fig. 3b,
the majority of the training and test data are close to the zero-error
baseline; therefore, there is no indication of significant data outliers,
which are data points where the fit is significantly worse than the
majority of the data.

3.3. Probabilistic performance assessment

3.3.1. Net & stirling engine power output
The joint probability density functions of both net system and SE

power outputs are plotted in Fig. 4a and b. The results show negatively-
skewed normal distributions, indicating non-linear correlations be-
tween power outputs and the stochastic parameters. The skewness of
both distributions strongly suggests high probabilities of achieving
higher power outputs. Thus the probability plot in Fig. 4a suggests that
the SE can achieve a positive power output in the range of 61.5–73W at
a 95% confidence interval (CI). A high probability is also observed with
80% CI that the engine can reach a reasonable power performance
between 64.6 and 70W.

The probability plot of net system power output (Fig. 4b) shows
there is a high probability at a 95% CI for the NMT to achieve positive
net power output within the range of 15.8–35W. Previous deterministic
study [7] estimated a value of 1.9W for net system power output;
however, the probability analysis carried out in this study indicates that
the energy performance of the NMT, as previously estimated using the
deterministic method, was conservative. Compared to deterministic
analysis, it is clear that the probabilistic results provide a more mean-
ingful interpretation of the system performance and approve with high
confidence the NMT design concept to be energetically self-sustained,
despite the uncertainties inherent in the system.

3.3.2. Water recovery performance
The use of membrane technology in the NMT unit enables it to

achieve a high percentage of clean water recovery from urine and faecal
matter. The recovered water can be recycled for irrigation, cleaning

etc., thus providing additional environmental and socio-economic
benefits for regions with severe water shortages. The cumulative
probability in Fig. 5 shows conclusively (at∼ 100% probability) that
across the whole operational envelope and considering all stochastic
variables, the system consistently produced a high percentage of water
recovery between 72 and 76.6%, offering considerable environmental
benefit in water saving.

3.3.3. CO2 and NOx emission assessment
Similarly to the combustion of any fuel, there are environmental

concerns associated with emissions when burning human faeces. In this
study, environmental emissions include CO2 and NOx because of the
content of C and N in the initial faecal matter. As such, it yields its
carbon and nitrogen under oxidation to produce CO2 and NOx (parti-
cularly at high temperatures).

The probabilistic analysis suggests that CO2 and NOx emissions from
the combustion of the faecal matter are not affected by the stochasticity
of the input variables. Net specific CO2 and NOx emissions (per kg of
settled faecal matter) are found at 0.42 kg and 0.02 kg respectively with
extremely low variances (Fig. 6). This is expected due to the assumption
of the complete combustion of faecal matter. As assumed in this study,
an NMT unit receives 2 kg of settled faecal matter per day in a ten-
people household; the system will, therefore, produce 0.82 kg CO2 and
0.04 kg NOx per day. This is equivalent to ∼306 kg CO2 and 14.6 kg
NOx emissions per year.

Compared with a conventional flush toilet, the waterless design of
the NMT also considerably reduces the CO2 emissions associated with
potable water supply and wastewater treatment. A typical flush toilet
on average uses 36 L of water per person per day [36]; therefore for a
ten people household, the annual water saved from using NMT would
be 131,400 L (36 L× 10 people× 365 days) In addition, this results in
the discharge of the same amount of waste water into the sewerage
system. Considering the UK figures for potable and waste water, the
associated CO2 emissions are 0.452 and 0.781 g litre−1, respectively
[37], the CO2 emissions saved from flush water would be at ∼160 kg
CO2 annually.

4. Sensitivity analysis and operational implications

The sensitivity analysis is based on an assessment of an increase or
decrease of 10% in the mean value of the key statistic parameters of the
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Fig. 8. Percentage contributions of the input variables to water recovery efficiency.
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stochastic variables and reveals the varying impact that the input
variables have on the process performance indicators. The outcomes of
the sensitivity analysis are presented in Tornado plots in Figs. 7–9.

