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Abstract: Plant roots can be very effective in stabilizing the soil against concentrated flow 

erosion. So far, most research on the erosion-reducing potential of plant roots was conducted 

on loamy soils. However susceptible to incisive erosion processes, at present, no research 

exists on the effectiveness of plant roots in reducing concentrated flow erosion rates in sandy 

soils. Therefore, the prime objective of this study was to assess the erosion-reducing potential 

of both fibrous and tap roots in sandy soils. Furthermore, we investigated potential effects of 

root diameter, soil texture and dry soil bulk density on the erosion-reducing potential of plant 

roots. Therefore, flume experiments conducted on sandy soils (this study) were compared with 

those on sandy loam and silt loam soils (using the same experimental set up). Results showed 

that plant roots were very efficient in reducing concentrated flow erosion rates in sandy soils 

compared to root-free bare soils. Furthermore, our results confirmed that fibrous roots were 

more effective compared to (thick) tap roots. Dry soil bulk density and soil texture also played 

a significant role. As they were both related to soil cohesion, the results of this study 

suggested that the effectiveness of plant roots in controlling concentrated flow erosion rates 

depended on the apparent soil cohesion. The nature of this soil type effect depended on the 

root-system type: fine root systems were most effective in non-cohesive soils while tap root 

systems were most effective in cohesive soils. For soils permeated with a given amount of 

fibrous roots, an increase of soil bulk density seemed to hamper the effectiveness of roots to 
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further increase soil cohesion and reduce erosion rates. In soils reinforced by tap root 

systems, the erosion-reducing power of the roots depended on sand content: the higher the 

percentage of sand, the smaller the erosion-reducing effect for a given amount of roots. This 

was attributed to more pronounced vortex erosion around the thicker tap roots in non-

cohesive soils, increasing soil erosion rates. The results presented in this study could support 

practitioners to assess the likely erosion-reducing effects of plant root systems based on both 

root and soil characteristics. 

Keywords: Concentrated flow erosion, fibrous root system, tap root system, soil texture, 

root density, root length density.  

 

1. Introduction 

An important regulating ecosystem function of vegetation is their potential to control soil 

erosion processes (e.g. De Groot et al., 2002; Wallace, 2007). As such, plant species are 

frequently used in bio-engineering projects to improve slope stability and control surface 

erosion processes (Morgan, 2005; Norris et al., 2008; Stokes et al., 2014). Both above-ground 

and below-ground parts are important to consider depending on the erosion process dealt with 

(Gyssels et al., 2005; Vannoppen et al., 2015). Plant roots are very effective in controlling 

concentrated flow erosion and shallow mass movements by modifying both mechanical and 

hydrological soil properties (e.g. Simon and Collisson, 2002; Eviner and Chapin, 2003). 

Furthermore, Erktan et al. (2016) observed a biological effect of plant roots as soil erodibility 

decreased with different types of plant communities along a plant successional gradient in a 

gully bed ecosystem. On the other hand, the effects of vegetation cover is more pronounced 

for splash detachment and interrill erosion (e.g. Zuazo and Pleguezuelo, 2008; Shinohara et 

al., 2016). Recently, more attention is paid to root traits and their effects on ecosystem 

services (e.g. Bardgett et al., 2014). Several studies investigated the relation between specific 

plant traits and their potential to control soil erosion processes (e.g. Gyssels and Poesen, 2003; 
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Stokes et al., 2009; Reubens et al., 2007; De Baets et al., 2009; Burylo et al., 2014; Ghestem 

et al., 2014). The recognition of these beneficial traits can be used to select species to control 

soil erosion processes (De Baets et al., 2009; Burylo et al., 2014; Bochet et al., 2015). 

Considering concentrated flow erosion, root density (RD), whether or not in combination with 

root diameter (D), and root length density (RLD) are the most frequently used root traits to 

estimate the erosion-reducing potential of plant species and to select the most suitable plant 

species for controlling soil erosion processes (e.g. De Baets et al., 2009; Pohl et al., 2009; 

Burylo et al., 2012; Vannoppen et al., 2016). The relationship between the erosion-reducing 

potential and root density or root length density is most often described by a negatively 

exponential relationship (Eq. 1; Table 1):  

 

𝑆𝐷𝑅 = 𝑒−𝑏∗𝑅(𝐿)𝐷                (1) 

 

with SDR the soil detachment ratio expressed as the ratio of the absolute soil detachment rate 

of a root-permeated soil and a root-free bare soil, R(L)D respectively the root density (RD, kg 

m
-3

) and the root length density (RLD, km m
-3

) and b a regression parameter. The higher the 

value of b, the more expressed is the erosion-reducing effect of plant roots. 

A large number of studies quantified the erosion-reducing effects of plant roots (Vannoppen 

et al., 2015; Table 1). This erosion-reducing effect depends on root system type (e.g. De Baets 

et al., 2007; Reubens et al., 2007; Stokes et al., 2009). Given a certain root density, a root 

system consisting of fibrous roots is hypothesized to have a larger erosion-reducing potential 

compared to a tap root system due to the larger root-soil contact (Dissmeyer and Foster, 

1985). As such root diameter is important to consider as well when using RD as independent 

variable to predict the erosion-reducing potential of plant roots (e.g. De Baets and Poesen, 

2010; Burylo et al., 2012). While most of the reported studies are focused on silt loam soils, 
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sand or sandy loam soils are barely studied. However, coarse-textured soils can be very prone 

to incisive soil erosion processes. Infiltration rates in coarse-grained soils are, in general, 

higher compared to fine-grained soils (e.g. Moldenhauer and Long, 1964). However, once 

those soils are saturated or a less permeable surface layer is formed due to sealing and 

crusting (Poesen, 1986; Valentin, 1991), overland flow will occur, leading to incisive erosion 

processes on sloping land due to the low soil strength at saturation of coarse-grained soils 

(Poesen, 1992). This may then lead to intense soil erosion and/or infrastructural damage such 

as: 1) the formation of large gully systems (e.g. Poesen et al., 2003; Imwangana et al., 2015; 

Vanmaercke et al., 2016), 2) the destruction of sandy levees causing flood risk (e.g. 

Vannoppen et al., 2016) and 3) the destruction of earth-banks along roads or at construction 

sites (e.g. Jägerbrand and Alatalo, 2014).  

