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Abstract: In this paper, a practical optimization framework and enhanced strategy within
an industrial setting are proposed for solving large-scale structural optimization problems in
aerospace. The goal is to eliminate the difficulties associated with optimization problems, which are
mostly nonlinear with numerous mixed continuous-discrete design variables. Particular emphasis
is placed on generating good initial starting points for the search process and in finding a feasible
optimum solution or improving the chances of finding a better optimum solution when traditional
techniques and methods have failed. The efficiency and reliability of the proposed strategy were
demonstrated through the weight optimization of different metallic and composite laminated
wingbox structures. The results show the effectiveness of the proposed procedures in finding
an optimized solution for high-dimensional search space cases with a given level of accuracy and
reasonable computational resources and user efforts. Conclusions are also inferred with regards to the
sensitivity of the optimization results obtained with respect to the choice of different starting values
for the design variables, as well as different optimization algorithms in the optimization process.
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1. Introduction

Optimization methods play a key role in aerospace structural design; their very purpose is to
find the most optimal way for an engineer to obtain the utmost benefit from the available resources.
Structural optimization methods evolved in the aerospace industry in the late 1950s, when the need
to design lightweight structures was critical [1–3]. Since then, the aerospace manufacturing industry
has shown increasing interest in the application of optimization methods for the optimum design
of minimum-weight aircraft structural components [4–6]. There is a large number of publications
on the structural optimization of aircraft. A few of these key studies are referenced in this section
to provide the reader with some background information on the field. In the 1960s, Brandt and
Wasiutynski [7] reviewed the present state of knowledge in the field of optimal design of structures.
In addition, survey papers by Schmit [8] and Vanderplaats [9] offered numerous and important
references on the theory and applications of structural optimization. The development of structural
optimization methods can be tracked to the early works of Maxwell [10] and Michell [11]. In the 1940s
and early 1950s, substantial analytical work was done on component optimization, of which the
work presented by Shanley [12] is a typical example. Dantzig [13] developed linear programming
techniques, and with the advent of computer technology, these techniques were applied to the
design of frame and beam structures, as explained by Heyman [14]. In his work, Schmit [15]
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offered a comprehensive study on the application of mathematical programming techniques to solve
different types of nonlinear and inequality-constrained problems concerned with the design of elastic
structures under a variety of loading conditions. This was done by combining numerical optimization
with the finite element analysis methods available at the time. In addition, the discretized optimality
criteria methods presented by Venkayya [16], which were based on the early work of Prager and
Taylor [17], offered an efficient way of solving problems with large numbers of design variables,
but were limited to small numbers of design constraints. Schmit and Farshi [18] published the concept
of using approximation techniques for structural synthesis. These techniques resurrected the use of
mathematical programming for structural optimization. Starnes, Jr. and Haftka [19] overcame the
difficulties in using approximation techniques for some constraints, such as buckling, by introducing
the concept of conservative constraint approximations.

In the early 1960s, extensive research was done in the area of structural optimization, and as
a result gradient-based optimization methods were recognized as the most efficient strategies for
solving the optimization problem. However, the continually increasing number of design variables
and the increasing size of the finite element models, together with very slow and extremely expensive
computers, were the main difficulties facing structural optimization technology at the end of the
1960s, according to Gellatly et al. [20]. In the mid-1960s, Nastran, the National Aeronautics and Space
Administration (NASA) Structural Analysis System, was developed by NASA to provide a finite
element analysis capability for its aerospace development [21]. During the 1980s, force approximation
techniques for stress constraints with intermediate variables began to evolve. These methods would
improve the quality of approximate optimization techniques but were difficult to integrate into
existing analysis programs. A key development in making structural optimization a widespread
reality was the work performed in the field of design sensitivity analysis [22,23]. Meanwhile, Nastran
became a world-recognized standard in the field of structural analysis, offering the designer a large
variety of modeling tools and analysis disciplines such as structural analysis, elastic stability analysis,
and thermal and fatigue analysis. Among other capabilities, Nastran provides a multidisciplinary
design optimization solution for a wide range of engineering problems faced by the aerospace industry.

The MacNeal-Schwendler Corporation (MSC) Nastran optimization module utilizes
gradient-based algorithms. One of the key advantages underlying the selection of gradient-based
methods is their effectiveness in solving optimization problems where the design space is significantly
large, and where the number of design variables is therefore considerably greater than the number
of objectives and constraints. Another advantage is their relative computational efficiency due to
rapid convergence rates with clear convergence criteria. However, one of the main drawbacks of
gradient-based methods is the presence of multiple local optima, resulting in solutions where global
optimality cannot be easily guaranteed. In gradient-based methods, global optimality is sought by
randomly searching the design space from different starting points. However, for large nonlinear
optimization problems that involve a combination of continuous and discrete design variables,
this becomes a slow and computationally inefficient method, especially when a single run of the
optimizer may not converge to an optimally feasible solution. Several review articles on methods
for the optimization of nonlinear problems with mixed variables can be found in [24–26]. In many
aerospace structural applications, optimization must be performed with different standard gauges
(from a range of manufacturers) that are available off the shelf, involving, for example, several types of
metallic sheet thicknesses and sizes, and different total thicknesses of the composite laminates and
percentages of each fiber oriented in the overall thickness.

Usually, many efforts are made to achieve sufficiently accurate results in a given amount of time.
However, with a large number of discrete design variables, the optimization problem becomes large,
and the selection of the alternative designs becomes difficult. In addition, how widely the allowable
design variable values are separated may govern the behavior of some of the optimization algorithms
as well as the final optimized optimum solution to the problem, and therefore substantially more
computational effort may be required as compared to the continuous variable optimization problems.



Aerospace 2018, 5, 3 3 of 27

In practice, one normally seeks procedures through which the design search space is explored in
a cost-effective manner, aiming for a better optimal solution within an acceptable level of accuracy
depending on the size and nature of the optimization problem. The objective of this paper is to
propose, investigate, and demonstrate the efficiency of an industrially oriented practical optimization
approach in solving large-scale nonlinear structural optimization problems using gradient-based
algorithms. Particular emphasis is placed on generating good initial starting points for the search
process and improving the possibility of finding a better optimum solution. This paper is organized
as follows. Section 2 describes the realization of the MSC Nastran design optimization process.
In Section 3, the structural optimization problem is formulated. The gradient-based optimization
solution procedure is introduced is Section 4. The proposed practical optimization procedure is
evaluated by conducting two case studies, and the results obtained are discussed in detail in Section 5.
Finally, Section 6 presents our conclusions.

2. Realization of MSC Nastran Design Optimization Process

The model used for design optimization process in MSC Nastran can be logically divided into
two parts: the analysis model and design model. In the analysis model the grid is allocated across
the modeled structures, elements are configured and assigned with properties, information about
materials and loads are defined, and boundary conditions and load cases are applied. In the design
model, design variables and responses are described, objectives and constraints are applied to the
model, and links between element properties and variables are established. The initial design is the
starting point of the optimization process.

The MSC Nastran design optimization process is composed of finite element analysis, constraint
screening, sensitivity analysis, approximate and improved models, and the optimizer. The optimization
process is started with the finite element analysis of the initial design; subsequently, the analysis is
repeated multiple times during the process, with the repetition frequency defined by the design
sensitivity. Constraint screening is required to select constraints that may start the redesign process.
Designs constraints near the violation threshold or that are already violated are activated during
constraint screening. Design sensitivity analysis calculates the speed of change of the structural
response and constraint values with changes in design variables. When design optimization is
required, the sensitivity analysis function is called automatically. The finite element analysis
results are approximated and combined with the information obtained during sensitivity analysis
to form the approximate model. This approximation allows for minimizing the complex finite
element analyses. The approximate model is used during the optimization process to construct
the improved model. In MSC Nastran, gradient-based, sequential linear programming and
sequential quadratic programming optimization methods are available to improve the approximate
model. A soft convergence test is performed by comparison of approximate and improved models,
and convergence is achieved when the changes to the model are within required range. If the design
has not converged, another loop of the optimization process is initiated by finite element analysis of
the improved model. A hard convergence test is performed by comparison of current and previous
design cycle finite element analysis results. The design optimization loop may be interrupted when
either hard or soft convergence is achieved. The structural optimization process can be significantly
improved if certain approximation concepts are applied.

