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Abstract Microelectromechanical systems (MEMS) are a highly multidisciplinary field and this
has large implications on their applications and design. Designers are often faced with the task of
balancing the modeling, simulation and optimisation that each discipline brings in order to bring
about a complete whole system. In order to aid designers, strategies for navigating this multidis-
ciplinary environment are essential, particularly when it comes to automating design synthesis
and optimisation. This paper outlines a new multi-objective and multidisciplinary strategy for
the application of engineering design problems. Two case studies are presented, the first focusing
on a common speed reducer design problem found throughout the literature used to validate the
methodology and a more complex example of design optimisation, that of a MEMS bandpass
filter. Results show good agreement in terms of performance with past multi-objective multidis-
ciplinary design optimisation methods with respect to the first speed reducer case study, and
improved performance for the design of the MEMS bandpass filter case study.

Keywords Microelectromechanical systems · MEMS · Multidisciplinary · Multi-objective
Optimisation

1 Introduction

The growth of the application of microelectromechanical systems (MEMS) into an increasing
number of disciplines means there is a need to balance the objectives, constraints and function-
ality of the whole system across these disciplines during the design stage. The design of complex
systems found in large engineering environments such as aerospace are often decomposed into
a number of disciplines or components and are tackled by specific design teams or departments
within an organization (Tribes et al (2005)). However this concurrent design approach can lead
to sub-optimal trade-offs, as compromises will have to be made when each discipline or com-
ponent is integrated together to form a whole system. A number of automated methods have
been developed and applied over the decades to overcome some of the problems associated with
this class of multidisciplinary design optimisation (MDO) problem. The field of MEMS design
optimisation mirrors this particular class of design problem due to the nature of the large num-
bers of interacting components and disciplines in which they act through. Therefore a design
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strategy that can aid designers overcome some of the problems associated with this particular
problem would be of great benefit. This paper looks to address this by developing and validating
a multi-objective and multidisciplinary design optimisation algorithm that allows designers to
decompose their multidisciplinary systems and optimise them individually before recombining
to the whole system. This is validated using a common speed reducer problem and also a more
complex MEMS design problem.

The rest of this paper is organized as follows. Section 2 provides an overview of multidisci-
plinary optimisation strategies in the literature and the different architectures that are employed.
Section 3 presents a novel MDO problem formulation that can handle multi-objective design
problems. Section 4 details the case studies and experimental setup used to validate this new
MDO approach with results presented in section 5 and finally conclusions follow in sections 6.

2 Multidisciplinary Optimisation Strategies

2.1 Multidisciplinary optimisation

Complex large scale systems found in many engineering problems today can consist of many
components and disciplines coordinating together to form some function or behaviour. In a real
design engineering problem, each discipline typically represents a design team concerned with the
design of one aspect or component of this complete system. This makes perfect sense as it allows
many more people to work upon a particular problem while also allowing specialized designers
to focus upon their respective disciplines (Balling and Rawlings (2000)). There are however
drawbacks, with the possibility of each discipline having to interact with others the chances of
infeasible / non-viable designs occurring due to conflicts with other engineering teams and their
separate disciplines is possible (Tribes et al (2005)). This is often solved with a post-optimisation
trade-off where in order to solve such inconsistencies and obtain a feasible design; changes need
to be made which often lead to a sub-optimal solution (Tribes et al (2005)). Therefore there is a
need to both optimise the individual disciplines and their constituent parts or components all the
while maintaining some level of global design optimisation for the system as a whole. MDO is one
such class of algorithm which looks to coordinate these individual disciplines and components
towards a system design that is optimal as a whole and satisfies all constraints, while maintaining
some level of design autonomy (Tosserams et al (2010)). This often involves the decomposition
of the original design problem into a set of hierarchical coupled elements often based upon the
analysis techniques which are used to analyze the physical or behavioural characteristics of the
system, or the possible different physical scales, components within the system. As such the total
structural performance of the whole system can be a combination of responses that are evaluated
from each level within the hierarchy (de Wit and van Keulen (2010)).