Fig. 7a and b show that the SE heater temperature, and hence the
working fluid temperature, is the most significant variable to affect the
SE and net system power outputs. It was observed that a 10% increase
in the heater temperature increased the SE power output by ∼10% and
conversely. The magnitude of the effect was considerably larger on the
net system power output, at around 31%. These results were expected
because the maximum temperature of the SE is at the heater, i.e. the
hot-side of the engine connected to the combustor wall, and conse-
quently any waste heat not recovered from the combustor is lost to the
environment and contributes to heat transfer losses. By contrast, an
increased heat input at this point indicates the potential to recover
more energy for the system. The result also shows that a 10% increase

in the cooler temperature decreases both the engine and net system
power outputs, though to a lesser degree (∼1% for SE power output
and ∼2% for net system power output). This is due to a reduced ca-
pacity of the working fluid to recover waste heat from the system.

Since the SE is the key component of the unit that converts heat
energy into mechanical work, it is essential to pay attention to the
design and operational factors that can affect the engine’s efficiency.
Various factors can be considered to improve the performance and ef-
ficiency of the SE, such as having a low total dead volume ratio, high
heat transfer rate, and low pressure and work losses, increasing the heat
source temperature and decreasing the heat sink temperature, or op-
erating at an optimum frequency. Thus, the dead volume ratio is re-
duced by reducing the clearance between the expansion and compres-
sion spaces. A continuous cyclic operation with consistent heat transfer
and regeneration reduces pressure and work losses. Improving the

a) Net CO2 emissions

b) Net NOx emissions
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Fig. 9. Percentage contributions of the input variables to emissions.
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temperature distribution in the hot expanding and cold compression
spaces enhances the heat transfer rates and decreases thermal resistance
[38].

Further improvements in system performance can be achieved using
structural dynamic analysis. The heat transfer rate via the heater, cooler
and regenerator can be improved with the use of materials and fluids
with relatively high thermal conductivity. The effectiveness of the heat
exchangers can be improved using fin structures to increase the surface
area and improve the heat transfer rate. Precision engineering of the
seal clearance can prevent leaks of the working fluid, depending on
engine configuration. This working fluid can vary from air to inert
gases, and operates across the three heat exchangers of the SE (i.e.
heater, regenerator, and cooler) at different temperatures and occu-
pying variable volumes. Low density gases, such as hydrogen and he-
lium, are more suitable for SE working fluid due to their superior heat
diffusion performance compared to air. It is therefore noted that the
properties of the working fluid can directly affect the performance of
the SE, hence the net system power output.

Other operational variables found to affect net power system out-
puts include dryer and exhaust gas temperatures and fraction of exhaust
vent (FEV) due to their implications for the energy requirements and
efficiency of the dryer. In this study, it is observed that a 10% decrease
of the exhaust gas temperature can result in a ∼4% decrease of net
system power output, whilst a 10% decrease of dryer temperature or
10% reduced FEV both result in ∼3–4% increase of system power
outputs due to reduced energy requirements from the system.

The urine and faeces generation rates are the key stochastic vari-
ables affecting the water recovery efficiency, although their effect is
limited (∼1–2%) as shown in Fig. 8. Since the supernatant (mainly
urine) and faeces contain high water contents, increasing the input of
faeces and urine increases water output. Other variables that affect
water recovery efficiency include FEV, equivalence ratio (ER), ash/
volatile matter ratio (A/V) and dryer temperature. However, a± 10%
change of these variables results in efficiency changes lower than 1%.