During the optimization process, numerous function evaluations and response derivations are
required to compute design responses and sensitivities, respectively. Figure 1 illustrates the traditional
approach to the structural optimization, where every request for function evaluation requires finite
element analysis of the model. Since the finite element analysis needs a significant amount of
computational power, the traditional approach can only be used to solve small-scale design problems.

To reduce the number of finite element analyses, approximation concepts have been developed
and implemented in MSC Nastran. These concepts that can be classified as design variable linking,
constraint screening and the approximate design model, are described below.
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2.1. Design Variable Linking

In general, the design task can be narrowed if the number of design variables is minimized.
To improve the efficiency of design optimization and reduce the amount of computation, proportionally
transformed design variables should be combined together, resulting in a significantly reduced set of
variables. Ideally, a small number of independent variables should be used during design optimization.
In MSC Nastran, design variable linking is manually performed by the user. Other concepts, such as the
screening of design variables, could be considered. Pre-screening for the dimensional reduction of
designs and for variable selection could play an important role in reducing the cost of the design task
by identifying the most important design variables; this would allow the user to deal with large-scale
design optimization problems more effectively.

2.2. Constraint Linking

Constraint screening is another concept that can be applied to the design optimization process to
reduce the required computational power. Only constraints that are near the violation threshold or are
already violated should be considered during optimization, while non-critical design constraints can
be deactivated. In other words, only those constraints that can trigger the redesign process should be
visible to the optimizer. Constraint screening will also simplify sensitivity analysis by reducing the
number of structural response derivatives required to compute design sensitivities. The reader may
wish to refer to Appendix A.2 for some background information on the field.

2.3. Approximate Design Model

In order to establish how the active constraint set is affected by design modifications, parametric
analysis is performed after the constraint screening. Response quantities, used in a parametric analysis,
are approximated or expanded in series in terms of design variables. Compared to implicit finite
element analysis results, formal approximations are explicitly expressed in design variables. Explicit
formal approximations, computed using sensitivity analysis results, are used by the optimizer during
gradient or function evaluations. Figure 2 shows how the approximate design model is created
and evolves during the optimization process. The approximate model involves the construction
of high-quality approximations to the finite element results, so that the number of full-scale finite
element analyses can be kept to a minimum. The core of the approximate model is formed by
formal approximation of the finite element analysis results. Constraint screening and design variable
linking are used to simplify the approximate model. It should be noted that in MSC Nastran, formal
approximation and constraint screening are automated [27]. The approximation functions used are
based on Taylor series expansions of the objective function and constraints. Given a function f (X),
an infinite series about a known value f

(
X0) in terms of the change in an independent variable ∆x can

be written as

f (X0 + ∆x) = f (X0) +
d f
dx
|X0 ·∆x +

d2 f
dx2 |X0 ·

∆x2

2!
+

d3 f
dx3 |X0 ·

∆x3

3!
+ . . . (1)

In addition to the function value f
(
X0), this series requires that all derivatives at X0 be known as

well. Determining these derivatives may present some difficulty, so the series is often truncated to
a given power in ∆x, yielding an approximate representation of the original function. In the design
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optimization process, where we are concerned with a vector of design variables X, the approximations
for the objective function and the constraints become

F(X0 + ∆x) = F(X0) + (∇F)X0 ·∆x (2)

gj(X
0 + ∆x) = gj(X

0) +
(
∇gj

)
X0
·∆x (3)

where a gradient term replaces the first derivative term of Equation (1).
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Figure 2. Schematic diagram of design modification process performed using approximate design
model and finite element analysis.

When the new configuration is generated by the optimizer, the proposed design is analyzed
to ensure that the design constraints are satisfied and the objective function has been improved.
This process is illustrated by the ‘design improvement’ arrow in Figure 2. If further design optimization
is required, the finite element analysis is performed again to form the basis for the next generation
approximate model. The sequence of design modifications, also referred to as design cycles, may be
repeated a number of times. Design convergence is achieved when another design cycle or the
optimizer are unable to produce significant changes to the model. The detailed schematic diagram of
MSC Nastran design cycle is illustrated in Figure 3 [27]. Compared to the traditional design approach
where the finite element model is optimized, MSC Nastran operates with the approximate model.
When the updated design configuration is generated, a finite element analysis creates new version of
the finite element model based on the results produced by the optimizer.
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3. Formulation of the Structural Optimization Problem

Structural optimization problems are characterized by the nature of the objective and constraint
functions, which are generally nonlinear functions of the design variables. Usually, these functions are
non-convex, discontinuous, and implicit, as in many problems in engineering design. Furthermore,
due to manufacturing constraints, design variables are quite often restricted to taking discrete values
from a set of standard sizes, which gives rise to mixed integer nonlinear optimization. Mathematically,
the optimization problem can be described as minimizing or maximizing the objective function f(x)
with respect to the design variables x under the inequality constraint li(x) and the equality constraint
hj(x). The structural optimization problem can be formalized and written as follows:

Find x to minimize f(x)
subject to

li(x) ≤ 0; i = 1, 2, . . . , m
hj(x) = 0; j = 1, 2, . . . , y

xL
b ≤ xb ≤ xU

b ; b = 1, 2, . . . , q
xs ∈ Ds; Ds = {d1, d2, . . . , dn}; s = 1, 2, . . . , r

(4)

Here, f(x) is the scalar objective function, x is the vector of n components, l is the vector of m
inequality constraints, h is the vector of y equality constraints, xL

b and xU
b are the lower and upper

bounds on each of the design variables (design search space), respectively, xs is the vector of discrete
design variables, and Ds is the set of discrete values. The inequality and equality constraints l and
h demand a solution x to be achievable only if all the constraints are satisfied. The set of all feasible
solutions is named the feasible space. Typically, at least one solution x exists in the feasible space,
and if this solution corresponds to the minimum objective value it is called the optimum solution.

4. Gradient-Based Optimization Solution Procedure

Gradient-based algorithms use function gradient information to search for an optimal design.
The first step in the numerical search process is to calculate the gradients of the objective function and
the constraints for a given point in the design space. The gradients are calculated using a first-forward
finite difference approximation of the derivative (finite difference techniques). Appendix A.1 provides
the reader with more details. Once the gradient is computed, there are several options for finding
a minimum. For constrained problems, sequential quadratic methods and the Modified Method of
Feasible Directions (MMFD) can be used [28], whereas for unconstrained problems, quasi-Newton
methods are effectively used with a line search procedure [29]. As the search direction is determined,
the search process continues in that direction and can be repeated until an optimum solution has been
found. The choice of optimization method and solver is design-dependent, and generally the size of the
problem and the accuracy and precession of the solvers play an important role in making the decision.
In this study, the commercially available off-the-shelf MSC Nastran software is used. The design
optimization module is based on gradient-based solution techniques. It utilizes the MMFD of Design
Optimization Tool (DOT) and MSCADS, a modified version of the Automated Design Synthesis (ADS)
code for performing size optimization.