Once a hierarchy of decomposed elements is present their coordination and level of autonomy
need to be assigned within the optimisation routine. The lowest level of control may be called
analysis autonomy where the role of each disciplinary group is limited to the selection and analy-
sis of models (Balling and Rawlings (2000)). The simplest examples are the single-level methods
such as multi-disciplinary feasible (MDF), individual disciplinary feasible (IDF) or an all-at-once
approach (AAO) (Cramer et al (1994)) which generally focus upon a centralized decision making
process at one level, where analysis can also be undertaken at each discipline or element as shown
in figure 1a. It is possible to improve these single level methods by utilizing multiple computers
or grid systems for distributed analysis, and database management to give improved efficiency
and maintainability. However the reliance on a single optimizer to act as a central decision maker
and control all aspects of design for what is often a large scale and complex design problem is still
a drawback (Kroo and Manning (2000)). The natural progression and next level of autonomy
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Fig. 1: Disciplinary autonomy with (a) single-level analysis autonomy and (b) multi-level design
autonomy

is the inclusion of both analysis models and optimisation algorithms in a distributed multi-level
optimisation structure in what can be coined optimisation autonomy. Here each level can con-
tain its own set of analysis and optimisation routines and maintains some element of control
over them as shown in figure 1b. The coordination of a decomposed problem solution such that
the overall global solution is found is a challenging task (Schoeffler (1971)) however over the last
thirty years a large body of work has been conducted towards this goal (Sobieszczanski-Sobieski
(1990)) (Kodiyalam and Sobieszczanski-Sobieski (2001)). In the literature there are 6 main ap-
proaches to MDO which stand out from the rest; these are Optimisation by Linear Decomposi-
tion (OLD) (Sobieszczanski-Sobieski et al (1985)), Collaborative Optimisation (CO) (Braun et al
(1996)), Concurrent SubSpace Optimisation (CSSO) (Sobieszczanski-Sobieski (1988)), Bi-Level
Integrated System Synthesis (BLISS) (Sobieszczanski-Sobieski et al (1998)), Analytical Target
Cascading (ATC) (Kim et al (2003)) and the method of Quasi-separable Subsystem Decompo-
sition (QSD) (Haftka and Watson (2005)). Each method differs in the way it coordinates the
solution of a decoupled multilevel optimisation problem. Newer methods include the inexact
penalty decomposition method (DeMiguel and Murray (2006)) and augmented Lagrangian coor-
dination (Tosserams et al (2008)). An overview of the current main approaches to MDO can be
found in (de Wit and van Keulen (2010)) and (de Wit et al (2006)). A list of the major MDO
methods within the literature is shown in table 1.

2.2 Multi-objective multidisciplinary optimisation

The approaches outlined previously that include optimisation routines within all levels of the
design optimisation framework generally utilize traditional gradient-based optimisation methods
using a single solution only and focusing on a single objective. A number of authors have adapted
these traditional methods to create multi-objective MDO formulations using a single weighted
sum or aggregated objective (Tapetta and Renaud (1997) McAllister et al (2005)). However the
majority of design engineering problems are highly complex with non-linear responses, discontin-
uous and multi-modal search spaces and contain both discrete and continuous decision variables.
All these factor in a number of pathologies to the search efficiency of the more traditional op-
timizers, while single solution strategies only provide a single Pareto solution from each run
for a designer to choose from. Therefore looking to incorporate more robust population-based
algorithms such as those found within the field of evolutionary computation that focus upon
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Table 1: Chronological review of developments in multidisciplinary optimisation

Contributors Date Description

Sobieszczanski-Sobieski et al (1985) 1985 OLD, optimisation by linear decomposition
Sobieszczanski-Sobieski (1988) 1988 CSSO, concurrent subspace optimisation,

Cramer et al (1994) 1994 IDF, individual discipline feasible method, each
discipline is solved independently outside of sys-
tem level

Cramer et al (1994) 1994 MDF, multidisciplinary feasible method, each dis-
cipline is directly coupled in some way through
input and output analysis, system level controls
global / local design variables

Balling and Sobieszczanski-Sobieski (1996) 1996 SAND, simultaneous analysis and design
Braun et al (1996) 1996 CO, collaborative optimisation,

Sobieszczanski-Sobieski et al (1998) 1998 BLISS, bi-level integrated system synthesis,
Kim et al (2003) 2003 ATC, analytical targeting cascade,

Haftka and Watson (2005) 2005 QSD, quasi-separable subsystem decomposition,
DeMiguel and Murray (2006) 2006 IPD, inexact penalty decomposition,

