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Abstract—Multiple-Beam Radar Systems (MBRS) based on
waveform diversity require a set of orthogonal waveforms in
order to generate multiple channels in transmission and extract
them efficiently at the receiver using digital signal processing.
Chirp signals are extensively used in radar systems due to their
pulse compression properties, Doppler tolerance and ease of
generation.

In this paper, we investigate the level of isolation between two
linear frequency modulated (LFM) chirps as a function of the
frequency slope and of the chirp starting frequency. Results are
derived analytically and verified with a set of measurements at
S-band.

I. INTRODUCTION

The design of orthogonal waveforms suitable for MBRS,
which are based on waveform diversity, is a topic of great in-
terest within the radar research community. Many approaches
to find suitable solutions have been investigated in recent years
[1]–[3]. One of the techniques proposed to design multiple
orthogonal waveforms is to use numerical optimisation algo-
rithms to generate orthogonal polyphase codes [4], [5]. The
problem with these is that they are computationally complex,
are not Doppler tolerant and they allow a very limited control
of the transmitted bandwidth. Another possible technique to
achieve orthogonality is to generate noise like stochastic wave-
forms [6], [7]. However, controlling the waveform bandwidth
and the level of Doppler tolerance for these signals is difficult.
Previous studies have shown that good orthogonal properties
between waveforms can be achieved at the cost of design
complexity, spectrum spillage and Doppler intolerance [4], [6].

When designing MBRS with many channels, it is desirable
to employ waveforms with chirp-like properties. It is widely
known that upchirp and downchirp signals have quasi orthog-
onal properties and their isolation improves when the time-
bandwidth product increases [8]. However, this solution is
limited to only two signals with the same bandwidth and dura-
tion, and therefore additional waveforms can only be formed
with different frequency slopes. This idea was presented in
[9] and [10] in order to design orthogonal waveforms based
on a saw-like LFM chirp signals for MIMO SAR radars. A
methodological approach to investigate orthogonality between
LFM chirp waveforms with different frequency slopes and
without saw-like frequency modulations has not yet been

presented. Our aim is to investigate a radar system with
multiple channels, where each channel is assigned with a
different task and hence may require different resources. When
each task requires a different range resolution Rr = c/2B,
both the bandwidth and the starting frequency of each channel
can be different and slope diversity can be exploited. The main
reason to focus on chirp signals is because of their significant
advantages over other waveforms, such as range resolution,
Doppler tolerance, and implementation simplicity, as noted in
[9] and [11].

The goal of this paper is to investigate the isolation between
two waveforms as a function of the frequency slope and the
chirp starting frequency. A mathematical treatment is pre-
sented along with cross-correlation derivations. The theoretical
results are validated with a set of simulations and experiments
at S-band using software defined radios.

II. FORMULATION OF THE SIGNALS

A. Chirp Signal Representation

Let us consider a system that transmits a set of linear chirp
signals. The complex envelope of the i-th linear chirp with
constant amplitude Ai, starting frequency fsi and chirp rate
µi = Bi/Ti can be expressed as
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is a rectangular function.

B. Cross-Correlation of Chirp Signals

We would like to determine the isolation between a pair
of chirps, si(t) and sj(t), by studying the cross-correlation
function
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To do this, we assume that the two chirps have the same
duration Ti = Tj = T , the same amplitude Ai = Aj = A
and hence the same energy E = A2T . Different bandwidths,
leading to different chirp rates, µi and µj , and different starting
frequencies, fsi and fsj , are exploited to study the level of
isolation and waveform diversity properties.

Following an approach similar to that in [12], we can
analytically express the cross-correlation function with (4).
The integration interval [η1 η2] in (4) depends on τ and can
be expressed as

[η1 η2] =

{
[0, T − τ ], τ ∈ [0, T ]

[−τ, T ], τ ∈ [−T, 0)
(5)

For |τ | > T , Rij(τ) = 0. After a simple change of variable
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the integral in (4) can be expressed more compactly as

Rij(τ) = A2K(τ)
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The term K(τ) can be expressed with (10) and F (η) is a
complex Fresnel integral defined in (11):
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C. Signal Isolation

The isolation Iij(τ) is defined as the ratio between the
maximum amplitude of the autocorrelation function, that is
the signal energy E, and the amplitude of the cross-correlation
function as

Iij(τ) =

∣∣∣∣Rii(0)
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If we insert equation (9) in (12), write Bi = Bj −∆B, set
fsj = 0 Hz, and acknowledge that Rii(0) = E = A2T , we
can write the isolation for τ < 0 as
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and this is a contribution of this paper.
A further elaboration of (13) and the plots of the theoretical

curves would show that increasing the pulse width T or the
bandwidth difference ∆B improves the isolation performance.
Such improvements will be corroborated in the experimental
section of this paper. It can also be shown that the arguments
of the Fresnel integrals F (·) mainly affect the width of the
mainlobe and have an additional effect on the maximum value
of the isolation due to constructive or destructive contributions
of the Fresnel integrals.