4.1. Generating Good Initial Points for the Design

Since gradient-based optimization methods do not guarantee global optimality, different
approaches are used to enhance the performance of the optimization design models by generating
good initial starting points for the design variables. In the first approach, two essential starting
points are assigned by the user as initial starting points. Typically, the upper and lower bounds of
the continuous or discrete design variable are used. A number of interior points in the bounded
design region are chosen by the user as additional initial starting points to cover more regions in the
design space. These interior points can be randomly selected in the design space or, more practically,
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can be defined as a fraction of the upper bound value of the design variables, or by using the internal
halving method. Given a bounded design space Ωx, where the bounds on each of the design variables
are in the form xL

b ≤ xb ≤ xU
b , a set of initial starting points S = {x(1), x(2), x(3), x(4), ..., x(n)} is generated,

where x(1) = xL
b , x(n) = xU

b and R = {x(2), x(3), x(4), ..., x(n−1)}. R is a set of additional interior points
which can be generated using one of the following methods:

• As a fraction of the upper bound value of the design variables:

R =



x(2) = a1xU
b

x(3) = a2xU
b

x(4) = a3xU
b

.

.

.
x(n−1) = anxU

b


(5)

where ai is a fraction value defined by the user between 0 < ai ≤ 1, with i = 1, 2, 3 . . . n.
• Internal Halving Method:

R =



x(2) =
xL

b +xU
b

2

x(3) =
x(2)+xL

b
2

x(4) =
x(2)+xU

b
2

.

.

.

x(n−1) =
x(n−3)+xU

b
2


(6)

In both methods, the interior points selected must be reasonably separate from each other to
minimize the number of repeated visits to the same region of attraction in the search design space,
and to avoid the optimizer getting stuck in local optima where no improving neighbors are available.
In the second approach, the Fully Stressed Design (FSD) algorithm, which is widely applied in the
design of structures, is used to produce an initial design from a set of different starting points for the
design variables provided by the user at the start of the optimization process. Even within the limited
class of problems that can be addressed, and its capability of handling a design condition subjected
to strength limits only, the FSD algorithm can still provide an efficient way to begin a design task,
and the output can still serve as an excellent starting point for more general optimization tasks that
need to satisfy a variety of design criteria. The FSD provides a quantitative value for the best-case
estimate on the amount of material required to satisfy the applied design conditions. This technique is
particularly useful if the structural weight minimization of the designed aerospace construction is the
most important requirement. This method is basically useful for the design of aerospace structures
where the overriding requirement is that the structural weight be minimized. The basic concept of the
FSD algorithm is summarized in [27].

4.2. Practical Optimization Framework

Gradient-based algorithms are very efficient at operating local searches but not so good at global
searches, due to their tendency to get stuck in local optima and thus not make a thorough exploration of
the design search space. A practical optimization framework is presented in this study to enhance the
overall performance of the optimization gradient-based algorithms. The first step is to generate a set S
of initial starting points for the design variables. Then, we must decide on the number of starting points
to try and how to distribute them in the search design space. This decision is usually guided by intuition
and previous experience, since there is no clear methodology available as a guide. The applicability



Aerospace 2018, 5, 3 8 of 27

of the FSD procedure is checked by the structural designer. If it is applicable, then a number of
FSD cycles, usually 5–10 cycles, are used to generate a solution based on the FSD concept that will
hopefully serve as an improved starting point for the optimization process, because optimization
can give very poor results if poor initial guesses for the design variables are used. More general
optimization algorithms are used in the later steps of the optimization process. The idea here is to use
two different gradient-based algorithms rather than just one. The reason behind this approach is the
fact that the two different algorithms will likely have completely different search directions between
the initial and final points, which are output as the solutions. The DOT and MSCADS optimization
codes implemented in MSC Nastran with the MMFD are used to perform continuous and discrete
optimization. Discrete optimization in MSC Nastran is implemented as a post-processing step to
a continuous solution or FSD; this means one additional finite element analysis followed by the discrete
optimization results. As a result, a set of solutions called Ai is created. This set contains all optimized
solutions obtained using the set S of the initial starting points. Each solution is then checked to see
if it meets the convergence criteria and if it is a feasible design. If this is the case, the solution with
the minimum optimized mass that satisfies all the design requirements is chosen as the best of all
possible candidate solutions. On the other hand, if no feasible solution exists, the user can try to test
different sets of initial starting points, making sure that the optimization problem is a well-conditioned
one, that no errors have been made in specifying the model constraints, and that no wrong numbers
in the data are used in the optimization. This process can be repeated until all the initial starting
points defined by the user are exhausted or when the computational resources used by the algorithms,
such as the computation time and memory space, exceed pre-defined limits. Figure 4 shows a flowchart
of the proposed practical framework.
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4.3. Improving the Search for the Optimum Solution

In practice, difficulties can emerge when trying to solve a structural optimization problem,
especially when the design space is too large and contains design variables of different sensitivities,
or when the optimization problem has highly nonlinear objective and constraint functions. Problems
also occur when the design variables are discrete, meaning that the search design space is discrete too.
In such scenarios, it can be difficult to achieve a convergence solution, leading to a final design that is
unfeasible [30]. In this study, an improved strategy is proposed and used to enhance the search for the
optimum solution. Figure 5 shows a flowchart of this improved strategy.
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The strategy employed in the present work is to take the design solutions obtained using one
algorithm and use them as a starting point for the other one and vice versa. A continuous and discrete
optimization solution is performed and a new set of solutions, Ai + 1, is obtained at the end of the
process. Convergence and design feasibility checks are performed, as explained in the previous section,
and the solution with the minimum optimized mass that satisfies all design requirements is chosen as
the best of all possible candidate solutions. In the same manner, the proposed strategy can be used
to search for an improved optimum solution from the one obtained using the framework described
in the previous section. This process can be repeated until an optimum feasible solution is obtained,
or an improvement in the values of the design objective is achieved.

5. Structural Design Optimization Case Studies

The public domain NASA wing, commonly referred as Common Research Model (CRM), is used
as a design and optimization case study [31,32] to demonstrate the efficiency and reliability of the
proposed practical optimization framework and improved strategy. The relevant aircraft data are
presented in Table 1.
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Table 1. Relevant data with respect to Common Research Model (CRM) aircraft.

Description Value

Maximum take-off mass 260,000 kg
Maximum zero fuel mass 19,500 kg
Main landing gear mass 9620 kg

Engine mass (2×) 15,312 kg
Maximum fuel mass 131,456 kg

Wing gross area 383.7 m2

Wing span 58.76 m
Aspect ratio 9.0
Root chord 13.56 m
Tip chord 2.73 m

Taper ratio 0.275
Leading edge sweep 35.0◦

Cruise speed 193.0 m/s EAS
Dive speed 221.7 m/s EAS

Cruise altitude 10,668 m

The CRM wing considered in the case studies is modified to have airfoil sections with the same
twist angle along the semi-span of the wing. Therefore, the chord lines of the airfoils at the root and tip
wing sections are rotated in a spanwise direction with respect to the chord line of the airfoil at the kink
wing section to produce a similar geometrical twist angle of 0.8◦. The CRM primary wing structure
is modeled to meet the minimum design requirements set forth by the Federal Aviation Regulations
(FAR) Part 25 [33] and/or the European Aviation Safety Agency (EASA) CS-25 [34]. A traditional
two-spar wingbox architecture is used as a baseline design. The external geometry is defined by
CRM.65-BTE airfoil sections and the wingbox is derived from the wing surface model by defining
the front and rear spar positions at 12% and 71%, respectively, of the local airfoil chord. The internal
layout is defined by the stiffener pitch, rib pitch, and orientation based on the values for a typical
large transport aircraft wing. The wingbox model contains 1870 design zones for the upper and lower
skins, spar webs, ribs, spar caps and stiffeners, as given in Figure 6. The chordwise design zones are
prescribed by the stiffener pitch, while in the spanwise direction the design zones are limited by the
rib spacing. In the finite element model, each design field consists of a number of finite elements that
all comprise the same thicknesses/cross-sectional areas and stiffness properties.

