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Evaluation of vis-NIR reflectance spectroscopy sensitivity to weathering for enhanced 

assessment of oil contaminated soils 

 

Abstract 

This study investigated the sensitivity of visible near-infrared spectroscopy (vis-NIR) to 

discriminate between fresh and weathered oil contaminated soils. The performance of random 

forest (RF) and partial least squares regression (PLSR) for the estimation of total petroleum 

hydrocarbon (TPH) throughout the time was also explored. Soil samples (n=13) with 5 different 

textures of sandy loam, sandy clay loam, clay loam, sandy clay and clay were collected from 10 

different locations across the Cranfield University’s Research Farm (UK). A series of soil 

mesocosms was then set up where each soil sample was spiked with 10 ml of Alaskan crude oil 

(equivalent to 8450 mg/kg), allowed to equilibrate for 48 h (T2d) and further kept at room 

temperature (21
o
C). Soils scanning was carried out before spiking (control TC) and then after 2 

days (T2d) and months 4 (T4m), 8 (T8m), 12 (T12m), 16 (T16m), 20 (T20m), 24 (T24m), 

whereas gas chromatography mass spectroscopy (GC-MS) analysis was performed on T2d, T4m, 

T12m, T16m, T20m, and T24m. Soil scanning was done simultaneously using an AgroSpec 

spectrometer (305 to 2200 nm) (tec5 Technology for Spectroscopy, Germany) and Analytical 

Spectral Device (ASD) spectrometer (350 to 2500 nm) (ASDI, USA) to assess and compare their 

sensitivity and response against GC-MS data. Principle component analysis (PCA) showed that 

ASD performed better than tec5 for discriminating weathered versus fresh oil contaminated soil 

samples. The prediction results proved that RF models outperformed PLSR and resulted in 

coefficient of determination (R
2
) of 0.92, ratio of prediction deviation (RPD) of 3.79, and root 

mean square error of prediction (RMSEP) of 108.56 mg/kg. Overall, the results demonstrate that 

vis-NIR is a promising tool for rapid site investigation of weathered oil contamination in soils 
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and for TPH monitoring without the need of collecting soil samples and lengthy hydrocarbon 

extraction for further quantification analysis. 

 

Keywords: visible near-infrared diffuse reflectance spectroscopy; weathering; hydrocarbon; land 

management; chemometrics. 

 

1. Introduction 

Globally petroleum hydrocarbons are used widely but their uses have caused contamination of 

soil, water and air mainly during oil production activities, storage and distribution of petroleum 

products and spillage accidents (ATSDR, 1999). Petroleum hydrocarbons are a complex mixture 

of aliphatic and aromatic hydrocarbon compounds, among which certain compounds can pose a 

significant risk to human health and or the environment (Wartini et al., 2017; Cipullo et al., 

2018). While there have been a great deal of studies that have been carried out on developing and 

validating analytical framework for characterizing and quantifying petroleum hydrocarbons in 

soil matrices, they often require soil sampling and then rely on lengthy extraction procedure that 

needs to be carried out in the laboratory (Paiga et al., 2012; Douglas et al., 2017). There is a need 

for the rapid measurement of petroleum hydrocarbons in soil to allow better and swifter site 

characterization and increased confidence in prioritizing remediation actions. Most importantly, 

the concept of taking ‘the lab to the field’ for measuring hydrocarbon contamination in soil 

without compromising data quality and information needs to be demonstrated (Horta et al., 2015; 

Douglas et al., 2017). To this end, field-based techniques offer rapid, non-destructive and cost-

effective means of defining levels and distribution of petroleum hydrocarbons on-site. They also 

provide real-time monitoring data useful for initial site assessment and inform future sampling 

campaign for detailed risk assessment of the contaminated sites. However, one drawback of 
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field-based techniques is that they often fail to determine and quantify the entire range of 

petroleum hydrocarbons, the aliphatic and aromatic hydrocarbon fractions, in soil (Douglas et al., 

2017). 

Once petroleum hydrocarbon are discharged to the environment, they undergo physical, 

chemical and biological processes that further alter their composition, toxicity, availability, and 

distribution in the environment. Such weathering (degradation) processes include adsorption, 

volatilization, dissolution, biotransformation, photolysis, oxidation, and hydrolysis (Brassington 

et al., 2007; Jiang et al., 2016). These processes shift the chemical composition of the 

hydrocarbons towards recalcitrant, asphaltenic products of increased hydrophobicity (Coulon et 

al., 2010). Weathered hydrocarbons are highly complex mixture and are known soil 

contaminants, which in the face of 40 years of petroleum research, are still not adequately 

understood or appropriately characterize for informing contaminated land risk categorization 

(Coulon et al., 2010). Recently, research has been intensified in developing robust analytical 

technique for the identification of weathered hydrocarbons, which are the main sources of the 

organic carcinogens or suspected carcinogens that drive quantitative risk assessment (e.g., 

Benz[a]anthracene, benzo[a]pyrene, chrysene) at oil-contaminated sites (Environment Agency, 

2005). Analytical methods including gas chromatography mass spectroscopy (GC-MS), gas 

chromatography coupled with flame ionization detector (GC-FID), gravimetric analysis, and 

infrared spectroscopy are available for analyzing weathered hydrocarbons; however, the choice 

of technique may be influenced by the risk assessment being used during the remediation of 

contaminated land (API, 2001). 
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Table 1: Previous results of visible near-infrared (vis-NIR) technology performance for the 

analysis of petroleum-contaminated soils at field-scale. 