Fig. 1. Frequency modulations of compared chirp signals si(t) and sj(t)
with zero starting frequency and ∆B bandwidth difference.

III. SIMULATION RESULTS

A. Chirp Rate Effect on the Isolation

In this section, we determine the effect of bandwidth dif-
ferences ∆B on the isolation, given the same pulse width.
In the simulations, the initial frequencies were set to fsi =
fsj = 0 MHz, the pulse width to T = 10 µs, the bandwidth
of sj(t) was fixed to Bj = 50 MHz, and ∆B was varied in
order to produce different cross-correlation curves Rij(τ). The
time-frequency diagram, indicating the frequency modulation
of the two signals under test, is shown in Fig. 1. Examining
the results in Fig. 2, it is evident, that the bigger the bandwidth
separation ∆B the better is the suppression of the unmatched
chirp signal. When ∆B increases, the sidelobes become longer
and extend towards the negative delay of the cross-correlation.



This phenomenon can be explained by looking at the time-
frequency characteristics in Fig. 1 and by analysing (4). For
a negative value of τ , the frequency curve of sj(t) moves to
the right and starts overlapping the frequency curve of si(t).
This causes a stronger coupling and results in a larger values
of the cross-correlation for τ < 0. For positive values of τ ,
the frequency slopes are further apart and the amplitude of the
cross-correlation drops significantly.
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Fig. 2. Simulated absolute value of cross-correlation functions for chirp
signals si(t) and sj(t) with different bandwidths. Bandwidth difference is
denoted by ∆B and normalisation is done with respect to the autocorrelation
peak.

The isolation between the matched and unmatched chirp
signals, as given in (12), is shown in Fig. 3. We can observe
that the isolation is constantly increasing with the increasing
bandwidth difference ∆B.
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Fig. 3. Simulated isolation between chirp signals as a function of bandwidth
difference ∆B. The blue curve shows isolation between upchirps sj(t)
and si(t), while the red curve shows relation between upchirp sj(t) and
downchirp sk(t).

B. Frequency Offset Effect on the Isolation

In this section, we investigate the effect of changing the
starting frequency fsi of the first upchirp signal si(t) on the
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Fig. 4. Simulated cross-correlation function of the two chirp signals with
Bi = 10 MHz, Bj = 50 MHz and T = 10 µs. The starting frequency fsi
is varied as indicated in the legend.

cross-correlation properties when sj(t) is an upchirp with a
different bandwidth. An example of the frequency modulations
of both signals are those with a positive chirp rate shown in
Fig. 6. In this simulation, the duration of the signals is T =
10µs, the bandwidth of the first signal is Bi = 10MHz and that
of the second signal is Bj = 50 MHz. The starting frequency
of the first chirp is varied from 0 MHz to 30 MHz. The main
effect of varying fsi is a shift of the cross-correlation peaks
along the time delay axis. This phenomenon is depicted in Fig.
4 and it is similar to one introduced in the previous section.
Increasing the starting frequency fsi results in a greater signal
spectrum coupling for τ < 0, which results in a shift of the
cross-correlation to the left.

Fig. 5 shows a plot of the isolation as a function of
starting frequency for a few values of ∆B. Results show
that varying the starting frequency fsi has a minor effect
on the isolation of both signals after matched filtering. The
parametrised bandwidth difference ∆B, in this case, has a
much greater impact on the isolation. Fixing Bj to 60 MHz
and varying ∆B from 10 MHz to 50 MHz improves the
isolation from approximately 18.5 dB to 25.5 dB. On the other
hand, the mean value of the isolation is, when ∆B = 30MHz,
23.3 dB and all values fall in the interval between 23.3 dB ±
0.06 dB.

The results suggest that it could be possible to introduce
many frequency displaced chirps with smaller bandwidths
that would cause very similar effects on the cross-correlation
function.

C. Combining Upchirp and Downchirp Signals

Two chirp signals with the same bandwidth but with in-
creasing and decreasing frequency show a good degree of
orthogonality [13]. Their orthogonal property can be exploited
together with frequency slope waveform diversity in order to
produce more than two channels for a MBRS. The idea is
shown in Fig. 6, where a signal sj(t) coexists with two signals
si(t) and sk(t) in the time-frequency domain. The isolation
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Fig. 5. Simulated isolation levels between chirp signals si(t) and sj(t) with
different bandwidth differences ∆B and different starting frequencies fsi.

separation is even better between signals with positive and
negative frequency slopes. This can be observed in Fig. 3
where the biggest difference in signal separation occurs for
smaller bandwidth differences. Thus, combining upchirp and
downchirp waveforms should improve waveform isolation.
When the bandwidth difference of the two upchirp signals
is small and starting frequency is the same, separation is not
possible. In such case, only a combination with a downchirp
forms an orthogonal pair.

Fig. 6. Frequency modulations of compared upchirp signals si(t), sj(t) and
downchirp signal sk(t) that were used in simulations.