Aerospace 2018, 5, 3 10 of 26 

 

Table 1. Relevant data with respect to Common Research Model (CRM) aircraft. 

Description Value 
Maximum take-off mass 260,000 kg 
Maximum zero fuel mass 19,500 kg 
Main landing gear mass 9620 kg 

Engine mass (2×) 15,312 kg 
Maximum fuel mass 131,456 kg 

Wing gross area 383.7 m2 

Wing span 58.76 m 
Aspect ratio 9.0 
Root chord 13.56 m 
Tip chord 2.73 m 

Taper ratio  0.275 
Leading edge sweep 35.0° 

Cruise speed 193.0 m/s EAS 
Dive speed 221.7 m/s EAS 

Cruise altitude 10,668 m 

The CRM wing considered in the case studies is modified to have airfoil sections with the same 
twist angle along the semi-span of the wing. Therefore, the chord lines of the airfoils at the root and 
tip wing sections are rotated in a spanwise direction with respect to the chord line of the airfoil at the 
kink wing section to produce a similar geometrical twist angle of 0.8°. The CRM primary wing 
structure is modeled to meet the minimum design requirements set forth by the Federal Aviation 
Regulations (FAR) Part 25 [33] and/or the European Aviation Safety Agency (EASA) CS-25 [34]. A 
traditional two-spar wingbox architecture is used as a baseline design. The external geometry is 
defined by CRM.65-BTE airfoil sections and the wingbox is derived from the wing surface model by 
defining the front and rear spar positions at 12% and 71%, respectively, of the local airfoil chord. The 
internal layout is defined by the stiffener pitch, rib pitch, and orientation based on the values for a 
typical large transport aircraft wing. The wingbox model contains 1870 design zones for the upper 
and lower skins, spar webs, ribs, spar caps and stiffeners, as given in Figure 6. The chordwise design 
zones are prescribed by the stiffener pitch, while in the spanwise direction the design zones are 
limited by the rib spacing. In the finite element model, each design field consists of a number of finite 
elements that all comprise the same thicknesses/cross-sectional areas and stiffness properties. 

 
Figure 6. Design optimization zones of the CRM wingbox. 

In the current study, the thin-walled structures of the CRM wingbox configurations (skins, webs 
and ribs) were modeled using two-dimensional quadrilateral and triangular shell elements 
(CQUAD4, CTRAI3) with in-plane membranes and bending stiffness. On the other hand, stiffeners 
and spar caps were modeled using one-dimensional rod elements (CROD) with axial stiffness.  
The CRM aircraft wingbox is optimized subjected to aerodynamic loads, lift force, and pitching 
moment, with inertial relief loading due to the engine, fuel, and undercarriage masses as well as the 
mass of the wingbox itself and the secondary structure masses, as shown in Figure 7. 

Figure 6. Design optimization zones of the CRM wingbox.

In the current study, the thin-walled structures of the CRM wingbox configurations (skins,
webs and ribs) were modeled using two-dimensional quadrilateral and triangular shell elements
(CQUAD4, CTRAI3) with in-plane membranes and bending stiffness. On the other hand, stiffeners and
spar caps were modeled using one-dimensional rod elements (CROD) with axial stiffness. The CRM
aircraft wingbox is optimized subjected to aerodynamic loads, lift force, and pitching moment,
with inertial relief loading due to the engine, fuel, and undercarriage masses as well as the mass
of the wingbox itself and the secondary structure masses, as shown in Figure 7.
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The 2.5 g symmetric pull-up maneuver load is considered as critical for the design, analysis,
and sizing optimization of the CRM wingbox. In the current study, the aerodynamic loads are
calculated with two different programs in order to ensure the versatility and accuracy of the tool.
Two existing aerodynamic codes are used for this work, including the ESDU 95010 computer
program [35] and the Tornado VLM code [36] implemented in MATLAB. Aerodynamic loading
is discretely distributed along the wing by computing the equivalent lift force and pitching moment
components at rib boundary locations at 25% of the local chord length. The aerodynamic loads are
introduced to the wingbox structure by means of multipoint constraint (MPC) non-stiffening rigid
body elements (RBE3) in the rib’s perimeter nodes. The engine mass is modeled as a concentrated
lumped mass using point elements at the centre of gravity of the engine. For the engine pylon, a simple
beam structure was created to realize a distributed engine pylon-to-wingbox connection. Rod elements
(CROD), mounted on front and aft fittings, modeled using a combination of non-stiffening (RBE3),
and stiffening (RBE2) rigid body load carrying elements, are used to model the engine and pylon
structural components. Due to the high complexity level of the geometrical and structural modeling of
the main landing gear, its component masses are modeled as a concentrated lumped mass using point
elements, and it is introduced to the wingbox structure rear spar at its centre of gravity position using
RBE3 elements. The component masses of the leading and trailing edge devices are estimated based
on the corresponding surface area using the semi-empirical and analytical equations of Torenbeek [37].
The inertial load impacts of these masses are modeled as lumped masses using point elements at
the centre of area of the leading and trailing edge devices, and are attached to the front and rear
spars of the wingbox along the span via RBE3 interpolation elements. The inertial load impact
of the wingbox self-structural mass is derived by adding a downward gravitational acceleration
(g = 9.81 m/s2) to the finite element model of the wingbox. Spring elements (CEALS1) combined with
RBE2 elements are used to create realistic boundary conditions at the wingbox root at the aircraft
centerline. The translational and rotational stiffness properties were selected to result in end boundary
conditions sufficiently close to the clamped case.

5.1. Definition of the CRM Wingbox Optimization Problem

The CRM wingbox structural optimization that is presented in this study purposely deals with
property optimization. Therefore, the locations of the ribs, stiffeners, and spars are considered
invariable and shape optimization is not performed in this study. The aim of the study is to minimize
the masses of the metallic and composite configurations of the CRM wingbox when subjected to
static strength/stiffness constraints and side constraints (manufacturing requirements) on the design
variables. The optimization problem is mathematically formulated in this section as previously
described in Section 3. The objective function, static strength/stiffness constraints, side constraints,
and the types of design variables involved in the optimization problem are identified.
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5.1.1. Objective Function

The objective function is the structural mass of the CRM wingbox excluding any non-structural
masses, like fuel mass, landing gear mass, and engine mass. The objective function can be represented by:

minimize M(x) =
N element

∑
l = 1

ρlVl(x) (7)

5.1.2. Design Variables

For the optimization problem, considering the wingbox construction material to be a metallic
material, one design variable per design field is defined. The design variables include the thicknesses
of the wingbox skins, spar webs, and ribs, as well as the cross-sectional areas of the wingbox spar
caps and stiffeners. A minimum gauge thickness of 2 mm and a cross-sectional area of 144 mm2 are
specified for the design variables. The limits on the design variables are defined as follows:

2.0 ≤ tmetallic ≤ 13.5 (8)

144.0 ≤ ametallic ≤ 972.0 (9)

On the other hand, considering the wingbox construction material to be a composite material,
the corresponding design variables for the wingbox skins, spar webs, and ribs are the thicknesses of
each ply or lamina in the composite laminate associated with each design field. The cross-sectional
areas of the composite spar caps and stiffeners are also treated as individual design variables for
each design zone. For modeling the wingbox using a composite material, a symmetric and balanced
laminate with ply orientation angles of [45/0/–45/90]s is created to obtain an orthotropic material.
The minimum ply thickness is taken to be 0.127 mm, while a 3 mm minimum gauge laminate thickness
is recommended to maintain an adequate level of laminate damage tolerance. The laminate ply
thicknesses are treated as individual design variables and a count is made of the required number of
plies in each ply orientation angle. The limits on the number of plies in each ply orientation angle are
given as

3 ≤ nply ≤ 60 (10)