 
Targeted  

analyte 

N Spectral 

range (nm) 

Modeling 

method 

Statistical parameters References 

TPH 85 350-2500  RF R
2
=0.68, RMSEP=69.64 mg/kg, RPD=1.85 Douglas et al., 

2018a PLSR R
2
=0.54, RMSEP=75.86 mg/kg, RPD=1.51 

PAH 85 350-2500 RF R
2
=0.71, RMSEP=0.99 mg/kg, RPD=1.99 Douglas et al., 

2018b PLSR R
2
=0.56, RMSEP=1.12 mg/kg, RPD=1.55 

TPH 108 350-2500 PSR R
2
=0.70, RMSEP=0.75 mg/kg, RPD=1.86 Chakraborty 

et al., 2015 RF R
2
=0.61, RMSEP=0.70 mg/kg, RPD=1.64 

PLSR R
2
=0.73, RMSEP=0.59 mg/kg, RPD=1.96 

TPH 164 350-2500 FD (PSR) R
2
=0.87, RMSEP=0.528 mg/kg, RPD=2.78 Chakraborty 

et al., 2014 SNV-DT (PSR) R
2
=0.80, RMSEP=0.66 mg/kg, RPD=2.21 

FD (RF) R
2
=0.58, RMSEP=0.95 mg/kg, RPD=1.56 

SNV-DT (RF) R
2
=0.58, RMSEP=0.94 mg/kg, RPD=1.57 

PAH 137 350-2500 PLSR R
2
=0.89, RMSEP=1.16 mg/kg, RPD=3.12 Okparanma et 

al., 2014 

PAH 150 350-2500 PLSR R
2
=0.89, RMSEP=0.20 mg/kg, RPD=2.75 Okparanma et 

al., 2013b 

TPH 205 2000-2500 PLSR R
2
=0.63, RMSEP=5224 mg/kg, RPD=1.5 Forrester et 

al., 2013 

TPH 45 1560-1800 PLSR R
2
=0.94, RMSECV=1590 mg/kg, Bias=0.003 Hauser et al., 

2013 

TPH 46 350-2500 PLSR R
2
=0.64, RMSEP=0.34 mg/kg, RPD=1.70 Chakraborty 

et al., 2010 

TPH 26 1100-2498 SMLR R
2
=0.71, SEP=770 mg/kg, RPD=1.80 Malley et al., 

1999 
N=number of samples, TPH=total petroleum hydrocarbon, PAH=polycyclic aromatic hydrocarbon, R2 = coefficient of determination, RMSEP = 

root mean square error of prediction, SEP= standard error of prediction, RPD = residual prediction deviation, RF=random forest, SMLR, = 

stepwise multiple linear regression, PLSR=partial least square regression, PSR=penalized spline regression, FD = first derivative preprocessing, 

SNV-DT= standard normal variate preprocessing followed by detrending 

 

Reflectance spectroscopy, including visible and near-infrared (vis-NIR) or mid-infrared (MIR) 

spectroscopy, has been shown to be a suitable rapid acquisition method for the measurement of 

hydrocarbon concentration in soil without the need of any sample preparation (Chakraborty et 

al., 2010; Okparanma and Mouazen, 2013a; Horta et al., 2015; Douglas et al., 2018a). More 

details on previous works on the use of vis-NIR spectroscopy for quantifying hydrocarbons in 

soils can be found in Table 1. However, to the best of our knowledge, the application of vis-NIR-

based techniques to differentiate between freshly contaminated versus weathered crude oil 

contaminated soils has not been investigated. Furthermore, no attempts to implement the vis-NIR 
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spectroscopy to quantify the total petroleum hydrocarbon (TPH) in soil, across different stages of 

weathering can be found in the literature. 

The objectives of this study were (i) to investigate the sensitivity of two portable vis-NIR 

spectrophotometers (ASD and tec5) for the discrimination between weathered and fresh oil spill 

in soils using principal component analysis (PCA), and (ii) to quantify TPH in these soils during 

weathering, using partial least squares regression (PLSR) and random forest (RF) modeling 

methods. 

 

2. Materials and methods 

2.1 Study area and soil sampling 

A total of thirteen (n=13) surface soil samples (0-15 cm) with approximately 5 kg per sample 

were collected using a shovel from 10 sites located in Bedfordshire, namely, Avenue, Downings, 

Orchard, Mound, Wood, Copse, Ivy ground, Near Warden, Showground, and Sandpit; all from 

the Cranfield University’s Research Farm, Bedfordshire, UK (Fig. 1). Samples were taken with 

Ziploc bags to the laboratory and stored in the freezer at 4 
o
C prior to utilization. Two and three 

samples were collected for Avenue and Ivy ground fields, respectively, while one samples was 

collected from each of the remaining five fields. The collected soil samples were subjected to 

soil physical and chemical analyses. The soil moisture content (MC) was measured by oven-

drying soil samples at 105 ± 5
o
C for 24 h. Soil pH was measured following the Standard 

Operating Procedure (SOP) of the British Standard BS ISO 10390:2005; the total organic carbon 

(TOC) was determined using a Vario III Elemental Analyser using SOP based on British 

Standard BS 7755 Section 3.8: 1995 and the particle size was determined using SOP based on 

British Standard BS 7755 Section 5.4:1995. 
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Fig. 1. Location of the study area and sampling points collected from 10 sites in Bedfordshire, 

UK.  

  

2.2 Mesocosms setup 

Using 1 kg soil, 13 soil mesocosms (representing all the 13 samples) were set up. Each soil 

sample was spiked with 10 ml of Alaskan crude oil (equivalent to 8450 mg/kg) and allowed to 

equilibrate at room temperature (21 
o
C) for 48 h. Vis-NIR scanning was performed on pristine 

soil (control (TC) - pristine samples dried at room temperature to reduce moisture effect) and 

then after 2 days (T2d) and months 4 (T4m), 8 (T8m), 12 (T12m), 16 (T16m), 20 (T20m), 24 

(T24m); whereas gas chromatography mass spectroscopy (GC-MS) analysis was performed on 
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T2d, T4m, T12m, T16m, T20m,  and T24m. Therefore, data of T8m was excluded from the 

quantitative analysis of TPH. 