Tosserams et al (2008) 2008 ALC, augmented lagrangian coordination,

multi-objective design problems could be beneficial. An early example created by (Kurapati and
Azarm (2000)) featured an immune network system multi-objective genetic algorithm approach
(MOGA-INS) for MDO designed to solve hierarchically decomposed multi-objective problems.
Each decomposed unit or subsystem contained a MOGA which focused on a specific set of design
variables held within the subsystem population representation. Limitations with this approach
involved the need for each subsystem to contain the same objectives as all others and being
limited to a hierarchical structure. In order to overcome limitations from this previous work
(Kurapati and Azarm (2000)), the authors in (Gunawan et al (2003)) created a multi-objective
multidisciplinary optimisation algorithm for hierarchically decomposed problems which allowed
for differing objectives within each subsystem. This particular approach used quality metrics as
a basis for objective function measurement for individual solutions at the system level. Other
multi-objective population based algorithms have been implemented within MDO over the years
with varying degrees of implementation and success (Giassi et al (2004) Aute and Azarm (2006)
Rabeau et al (2007) Huang and Wang (2009) Zadeh et al (2010)). A list of multi-objective MDO
algorithms found within the literature is shown in table 2.

2.3 Decomposition methods

One important part of the MDO process is in how the designers go about decomposing the orig-
inal problem into a set of sub-problems. Decomposition can be seen as identifying weak links
between elements that are coupled, and therefore allowing the elements to represent individual
though coupled optimisation problems (de Wit and van Keulen (2010)). In general decomposition
methodologies can be done in several ways such as object, aspect, sequential and model-based
(Wagner (1993)). Model decomposition is a partitioning method based upon functional depen-
dencies between design variables and functions included in the problem (Choudhary et al (2005)).
The main approaches to decomposition are the aspect-based and object-based methods, and are
discussed further below along with examples of MDO application to design optimisation based
upon these decompositions in tables 3 and 4. Aspect-based decomposition focuses on breaking up
the particular problem based upon the actual discipline analysis associated with it. This can be
aerodynamics, structural, thermal in the case of aircraft design, or electrical, mechanical, fluidic
and structural in the case of a MEMS device. In large-scale design environments the system as
a whole can be structured according to the individual components of the system such as turbine
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Table 2: Chronological review of developments in multi-objective multidisciplinary optimisation

Contributors Date Applications Description

Tapetta and Renaud (1997) 1997 Numerous Multi-objective collaborative MDO, system level
contains a weighted sum of subsystem level ob-
jectives, subsystems aim to minimize interdisci-
plinary inconsistencies

Kurapati and Azarm (2000) 2000 Speed reducer MOGA-INS, immune network simulation method
integrated with MOGA to give hierarchically de-
composed MDO

Gunawan et al (2003) 2003 Speed reducer,
UAV payload

Hierarchically structured MOGA MDO, requires
separable or additively separable objectives

Gunawan et al (2004) 2004 Speed reducer Hierarchical structured MOGA MDO, system
level optimizer focuses upon shared design vari-
ables / objective while subsystem focus on local
variables and objectives

Giassi et al (2004) 2004 Roll stabilizer
fin

MORDACE, a MOGA MDO that incorporates
robust design with each discipline design solu-
tions able to handle variation from shared data
during a compromise at end of routine

McAllister et al (2005) 2005 Race car design Integrated linear physical programming with col-
laborative MDO

Aute and Azarm (2006) 2006 Speed reducer,
numerical test
problem

Multi-objective collaborative MDO, system level
optimizer focuses upon shared design variables /
objective while subsystem focus on local variables
and objectives

Rabeau et al (2007) 2007 Speed reducer,
dock design
problem

COSMOS, collaborative optimisation strategy for
multi-objective systems, optimizer focuses upon
shared design variables / objective while subsys-
tem focus on local variables and objectives

Huang and Wang (2009) 2009 Container ship Mixed weighted and multi-objective collaborative
MDO utilizing multi-island genetic algorithms on
all levels of design

Zadeh et al (2010) 2010 Race car design Particle swarm multi-objective collaborative
MDO, a fuzzy decision maker is used to select
best design along Pareto front

engines or wing structures. These often correspond to engineering departments within a com-
pany and an object-based decomposition approach mimics this. Decomposing the problem into
individual components brings with it a natural mirror to real-world design optimisation along
with a simplification and grouping of design variables associated with these components.