Soil characteristics are also important to consider when studying concentrated flow erosion 

rates as they influence the soil erodibility (Knapen et al., 2007). A commonly used variable in 

the assessment of soil erodibility is soil texture as an increase in sand content generally 

increases the soil’s erodibility (e.g. Elliot et al., 1989; Sheridan et al., 2000a,b). On the other 

hand, an increased clay fraction decreases the soil’s erodibility due to their bonding forces 

(Smerdon and Beasley, 1959). Poesen (1992) also observed an increasing apparent cohesion 

with decreasing particle size in saturated soils; i.e. from 1-2 kPa for sandy soils to 4-6 kPa for 

silt loam soils. In addition dry soil bulk density is also important to consider as an increase in 

soil bulk density decreases soil erosion rates (e.g. Roberts et al., 1998; Zhang et al., 2009; 

Wang et al., 2014) as soil erodibility decreases (e.g. Knapen et al., 2009; Yu et al., 2014). 

This is explained by an increase in soil cohesion (e.g. Ghebreiyessus et al., 1994; Bennett et 

al., 2000; Zhang et al., 2001; Mouazen et al., 2002; Geng et al., 2015). As such, both soil 

texture and soil bulk density can be used as a proxy for soil cohesion which is important to 

account for when studying concentrated flow erosion rates. At the moment, no univocal 
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conclusion exists concerning the role of soil texture and dry soil bulk density on the erosion-

reducing effects of plant roots. De Baets and Poesen (2010) observed a negative effect of sand 

content on soil loss reduction (ranging between 22 % and 56 %) on the erosion-reducing 

potential of fibrous plant roots. On the contrary, Vannoppen et al. (2015) stated that sand 

content (ranging between 6 % and 56 %) tends to have a positive effect on the erosion-

reducing effect of plant roots. Therefore, the prime objective of this study is to assess the 

erosion-reducing potential of two distinct root system types in sandy soils: i.e. a fibrous and a 

tap root system. We also investigate the effect of root traits (i.e. RD, D, and RLD) and soil 

characteristics (i.e. soil texture and dry soil bulk density) on the effectiveness of plants on 

controlling soil erosion rates. This was achieved by comparing flume experiment results for 

sand (this study) with hydraulic flume results for sandy loam and silt loam soils (De Baets et 

al., 2006, 2007). As such, this study will contribute to further develop the existing 

methodology for evaluating potentially useful plant species to control erosion in different 

soils (Stokes et al., 2014). 

 

2. Material and methods 

2.1 Experimental field plots 

Six field plots (length = 1.15 m, width = 1.00 m and soil depth = 0.15 m) were installed in 

spring 2015 nearby the University Campus, Heverlee (Fig. 1). The field plots were filled with 

a sandy topsoil (94% sand, 4% silt and 2% clay; Table 2). Prior to filling, the soil was sieved 

(1 cm mesh size) in order to break soil aggregates. Three treatments were established 

consisting of two root-free bare control plots, two plots with grasses having a fibrous root 

system and two plots with carrots to represent a species with a tap root system. Detailed plant 

species information is summarised in Table 3. For grasses and carrots, a low and high density 

plot was installed to obtain differences in root properties (Table, 3; De Baets et al., 2007). Soil 
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characteristics for these treatments are summarized in Table 2. Seeds were sown on 

14/05/2015 and all plots were similarly treated and received the same depth of rain or 

irrigation water. In total, the plots received 169 mm precipitation and 50 mm of water, applied 

with a watering can, during the first experimental period 14/05/2015 – 28/08/2015. An 

additional grass and carrot plot were installed on 04/09/2015 with same characteristics (Table 

2) in order to provide more root-permeated soil samples. Those additional plots received 128 

mm precipitation and 10 mm irrigation water during the second experimental period 

05/9/2015 – 25/11/2015. Weeds were manually removed at an early growth stage without 

disturbing the soil. 

 

2.2 Sampling procedure  

Soil samples were collected every week starting 6 weeks and 3 weeks after sowing for the 

first and second growth period respectively in order to have a sufficient R(L)D range. 

Samples were taken during 14 and 8 weeks respectively after starting the first sample 

collection. A standardized sampling procedure was applied (De Baets et al., 2006). Root-

permeated soil samples were taken by using a metal box (35.6 cm long, 8.8 cm wide and 8.7 

cm deep). Thereafter, the above-ground biomass was clipped level with the soil surface and 

samples were placed in a container with a constant water level at 4.5 cm below the soil 

surface during 8 hours to obtain soil samples at field capacity. Soil samples were then drained 

for 12 h before hydraulic flume experiments were conducted. For each sampling day, three 

additional soil samples were taken for each treatment using steel rings (8 cm high, Ø 5 cm). 

These additional soil samples were treated the same way as the root-permeated soil samples 

and were used to measure the gravimetric water content and the dry bulk density (Table 2). 

 

2.3 Hydraulic flume experiments 
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Hydraulic flume experiments were conducted using the flume described by Poesen et al. 

(1999). For a more detailed description of the experiments we refer to De Baets et al. (2006). 

For each experimental run, the soil surface slope, flow discharge, mean flow velocity, water 

temperature and sediment concentration were measured. Soil surface slope and runoff 

discharge could be varied in order to simulate a range of flow shear stresses.  The simulated 

flow shear stresses (3 – 30 Pa) are representative for peak flow conditions at the time of rill 

and gully formation (Poesen et al., 2003). Sediment concentration was measured during 150 s 

by collecting all runoff and transported sediments every 15 s during 5 s using 10 l buckets. 