 

2.3 Optical measurement and spectra preprocessing 

Soil spectral measurements were done in the laboratory using two vis-NIR spectrophotometers, 

namely, an AgroSpec vis-NIR spectrometer with a spectral range of 305-2200 nm (tec5 

Technology for Spectroscopy, Germany) and an ASD LabSpec2500® (Analytical Spectral 

Devices, Inc., USA), which covers a spectral range of 350–2500 nm. Both spectrometers are 

portable, but use different detectors; ASD uses monochromatic detector while tec5 is equipped 

with a diode array detector.  

Spectral measurement by ASD LabSpec2500® spectrometer in this study followed the protocols 

described by Douglas et al. (2018a). Before scanning, samples were air-dried in order to 

eliminate the effect of moisture content on soil spectral analysis (Mouazen et al., 2006). After 

removal of all plants and pebble materials, three subsamples were prepared from each soil 

sample; these were placed into 3 different Petri dishes (1 cm height x 5.6 cm in diameter), and 

the surface was smoothened gently with a spatula before scanning (Mouazen et al., 2005). This 

was done to achieve optimal diffuse reflection and, thus, a good signal-to-noise ratio. A high-

intensity probe was used for scanning of soil samples, which has a built-in light source made of a 

quartz-halogen bulb of 2727 °K. The light source and detection fibres are assembled in the high-

intensity probe enclosing a 35° angle. The device was calibrated using a 100 % white Spectralon 

disc before use, and after every 30 min. The spectral measurements were made in the dark in 

order to both, control the illumination conditions and reduce the effects of stray light. The three 

replicates of each sample were scanned at three different spots, and an average spectrum was 
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obtained for further analysis. A total of 10 scans were acquired from each replicate, and the 

average spectrum of the three replicates was considered as the sample spectrum.  

Prior to multivariate analysis, three standardized spectral pre-treating approaches (including 

maximum normalization, first derivative, and smoothing) were carried out using R software (R 

Core Team, 2013). Maximum normalization divides each row (spectrum) by its maximum 

absolute value to achieve an even distribution of the variances; the first derivative removes the 

baseline shift to improve the accuracy of quantification (Okparanma et al. 2014; Demetriades-

Shah et al., 1990); and smoothing reduces the impact of noise (Okparanma and Mouazen, 

2013b). These routines were aimed at keeping all useful chemical and physical information in 

the spectra for analysis. 

 

2.4 Gas chromatography and peak integration 

Chemical analysis for TPH concentration was carried out using sequential ultrasonic solvent 

extraction-gas chromatography (SUSE-GC) as described by Risdon et al. (2008) with some 

modifications. Briefly, 5 g of soil sample was mixed with 20 ml of dichloromethane (DCM): 

hexane (Hex) solution (1:1, v/v) and shaken for 16 h at 150 oscillations per min over 16 h; and 

finally sonicated for 30 min at 20 °C. After centrifugation, extracts were cleaned on Florisil
®

 

columns by elution with hexane. Deuterated alkanes and polycyclic aromatic hydrocarbons 

(PAHs) internal standards were added to extracts at appropriate concentrations. The final extract 

was diluted (1:10) for GC-MS analysis. Deuterated alkanes (C10
d22

, C19
d40

 and C30
d62

) and 

PAH (naphthalene 
d8

, anthracene 
d10

, chrysene 
d12

 and perylene 
d12

) internal standards were added 

to extracts at 0.5 µg ml
-1

 and 0.4 µg ml
-1

, respectively. Aliphatic hydrocarbons and PAHs were 

identified and quantified using an Agilent 5973N GC-MS operated at 70 eV in positive ion 

mode. The column used was a Zebron fused silica capillary column (30 x 0.25 mm internal 
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diameter, Phenomenex) coated with 5MS (0.25 µm film thickness). Splitless injection with a 

sample volume of 1 µL was applied. The oven temperature was increased from 60 °C to 220 °C 

at 20 °C min
-1

 then to 310 °C at 6 °C min
-1

 and held at this temperature for 15 min. The mass 

spectrometry was operated using the full scan mode (range m/z 50-500) for quantitative analysis 

of target alkanes and PAHs. For each compound, quantification was performed by integrating the 

peak at specific m/z using auto-integration method with Mass Selective Detector (MSD) 

ChemStation software. External multilevel calibrations were carried out for both alkanes and 

PAH quantification ranging from 0.5 to 2500 µg ml
-1

 and from 1 to 5 µg ml
-1

, respectively. For 

quality control, a 500 µg ml
-1

 diesel standard solution (ASTM C12-C60 quantitative, Supelco) and 

mineral oil mixture Type A and B (Supelco) were analyzed every 20 samples. The variation of 

the reproducibility of extraction and quantification of soil samples were determined by 

successive injections (n=7) of the same sample and estimated to ± 8%. In addition, duplicate 

reagent control and reference material were systematically used. The reagent control was treated 

following the same procedure as the samples without adding soil sample. The reference material 

was an uncontaminated soil of known characteristics, and was spiked with a diesel and mineral 

oil standard at a concentration equivalent to 16,000 mg kg
-1

. Relative standard deviation (RSD) 

values for all the soils was <10%. From the results obtained for alkanes and PAHs, TPH was 

obtained for each sample, and further used for modelling purposes. 