2.4 MDO Architectures

Microelectromechanical systems often contain a large number of coupled devices or components
that provide some form of desired behaviour or function through their collective actions. The
system as a whole or the individual components that make it up also often covers a number of
disciplinary domains, be they mechanical (Fedder and Mukherjee (1996)), electrical (Farnsworth
et al (2010)), or more recently fluidic (Isoda and Ishida (2006)) and biological (Hostis et al
(2006)). The increased complexities from designing such multidisciplinary systems can make
it harder for designers to build such devices as they often require explicit knowledge in more
than one discipline. The application of automated design synthesis and optimisation techniques
towards multidisciplinary design problems such as those found in MEMS could greatly speed up
the design process and ease the burden of design placed upon the designer. The relationships
between the disciplines or components within a design problem often form the basis for the
structure the multidisciplinary optimisation routine will take when looking to apply a MDO
algorithm. The current state of the art in multi-objective population based MDO employs a multi-
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Table 3: Chronological review of developments in aspect-based decomposition

Contributors Date Applications Description

Kroo and Manning (2000) 2000 Supersonic air-
craft design

Decomposition of supersonic aircraft into three
major disciplines (aerodynamics, structures and
mission analysis)

Giassi et al (2004) 2004 Roll stabilizer
fin

Sequential optimisation with hydrodynamic opti-
misation solutions fed into structural subsystem
optimizer compared against MORDACE which
provided superior performance

Tribes et al (2005) 2005 Structural wing Decomposition into a system level performance
objective and subsystem aerodynamics / struc-
tural disciplines

McAllister et al (2005) 2005 Race car design Consisted of two system level objectives, mini-
mize lap time and maximize normalized weight,
with subsystem decomposition into aerodynamic
and force disciplines

Huang and Wang (2009) 2009 Container ship Decomposition into static, mode and dynamic
disciplinary analysis

Zadeh et al (2010) 2010 Race car design Similar decomposition to McAllister et al (2005)
with aerodynamic and force disciplinary analysis

Table 4: Chronological review of developments in object-based decomposition

Contributors Date Applications Description

Balling and Rawlings (2000) 2000 Structural
bridge

Decomposition of the main components of bridge
structure, the superstructure and deck in a con-
ceptual MDO approach

Kurapati and Azarm (2000) 2000 Speed reducer The design problem objectives and variables are
decomposed up into separate subsystems and
solved independently before recombining

Gunawan et al (2003) 2003 Speed reducer,
UAV payload

Payload design with the goal to maximize prob-
ability of success, UAV design variables decom-
posed between subsystem levels

Aute and Azarm (2006) 2006 Speed reducer,
numerical test
problem

Decomposition of design problem objectives and
variables, similar to Gunawan et al (2003)

Rabeau et al (2007) 2007 Speed reducer,
dock design
problem

Decomposition of dock structure into separate
subsystems containing individual cantilevered
beams attached to vertical wall

level hierarchical structure with an upper and lower level relationship that can be structured to
contain the decomposed design problem into a set of discipline or component subsystems.

These two approaches mimic the aspect and object decomposition methodologies described
previously and both can be equally applied to the MDO of MEMS. Figure 2 provides an ex-
ample of how a real world MEMS device, the ADXL150 accelerometer, can be broken up using
an aspect based (a) and an object based (b) methodology. Here the aspect based decomposition
contains lower level subsystems which undertake specific disciplinary analysis required for de-
sign optimisation with design variable, objective and constraints often linked to the individual
discipline. The object based decomposition concerns its self with the major constituents of the
device or system, with design variables heavily linked to these constituent parts and objectives
and constraints often tailored so as to optimise these individual components in such a way as to
benefit the global design goals situated at the system level.

The integrated and coupled nature of MEMS and the devices and components within them
can mean that it is not always possible to fully decompose a design problem and that there
still requires some level of communication between each of the lower level subsystems. In the
ADXL150 accelerometer example outlined above, it is conceivable that analysis and design vari-
able information altered within one subsystem is needed by another. The calculation of the
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Dynamics MechanicsElectrostatics

System Level

Sensor Geometry SpringsMass and Fingers

System Level

(a) (b)

Fig. 2: Decomposition of ADXL150 accelerometer for MDO using an aspect based (a) or object
based (b) methodology (Tosserams et al (2010))

electrostatic force is required for the calculation of the mechanics of the device in particular the
displacement and stiffness of the suspended springs (Tosserams et al (2010)). The current state
of the art in multi-objective population based MDO employs a hierarchical structure with each
individual lower level subsystem isolated from all others in a fully decomposed design problem.
Such hierarchical structures often require the design problem itself to be hierarchically decom-
posable with its objectives separable or additively separable which may not always be possible
(Gunawan et al (2003)). A non-hierarchical structure however allows communication between
the individual subsystems therefore allowing solutions within each subsystem to be provided
with the correct disciplinary analyses or subsystem design variables. A number of ways have
been presented on how to transfer coupled variables in order to reconcile each of the subsys-
tems into the formation of a complete solution. The cooperative co-evolutionary algorithm set
out in (Potter and De Jong (1994)) looks to choose the current best solution from each sub
species and recombine them with the chosen solution in the current subsystem to be evaluated.
In (Rabeau et al (2007)) a different approach looks to pass approximations of coupled variables
from the system level to each subsystem. The difference between the real, but inaccessible, value
and the approximate values decreases during the optimisation process. Updated coupling values
from each subsystem are sent at every system level invocation and then passed on to all other
subsystem levels later on, however they soon become approximations again as each subsystems
optimisation routine evolves. The next section outlines the multi-objective and multidisciplinary
optimisation algorithm designed to handle non-hierarchical communication between subsystems
and used throughout this paper.