The corresponding mean bottom flow shear stress (τ, Pa) was calculated as: 

 

𝜏 = 𝜌𝑤𝑔𝑅𝑆                (2) 

 

with τ (Pa) the mean bottom flow shear stress, 𝜌𝑤 (kg m
-3

) the water density, corrected for 

temperate, g (m s
-2

) the acceleration due to gravity, R (m) the hydraulic radius and S the soil 

surface slope (i.e sin α, with α (°) the slope angle). The hydraulic radius was calculated as: 

 

𝑅 =
𝑎∙𝑑

𝑎+2𝑑
             (3) 

 

with a (m) the flume width (i.e. 0.088 m) and d (m) the flow depth, calculated as: 

 

𝑑 =
𝑞

𝑢
 𝑤𝑖𝑡ℎ 𝑞 =  

𝑄

𝑎
            (4) 

 

with q (m² s
-1

) the unit flow discharge, Q (m³ s
-1

) the mean flow discharge and u (m s
-1

) the 

mean surface flow velocity. 
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Following sediment deposition in the runoff samples, the collected sediments were separated 

from the water by decantation, oven dried at 105 °C and weighted to calculate their dry mass 

(Ms, kg). The absolute soil detachment rate (ASD, kg m
-2

 s
-1

) was calculated using Eq. 5: 

 

𝐴𝑆𝐷 =
𝑀𝑆

𝐴∙𝑡
            (5) 

 

with MS (kg) the mean dry mass, A (m²) the surface area of the soil sample (i.e. 0.031m²) and 

t (s) the duration of runoff collection (i.e. 5 s). For each experimental run, 10 runoff samples 

were taken. As ASD varies over time, mean ASD was calculated for each soil sample as an 

indicator of its erosion susceptibility during concentrated flow. Furthermore, to quantify the 

effects of plant roots on concentrated flow erosion, the soil detachment ratio (SDR) instead of 

ASD was calculated (as ASD of root-free bare soil samples may vary over time due to 

changes in topsoil bulk density): 

 

𝑆𝐷𝑅 =
𝐴𝑆𝐷𝑟𝑜𝑜𝑡−𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑒𝑑 𝑠𝑜𝑖𝑙

𝐴𝑆𝐷𝑏𝑎𝑟𝑒 𝑠𝑜𝑖𝑙
          (6) 

 

SDR values may vary between 1 and 0. Values near 1 indicate that there is almost no soil 

erosion reduction due to the presence of roots, while values near 0 indicate that soil erosion 

rates are reduced to negligible levels due to the roots. 

 

2.4 Root characteristics 

After each flume experiment, all roots of each sample box were separated from the soil by the 

wet hand washing method (Schuurman and Goedewaagen, 1965). Floating roots were 

manually removed and the remaining soil and plant roots were washed and sieved using a 0.5 

mm sieve by sprinkling water at low pressure. For each soil sample the total dry root mass 



9 
 

(MD, kg) and total root length (LR, m) of the living roots was measured. MD was calculated 

after drying the roots at 60-65 °C for 48 hours (Smit et al., 2000). Before drying, the root 

length and root diameter was calculated. For fine roots (D < 1 mm), the length of a subsample 

of roots was measured manually which was then oven-dried. By dividing the root length by 

the dry root mass of this subsample the specific root length (SRLD < 1 mm, m g
-1

) was 

calculated: 

 

𝑆𝑅𝐿𝐷<1 𝑚𝑚 (𝑚 𝑔−1) =
𝑀𝐷_𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒

𝐿𝑅_𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒
         (7) 

 

with MD (g) the dry living root mass, LR (m) the length of the living roots. The total root 

length for fine roots was then calculated by multiplying MD for the whole sample with SRL. 

For tap roots (D > 1 mm) the root length was measured for every root and summed to 

calculate the total root length. Root diameter was measured using a digital calliper (precision 

is 0.01 mm). For fine roots (D < 1 mm), a mean value of 0.20 mm was used for root diameter 

based on a measured subsample of roots. For the carrot roots, root diameter was measured at 

the top of each carrot root and root diameter was averaged per sample box. Finally, the root 

density (RD) and root length density (RLD) were calculated as: 

 

𝑅𝐷 (𝑘𝑔 𝑚−3) =
𝑀𝐷

𝑉
           (8) 

𝑅𝐿𝐷 (𝑘𝑚 𝑚−3) =
𝐿𝑅

1000∗𝑉
          (9) 

 

with MD (kg) the dry living root mass, LR (m) the length of the living roots and V (m
-3

) the 

volume of the soil sample (i.e. 0.00273 m³). 
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2.5 Data analysis 

A non-linear regression analysis was used to investigate the relationships between RD, RLD 

and SDR. Therefore an exponential relationship was fit through the data (Eq. 1) as most 

studies observed a decreasing trend of soil erosion with increasing RD or RLD (Vannoppen et 

al., 2015; Table 1). For each relationship, the coefficient of determination (R², Legates and 

McCabe, 1999) and model efficiency (ME, Nash and Sutcliffe, 1970) were calculated to 

determine the prediction accuracy of the models: 

 

𝑅2 = (
∑ (𝑂𝑖−�̅�)(𝑃𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑂𝑖−�̅�)2𝑛
𝑖=1 √∑ (𝑃𝑖−�̅�)2𝑛

𝑖=1

)

2

         (10) 

𝑀𝐸 = 1 − (
∑ (𝑂𝑖−𝑃𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖−�̅�)2𝑛
𝑖=1

)          (11) 

 

with Oi the observed values, �̅� the observed mean, Pi the predicted values, �̅� the predicted 

mean, n the number of observations. ME values can range from -∞ to 1. The closer ME is to 

1, the more efficient the model is while negative ME values indicate that the mean observed 

value is a better predictor to describe the trend compared to the model predictions. To 

investigate potential root architecture and soil type effects on the erosion-reducing potential of 

plant roots, the observations for sandy soils (this study) were pooled with observations for 

sandy loam and silt loam soils made by De Baets et al. (2006, 2007). Root architecture, soil 

texture and dry soil bulk density were added to the relationship between R(L)D and SDR as 

an interaction term of R(L)D. Categorical variables (i.e. soil texture class) were included 

using a dummy variable as interaction term while root diameter (D, mm), sand content (%S, 

%) and dry soil bulk density (BD, g cm
-3

) were included using a continuous variable as 

interaction term. 
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3. Results  

3.1 Erosion-reducing potential of tap and fibrous root systems  

3.1.1 Sandy soils 

Results show that plant roots are very effective in reducing soil erosion rates due to 

concentrated flow in sandy soils (Fig. 1). For fibrous roots a strong decrease in SDR is 

observed for RD ranging from 0 to 0.5 kg m
-3

 and for RLD ranging from 0 to 50 km m
-3

. SDR 

values are below 0.2 for RD and RLD exceeding these values. This indicates that soil 

detachment rates are reduced to 20% or less (compared to the erosion rates for root-free bare 

soil samples) for larger RD and RLD values. Eq. 12 and 13 can be used to estimate the 

erosion-reducing potential of fibrous roots in sandy soils (Table 4, Fig. 2): 