Minimum cross-sectional areas of 216 mm2 for the composite spar caps and stiffeners are specified
and the limits on the design variables are defined as

216.0 ≤ acomposite ≤ 972.0 (11)

5.1.3. Static Strength Constraints

The failure mode of the wingbox structural components depends on their allowable stress/strain
state based on the load case under consideration and the construction material. Thus, for the metallic
CRM wingbox structural elements (skins, spar webs, ribs, and spar caps/stiffeners), the strength
constraints imposed in each design zone can be described as follows. For metallic skin panels,
spar webs, and ribs, the von Mises stress is checked against the material allowable stress as defined in
the following equation:

σvon Mises ≤ σallowable (12)

The allowable limit value is obtained by dividing the ultimate stress by a factor of 1.5. The von
Mises stress criterion is useful since it is a single equation and is accurate for ductile materials such as
aluminum alloys, which are widely used in the construction of aircraft structures. The metallic spar
caps and the longitudinal stiffeners are designed to carry axial stress only. Therefore, they are designed
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according to their stress state (tension or compression) against the allowable stress of the material as
defined in the following equation:

σaxial ≤ σallowable (13)

For composite skin panels, spar webs and ribs, the Tsai–Wu criterion [38–40] is used to predict the
strength of the composite laminate in terms of the failure index (FI). For orthotropic plate analysis,
under the plane stress state, the Tsai–Wu strength theory predicts that a lamina will undergo failure
when the following inequality is satisfied:

FI = F1σ1 + F2σ2 + F11σ2
1 + 2F12σ1σ2 + F22σ2

2 + F66σ2
6 ≥ 1 (14)

The coefficients F1–F66, with the exception of F12, are described in terms of strengths in the
principal material directions. F12 accounts for the interaction between normal stresses, σ1 and σ2.

The principal strains in each ply are also checked against the material allowable strain to ensure
the integrity of the plies and failure-free laminates. Thus, the following constraint is placed on the
strain value used for sizing the structure:

εprincipal ≤ εallowable (15)

The ultimate strain value to be used is suggested in [41] to be 0.5%, and the allowable limit value is
obtained by dividing the ultimate strain by a factor of 1.5. The allowable strain value of 0.35% (3500 µε)
includes the margins due to fatigue and damage tolerance, assuming that the allowable strains are
identical in terms of tension and compression. The composite spar caps and longitudinal stiffeners are
designed to carry axial stress only. Due to the orientation of the fibers in the longitudinal direction of
the composite rods, the longitudinal strength of the composite rods is considered to be much higher
than the transverse strength. Longitudinal properties are dominated by the fibers, while the transverse
properties are dominated by the matrix. Therefore, the composite rods are designed according to their
stress state (tension or compression) against the allowable stress of the longitudinal fibers. Generally,
to obtain the properties of the composite rod, rod samples are tested for compression and tension.
However, in this study, the assumed allowable stress value has been obtained by dividing the stress of
the longitudinal fibers by a factor of 2. The use of a factor of safety greater than 1.5 is recommended
for composite rod analysis, to account for the possible uncertainty and variability of the values of the
rod properties. The axial stress constraint can be written as

σaxial ≤ σallowable (16)

5.1.4. Static Stiffness Constraints

In aircraft wing design, a major requirement for stiffness arises from diverse considerations such
as aeroelasticity, wing flexibility and redistribution of aerodynamic loads and these effects may be
included in the optimization process. Torsional stiffness is necessary to counteract the twisting of
the wing under aerodynamic loads and thus prevent flutter. The flexibility of the wing can cause
undesirable effects on its aerodynamic performance. Lift loss due to wing deformation is one of these
effects that must be taken into account in the aerodynamic load calculation. The change in wing twist
distribution and bending under aerodynamic loads can have a significant effect on the wing incidence
angle and consequently the aerodynamic loads acting on the wing. The redistribution of aerodynamic
loads results in the redistribution of stresses/strains in the wing structures, and as a result failure can
occur. Therefore, the flexural stiffness of the wingbox is controlled by limiting the vertical displacement
of the wingtip leading edge, and the torsional stiffness is controlled by constraining the twist angle at
the tip chord of the wing.

In general, structural stiffness information is not publicly available for commercial aircraft.
However, some estimation can be made on the structural stiffness of the wingbox, providing the
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wing deflection is known. In this study, the wingtip deflection for the CRM wing at a 2.5 g pull-up
maneuver is assumed to be 15% of the wing semi-span b. This is based on the relative deformations that
can be expected in the wing of a transport-category aircraft as a function of the load factor, as presented
in the open scientific literature [19,42]. This value also ensures that the aircraft wingtip does not strike
the ground during a taxi bump load or landing operation. The current maximum allowable deflection
constraint placed on a single component of the displacement at a prescribed node is defined as follows:

δtip(Z) ≤ 15%·b (17)

The angular deformation at the wingtip chord is constrained by limiting it to a value of 6◦ to
ensure sufficient torsional stiffness and thus an adequate aeroelastic response [43]. The twist angle
constraint is defined using the vertical displacements at the wingtip chord ends. Equation (18) shows
that the twist angle at the wingtip should not exceed 6◦. (δ)+max and (δ)−max are the maximum vertical
displacements in positive and negative directions of the z-coordinate, respectively. Here, C is the wing
chord length at the required location:

Θtip ≤ 6◦, where Θ = arctan

(
(δ)+max − (δ)−max

C

)
(18)

5.1.5. Static Stiffness Constraints

Practical design rules and manufacturing constraints are considered during the design and
optimization process of the CRM wingbox. A minimum gauge thickness of 2 mm is considered for the
design of the metallic wingbox thin panel structures. This is because the value of 2 mm is considered
an acceptable sheet metal thickness if rivets are to be used as mechanical fasteners to join the sheet
metal parts of the aircraft together. For ease of manufacturing, the thin panel thicknesses of the
wingbox are chosen from a set of discrete values defined between the lower bound and the upper
bound and incremented by 0.1 as

tmetallic ∈ {2.0, 2.1, . . . , 20} (19)

Generally, the calculation of the cross-sectional areas of the spar caps and stiffeners depends on the
shape and dimensions of the cross-section of a given profile. In this study, the metallic and composite
spar caps and stiffeners are modeled using rod elements, and therefore for ease of manufacturing the
rods are sized using a discrete set of values from which any flange shape, such as L, T, and Z shapes,
can be produced. The discrete sets of cross-sectional areas for the metallic and composite rod elements
are defined as

ametallic ∈ {144, 158, . . . , 972} (20)

acomposite ∈ {216, 223, . . . , 972} (21)

For ease of manufacturing, the limits on the number of plies in each ply orientation angle are
selected from a set of discrete integer values defined between the lower bound and the upper bound
and incremented by 1 as

nply ∈ {3, 4, . . . , 60} (22)

Practical design criteria are applied to the design and optimization process of the composite
laminate wingbox structures. The ply orientation percentages within a laminate are bounded by lower
and upper bound values of 10% and 60%, respectively. This aims to avoid matrix-dominated behaviors.
An optimization constraint is applied to link the +45◦ and −45◦ layers, ensuring that their thicknesses
are identical. This is done to ensure that the laminate is balanced and to minimize the possibility
of introducing manufacturing stresses such as torsion. A maximum property drop-off rate criterion
is applied. It aims on the one hand at avoiding delamination and, on the other hand, at obtaining
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ply layouts that can actually be manufactured. The property drop-off rate between neighboring
elements/panels is evaluated according to the following equation [44]:

Property drop− o f f rate =
prop1 − prop2

distance(d)
≤ 20% (23)

where propi is the element/panel property value of the parent (1) or adjacent (2) element/panel,
and the distance d is computed along the element/panel surfaces between adjacent centroids.