 

2.5 Multivariate analyses 

2.5.1 Principal component analysis (PCA) 

PCA was used for qualitative vis-NIR discrimination of soil samples based on the spectral 

properties of the different contaminated weathering groups. PCA is a multivariate technique that 
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reduces the dimensionality of large multivariate datasets. PCA helps to transform the 

wavelengths (independent variables) into principle components (PCs). Plotting the PCs enables 

one to examine interrelationships among different variables, and detect and interpret sample 

patterns, groupings, similarities, or differences (Martens and Naes, 1989; Mouazen et al., 2006). 

The preprocessed spectra have been used in the PCA; the results showed a similarity map of 

principal PCs, as well as the loadings that can be used to investigate the significant wavebands 

for hydrocarbons. The PCA was performed using FactorMine R-package (R Core Team, 2013).  

 

2.5.2 Quantitative assessment of TPH using PLSR and RF methods 

The preprocessed vis-NIR soil spectra for both ASD and tec5 spectrophotometers coupled with 

the reference laboratory TPH measured by SUSE-GC were used to develop calibration models 

for quantifying TPH through 2 years weathering period. The total number of samples used for 

both PLSR and RF modelling were 78, obtained from 13 soil samples scanned at six occasions 

through 24 months. Sixty (n=60) samples were selected for calibration while eighteen (n=18) for 

prediction (validation). The same calibration and validation datasets used in PLSR were utilized 

for RF analysis. The selection of the samples in the calibration and prediction set was done based 

on the Kennard-Stone algorithm (Kennard and Stone, 1969). Two groups of calibration models 

for TPH were developed, one for tec5 and the second one for ASD spectral data. The intension 

was to evaluate the effect of the spectral range of the prediction accuracy of TPH in the soil 

during 2 years weathering period. 

PLSR is a commonly used multivariate regression technique available in standard statistical and 

chemometric software. It is a combination of both the independent variables (TPH values) and 

the dependent variables (wavelengths), which are used as regression generators for the 
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independent variables. In this study, we use PLSR with leave-one-out cross validation (LOOCV) 

to develop TPH prediction model, using pls package (R Core Team, 2013). It is documented that 

LOOCV annul the possible effect of model under- or over-fittings (Efron and Tibshirani, 1993).  

Random forest is a nonparametric and nonlinear classification and regression algorithm using 

assembly learning strategy that integrates hundreds of individual trees (Breiman, 2001). A 

bootstrap sample is first drawn from the training dataset to build each tree. At each node split, 

the candidate set of the regressor is a random subset of all the regressors. The final prediction of 

a new observation is the average of the predicted values from all the trees in the forest. The 

tuning parameters of RF have been defined based on function implemented in the R software 

package and were set to 500, 2, and 2 for the number of trees (ntree), the number of predictor 

variables used to split the nodes at each partitioning (mtry), and the minimum size of the leaf 

(nodesize), respectively. Models were developed with R program using the software package 

randomForest Version 4.6-12 (Liaw and Wiener, 2015), based on Breiman and Cutler's Fortran 

code (Breiman, 2001). 

 

2.6 Evaluation of model performance 

The performance of TPH prediction models was assessed by means of three parameters: (i) the 

coefficient of determination in prediction R
2
, (ii) root mean square error of prediction (RMSEP), 

and (iii) residual prediction deviation (RPD), which is a ratio of standard deviation (SD) to 

RMSEP. In this study, we adopted the model classification criterion of Viscarra Rossel et al. 

(2006): RPD < 1.0 indicates very poor model predictions, 1.0 ≤ RPD < 1.4 indicates poor, 1.4 ≤ 

RPD < 1.8 indicates fair, 1.8 ≤ RPD < 2.0 indicates good, 2.0 ≤ RPD < 2.5 indicates very good, 
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and excellent if RPD > 2.5. In general, a best model performance would have the highest values 

of R
2
 and RPD, and smallest value of RMSEP. 

 

3. Results and discussion 

3.1 Soil physiochemical properties 

Soil physio-chemical properties (viz. partial size distribution, TOC, and MC) of the different soil 

samples are presented in Table 2. Clay content ranged between 14% and 57%, silt between 15% 

and 27%, and sand between 16% and 63%. However, examining the soil texture type according 

to the United State Department of Agriculture (USDA) classification system, indicates the 

majority of soils in the study fields are on the heavy side of the texture triangle. TOC was high 

with minimum and maximum of 1.62 and 4.48%, respectively. Results indicated a high variation 

in soil texture and TOC among the soil samples. Apart from soil MC, soil texture is the other 

main factor to affect accuracy of vis-NIR spectroscopy. However, since soil samples were 

scanned after air drying, the effect of MC was excluded from spectral analysis. It has been 

reported that small particle size (high clay content) can result in a better model performance 

(Fontán et al., 2010) of soil organic carbon, whereas prediction was reported to be to be less 

accurate in coarse soil textures (Stenberg, 2010). Since the majority of soil textures of the 

samples analyzed in this work were on the heavy side of the texture triangle, the similarity in 

texture is assumed to have minor effect on prediction accuracy of TPH. 
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Table 2: Soil physio-chemical properties of 13 surface soil samples (0-15 cm) collected from ten 

different locations across the Cranfield University’s Research Farm, Bedfordshire, UK. 

Location 

name 
Sample No. Clay % 

Silt 

 % 
Sand % TOC % Texture 

Avenue 1 17 20 63 2.02 Sandy loam 

  2 30 19 51 1.67 

Downings 3 28 19 53 2.3 
Sandy clay 

loam 

Orchard 4 33 26 41 2.32 Clay loam 

Mound 5 16 21 63 1.96 Sandy loam 

Wood 6 42 25 33 2.28 Clay 

Copse 7 38 26 36 2.7 Clay loam 

 8 57 27 16 4.48 Clay 

Ivy ground 9 57 27 16 4.48 Clay 

 11 57 27 16 4.48 Clay 

Near warden 10 57 25 18 3.1 Clay 

Showground 12 24 17 59 1.87 
Sandy clay 

loam 

Sand pit 13 14 15 71 1.62 Sandy loam 

TOC=total organic carbon. 