 

𝑆𝐷𝑅 = 𝑒−17.46∗𝑅𝐷    (R² = 0.61, ME = 0.60, n = 54)      (12) 

𝑆𝐷𝑅 = 𝑒−0.15∗𝑅𝐿𝐷     (R² = 0.58, ME = 0.56, n = 54)     (13) 

 

Tap root effects on concentrated flow erosion rates in sandy soils are less pronounced 

compared to fibrous roots due to a large scatter in the data and the smaller number of 

observations (Fig. 1). For RD, no clear trend is visible in the data (Fig. 1) due to the large 

range in root diameter values (i.e. 0.2 – 17.8 mm; Table 3). For tap roots < 5 mm in diameter, 

a strong decrease can be observed which is similar to the observed trend for fibrous roots. 

However, if root diameter increases, the erosion-reducing effect decreases. The relationship 

between SDR and RLD has a higher predictive power for tap roots in sandy soils compared to 

the relationship between SDR and RD. This can be explained because RLD takes into account 

root architecture information. Smaller roots will contribute more to the total RLD compared 

to thick tap roots. As a result, only a significant relationship between SDR an RLD was found 
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which can be used to estimate the erosion-reducing potential of tap roots in sandy soils (Eq. 

14, Table 4). 

 

𝑆𝐷𝑅 = 𝑒−0.11∗𝑅𝐿𝐷      (R² = 0.37, ME = 0.33, n = 17)   (14) 

 

3.1.2 Comparison sandy soils with sandy loam and silt loam soils 

Using both species information and soil texture class, 12 significant relationships could be 

observed between R(L)D and SDR (Table 4, Fig. 2). For fibrous roots, the largest b-value was 

observed in sandy soils (b = 17.46) followed by silt loam soils (b = 2.63) and sandy loam soils 

(b = 0.87). This indicates that fibrous roots are more effective in sandy soils compared to silt 

loam and sandy loam soils. The explained variance for fibrous roots ranges between 32% and 

80% and all ME values are positive (Table 4). These relationships can be used to obtain 

reliable estimates of the erosion-reducing potential of fibrous roots in sandy, sandy loam or 

silt loam soils. 

For tap roots, the largest b-value was observed for sandy loam soils (b = 0.70) followed by silt 

loam soils (b = 0.61) and sandy soils (b = 0.16). This indicates that tap roots are more 

effective in sandy loam and silt loam soils compared to sandy soils. However, regression 

results for tap roots are weak with low R² and ME values. This could be explained by the 

large variation in mean root diameter among tap root samples, ranging between 0.2 and 20 

mm (Table 3). 

 

3.2 Interactions between root traits and soil variables 

3.2.1 Effect of root diameter on soil-type specific root-erosion reduction relationships 

To account for differences in root diameter among the soil samples, root diameter information 

was added to the model for the different soil texture classes (Table 5). The parameter values 
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of the root diameter interaction term with RD were positive, resulting in a negative effect of 

increasing root diameter on the erosion-reducing potential of plant roots given a certain 

amount of roots in the soil. Significant results were only found for the silt loam and sandy 

loam dataset. Including root diameter yielded better regression results especially for silt loam 

soils. Therefore, these relationships could be used to reliably estimate the erosion-reducing 

potential of plant roots if root diameter and soil texture are known. Although no significant 

relationship was found for RD and root diameter in sandy topsoils, a negative effect of the 

root diameter can be visually observed in Fig. 1  

When considering the entire dataset for each soil texture class and both fibrous and tap root 

data, also three significant relationships were found between SDR and RD when taking into 

account root diameter information as small tap roots act like fibrous roots. When taking all 

tested samples into account (both fibrous and tap root samples), the highest parameter value 

for the root diameter interaction term was found for sandy soils (i.e. 0.88) and much lower 

parameter values for silt loam and sandy loam (i.e. 0.05 and 0.13 respectively). As such, the 

negative effect of root diameter on the erosion-reducing potential of plant roots is most 

pronounced in sandy soils.  

 

3.2.2 Effect of root diameter, sand content and dry soil bulk density on erosion-reducing 

potential of fibrous and tap root systems 

An attempt was made to build an overall model including continuous variables that take plant 

and soil information into account. Therefore, root diameter, sand content and dry soil bulk 

density were used as variables. For fibrous roots, a best fit was found when including sand 

content and dry soil bulk density as variables. The parameter for sand content is negative (i.e. 

-0.08), indicating a positive effect on the erosion-reducing effect of fibrous roots. The 

parameter of the dry soil bulk density is positive (i.e. 4.85), indicating a negative effect on the 
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erosion-reducing effect of fibrous roots (Eq. 15). For tap roots, an important root diameter 

effect was observed (Fig. 1, Table 5). As thin tap roots < 5 mm act as fibrous roots, these 

samples were separately analyzed. For thin tap roots, a significant model (p < 0.01) was found 

taking with significant parameters for root diameter and sand content information (Eq. 16). 

The results show a positive sand content effect and a negative root diameter effect on the 

erosion-reducing potential of plant roots. Soil bulk density effects were not significant. For 

thick tap roots > 5 mm, the only significant relationship was found with root density and root 

diameter as prediction variables (Eq. 17). Regression results are low here due to the large 

scatter in the dataset for thick tap root samples. Despite the lack of a significant relationship 

when including other variables, Spearman correlation analyses showed that there was a 

significant positive correlation between SDR and D (0.43, p < 0.05) and between SDR and 

sand content (0.32, p < 0.1) for thick tap roots. This indicates a negative effect of root 

diameter and sand content on the erosion-reducing effect of thick tap roots.  