5.2. CRM Wingbox Case Studies

The CRM wingbox considered in this case study is optimized to meet static strength and stiffness
requirements and manufacturing constraints. Five different initial starting point values are used
for the design variables during the optimization process. MSC Nastran Sol 200 is used for the
sizing optimization of the wingbox model. A number of fully stressed design cycles are performed
at the beginning of the optimization process, followed by a number of continuous and discrete
optimization cycles. Both optimization algorithms, DOT and MSCADS, are individually used to solve
the optimization problem. Then the estimated solution is updated on an iteration-by-iteration basis
with the aim of improving the optimum value of the mass of the CRM wingbox model.

5.2.1. Metallic Wingbox Model

In this case study, the wingbox of the CRM aircraft is designed by considering metallic materials
with a total number of 1870 design variables. High-strength aluminum 7050-T7451 alloy [45] is used
for the design of the upper skins, upper stiffeners and spar caps, and 2024-T351 alloy [46] is used
for the design of the lower skins, lower stiffeners and the ribs, since it is better suited for structures
stressed by cyclic tension loads and therefore prone to fatigue damage. The physical and mechanical
material properties are listed in Table 2.

Table 2. Material properties of aluminium alloys.

Material Properties 2024-T351 7050-T7451

Modulus of elasticity 73.1 GPa 71.7 GPa
Shear modulus 28 GPa 26.9 GPa
Shear strength 283 MPa 303 MPa

Ultimate tensile strength 469 MPa 524 MPa
Yield tensile strength 324 MPa 469 MPa

Density 2780 kg/m3 2830 kg/m3

Poisson’s ratio 0.33 0.33

Table 3 shows the optimized masses of the metallic CRM wingbox using different starting values
for the design variables defined as fraction of the upper bound value of the design variables along
with different optimization algorithms. In all solutions, convergence is achieved along with feasible
discrete designs. The bold value denotes the local minimum solution obtained.

Table 3. Optimized masses of the metallic CRM wingbox with different optimization algorithms.

Solution Type
Optimized Mass (kg)

Min 25% Max 50% Max 75% Max Max

MSCADS-MMFD-1 13,518 13,337 13,560 13,188 13,407
DOT-MMFD-1 13,265 13,523 13,401 13,486 13,441

MSCADS-MMFD-2 13,078 13,156 13,186 13,171 13,170
DOT-MMFD-2 13,240 13,174 13,353 13,228 13,247
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Figures 8 and 9 illustrate the results of the first and second optimization iterations obtained using
the DOT and MSCADS algorithms for the metallic CRM wingbox model.

From the results presented in Table 2 and illustrated in Figures 8 and 9, the following observations
can be made. In the gradient-based optimization problem, using different starting values for the
design variables can lead to local optimum designs, since the optimized wingbox configurations do
not have exactly the same mass. Similarly, different gradient-based algorithms used to perform the
same optimization problem terminate at different local optima, and thus return different solutions
even for the same initial starting values for the design variables. It is also observed that optimum
solutions are not restricted to extreme or corner points of the research design space. Furthermore,
it can be seen that the minimum optimized mass of the metallic CRM wingbox is obtained using the
MSCADS-MMFD-2 iterative solution with a value of 13,078 kg. Comparing this value with the related
optimized value (13,265 kg) obtained earlier in the first iterative solution, and with the minimum
optimized value (13,188 kg) obtained using MSCADS-MMFD-1, it can be seen that the value of the
objective function against the initial optimized value has improved.

Aerospace 2018, 5, 3 16 of 26 

 

obtained using the MSCADS-MMFD-2 iterative solution with a value of 13,078 kg. Comparing this 
value with the related optimized value (13,265 kg) obtained earlier in the first iterative solution, and 
with the minimum optimized value (13,188 kg) obtained using MSCADS-MMFD-1, it can be seen 
that the value of the objective function against the initial optimized value has improved. 

 
Figure 8. Mass of the optimized metallic CRM wingbox using the first iterative procedure. 

 
Figure 9. Mass of the optimized metallic CRM wingbox using the second iterative procedure. 

Figure 10 shows the history of the objective function as a function of the design cycles for the 
metallic CRM wingbox model. As can be seen from Figure 10, hard convergence to an optimum and 
feasible discrete solution is achieved in 17 design cycles for the metallic CRM wingbox using the 
DOT-MMFD-1 solution and an improved solution is founded using the MSCADS-MMFD-2 solution 
in 13 design cycles. The 0th design cycle corresponds to the initial mass of the wingbox model, which 
is based on the starting values of the design variables. Continuous optimization for the metallic 
wingbox model is achieved in 16 design iterations using the DOT-MMFD-1 and in 12 design iterations 
using the MSCADS-MMFD-2 solution. The 17th and 30th design cycles, as shown in Figure 10, 
correspond to the rounded-up discrete solution. In the round-up method, the standard size list for 
the design variables is used as a metric to round up continuous solutions for the design variables. 
Consequently, the increase of objective function value over the last design cycle in Figure 10 
corresponds to the discrete feasible solution, founded by using the round-up method. 

Figures 11 and 12 (zoomed region) show the history of the maximum constraint value as a 
function of the design cycles for the metallic CRM wingbox model. As can be seen from Figure 11, 
the initial constraints are violated because the maximum constraint value is far greater than the 
allowable value of 0.005. The 0th design cycle corresponds to the initial mass of the wingbox, which 
is calculated using the lower bound of the design variables. In this case, the search direction has been 
chosen to reduce the constraint violation. Thus, the objective function value will increase, since the 
first priority is to overcome the constraint violations. If it is not possible to overcome the constraint 
violations in this direction, they may at least be reduced. By using a number of fully stressed design 
cycles at the beginning of the optimization process, the large value of the maximum constraint 

Figure 8. Mass of the optimized metallic CRM wingbox using the first iterative procedure.

Aerospace 2018, 5, 3 16 of 26 

 

obtained using the MSCADS-MMFD-2 iterative solution with a value of 13,078 kg. Comparing this 
value with the related optimized value (13,265 kg) obtained earlier in the first iterative solution, and 
with the minimum optimized value (13,188 kg) obtained using MSCADS-MMFD-1, it can be seen 
that the value of the objective function against the initial optimized value has improved. 

 
Figure 8. Mass of the optimized metallic CRM wingbox using the first iterative procedure. 

 
Figure 9. Mass of the optimized metallic CRM wingbox using the second iterative procedure. 

Figure 10 shows the history of the objective function as a function of the design cycles for the 
metallic CRM wingbox model. As can be seen from Figure 10, hard convergence to an optimum and 
feasible discrete solution is achieved in 17 design cycles for the metallic CRM wingbox using the 
DOT-MMFD-1 solution and an improved solution is founded using the MSCADS-MMFD-2 solution 
in 13 design cycles. The 0th design cycle corresponds to the initial mass of the wingbox model, which 
is based on the starting values of the design variables. Continuous optimization for the metallic 
wingbox model is achieved in 16 design iterations using the DOT-MMFD-1 and in 12 design iterations 
using the MSCADS-MMFD-2 solution. The 17th and 30th design cycles, as shown in Figure 10, 
correspond to the rounded-up discrete solution. In the round-up method, the standard size list for 
the design variables is used as a metric to round up continuous solutions for the design variables. 
Consequently, the increase of objective function value over the last design cycle in Figure 10 
corresponds to the discrete feasible solution, founded by using the round-up method. 

Figures 11 and 12 (zoomed region) show the history of the maximum constraint value as a 
function of the design cycles for the metallic CRM wingbox model. As can be seen from Figure 11, 
the initial constraints are violated because the maximum constraint value is far greater than the 
allowable value of 0.005. The 0th design cycle corresponds to the initial mass of the wingbox, which 
is calculated using the lower bound of the design variables. In this case, the search direction has been 
chosen to reduce the constraint violation. Thus, the objective function value will increase, since the 
first priority is to overcome the constraint violations. If it is not possible to overcome the constraint 
violations in this direction, they may at least be reduced. By using a number of fully stressed design 
cycles at the beginning of the optimization process, the large value of the maximum constraint 

Figure 9. Mass of the optimized metallic CRM wingbox using the second iterative procedure.