3 Methodology

3.1 MDO problem formulation

In applying the MDO algorithm we first begin with the decomposition of the design problem into a
number of subsystems each with their own decision variables, local objectives and constraints. The
decision on how this decomposition is undertaken is up to the user and within the MDO literature
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System Level 

min
𝑋0

 𝑓01 = 𝐹(𝑋0) 

𝑓02 = 𝑋0 

s. t 𝑔0  ≤ 0 

where: 𝑋0 = 𝐴𝑐𝑡𝑖𝑣𝑒 {𝑋𝑠  } ,  
Inactive {𝑋𝑖 , 𝑋𝑗 , 𝑌𝑖𝑗 , 𝑌𝑗𝑖  } 

 

Subsystem 2  

min
𝑋𝑖

 𝑓21 = 𝐹(𝑋2) 

𝑓22 = 𝐹(𝑋1) 

s. t 𝑔2  ≤ 0 

where: 𝑋2 = 𝐴𝑐𝑡𝑖𝑣𝑒 {𝑋𝑗 , 𝑌𝑖𝑗 } , 

Inactive {𝑋𝑠  , 𝑋𝑖 , 𝑌𝑗𝑖 } 
 

[𝑋𝑠  ,𝑋𝑗  ,𝑌𝑖𝑗  ] [𝑋𝑠  ,𝑋𝑖  ,𝑌𝑗𝑖 ] 

[𝑋𝑖  ,𝑌𝑖𝑗 ]  [𝑋𝑗  ,𝑌𝑗𝑖 ] 

Subsystem 1  

 min
𝑋𝑖

 𝑓11 = 𝐹(𝑋1) 

𝑓12 = 𝐹(𝑋1) 

s. t 𝑔1  ≤ 0 

where: 𝑋1 = 𝐴𝑐𝑡𝑖𝑣𝑒 {𝑋𝑖 , 𝑌𝑖𝑗 } , 

Inactive {𝑋𝑠  , 𝑋𝑗 , 𝑌𝑗𝑖 } 
 

[𝑌𝑖𝑗 ,𝑅𝑖𝑗 ]  

[𝑌𝑗𝑖 ,𝑅𝑗𝑖 ] 

Fig. 3: Multidisciplinary optimisation non-hierarchical structures for decomposed problem

there are a number of methodologies two of which, aspect and object have been discussed. There
are also similar methods for identifying the important functions, analysis and objectives in a
design problem for example axiomatic design (Conceicao Antonio (1999)) which can also lend
their support. The decomposition of a multi-objective problem into a number of subsystems is
shown in figure 3. Here the default design problem is held and optimised within the system
level with the original objectives f01/f02 and constraints g0 active and a chosen set of decision
variables Xsh open for variation. The decision on what variables are included within the Xsh set
are up to the designer however they are often decision variables that are common to more than
one subsystem (Gunawan et al (2004)) and often hard to separate so are shared throughout all
subsystems. All other decision variables are closed to the system level and remain fixed.

The subsystems are constructed as a non-hierarchical design with communication both from
the system to subsystem or parent to child level and from subsystem to subsystem occurring.
Each of the subsystems contains its own local objectives f11/f12 and these can be unique, ad-
ditively separable from one of the system level objectives or one of the system level objectives
in its own right as shown in figure 3. In a similar vein the constraints g1/g2 held within each
subsystem can also be unique or taken from the system level design problem. The active decision
variables within each subsystem consist of local disciplinary design variables Xi/Xj and the cou-
pled disciplinary design variables Yi/Yj . Where the local disciplinary design variables are fixed
to each subsystem the coupled design variables are not and as a result they are transferred from
their local subsystem to all other subsystems within the structure every cycle. Finally not all
problems can be fully decomposable in respect of their disciplinary analysis and as a result more
than one system may rely on information garnered from another. Therefore when applicable
coupled analysis response variables can also be passed between the child subsystems, with the
origin of the subsystem analysis passing on these variables to any other subsystem that requires
them. A default chromosomal representation of the various design and response variable sets for
a single solution is shown in figure 4.