 

Fibrous: 𝑆𝐷𝑅 = 𝑒(−6.80−0.08∗%𝑆+4.85∗𝐵𝐷)𝑅𝐷     (R² = 0.36, ME = 0.30, n = 120)  (15) 

Tap (< 5 mm): 𝑆𝐷𝑅 = 𝑒(−2.94+1.06∗𝐷−0.05∗%𝑆)𝑅𝐷    (R² = 0.48, ME = 0.45, n = 14)  (16) 

Tap (> 5 mm): 𝑆𝐷𝑅 = 𝑒(−0.84+0.04∗𝐷)𝑅𝐷  (R² = 0.17, ME = 0.09, n = 49) (17) 

 

with %S (%) the sand content, BD (g cm
-3

) the dry soil bulk density, RD (kg m
-3

) the root 

density and D (mm) the root diameter.  

As such, fibrous roots were most effective in reducing concentrated flow erosion rates in less 

compacted sandy soils and least effective in compact sandy loam soils. Thick tap roots were 

equally effective in sandy loam and silt loam soils while least effective in loose sandy soils. 

 

4. Discussion 
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The hydraulic flume results confirm that plant roots and especially fibrous roots are very 

effective in reducing erosion rates in sandy soils. Several studies already showed that root 

diameter had a positive effect on soil detachment rates and thus a negative effect on the 

erosion-reducing potential of plant roots (e.g. Zhou and Shangguan, 2005; De Baets et al., 

2007; Reubens et al., 2007; Stokes et al., 2009; De Baets and Poesen, 2010; Burylo et al., 

2012; Yu et al., 2014). Our results confirm these findings and show that fibrous root species 

are more effective in protecting the topsoil against concentrated flow erosion compared to tap 

root species. The reduction of erosion rates in sandy soils by plant roots was not affected by 

the magnitude of the applied flow shear stresses (i.e. 3 – 30 Pa) which is in accordance to De 

Baets et al. (2007). 

Furthermore, our experimental data revealed an important effect of soil characteristics (i.e. 

soil texture class, sand content and dry soil bulk density) on the erosion-reducing potential of 

plant roots. Altogether, erosion rates generally decrease with increased soil cohesion and 

increase with increased sand content. As sandy soils typically have less cohesion, fibrous 

roots add root cohesion to such soils, explaining the significant erosion-reducing effects of 

these roots in sandy soils.  

The differences in erosion-reducing effects between thin (D < 5 mm) and thick (D > 5 mm) 

roots resulted from differences in their root system type and root mechanical properties. 

Fibrous roots increase the cohesion of the topsoil due to their high tensile strength and high 

root contact area with the soil (e.g. Mao et al., 2012; Zhang et al., 2014; Zhong et al., 2016), 

whilst the root-soil contact area in thick tap roots and their tensile strength is much weaker 

(e.g. De Baets et al., 2008a). As such, even a small number of fibrous roots will increase soil 

cohesion to a larger extent and protect the topsoil against concentrated flow erosion compared 

to root-free bare topsoils. Another reason to explain the greater erosion-reducing effect of a 

given amount of roots in sandy soils can be attributed to apparent soil cohesion differences 
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between the sandy and loamy soils and to the nature of the erosion-reduction calculations. The 

ratio between soil detachment rate for root-permeated topsoils and for root-free bare topsoils 

is smaller for non-cohesive soils. This can be attributed to the generally higher detachment 

rates for root-free bare non-cohesive soils (i.e. 2.45 ± 0.43 kg m² s
-1

 for sandy soil) compared 

to root-free bare cohesive soils (i.e. 1.30 ± 0.37 kg m² s
-1 

for sandy loam soil and 0.80 ± 0.06 

kg m² s
-1

 for silt loam soil) in this study. As such, the contribution of a given amount of 

fibrous plant roots to topsoil reinforcement and hence increase of soil cohesion is larger in 

non-cohesive soils. Another possible explanation may be the difference in soil compaction 

between the loamy soil (sandy loam was most compact) and the sandy soil (least compact) 

(Table 2): in loose soils roots act as binding agents for soil particles whilst this is probably 

minor in already compacted soils.  

For a given root density, thick tap roots increase soil cohesion to a lesser extent than fibrous 

roots due to their smaller contact area and weaker bonding forces (De Baets et al., 2008b). 

Furthermore, tap roots may form obstacles for runoff by creating flow turbulence that results 

in vortex erosion around the tap roots (De Baets et al., 2007) that behave similar to embedded 

rock fragments (Poesen et al., 1994). This study shows that flow scouring around thick tap 

roots is more pronounced in less cohesive soils (sandy soils), which is similar to flow around 

bridge piers (Briaud et al., 2001). As such, sandy soils reinforced by (thick) tap roots show a 

smaller erosion-reducing potential compared to silt loam and sandy loam soils which have a 

larger apparent cohesion when moist (Poesen, 1992). Also note that the effect of dry soil bulk 

density on the erosion-reducing potential of plant roots is much stronger compared to the 

effect of sand content for these soils (Table 5). Therefore, sand content alone cannot be used 

as a variable to estimate the erosion-reducing potential of plant roots and should be combined 

with other parameters that are linked to soil cohesion. However, in case of tap roots no clear 

effect of dry soil bulk density could be observed which may possibly be attributed to the 
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larger variability of the experimental data and the smaller number of observations. In order to 

fully understand the effect of dry soil bulk density on the erosion-reducing effect of (thick) tap 

roots, more data is needed. 

Analysis of reported b-values (see Eq. 1) showed that there exists a large variability in the 

effectiveness of plant roots in reducing concentrated flow erosion rates (Table 1). This results 

from differences in both soil (e.g. soil texture, soil bulk density) and plant characteristics (e.g. 

species, root system type, root diameter). A clear soil type effect could not be detected based 

on the analysis of b-values reported in literature due to a lack of experimental data for 

different soil textures. Even for the same soil type (e.g. silt loam soil) Yu et al. (2014) found 

larger b-values for both fibrous and tap roots for similar soil bulk densities as compared to the 

b-values for silt loam topsoils observed in this study (Table 1). However, results should be 

analyzed with care as reference erosion values (i.e. root-free topsoils), which are used to 

calculate the SDR, can be assessed differently. Whereas Yu et al. (2014) used the initial soil 

conditions at the beginning of the growing season as reference value, root-free bare topsoil 

samples were taken as a reference for each sampling period in this study. As such, the b-

values reported by Yu et al. (2014) reflect both the effects of increasing root biomass and 

increased apparent soil cohesion due to natural soil compaction over time. Therefore, a 

standard measurement protocol and additional experimental data are needed for different soil 

textures, especially for sandy soils or clayey soils with differences in dry soil bulk density, in 

order to validate the results presented in this study. This would advance the development of a 

more general model for estimating the effectiveness of plant roots in reducing concentrated 

flow erosion using easy measureable soil and plant characteristics. 