 

3.2. Spectral data analysis 

Illustrative raw air dry soil spectra and pre-processed soil spectra changes overtime are presented 

in Fig. 2 (note that only T2d, T12m and T20m are shown for clarity).  In both Fig. 2a and c, the 

control soil (TC) reflects higher than the contaminated soils or, in other words, absorb less light 

energy due to the lighter color of samples without oil added.  
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Fig 2. Illustrative example of visible and near infrared (vis-NIR) soil spectra overtime: Control 

pristine soil (TC), and contaminated soil after 48 hours (T2d), 12 months (T12m) and 20 months 

(T20m); Panels a & b showed raw spectra and preprocessed spectra obtained with ASD 

spectrometer; Panels c & d showed raw spectra and preprocessed spectra obtained with the tec5 

spectrophotometer.  

 

It is clearly demonstrated that reflectance decreased or absorption increased when adding crude 

oil, due to the darker color. Among the contaminated soils, the spectral reflectance increased 

(i.e., less absorbance) as weathering of hydrocarbons in soils progresses. Thus, T2d samples had 

the highest absorbance, and this decreased with weathering time. In terms of equipment 

performance, a better discrimination between groups’ average spectra was achieved with the 

ASD spectrometer compared to tec5 spectrometer (Fig. 2). 
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The behavior of control and contaminated spectra observed herein is in line with the conclusions 

drawn by Hoerig et al. (2001). Both ASD and tec5 spectrophotometers captured hydrocarbon 

features around 1731 nm in the first overtone region (Fig. 2b and 2d), which is linked with TPH. 

Our result is not far from those identified by other scientists e.g., 1732, 1758 nm (Douglas et al. 

2018a), 1752 nm (Chakraborty et al., 2015), 1712, 1752 nm (Okparanma et al., 2014). An 

absorption band of hydrocarbons around 2207 nm in the combination region (Fig. 2) was also 

observed in the ASD spectra, a wavelength that is close to those reported by other researchers 

e.g., 2240 nm by Chakraborty et al. (2015), and 2460 nm by Forrester et al. (2013). The other 

absorption bands are associated with other soil properties, e.g., water, clay mineralogy, and 

organic carbon. More details about the hydrocarbon signatures in soils are presented in section 

3.2. 

 

3.2. Qualitative discrimination of weathering groups by PCA 

In order to examine the variability between spectra of the contaminated soils overtime, spectra 

were subjected to PCA, with the aim to extract distinctive spectral features that can assemble 

similar weathered contaminated soils together in distinguished groups. If this can be achieved, 

we can claim that the vis-NIR spectrometers used in this study can differentiate weathered vs. 

fresh oil spill in soils. An scatter diagram of component score for the first and second principal 

components (PC-1, PC-2) is shown in Fig 3a for the ASD spectrometer and Fig 3b for the tec5 

spectrometer. With the ASD spectrometer, PC1 accounted for 94.50% while PC 2 accounted for 

5.10% of variance, with a total of 99.6%. However, a slightly less variance was accounted for by 

the PCA performed on the tec5 spectra (Fig. 3b), with PC1 accounting for 93.30% and PC2 

accounting for 5.12%, which sums up to 98.42% of the total variance. It is noteworthy that the 
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separation patterns of the various weathering group soils achieved with the two portable vis-NIR 

instruments are different; with ASD (Fig. 3a) providing the best visual separation in the principal 

component space. The separation was particularly clear between the non-contaminated (TC) and 

freshly contaminated samples at T2d, obtained with the ASD spectrometer. Different weathering 

groups were formed along the PC1 of the ASD-PCA plot, showing different degree of overlap 

between soil groups of different weathering time, where overlap becomes more evident after 

month 12 and up to month 24 in Fig. 3a. Soil samples at T2d and T4m are better separated from 

the remaining weathering groups (Fig. 3a).  Few samples from T4m overlapped with those of 

T2d, whereas one T4m and few T8m samples were in the neighborhood of the T12m and T24m 

samples. In the case of the T2d and T4m samples, there is less compositional resemblance 

reflected on different spectral signature, whereas more compositional resemblance exists within 

the T12m to T24m samples, resulting in smaller spectral differences of the same sample 

throughout weathering time, and hence the increase of sample overlap. The tec5-PCA plot shows 

less clear separation between different weathering groups (Fig. 3b) compared to the ASD-PCA 

plots. Separation here occurs along the diagonal access between PC1 and PC2 (Fig. 3b). It is 

obvious that TC samples are clearly separated from the other groups, and that more clear overlap 

exists between the remaining groups compared to the ASD-PCA plots. For example, it is odd to 

observe that T4m samples are closer to TC samples, in comparison with T2d samples, which 

were further away from TC samples. Furthermore, samples of T24m and T20m are closer to TC 

samples than the remaining groups with smaller weathering time (e.g., T4m, T8m, T12m and 

T16m).  