The overall process of the multidisciplinary optimisation algorithm can be broken down into
a number of key steps, in this instance linked to a multi-objective population based optimizer
and they are described below.
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Fig. 4: Multidisciplinary optimisation design and response variable sets for a chromosomal rep-
resentation

First
The first step begins with the initialisation of the system level population; in particular the
various variable sets as shown in figure 5. Any coupled variable response values are set to null
to be filled later after functional evaluation. The filled system level population set popCurrent
is than ready for variation. Functional evaluation of each individual is based upon system
level objectives f01, f02

Second
A selection set is chosen from the current system level population ready for variation and
the creation of an offspring population set. Only the system levels shared variables Xsh are
varied based upon the chosen optimizers operators. At the system level this offspring set is
then used depending upon the chosen the optimizers replacement operators as the basis for
the next popCurrent set. However as shown in figure 6 the newly created system level offspring
population set is also passed on to the each of the subsystems within the multidisciplinary
optimisation structure.

Third
The next step shown in figure 5 moves on to the subsystem level of the design process, upon
receiving the offspring sets the individual solutions are used to fill the local subsystem popu-
lations. Subsystem populations with a lower number of solutions than the supplied offspring
set are filled using a truncation operator. For each subsystem the local population sets now
need to be evaluated using local objectives f11, f12/f21, f22 and constraints before then un-
dertaking a standard routine of selection, variation and replacement. Each of the subsystems
variation operators are restrained to only alter their local disciplinary design variables Xi/Xj

and the local coupled disciplinary design variables Yi/Yj . After variation has occurred, any
coupled variable within each subsystem offspring solution is passed on to all other subsys-
tems, as a result all subsystem offspring set sizes are fixed to the same size. Finally functional
and constraint evaluation of each subsystem offspring population set is undertaken and where
necessary coupled disciplinary analysis variable values are also transferred to any subsystem
solutions that may require them for functional or constraint evaluation. The local subsystem
offspring sets are then combined with their local population sets before replacement operators
update each subsystem with a new population set. This iterative process then continues for
a fixed number of cycles before ending and moving on to the next step.
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Fig. 5: Multi-objective multidisciplinary optimisation process
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Fourth
The final step in figure 5 looks to take the evolved subsystem population sets and combine
them into a Total Population set for evaluation of objectives and constraints at the system
level f01, f02. The size of the total population set is fixed to the total sum of all subsystem
population sets. This total population set is then combined with the system level popCurrent
set to form a unified Grand Pareto set which is then used to create a new popCurrent set using
the optimizers replacement operators. Upon completion of this step the process begins again
at step two and the whole process is repeated until a chosen criterion is used to determine
whether it should be stopped.

4 Case Studies and Experimental Setup

Two case studies have been chosen to validate the multi-objective multidisciplinary optimisation
method outlined in this paper. The first is a more traditional design-engineering problem designed
by Golinski for the optimisation of a speed reducer used to test a number of multi-objective and
multidisciplinary optimisation algorithms within the literature (Kurapati and Azarm (2000)Gu-
nawan et al (2003)Aute and Azarm (2006)Rabeau et al (2007)Gunawan et al (2004)). The second
case study concerns the design optimisation of a MEMS bandpass filter. Both of these case studies
are outlined in further detail below.

4.1 Speed reducer problem

The Golinski problem looks to optimize the sizing of a speed reducer component and originally
formulated as a single objective problem (Golinski (1970)) it has also been expanded into a two
(Kurapati and Azarm (2000)) and three objective (Gunawan et al (2003)) design problem with
formulations for multidisciplinary optimisation also constructed within (Gunawan et al (2004)).
The speed reducer consists of 7 design variables all tied to the component with the objectives
set out to minimize the volume while simultaneously reducing the stress placed upon the shafts.
The objectives for the design problem are shown in equations 1 to 3 for both the two and three
objective problem and 4 and 5 for the decomposed objectives. In the case of the two objective
design problem only objectives f1 and f2 are used, while for the multidisciplinary optimisation
approach two subsystems are used, the first focusing on objectives f1,1 and f2 and the other
f1,2 and f2 for the two objective design problem and f1,2 and f3 for subsystem two in the three
objective problem. . Also associated with the speed reducer problem are 11 inequality constraints
outlined in equations 6 to 16. Finally table 5 holds the decision variables for the speed reducer
problem along with their type and upper / lower bounds.