 

5. Conclusions 
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Plant roots were very effective in reducing concentrated flow erosion rates in sandy soils. 

New relationships were established between root (length) density and the soil detachment 

ratio for both fibrous and tap roots. These relationships could be used to estimate the erosion-

reducing potential of plant roots in sandy soils. Comparison of these results with those for 

sandy loam and silt loam soils revealed a significant effect of root diameter, sand content and 

dry soil bulk density on the effectiveness of plant roots in reducing soil erosion rates during 

concentrated flow. The effectiveness of fibrous roots in reducing concentrated flow erosion 

rates was positively correlated with sand content and negatively to dry soil bulk density. The 

potential of small tap roots (D < 5 mm) to reduce concentrated flow erosion rates was 

positively related to sand content and negatively to root diameter whereas the erosion-

reducing potential for thick tap roots (D > 5 mm) was negatively related to sand content and 

root diameter.  As such, the erosion-reducing potential of plant roots was clearly influenced 

by soil texture and soil cohesion: fibrous roots and thin tap roots were more effective in less 

cohesive soils (with a higher sand content and/or lower dry soil bulk density) while thick tap 

roots were more effective in more cohesive soils (with a lower sand content). The latter can be 

attributed to more pronounced vortex erosion around the thicker tap roots in non-cohesive 

soils. The results presented in this study could support practitioners to assess the likely 

erosion-reducing effects of plant species based on root and soil characteristics.  
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Fig. 1. Soil detachment ratio (SDR) as a function of root density (RD) and root length density 

(RLD) for grasses with fibrous roots and carrots with tap roots growing in a sandy topsoil. For 

carrots, samples were grouped into three classes based on their mean root diameter. 

 

 

 

 

 

 



31 
 

 

Fig. 2. Soil detachment ratio (SDR) as a function of root density (RD) and root length density 

(RLD) for grasses with fibrous roots and carrots with tap roots growing in sandy, sandy loam 

and silt loam topsoils. 
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Table 1: Overview of empirical studies reporting an exponential relationship between soil detachment ratio (SDR) and root density (RD) or root length density (RLD), i.e. 

𝑆𝐷𝑅 = (𝑎) ∗ 𝑒−𝑏∗𝑅(𝐿)𝐷 (Eq. 1) for different soil textures. 

Soil texture 

 

Root 

type 

BD 

(g cm
-3

) 

b 

 

R² 

 

n 

 

RD range 

(kg m
-3

) 

RLD range 

(km m
-3

) 

Plant species 

 

Source 

 

Sand Mixture* NA 0.24 0.51 31 0.33-13.72 NA T. vulgaris; G. scorpius Bochet et al., 2012 

Sandy loam Rhizoid 1.56 1.98 0.73 10 0.20-4.25 NA B. orientale, C., parasiticus, D., pedata, N. auriculata, 

P. vitata 

Chau and Chu, 2017 

Sandy loam Fibrous 0.82-1.43 0.80 0.74 20 0.31-7.14 NA A. aciculate, E. cynosuroides, P. maxima, S. munja. Shit and Maiti (2012) 

Sandy / silt loam Mixture 0.90-1.44 1.75 0.51 83 0.00 – 4.00 NA P. paucifolia, S. bungeana, Z. mays, R. pseudoacacia Geng et al., 2015 

Silt loam Fibrous 1.25-1.30 5.97 0.89 7 0.43-2.25 NA L. perenne, A. sativa, S. cereale De Baets et al., 2011 

Silt loam Fibrous 1.25-1.30 0.26 0.89 7 NA 9.86-28.29 L. perenne, A. sativa, S. cereale De Baets et al., 2011 

Silt loam Tap 1.25-1.30 1.32 0.20 22 0.02-1.73 NA S. alba, P. tanacetifolia, R. sativus De Baets et al., 2011 

Silt loam Tap 1.25-1.30 0.18 0.21 22 NA 0.79-44.98 S. alba, P. tanacetifolia, R. sativus De Baets et al., 2011 

Silt loam Mixture 1.25-1.30 1.93 0.10 29 0.02-2.25 NA L. perenne, A. sativa, S. cereale, S. alba, P. tanacetifolia, 

R. sativus 

De Baets et al., 2011 

Silt loam Mixture 1.25-1.30 0.19 0.20 29 NA 0.79-44.98 L. perenne, A. sativa, S. cereale, S. alba, P. tanacetifolia, 

R. sativus 

De Baets et al., 2011 

Silt loam Mixture 1.30 2.25 0.59 58 0.01-1.83 NA H. vulgare, G. max Gyssels et al., (2006) 

Silt loam Fibrous 1.21-1.28 6.85 0.76 26 0.04-0.62 NA S. bungeana, B. Ischaemum Li and Li (2011) 

Silt loam Mixture 0.91-1.22 0.29 0.87 5 1.76-14.29 NA C. Korshinskii Kom. Mixtured with grasses Li et al., 2014 

Silt loam Mixture 1.2-1.5 4.63 0.43 125 0.15-7.41 NA Grassland, orchard, wasteland, shrub land, woodland Li et al., 2015 

Silt loam Fibrous 1.3 0.03 0.93 15 NA 21.20-119.50 H. vulgare Liu et al., 2005 

Silt loam Tap 1.3 0.02 0.46 13 NA 4.30-88.50 G. max Liu et al., 2005 

Silt loam Mixture 1.3 0.07 0.60 30 NA 0.50-44.37 H. vulgare, G. max Liu et al., 2005 

Silt loam Mixture 1.12 0.03 0.84 30 NA 0.15-24.21 M. sativa, L. perenne Mamo and Bubenzer (2001a) 

Silt loam Tap NA 0.23 0.54 15 NA 2.97-6.89 G. max Mamo and Bubenzer (2001b) 

Silt loam Mixture 1.19-1.27 6.79 0.92 36 0.31-7.86 NA G. max, A. capillaries, A. sacrorum, S. bungeana Wang et al., 2013 