Overall, we can conclude that, the ASD spectrometer provided logical and clearer separation of 

the different weathering groups and that instrument’s sensitivity to weathering reduces overtime 
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due to the reduction of the TPH concentration (see discussion below). On the other hand, the 

clear separation observed between the contaminated and TC samples indicate that the two groups 

are compositionally dissimilar. This is in agreement with the results reported by Chakraborty et 

al. (2010), who assessed the ability of vis-NIR spectroscopy to distinguish contaminated and 

non-contaminated soils qualitatively using PCA.  
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Fig. 3 Principal component analysis of the soil scanning profile overtime obtained using (a) ASD 

and (b) tec5 spectrophotometers (TC: control samples (pristine); and contaminated soil samples 

after 48 h (T2d), and months 4 (T4m), 8 (T8m), 12 (T12m), 16 (T16m), 20 (T20m) and 24 

(T24m). 
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Furthermore, PCA loadings were produced to investigate potential wavelengths associated with 

diesel originated hydrocarbon contamination (Fig. 4). In the PCA loadings, an absorption 

minimum was observed at 1730 nm in both ASD and tec5 spectrometers, which is attributed to 

C-H stretching modes of terminal CH3 and saturated CH2 groups linked to TPH in the first 

overtone region. This result is in line with observations from others researchers (Okparanma et 

al., 2014; Workman and Weyer, 2008). Furthermore, typical spectral signatures around 1452 nm 

and 1950 nm were clearly observed in both ASD and tec5 spectrometers. These are associated 

with the second and first overtones of water absorption around 1450 nm and 1950 nm, previously 

reported (Mouazen et al., 2005; Mouazen et al., 2006). Absorption features around 2279 and 

2340 nm were also observed in ASD spectrometer alone. These are associated with metal-OH 

bend and O-H stretch combination and characteristic of clay minerals. The results obtained here 

are similar to those at 2200 and 2300 nm, reported in the literature (Clark et al., 1990; Viscarra 

Rossel et al., 2006b). The absorption band at 2207 nm can be attributed to either amides (C=O) 

absorption (Viscarra Rossel and  Behrens, 2010) or crude oil spectral signatures (stretch+bend) 

(Mullins et al., 1992). Furthermore, this band can be linked to the hydrocarbon concentration that 

can be effective to discriminate between weathering groups (Fig 4a). Therefore, the ASD showed 

a high capability to discriminate between the weathering group, and this is because its full vis-

NIR range spectrum including all the effective waveband associated with hydrocarbons. 
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Fig. 4 Principal Component analysis loadings of the spectral patterns showing the wavelengths 

associated with hydrocarbon fractions, water and mineralogy.   
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3.3 Soil TPH analysis 

The petroleum hydrocarbon profiles and change overtime are illustrated in Fig. 5. Chromatogram 

showed a well-developed series of n-alkanes distribution with carbon band range C10 – C36, but 

with about 85 % of the mixture existing within the range C12 - C28 (Fig 5; T2d). The 

distribution confirms that the hydrocarbon source is weathered (degraded) over time. After 

month 16 and 24, the most prominent residual hydrocarbon fractions were the aliphatic fractions 

C16-C35 and C35-C40, and the aromatic fractions C12-C16 and C16-C21, respectively.  

 

Fig. 5 Illustrative gas chromatography-mass spectrometry (GC-MS) chromatogram showing 

petroleum hydrocarbons fingerprint change overtime. Results are shown for contaminated soil 

samples after 48 h (T2d), after months 4 (T4m), 12 (T12m), 16 (T16m), and 24 (T24m) 

 

Summary statistics of the aliphatic and aromatic fractions as well as the TPH concentrations 

which equal to sum of aliphatic and aromatic fractions are provided in Table 3. These TPH 

values were used for the vis-NIR spectra modeling. Samples were divided into calibration and 
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prediction sets. In the calibration set, the minimum and maximum concentrations of TPH were 

187.5 and 1761.5 mg kg
-1

, respectively. The minimum and maximum concentrations of TPH in 

the prediction set were 186.7 and 1362.4 mg kg
-1

, respectively (Tables 3 and 4). The largest 

reduction in both the aliphatic and aromatic fractions were obtained after month 16 where 50% 

and 38% of the aliphatic and aromatic fractions, respectively, were degraded.  Further to this, 

TPH reduction reached 72% by month 20 and 85% by month 24.  
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Table 3: Descriptive statistics of aliphatic and aromatic fraction concentrations (mg/kg) in 13 soil samples overtime (n = 78). Results 1 

are shown for diesel contaminated soil samples after 48 h (T2d), and months 4 (T4m), 12 (T12m), 16 (T16m), 20 (T20m) and 24 2 

(T24m). 3 

Hydrocarbon 

fractions  

T2d  T4m  T12m 

 

Med Min Max  Med Min Max  Med Min Max 

Aliphatic 

nC10-nC12 48.24 1.55 121.02  40.90 0.87 119.20  32.51 0.44 82.67 

nC12-nC16 63.20 32.97 99.04  50.54 4.19 105.84  37.56 4.54 81.10 

nC16-nC35 34.09 0.14 161.69  18.64 0.15 107.60  25.95 0.21 75.43 

nC35-nC40 0.56 0.02 4.18  0.78 0.04 4.68  0.73 0.01 13.57 

 Total 1259 1113 1642  887.11 813.70 1214.75  880 721 1055 

Aromatic 

nC10-nC12 nd nd Nd  nd nd nd  nd nd nd 

nC12-nC16 3.32 3.25 3.96  3.33 3.26 4.29  3.36 3.10 3.53 

nC16-nC21 3.97 3.26 30.11  4.06 3.21 12.20  3.64 3.10 14.03 

nC21-nC35 6.49 3.50 15.24  5.72 3.36 16.51  3.92 3.10 16.63 

 
Total 82.68 71.59 134.37  81.71 64.77 100.47  56.09 43.10 94.93 

 

TPH 1343.28 1190.78 1716.49  963.83 884.15 1315.23  959.90 802.45 1101.30 

     

 

   

 

   

  

T16m  T20m  T24m 

  