Figure 10 shows the history of the objective function as a function of the design cycles for the
metallic CRM wingbox model. As can be seen from Figure 10, hard convergence to an optimum and
feasible discrete solution is achieved in 17 design cycles for the metallic CRM wingbox using the
DOT-MMFD-1 solution and an improved solution is founded using the MSCADS-MMFD-2 solution in
13 design cycles. The 0th design cycle corresponds to the initial mass of the wingbox model, which is
based on the starting values of the design variables. Continuous optimization for the metallic wingbox
model is achieved in 16 design iterations using the DOT-MMFD-1 and in 12 design iterations using the
MSCADS-MMFD-2 solution. The 17th and 30th design cycles, as shown in Figure 10, correspond to the
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rounded-up discrete solution. In the round-up method, the standard size list for the design variables is
used as a metric to round up continuous solutions for the design variables. Consequently, the increase
of objective function value over the last design cycle in Figure 10 corresponds to the discrete feasible
solution, founded by using the round-up method.

Figures 11 and 12 (zoomed region) show the history of the maximum constraint value as a function
of the design cycles for the metallic CRM wingbox model. As can be seen from Figure 11, the initial
constraints are violated because the maximum constraint value is far greater than the allowable value
of 0.005. The 0th design cycle corresponds to the initial mass of the wingbox, which is calculated
using the lower bound of the design variables. In this case, the search direction has been chosen to
reduce the constraint violation. Thus, the objective function value will increase, since the first priority
is to overcome the constraint violations. If it is not possible to overcome the constraint violations in
this direction, they may at least be reduced. By using a number of fully stressed design cycles at the
beginning of the optimization process, the large value of the maximum constraint violation is reduced
to a smaller value during the 12th design cycle, as can be seen from Figure 11. After this happens,
the value of the objective function starts to increase, allowing additional reduction in the allowable
constraint value as can be seen from Figures 10 and 11.
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5.2.2. Composite Wingbox Model

In this case study, composite materials made up of T300 carbon fibres and N5208 epoxy resin
(widely used in the aircraft industry), are used as a second material choice for the design of the CRM
wingbox structure with a total number of 2500 design variables. Table 4 defines the material properties
of T300/N5208 [47].

For modeling the wingbox using a composite material, a symmetric and balanced laminate with
ply orientation angles of [45/0/–45/90]s was created in order to get an orthotropic material. The aim
of this design procedure is to avoid shear extension and membrane bending coupled behaviors.
The schematic of the composite laminate is given in Figure 13. The stacking sequence is symmetric
about the mid-plane and is balanced with the same number of +45◦ and −45◦ plies. No 0◦ ply
was placed on the lower or upper surface of the laminate. The minimum ply thickness is taken to
be 0.127 mm; while a 3 mm minimum gauge laminate thickness is recommended to maintain an
adequate level of laminate damage tolerance. The mechanical properties of the composite laminate
were evaluated using the MSC Patran Laminate Modeler [48].

Table 4. T300/N5208 composite material properties.

Material Properties T300/N5208

Longitudinal modulus E11 181 GPa
Transverse modulus E22 10.3 GPa

In-plane shear modulus G12 7.17 GPa
Longitudinal tensile strength F1t 1500 MPa

Longitudinal compressive strength F1c 1500 MPa
Transverse tensile strength F2t 40 MPa

Transverse compressive strength F2c 246 MPa
In-plane shear strength F6 68 MPa

Density 1600 kg/m3

Major Poisson’s ratio ν12 0.28

Table 5 shows the optimized masses of the composite CRM wingbox, using different starting
values for the design variables along with different optimization algorithms. The bold values refer to
the discrete feasible solutions that have been obtained for the composite CRM wingbox.
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Table 5. Optimized masses of the composite CRM wingbox with different optimization algorithms.

Solution Type
Optimized Mass (kg)

Min 25% Max 50% Max 75% Max Max

MSCADS-MMFD-1 8816 8824 8591 8704 13,486
DOT-MMFD-1 10,837 10,954 11,289 11,465 11,665

MSCADS-MMFD-2 8389 8480 8788 8564 8415
DOT-MMFD-2 8798 8806 8550 8750 10,630
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Figures 14 and 15 illustrate the results of the first and second optimization iterations obtained
using the DOT and MSCADS algorithms for the composite CRM wingbox model.

From the results presented in Table 5 and illustrated in Figures 14 and 15, the same observations
hold as we already mentioned in Table 3 and Figures 8 and 9. However, the results in Table 5 show
that the value of the objective function of the composite CRM wingbox is case-sensitive to both the
choice of the optimization algorithm and the starting values for the design variables. For instance,
using the MSCADS algorithm in the first run of the optimization obtained infeasible discrete solutions.
On the other hand, by using the DOT algorithm in the first run, a feasible discrete design was obtained.
Not only have the chances of finding feasible discrete solutions increased in the second run, but the
value of the objective function against the initial optimized value has also improved. The minimum
optimized mass of the composite CRM wingbox is obtained using the DOT-MMFD-2 iterative solution
with a value of 8550 kg, compared to the initial optimized mass of 10,954 kg.Aerospace 2018, 5, 3 19 of 26 
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Figure 16 shows the history of the objective function as a function of the design cycles for the
composite CRM wingbox model. As can be seen from Figure 16, while hard convergence to an optimum
and feasible discrete solution is not achieved in 29 design cycles for the composite CRM wingbox
using the MSCADS-MMFD-1 solution, a hard converged solution is founded using the DOT-MMFD-2
solution in three design cycles. The 0th design cycle corresponds to the initial mass of the wingbox
model, which is based on the starting values of the design variables. Continuous optimization for
the composite wingbox model is achieved in 28 design iterations using MSCADS-MMFD-1 and in
two design iterations using the DOT-MMFD-2 solution. The 29th and 32nd design cycles, as shown in
Figure 16, correspond to the rounded-up discrete solution.

Figures 17 and 18 (zoomed region) show the history of the maximum constraint value with respect
to the design cycles for the composite CRM wingbox model. As can be seen from Figure 17, the initial
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constraints are violated because the maximum constraint value is greater than the allowable value
of 0.005. The 0th design cycle corresponds to the initial mass of the wingbox, which is calculated
using half of the upper bound value of the design variables. In this case, the search direction has been
chosen to reduce the constraint violation. Thus, the objective function value will increase, since the
first priority is to overcome the constraint violations. By using a number of fully stressed design cycles
at the beginning of the optimization process, the large value of the maximum constraint violation is
reduced to a smaller value during the 12th design cycle, as can be seen from Figure 17. After this
happens, the value of the objective function starts to increase, allowing additional reduction in the
maximum constraint violation value (see Figures 17 and 18, design cycles 13 and 14) before it starts to
decrease again allowing additional reduction in the wingbox optimized mass while trying to overcome
the constraint violations in this direction.Aerospace 2018, 5, 3 20 of 26 
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6. Conclusions