Silt loam Mixture 1.19-1.28 0.12 0.23 30 5.10-22.46 NA G. max, S. bungeana, A. sacrorum, C. lanceolata, A. 

giraldii 

Wang et al., 2014 

Silt loam Fibrous 1.13 1.70 0.72 7 0.01-1.04 NA Z. mays Yu et al., 2014 

Silt loam Fibrous 1.13 16.15 0.89 7 0.01-0.14 NA P. miliaceum Yu et al., 2014 

Silt loam Tap 1.09 6.20 0.50 7 0.02-0.21 NA G. max Yu et al., 2014 

Silt loam Tap 1.09 4.01 0.26 7 0.00-0.15 NA S. tuberosum Yu et al., 2014 

Loam Mixture 1.31-1.39 0.84 0.73 27 0.76-4.60 NA C. dactylon, V. negundo Liu et al., 2016 

Loam Mixture 1.31-1.39 0.56 0.72 26 NA 0.40 – 5.84 C. dactylon, V. negundo Liu et al., 2016 

Loam Fibrous 1.21 0.41 0.36 409 0.30-17.98 NA P. virgatum Zhang et al., 2013 

*Mixture refers to a mixture of fibrous and tap roots. BD is topsoil bulk density, b is parameter value of Eq. 1, n is number of observations, NA is not 

available. 
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Table 2: Treatment and soil characteristics of the experimental plots.  

 

Treatment Texture sand silt clay SOM SM BD Source 

  (%) (%) (%) (%) (g g
-1

) (g cm
-3

)  

Grass 

Sand 94 4 2 4.5 

0.22 ± 0.05 1.10 ± 0.09 This study 

Carrots 0.25 ± 0.02 1.01 ± 0.03  

Root-free bare 0.25 ± 0.02 1.12 ± 0.10  

         

Grass 

Sandy loam 56 36 8 < 0.5 

0.18 ± 0.03 1.31 ± 0.14 De Baets et al., 

2010 Carrots 0.17 ± 0.04 1.30 ± 0.12 

Root-free bare 0.17 ± 0.04 1.31 ± 0.13  

         

Grass 

Silt loam 22 69 9 3.4 

0.19 ± 0.05 1.13 ± 0.16 De Baets et al., 

2010 Carrots 0.19 ± 0.06 1.16 ± 0.13 

Root-free bare 0.19 ± 0.05 1.17 ± 0.17  

*SOM is organic matter content, SM is soil moisture content and BD is dry soil bulk density. 

 

 

 

 

 

 

 

 

 



34 
 

Table 3: Characteristics of plants grown in the experimental treatments. 

 
Treatment Species SD RD RLD D n Texture 

  (seeds m-2) (kg m-3) (km m-3) (mm)  (Source) 

Grass 

(mixture) 

L. perenne spp. L. (75%),  

P. pratense (15 %), 

P. pratensis (10 %) 

5250; 10500 0.01 – 2.26 1.27-283.46 0.2 54 

Sand 

(This study) 

Carrots D. carota 2625; 5250 0.00 – 9.14 0.94-19.56 0.2-17.77 17  

        

Grass 

(mixture) 

L. perenne spp. L. (48%),  

F. rubra (12 %), 

F. arundinacea (40 %) 

5250; 10500 0.20 – 38.70 31.59-6228.77 0.2 24 

Sandy loam 

(De Baets 

et al., 2010) 

Carrots D. carota 2625; 5250 0.13 – 10.61 0.35-9.31 9.8-20.0 30  

        

Grass 

(mixture) 

L. perenne spp. L. (48%),  

F. rubra (12 %), 

F. arundinacea (40 %) 

5250; 10500 0.10 – 16.87 2.27-365.75 0.2 42 

Silt loam 

(De Baets 

et al., 2010) 

Carrots D. carota 2625; 5250 0.09 – 15.49 0.38-20.15 1.4-17.0 30  

*SD is seed density (2 treatments), RD is root density (range), RLD is root length density (range), D is mean root diameter (range) and n is the 

number of observations. 
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Table 4 Non-linear regression results for the combined effects of root architecture and soil texture on the erosion-reducing potential of plant 

roots. Underlined parameter estimates are significant at the 5% level. 

Root type and variable Tested relationship Parameter Estimate Texture Equation n R² ME 

         

Grass; RD 𝑆𝐷𝑅 = 𝑒−𝑏∗𝑅𝐷𝑒−𝑐∗𝑅𝐷∗𝐷𝑠1𝑒−𝑑∗𝑅𝐷∗𝐷𝑠2 b 0.87 Sand 𝑆𝐷𝑅 = 𝑒−17.46∗𝑅𝐷 54 0.61 0.60 

  c 16.58 Sandy loam 𝑆𝐷𝑅 = 𝑒−0.87∗𝑅𝐷  24 0.80 0.80 

  d 1.75 Silt loam 𝑆𝐷𝑅 = 𝑒−2.63∗𝑅𝐷  42 0.32 0.30 

         

Grass; RLD 𝑆𝐷𝑅 = 𝑒−𝑏∗𝑅𝐿𝐷𝑒−𝑐∗𝑅𝐿𝐷∗𝐷𝑠1𝑒−𝑑∗𝑅𝐿𝐷∗𝐷𝑠2 b 0.01 Sand 𝑆𝐷𝑅 = 𝑒−0.15∗𝑅𝐿𝐷  54 0.58 0.56 

  c 0.14 Sandy loam 𝑆𝐷𝑅 = 𝑒−0.01∗𝑅𝐿𝐷  24 0.80 0.80 

  d 0.01 Silt loam 𝑆𝐷𝑅 = 𝑒−0.02∗𝑅𝐿𝐷  42 0.32 0.30 

         

Carrots; RD 𝑆𝐷𝑅 = 𝑒−𝑏∗𝑅𝐷𝑒−𝑐∗𝑅𝐷∗𝐷𝑠1𝑒−𝑑∗𝑅𝐷∗𝐷𝑠2 b 0.70 Sand 𝑆𝐷𝑅 = 𝑒−0.16∗𝑅𝐷  17 0.02 -2.40 

  c -0.54 Sandy loam 𝑆𝐷𝑅 = 𝑒−0.70∗𝑅𝐷  30 0.25 0.05 

  d -0.09 Silt loam 𝑆𝐷𝑅 = 𝑒−0.61∗𝑅𝐷  30 0.12 -0.11 

         