Med Min Max  Med Min Max  Med Min Max 

Aliphatic 

nC10-nC12 21.65 0.64 56.75  6.38 0.14 23.50  2.43 1.01 6.99 

nC12-nC16 29.05 13.82 50.42  13.83 1.80 31.91  7.48 1.05 18.81 

nC16-nC35 19.96 0.16 75.91  10.80 0.03 44.85  3.28 0.01 20.88 

nC35-nC40 0.25 0.01 2.19  0.24 0.01 2.35  0.02 0.01 0.76 

 Total 678 628 774  326 233 421  162 133 185 

Aromatic 

nC10-nC12 nd nd Nd  nd nd nd  nd nd nd 

nC12-nC16 3.24 2.92 3.55  3.30 2.22 3.42  2.37 2.29 3.41 

nC16-nC21 4.29 2.05 7.64  3.77 3.31 6.29  3.32 3.10 4.40 

nC21-nC35 4.47 2.94 7.46  3.54 3.10 5.27  3.34 3.10 6.90 

 
Total 59.12 53.07 62.83  47.35 43.41 62.50  46.20 43.38 50.76 

 

TPH 733.87 687.62 833.98  380.53 279.68 465.40  207.83 178.47 232.64 

nd= not detected, med=median, min=minimum, max=maximum 4 
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Table 4: Statistical summary of total petroleum hydrocarbons (TPH) concentrations of the 5 
collected soil samples measured with gas chromatography-mass spectrometry (GC-MS) for the 6 
different weathering stages in cross-validation and independent validation. 7 

 

N Minimum Mean Median 1st Qu. 3rd Qu. Maximum St. dev 

TPH (mg/kg)         

Cross-validation  60 187.5 773.70 789.20 383.60 990.10 1761.50 133.13 

Independent validation 18 186.7 800.40 838.20 372.50 1121.4 1362.40 40.20 

N = number of samples, 1st Qu. = first quartile; 3rd Qu. = third quartile; St. dev = standard deviation. 8 

 9 

3.4 Models performance for estimating TPH  10 

Table 5 and Figures 6 and 7 summaries the cross-validation and prediction results of TPH based 11 

on PLSR and RF analyses obtained with both the ASD and tec5 spectrophotometers. Generally, 12 

the RF models outperformed the PLSR in cross-validation and prediction for both ASD and tec5 13 

measurements. The results of prediction based on ASD spectra indicated that RF model resulted 14 

in R
2
 of 0.92, RMSEP of 108.56 mg/kg, RPD of 3.79, and RPIQ of 6.90, which outperformed 15 

PLSR model (R
2 

= 0.83, RMSEP = 164.87 mg/kg, RPD = 2.49, RPIQ = 4.54). This was also the 16 

case for tec5 spectra as the RF model (R
2 

= 0.22, RMSEP = 352.71 mg/kg, RPD = 1.16, and 17 

RPIQ = 2.13) outperformed PLSR (R
2 

= 0.11, RMSEP = 422.50 mg/kg, RPD = 0.97, and RPIQ 18 

= 1.77). The current results for both PLSR and RF prediction are better than those reported by 19 

Douglas et al. (2018a, 2018b) using 85 naturally contaminated soil samples collected from the 20 

Niger Delta region of Nigeria. Furthermore, our results for RF prediction are better than those 21 

reported by Chakraborty et al. (2015) using 108 contaminated soil samples (West Texas, USA) 22 

with i) RF modeling method only (R
2 

= 0.61, RMSE = 0.70 mg kg
-1

, RPD = 1.64 and RPIQ = 23 

0.57), and ii) RF combined with penalized spline regression (PSR) RF+PSR (R
2 

= 0.78, RMSE = 24 

0.53 mgkg
-1

, RPD = 2.19 and RPIQ = 0.75). Also, the PLSR prediction in the current study are 25 

better than the results reported by Chakraborty et al. (2010 and 2015), who achieved RPD values 26 

of 1.7 and 1.96, respectively, for field-moist soils (Table 1). A possible reason for the observed 27 
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difference in the present study may be attributed to the combination of spectral pre-processing 28 

(maximum normalization, 1
st
 derivative and smoothing) that represents a vital step in 29 

multivariate calibration and improves the model performance (Mouazen et al., 2010; 30 

Buddenbaum and Steffens, 2012; Nawar et al. 2016). According to Viscarra Rossel et al. (2006) 31 

model classification for RPD, excellent and very good predictions for TPH were achieved with 32 

RF-ASD (RPD = 3.79) and PLSR-ASD (2.49), respectively, whereas using tec5, poor and very 33 

poor results were obtained with RF-tec5 (RPD = 1.16) and PLSR-tec5 (RPD = 0.97), 34 

respectively.  35 

 36 

Table 5:  Summary results of partial least squares regression (PLSR) and random forest (RF) 37 

models in calibration (cross-validation) and prediction (independent validation) for total 38 

petroleum hydrocarbons (TPH) prediction in oil-contaminated soil samples using ASD and tec5 39 

spectrophotometers. 40 

    PLSR       RF     

Instrument 

 

R
2
 RMSEP (mg/kg) RPD RPIQ LV 

 

R
2
 RMSEP (mg/kg) RPD RPIQ ntrees 

ASD 

Calibration  

(n=60) 0.92 113.42 3.60 5.34 6 

 

0.98 44.07 9.28 13.76 500 

 

Prediction 

(n=18) 0.83 164.87 2.49 4.54 4 

 

0.92 108.56 3.79 6.90 200 

tec5 

Calibration  

(n=60) 0.83 164.26 2.47 3.70 8 

 

0.92 111.65 3.63 5.45 500 

  

Prediction 

(n=18) 0.11 422.50 0.97 1.77 8   0.22 352.71 1.16 2.13 200 

R
2
 = coefficient of determination, RMSEP = root mean square error of prediction, RPD = 41 

residual prediction deviation, LV = number of latent variables, ntrees = number of trees, and 42 