To illustrate the difference, three chirps are compared with
frequency modulations according to Fig. 6. The time duration
for all signals is T = 10 µs, Bi = Bk = 10 MHz, Bj =
50 MHz and fsi = 20 MHz. The signal si(t) represents a
downchirp, sk(t) is an upchirp, and the signal sj(t) is an
additional upchirp to which both are compared. Fig. 7 shows
the resulting cross-correlation functions Rij(τ) and Rkj(τ).
It can be seen that the downchirp sk(t) has a better isolation
with respect to sj(t) than the upchirp si(t). The improvement
in isolation amounts to about 2 dB. However, the sidelobes
become wider after pulse compression.

−10 −5 0 5 10
−60

−55

−50

−45

−40

−35

−30

−25

−20

Time Delay τ  [µs]

C
ro

s
s
−

C
o

rr
e

la
ti
o

n
 [

d
B

]

 

 

R
ij
(τ ) − Upchirp

R
kj

(τ ) − Downchirp

Fig. 7. Simulated isolation for the upchirp signal si(t) and downchirp signal
sk(t) with Bi = Bk = 10MHz when compared to wider bandwidth upchirp
sj(t) with Bj = 50 MHz.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The prototype consists of a Universal Software Radio Pe-
ripheral (USRP) device with two transmitting ports and one
receiving port. The two transmitting channels TX1 and TX2
host two identical antennas, while the receiving horn antenna
is connected to the receiving channel RX1. A diagram and
a photo of the prototype are shown in Fig. 8 and in Fig. 9,
respectively.

Fig. 8. Schematic diagram of the experimental setup.

Fig. 9. Photo of the experiment that was conducted using USRP, two
transmitting, and one receiving antenna.

B. Experimental Results

The first experiment was carried out with only one active
transmitting antenna facing the receiving antenna from a 2



TABLE I
ISOLATION BETWEEN DIFFERENT CHIRP WAVEFORMS

T Chirp
∆B

10 MHz 20 MHz 30 MHz 40 MHz

10 µs Up-Up 17.09 dB 20.82 dB 22.77 dB 24.04 dB
10 µs Up-Dn 26.26 dB 26.91 dB 26.12 dB 25.56 dB
20 µs Up-Up 19.96 dB 23.97 dB 25.84 dB 27.18 dB
20 µs Up-Dn 29.35 dB 29.99 dB 29.21 dB 28.69 dB

m distance. The two waveforms under test were transmitted
and acquired separately, by running two consecutive measure-
ments, to corroborate the simulation results of the chirp rate
effects on the cross-correlation properties. Such approach was
selected to allow an accurate measurement of the isolation
between different signals. During the experimental work, the
sampling frequency was fs = 125 MHz and the carrier fre-
quency was fc = 6.0GHz. The number of transmitted samples
was set to 1250, so that the waveform length corresponded
to T = 10 µs. In receive, 1500 samples were acquired and
after that square windowing was applied to extract only the
transmitted signal.

The waveform parameters used in the experiment were the
same as those of the simulations; the bandwidth of the first
signal was kept constant with Bj = 50 MHz and that of the
second signal was varied according to Bi = Bj − ∆B. The
waveform si(t) was transmitted and received with the same
sampling frequency. A filter matched to sj(t) was used to
process the received signals. The measured results are plotted
in Fig. 10 and results corroborate the simulations presented
in the previous section. For ∆B = {20, 30, 40} MHz, the
difference between the measurements and the simulations is
on the average less than 0.5 dB.

Table I presents a summary of the results. It can be observed
that increasing the pulse width T improves the isolation
ratio Iij . Isolation performance for signals with a constant
pulse width are further improved by increasing the bandwidth
difference ∆B. The best isolation results were achieved when
an upchirp signal sj was compared to a downchirp signal sk.

The second experiment was carried out with two active
transmitting antennas. Two radar waveforms were simultane-
ously transmitted and then received with the receiving antenna
placed at a distance of 4 m from the transmitter. Fig. 11 shows
the results for the case when two waveforms sj(t) and si(t)
are transmitted simultaneously and the receiver is matched to
si(t). Results show the sidelobes of the suppressed signal sj(t)
and the normalised autocorrelation peak at the centre of the
plot. For the case with Bj = 50 MHz, Bi = 20 MHz and
fsi = 10 MHz, the measured isolation was Iij = 20 dB.

V. CONCLUSION

This paper presents a study of the orthogonal properties of
linear frequency modulated waveforms for MBRS. The mathe-
matical expression of the isolation was derived analytically for
chirp signals with different bandwidths and different starting
frequencies. The theoretical results were demonstrated using
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Fig. 10. Experimentally measured absolute values of cross-correlation func-
tions for chirp signals with different bandwidths ∆B.
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Fig. 11. Experimentally measured isolation between two transmitted upchirp
signals sj(t) and si(t) with different bandwidths. The amount of isolation
Sji is marked with the red arrow.

simulations and then confirmed with the experimental results.
Future work will look at studying the relationship between
maximum range, SNR, isolation and Doppler effects between
multiple channels of a radar system.
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