Carrots; RLD 𝑆𝐷𝑅 = 𝑒−𝑏∗𝑅𝐿𝐷𝑒−𝑐∗𝑅𝐿𝐷∗𝐷𝑠1𝑒−𝑑∗𝑅𝐿𝐷∗𝐷𝑠2 b 1.32 Sand 𝑆𝐷𝑅 = 𝑒−0.11∗𝑅𝐿𝐷  17 0.37 0.33 

  c -1.21 Sandy loam 𝑆𝐷𝑅 = 𝑒−1.32∗𝑅𝐿𝐷  18 0.07 -0.30 

  d -1.08 Silt loam 𝑆𝐷𝑅 = 𝑒−0.24∗𝑅𝐿𝐷  28 0.07 -0.04 

* RD (kg m
-3

) is root density, RLD (km m
-3

) is root length density; Ds1 and Ds2 = dummy soil: Sand (Ds1 = 1, Ds2 = 0); Sandy loam (Ds1 = 0, Ds2 = 0) and silt loam (Ds1 = 0, Ds2 = 1); n is the number of 

observations; ME is model efficiency; R² is coefficient of determination. 
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Table 5 Non-linear regression results for the combined effects of root architecture and soil texture on the erosion-reducing potential of plant 

roots. Underlined parameter estimates are significant at the 5% level, parameter estimates indicated with * are significant at the 1% level.  

Root type and variable Tested relationship Parameter Estimate Equations  n R² ME 

      

Combined root architecture and soil texture effects (Root diameter as continuous variable)      

         

Carrots, sand; RD 𝑆𝐷𝑅 = 𝑒−𝑏∗𝑅𝐷𝑒−𝑐∗𝑅𝐷∗𝐷  b 0.48 Sand ns 17 - - 

  c 0.02      

Carrots, sandy loam; RD 𝑆𝐷𝑅 = 𝑒−𝑏∗𝑅𝐷𝑒−𝑐∗𝑅𝐷∗𝐷  b 1.23 Sandy loam 𝑆𝐷𝑅 = 𝑒(−1.23+0.06∗𝐷)∗𝑅𝐷   18 0.18 0.07 

  c -0.06      

Carrots, silt loam; RD 𝑆𝐷𝑅 = 𝑒−𝑏∗𝑅𝐷𝑒−𝑐∗𝑅𝐷∗𝐷  b 1.75 Silt loam 𝑆𝐷𝑅 = 𝑒(−1.75+0.11∗𝐷)∗𝑅𝐷   28 0.65 0.65 

  c -0.11      

All species, sand; RD 𝑆𝐷𝑅 = 𝑒−𝑏∗𝑅𝐷𝑒−𝑐∗𝑅𝐷∗𝐷   b 15.67 Sand 𝑆𝐷𝑅 = 𝑒(−15.67+0.88∗𝐷)∗𝑅𝐷  71 0.40 0.25 

  c -0.88      

All species, sandy loam; RD 𝑆𝐷𝑅 = 𝑒−𝑏∗𝑅𝐷𝑒−𝑐∗𝑅𝐷∗𝐷 b 1.01 Sandy loam 𝑆𝐷𝑅 = 𝑒(−1.01+0.05∗𝐷)∗𝑅𝐷  42 0.50 0.48 

  c -0.05      
All species, silt loam; RD 𝑆𝐷𝑅 = 𝑒−𝑏∗𝑅𝐷𝑒−𝑐∗𝑅𝐷∗𝐷 b 2.15 Silt loam 𝑆𝐷𝑅 = 𝑒(−2.15+0.13∗𝐷)∗𝑅𝐷  70 0.47 0.46 

  c -0.13      

    

Combined root architecture and soil texture effects  (Root diameter, sand content and dry soil bulk density as continuous variables)    

    

All species, all soils; RD 𝑆𝐷𝑅 = 𝑒−𝑏∗𝑅𝐷𝑒−𝑐∗𝑅𝐷∗𝐷𝑒−𝑑∗𝑅𝐷∗%𝑆𝑒−𝑒∗𝑅𝐷∗𝐵𝐷  b 2.23  𝑆𝐷𝑅 = 𝑒(−2.23+0.12∗𝐷−0.07∗%𝑆+1.35∗𝐵𝐷)∗𝑅𝐷  183 0.32 0.17 

  c -0.12      

  d 0.07      

  e -1.35      

Carrots (< 5 mm), all soils; RD 𝑆𝐷𝑅 = 𝑒−𝑏∗𝑅𝐷𝑒−𝑐∗𝑅𝐷∗𝐷𝑒−𝑑∗𝑅𝐷∗%𝑆  b 2.94* 𝑆𝐷𝑅 = 𝑒(−2.94+1.06∗𝐷−0.05∗%𝑆)∗𝑅𝐷   14 0.48 0.45 

  c -1.06*      

  d 0.05*      

Carrots (> 5 mm), all soils; RD 𝑆𝐷𝑅 = 𝑒−𝑏∗𝑅𝐷𝑒−𝑐∗𝑅𝐷∗𝐷  b 0.84 𝑆𝐷𝑅 = 𝑒(−0.84+0.04∗𝐷)∗𝑅𝐷   49 0.17 0.09 

  c -0.04      

Grass, all soils; RD 𝑆𝐷𝑅 = 𝑒−𝑏∗𝑅𝐷𝑒−𝑐∗𝑅𝐷∗%𝑠𝑎𝑛𝑑𝑒−𝑑∗𝑅𝐷∗𝐵𝐷  b 6.80 𝑆𝐷𝑅 = 𝑒(−6.80−0.08∗$𝑠𝑎𝑛𝑑+4.85∗𝐵𝐷)∗𝑅𝐷   120 0.36 0.30 

  c 0.08      

  d -4.85      

*RD (kg m
-3

) is root density; D (mm) is root diameter (continuous variable); BD (g cm
-3

) is dry soil bulk density (continuous variable); %sand is sand content (values ranging 

between 0 and 100); n is number of observations; ME is model efficiency; R² is coefficient of determination; ns means not significant. 
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