RPIQ = ratio of performance to interquartile range. 43 

 44 

The scatter plots of GC-MS measured versus ASD and tec5 predicted TPH concentrations (based 45 

on PLSR and RF models) are shown in Fig. 6 and Fig.7, respectively. Both the ASD and tec5 46 

instruments quantitatively discriminated the soils at their various stages of weathering; however, 47 

a better discrimination was achieved with the ASD instrument. The results herein support the 48 

qualitative separation of the various soil groups by PC score plots illustrated in Fig. 3.  49 
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The TPH wavelength regression coefficients plots shown in Fig. 8 illustrate important 50 

wavebands around 1452, 1730, and 1950 nm for both ASD and tec5 spectrometers. The 1730 nm 51 

wavelength is attributed TPH absorption in the first overtone, which is close to the previous 52 

findings (Douglas et al., 2018a; Okparanma et al., 2014; Workman and Weyer, 2008; Osborne et 53 

al., 2007). The significant spectral signals around 1452 and 1950 nm are associated with water 54 

absorption bands in the second and first overtones, respectively, which accord findings reported 55 

in previous studies (Douglas et al., 2018a; Mouazen et al., 2007). In the ASD spectra, the 56 

spectral signature at 2207 nm may be due to the effect of hydrocarbon in the combination region 57 

around 2220 nm (Chakraborty et al., 2015 Forrester et al., 2013). Interestingly, the absorption 58 

feature around 2279 nm and 2340 nm is the same with the one observed in the PCA loadings 59 

(Fig. 4a). This is characteristic of clay minerals around 2300 nm (Clark et al., 1990). The low 60 

performance of tec5 in separating the different weathering groups (Fig. 4b) and quantitative 61 

assessment of TPH may be attributed to the smaller spectral range (losing important spectral 62 

features to TPH), compared to that of ASD. 63 
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 64 
 65 

Fig. 6 Scatter plots of measured total petroleum hydrocarbons (TPH) using gas chromatography-66 

mass-spectrometry (GC-MS) versus visible and near infrared (vis-NIR) ASD spectrometer 67 

predicted concentrations based on (A) partial least squares regression (PLSR) in (a) cross-68 

validation and (b) prediction, and (B) random forest (RF) in (c) cross-validation and (d) 69 

prediction. Results show clear separation of diesel contaminated groups of different weathering 70 

stages of 48 h (T2d), and months 4 (T4m), 12 (T12m), 16 (T16m), 20 (T20m) and 24 (T24m). 71 

 72 
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 73 

Fig. 7 Scatter plots of measured total petroleum hydrocarbons (TPH) using gas chromatography-74 

mass-spectrometry (GC-MS) versus visible and near infrared (vis-NIR) tec5 spectrometer 75 

predicted concentrations based on (A) partial least squares regression (PLSR) in (a) cross-76 

validation and (b) prediction, and (B) random forest (RF) in (c) cross-validation and (d) 77 

prediction. Results show clear separation of diesel contaminated groups of different weathering 78 

stages of 48 h (T2d), and months 4 (T4m), 12 (T12m), 16 (T16m), 20 (T20m) and 24 (T24m). 79 

 80 
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 81 

Fig. 8 Regression coefficients plots resulted from partial least squares regression (PLSR) 82 

analysis for total petroleum hydrocarbons (TPH) based on visible and near infrared (vis-NIR) 83 

spectra of oil-contaminated soil samples using (a) ASD and (b) tec5 spectrophotometers. 84 

Wavelengths highlighted on the plot are the potential features for TPH. 85 

 86 

4. Conclusions 87 

This pilot study evaluated visible and near infrared (vis-NIR) diffuse reflectance spectroscopy 88 

sensitivity to hydrocarbon concentration differences attributed to weathering for enhanced 89 
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assessment of crude oil contamination in soils. It compared the performance between a full vis-90 

NIR range of 350-2500 nm spectrometer (e.g., ASD) with a short range of 305-2200 nm 91 

spectrometer (e.g., tec5), using two calibration methods of random forest (RF) and partial least 92 

squares regression (PLSR). From the results reported the following conclusions can be drawn:  93 

 Principal component analysis (PCA) showed reasonable separation between the different 94 

weathered soil groups over time. This was true for the ASD spectrometer only, which 95 

was attributed to the large wavelength range of 350-2500 nm, compared to the short 96 

wavelength range (305-2200 nm) of the tec5 spectrometer. However, since total 97 

petroleum hydrocarbon (TPH) content is soil samples decreases with time due to 98 

weathering, the sensitivity of the ASD spectrometer for detecting changes due to 99 

weathering in soils decreases, particularly after 8 months of contamination. 100 

 Both RF and PLSR analyses supported the PCA results for the ASD spectrometer in 101 

separation between different weathering groups, which was again much better that the 102 

separation obtained with the tec5 spectrometer. However, the RF model provided clearer 103 

separation than PLSR. 104 

 Both RF and PLSR demonstrated that TPH can be estimated throughout time up to two 105 

years weathering. However, better estimation of TPH was obtained with RF-ASD model 106 

(R
2 

= 0.92, RPD = 3.79, RMSE = 108.56 mg/kg), compared to PLSR-ASD model (R
2 

= 107 

0.83, RPD = 2.49, RMSE = 164.87 mg/kg).  108 

Overall, the results demonstrated the potential of vis-NIR spectroscopy with a spectral range 109 

of 350-2500 nm for the successful estimation and discrimination of different weathering 110 

groups in oil-impacted soils. It is a rapid measurement tool for quick on-site investigation 111 
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and monitoring through weathering (up to 2 years), without the need for collecting soil 112 

samples and lengthy hydrocarbon extraction associated to traditional laboratory analysis. 113 
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