12 Michael Farnsworth et al.

f1 = 0.7854x1x
2
2

(
10x2

3

3
14.933x3 − 43.0934

)
−1.508x1(x2

6+x2
7)+7.477(x3

6+x3
7)+0.7854(x4x

2
6+x5x

2
7)

(1)

f2 =

√(
745x4

x2x3

)2

+ 1.69 × 107

0.1x3
6

(2) f3 =

√(
745x5

x2x3

)2

+ 1.575 × 107

0.1x3
7

(3)

f1,1 = 0.7854x1x
2
2

(
10x2

3

3
14.933x3 − 43.0934

)
−1.508x1x

2
6+7.477x3

6+0.7854x4x
2
6

(4)

f1,2 = −1.508x1x
2
7+7.477x3

7+0.7854x5x
2
7 (5)

g1 ≡ 1

x1x2
2x3

− 1

27
≤ 0 (6) g2 ≡ 1

x1x2
2x

2
3

− 1

397.5
≤ 0 (7)

g3 ≡ x3
4

x2x3x4
6

− 1

1.93
≤ 0 (8) g4 ≡ x3

5

x2x3x4
7

− 1

1.93
≤ 0 (9)

g5 ≡ x2x3 − 40 ≤ 0 (10) g6 ≡ x1

x2
− 12 ≤ 0 (11)

g7 ≡ 5 − x1

x2
≤ 0 (12) g8 ≡ 1.9 − x4 + 1.5x6 ≤ 0 (13)

g9 ≡ 1.9 − x5 + 1.1x7 ≤ 0 (14) g10 ≡ f2 − 1300 ≤ 0 (15)

g10 ≡ f3 − 1100 ≤ 0 (16)

4.2 MEMS bandpass filter

Large engineering design problems for example those found within the aeroplane industry can
be difficult or impossible to undertake as a whole due to the large number of design variables,
constraints and disciplinary analyses of the problem. In reality the design problem is often de-
composed and each individual component solved or optimized separately by a design team, often
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Table 5: Speed Reducer Variable Information

Variable Tag Sub Tree Type Lower Bound Upper Bound

Variable 1 Real-Valued 2.6 3.6
Variable 2 Real-Valued 0.7 0.8
Variable 3 Integer 17 28
Variable 4 Real-Valued 7.3 8.3
Variable 5 Real-Valued 7.3 8.3
Variable 6 Real-Valued 2.9 3.9
Variable 7 Real-Valued 5.0 5.5

focusing on specific variables, constraints and objectives. MEMS are inherently multidisciplinary
through the interaction of the mechanical and electronic components of the device. The applica-
tion of MEMS into fields such as biology or chemistry through lab on-chip devices increases the
number of disciplines a designer or design team must understand and integrate into the design
process. A MEMS bandpass filter forms the basis of the second case study. It consists of an array
of coupled folded flexure resonator tanks that collectively function as the filter itself, examples
can be found in (Wang and Nguyen (1999)Lin et al (1992)).

The design of a bandpass filter in this instance consists of a single discipline in the form of
electrical circuit simulation. Modelled as an electrical equivalent circuit, it contains equivalent
elements for the mechanical resonator tanks and coupling springs that make up the bandpass
device. Each of these components plays an important role in how the frequency transmission of
the bandpass filter is shaped. A detailed breakdown of the modelling, simulation and optimisation
approach can be found in (Farnsworth et al (2010)). The aim of this design problem is to create
a solution whose bandpass characteristics match the targets outlined by the designer.

A number of design objectives have been created to solve this particular problem and are
outlined in figure 6. A frequency transmission from a single micromechanical resonator consists
of a number of frequency data points plotted against the magnitude in units of dB as seen top
left of figure 6. The quality and performance of the filter transmission can be measured by simply
calculating where each data point lies within the pass band and stop band ranges outlined and
measured against their target magnitude, in this case 0dB for points within the passband and
-20dB within the stop band regions. The overall frequency performance can then be quantified
as a sum of the total deviation from each of these ranges for the data points within the frequency
transmission. Ideally all data points that lie within the pass band will have 0 insertion loss and
no gain giving a magnitude of 0dB, while all points within the stop band will be -20dB or less
and therefore have a deviation of 0 for both regions.

Central frequency of the bandpass filter is important when wanting to design a frequency
transmission for a targeted portion of the spectrum. The central frequency of a transmission
is simply calculated as the distance of the peak frequency data point to the desired central
frequency outlined by the designer. The objective shown on the top right in figure 6 is both
a targeted design goal and a guide to the optimizer, allowing individual or coupled resonator
transmission responses to move closer to the targeted region of interest. The design variables
for this problem are shown in table 6 and represent the values attributed to each resonator
tank of the electrical circuit equivalent model. The representation is a varied length chromosome
dependent on the number of tanks present. The bandpass filter characteristics are shown in table
7 for this particular design target.