A practical optimization procedure in an industrial context was developed as part of the sizing
optimization process, with enhanced features in solving large-scale nonlinear structural optimization
problems, incorporating an effective initial design variable value generation scheme based on the
concept of the fully stressed design. The results of the foregoing case studies demonstrate that
the application of the practical optimization procedure increased the efficacy of the local search
algorithms of MSC Nastran Sol 200 in obtaining discrete, feasible, and optimal wingbox mass
designs. Its performance is illustrated through the application of two case studies in which the
metallic and composite wingbox models are optimized for a design of minimum mass. The results
of the metallic CRM wing optimization study showed that the optimized masses obtained using
MSCADS-MMFD-2 and DOT-MMFD-2 were very close to each other, with only slight favorable
overall mass on behalf of the masses obtained using MSCADS-MMFD-2. On the other hand,
the results of the composite CRM wing optimization study showed that when DOT-MMFD-1 is used,
optimized wingbox configurations had significant mass penalties compared to the results obtained
using MSCADS-MMFD-1. However, MSCADS-MMFD-1 solutions converged to infeasible discrete
solutions. By using DOT-MMFD-2 and MSCADS-MMFD-2 iterative procedures, feasible discrete
solutions were obtained and the mass penalties were decreased. Therefore, it can be revealed that
the change in the optimized mass value—as a consequence of using different starting values for the
design variables, as well as switching between different gradient-based algorithms in deriving the
local optimum at each iteration step—is more appreciable in the case of the composite construct than
in the case of the metallic construct. It is anticipated, therefore, that each optimization algorithm will
have completely different search routes from the initial to final points, with the output as the solution.
Moreover, using composite construction materials will dramatically alter the size of the design space,
thereby increasing the number of solutions available to the designer, with the aim of improving the
overall structural performance of the wing components.
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Appendix A

This appendix presents an overview of the basic mathematical programming as applied to
optimization tasks. In Appendix A.1 the numerical searching process for an optimum solution using
function gradients is described. Appendix A.2 provides description of the concept of active and
violated constraints.

Appendix A.1 Numerically Searching for an Optimum and Gradients Calculation

The optimization algorithms in MSC Nastran belong to a family of methods generally referred to
as ‘gradient-based’, since they use function gradients in addition to function values in order to assist
in the numerical search for an optimum. The numerical search process can be summarized as follows:
for a given point in the design space, we determine the gradients of the objective function and its
constraints, and use this information to determine a search direction. We then proceed in this direction
as far as possible, after which we investigate to see if we are at an optimum point. If we are not,
we repeat the process until we can make no further improvement in our objective without violating
any of the constraints.

The first step in a numerical search procedure is determining the direction in which to search.
The situation may be somewhat complicated if the current design is infeasible (with one or more
violated constraints) or if one or more constraints are critical. For an infeasible design, we are outside
of one of the fences, to use a hill analogy. In the case of a critical design, we are standing immediately
adjacent to a fence. In general, we need to know at least the gradient of our objective function and
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perhaps some of the constraint functions as well. The process of taking small steps in each of the
design variable directions (supposing we are not restricted by the fences for this step) corresponds
exactly to the mathematical concept of a first-forward finite difference approximation of a derivative.
For a single independent variable, the first-forward difference is given by

d f (x)
dy

∼=
f (x + ∆x)− f (x)

∆x
, (A1)

where the quantity ∆x represents the small step taken in the direction x. For the most practical design
tasks, we are usually concerned with a vector of design variables. The resultant vector of partial
derivatives, or gradient, of the function can be written as

∇F(X) =



∂F
∂x1

.

.

.
∂F
∂xn


∼=



F(X+∆x1)−F(X)
∆x1

.

.

.
F(X+∆xn)−F(X)

∆xn


(A2)

where each partial derivative is a single component of the dimensional vector.
Physically, the gradient vector points uphill, or in the direction of increasing objective function.

If we want to minimize the objective function, we will actually move in a direction opposite to that of
the gradient. The steepest descent algorithm searches in the direction defined by the negative of the
objective function gradient, or

SD = −∇F, (A3)

Proceeding in this direction reduces the function value most rapidly. SD is referred to as the
search vector.

MSC Nastran uses the steepest descent direction only when none of the constraints are critical
or violated; even then, it is only used as the starting point for other, more efficient search algorithms.
The difficulty in practice stems from the fact that, although the direction of steepest descent is usually
an appropriate starting direction, subsequent search directions often fail to improve the objective
function significantly. In MSC Nastran, more efficient methods, which can be generalized for the cases
of active and/or violated constraints, are usually used.

Once a search direction has been determined, we proceeded ‘downhill’ until we collided with
a fence, or until we reached the lowest point along our current path. It is important to note that
this requires us to take a number of steps in this given direction, which is equivalent to a number
of function evaluations in numerical optimization. For a search direction SD and a vector of design
variables X, the new design at the conclusion of our search in this direction can be written as

X1 = X0 + α∗S1
D, (24)

where X0 is the initial vector of design variables, S1
D is the search vector, and α∗ is the value of the search

parameter α that yields the optimal design in the direction defined by SD. Equation (A4), represents
a one-dimensional search since the update on X1 depends only on the single scalar parameter α.
This relation allows us to update a potentially huge number of design variables by varying the single
parameter α. When we can no longer proceed in this search direction, we have the value of αwhich
represents the move required to reach the best design possible for this particular direction. This value
is defined as α∗. The new objective and constraints can now be expressed as

F1 = F(X0 + α∗S1
D), (25)

g1
j = gj(X

0 + α∗S1
D), J = 1, 2, . . . , ng (26)
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From this new point in the design space, we can again compute the gradients and establish
another search direction based on this information. Again, we will proceed in this new direction until
no further improvement can be made, repeating the process if necessary. At a certain point, we will
not be able to establish a search direction that can yield an improved design. We may be at the bottom
of the hill, or we may have proceeded as far as possible without crossing over a fence. In the numerical
search algorithm, it is necessary to have some formal definition of an optimum. Any trial design
can then be measured against this criterion to see if it is met, and if an optimum has been found.
This required definition is provided by the Kuhn–Tucker conditions.

Figure A1 shows a two design variable space with constraints g1(X) and g2(X) and the objectives
function F(X). The constraint boundaries are those curves for which the constraint values are both
zero. A few contours of constant objective are shown as well; these can be thought of as contour lines
drawn along constant elevations of the hill. The optimum point in this example is the point which lies
at the intersection of the two constraints. This location is shown as X∗.Aerospace 2018, 5, 3 23 of 26 
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If we compute the gradients of the objective and the two active constraints at the optimum, we see
that they all point off roughly in different directions (it should be remembered that function gradients
point in the direction of increasing function values). For this situation—a constrained optimum—
the Kuhn–Tucker conditions state that the vector sum of the objective and all active constraints must
be equal to zero given an appropriate choice of multiplying factors. These factors are called the
Lagrange multipliers. Constraints which are not active at the proposed optimum are not included in
the vector summation.

Figure A2 shows this to be the case, where λ1 and λ2 are the values of the Lagrange multipliers
that enable the zero vector sum condition to be met. It is likely that we could convince ourselves that
this condition could not be met for any other point in the neighboring design space.
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The Kuhn–Tucker conditions are useful even if there are no active constraints at the optimum.
In this case, only the objective function gradient is considered, and this is identically equal to
zero; any finite move in any direction will not decrease the objective function. A zero objective
function gradient indicates a stationary condition. Not only are the Kuhn–Tucker conditions
useful in determining whether we have achieved an optimal design, but they are also physically
intuitive. The optimizer tests the Kuhn–Tucker conditions in connection with the search direction
determination algorithm.

Appendix A.2 Numerically Identifying the Active and Violated Constraints

The optimization algorithm determines which of the retained constraints are violated and which
are active. The constraints that are neither active nor violated can be ignored in the gradient evaluation.
This reduces the amount of computations and computer memory required, as well as the size of the
mathematical programming task. Figure A3 illustrates the concept of active and violated constraints
for a single inequality constraint in a simple two-design variable space. Figure A4 presents the same
information in a plot of a constraint value as a function of a single design variable or search direction.
A constraint is considered active if its numerical value exceeds CT. The default value for CT is −0.03,
but this can be changed by the user. Once a constraint is active, its gradient is included in the search
direction computation. An active constraint may subsequently become inactive if its value falls
below CT.
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