Net CO2 emissions are most significantly affected by four key sto-
chastic variables: sweep air mass flow, equivalence ratio (ER, on air-
fuel basis), combustion temperature and the moisture content of the
faecal material (Fig. 9a). All four variables have a known impact on the
formation of combustion products. In this study, it is observed that
reducing the ER value can lead to a more significant reduction of net
CO2 emissions, whilst CO2 emissions are less affected by increasing the
ER. This is because the base-scenario is assumed for the system to op-
erate under a slightly fuel-lean condition (ER=1.1) to achieve more
complete combustion. The decrease in ER reduces the degree of com-
bustion which leads to lower combustion temperature and an undesir-
able progressive production of CO with other unburned hydrocarbon
emissions.

In Fig. 9b, the results show that net NOx emissions increase with an
increased combustion temperature or ER. These results are expected
because the production of nitrogen oxides increases at higher tem-
peratures [39] and under increased oxidation conditions related to
larger air-fuel ratios (i.e. larger ER). At a lower ER, net NOx emissions
are significantly reduced because they are produced at lower combus-
tion temperatures. This indicates that an improved emission perfor-
mance is possible for the NMT if appropriate combustor design and
operational conditions are in place. This includes the engineering de-
sign of the air nozzles, combustion zone and stages, and ignition system
and a proper understanding of the nature and properties of the faecal
material.

This paper has focused on the assessment of the steady-state prob-
abilistic performance of the NMT system, and the results reported have
highlighted the key contributing variables that influence the selected
performance indicators. Variations in the design and operation can be
implemented based on these results in order to achieve more favourable
operational outcomes, i.e. more positive net power output and water
recovery levels, or a reduced variation in the joint probability density,

i.e. a more consistent operation.
Although the analysis in this work is based on steady-state opera-

tion, it should be noted that the system performance is expected to vary
during its transient state or as a result of mechanical degradation. The
latter may be due to various time dependent failure modes/mechan-
isms, such as membrane fouling, or increase of losses in the system,
eventually denoting failure of the unit to fulfil its intended function.
This will occur as a result of the gradual reduction of the mechanical
resistance of the system and at the same time the increase in load effects
which will in sequence denote an increase of the probability of failure
of the system. The framework that has been developed and reported in
this paper can be further applied to account for this performance de-
terioration, considering a time-dependent reliability assessment. This
assessment would quantify the performance deterioration of the system
over time, which in turn would allow for efficient material selection,
specification of the operational envelope and requirements for main-
tenance of key components, reducing downtime of the system and in-
creasing operational availability. This could be achieved through
maximisation of the utilisation factor of different components, inter-
vening just before functional failure occurs.

5. Conclusions

This study demonstrated the feasibility of a novel design of an NMT
powered by energy produced from human faeces. Using a deterministic
process model in combination with an advanced quantitative prob-
abilistic assessment approach, the effect of system uncertainties on the
predicted NMT unit performance (i.e. thermochemical energy conver-
sion into power, water recovery and CO2 and NOx emissions) was de-
termined.

In thermodynamic performance assessment, probabilistic analysis
suggests SE power output can achieve a value in the range of 61.5–73W
with 95% CI. In addition, there is high probability (with 95% CI) that
an NMT unit can achieve positive net power output between 15.8 and
35W. Sensitivity studies reveal the system power performance is mostly
affected by SE working fluid and heater temperature. The probabilistic
analysis shows the current NMT design can achieve 72–76.6% water
recovery across the whole operational envelope. Sensitivity analysis
revealed water recovery was most dependent on the daily loading of
urine and faecal feedstock, exhaust vent fraction and ER. Emission
performance assessment suggests CO2 and NOx emissions are not af-
fected by stochastic variables. Net CO2 and NOx emissions of NMT were
found at 0.42 kg and 0.02 kg per kg of settled wet faecal matter re-
spectively.

The results from this probabilistic study validate the overall NMT
design and provide profound insights into future system optimisation.
Results of the analysis can better inform future improvements on the
system both with regard to its design and its operational strategy.
Further, the framework developed can be applied for similar complex,
non-linear systems, where performance is highly affected by the sto-
chasticity of inputs.
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