The object based decomposition of the bandpass filter begins with classifying the customer
requirements at the highest level, in this instance the characteristics of a bandpass filter with
low insertion loss and high bandwidth over a target frequency range. The global objectives to try
and meet these targets have already been outlined previously in the filter response and central
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Fig. 6: MEMS bandpass filter synthesis breakdown for filter objective

Table 6: Bandpass Filter Problem Information

Variable Tag Sub Tree Type Lower Bound Upper Bound

Voltage Real Valued 1 200
Tank Number Integer 1 9

Finger Number Integer 1 200
Thickness (m) Real Valued 2 30

Capacitance (F) Real Valued 3E-15 8E-15
Inductance (H) Real Valued 40000 80000

Coupling Spring Capacitance (F) Real Valued 3E-15 8E-15
Tank Branch N/A N/A

Objectives Constraints

Bandpass Filter Response Error Minimize N/A
Bandpass Central Frequency Error Minimize

Table 7: Bandpass Filter Parameter Ranges

Bandpass Filter Characteristics

Passband 9.5kHz 10.5kHz
Stopband 1 1Hz 9.5kHz
Stopband 2 10.5kHz 15kHz

Central Frequency 10kHz
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Table 8: Bandpass Multidisciplinary Optimisation Objectives

System Level Subsystem 1 Subsystem 2

Objective 1 Objective 2 Objective 1 Objective 2 Objective 1 Objective 2

Objective Type Minimize Minimize Minimize Minimize Minimize Maximize

Objective Description Filter Re-
sponse

Central
Frequency

Pass Band
Error

Central
Frequency

Stop Band
Error

Bandwidth

Constraint Type N/A Inequality N/A

Constraint Description N/A Stop Band Error ≤ 1000 N/A

frequency objectives and in order to undertake a MDO approach new objectives are required as
the system is decomposed. The decomposition of these objectives and the bandpass filter device
into separate system and subsystem elements can then occur to try and aid the overall design
process. The literature (Wang and Nguyen (1999) Bannon. F. D Clark and Nguyen (2000))
points to the effect each individual resonator has on central frequency of the bandpass filter,
both individual and coupled resonators and their mass, stiffness and damping values reflect their
central frequency peak within the whole transmission shape. The pass band ripple and insertion
loss are also heavily influenced by the constituent resonators that make up the bandpass filter
(Wang and Nguyen (1999)). Subsystem one is tasked with solving this particular functional
requirement, with specific objectives and constraints as shown in table 8. The design of a filter
which has a flat pass band characteristic within the target frequency range means the addition
of a pass band error objective. This new objective is calculated exactly as in the filter response
however, only the pass band is taken into consideration.

The bandwidth of the filter device should be sufficient enough to cover the target pass band
range, however the frequency transmission than needs to possess a sufficient roll off either side
of the pass band into the stop band region to be effective. Both the bandwidth and stop band
functional requirements are heavily influenced by the number of resonator tanks within the filter
and the coupling spring stiffness that couple them (Wang and Nguyen (1999) Lin et al (1992)).
Subsystem two contains objectives designed to focus on these particular functional requirements,
the construction of a bandwidth objective, the goal of which is to maximum the bandwidth of the
first and last peaks of the filter transmission as shown at the bottom of figure 6 is included. The
bandwidth is calculated as the distance in Hz between the first and last peaks of the bandpass
filter divided by the average gain of the two peaks. Each peak is calculated simply as a point
where either side shows a decline in the magnitude dB, and it must lie within the pass band
range and have a magnitude between 15 dB and -15 dB. In the case where only one peak is
present, then the bandwidth is set to a value of 1. The final objective for subsystem two is for
stop band error and like the pass band error objective is calculated from the filter response.

In addition to the objectives a new constraint is added to the overall design process. Subsystem
one contains a constraint to the total stop band error of the frequency transmission; this is
to stop certain frequency transmissions from dominating at a detriment to the overall design
optimisation, these transmissions characteristically have a frequency response of 0 dB from start
to finish of the bandpass target range giving them 0 pass band error, but large stop band error.

4.3 Experimental setup

The improved design synthesis and optimization of MEMS devices is the targeted outcome of
this approach through the application of automated optimization heuristics in conjunction with
available MEMS modeling and simulation tools.



16 Michael Farnsworth et al.

From the field of evolutionary computation two of the current state-of-the-art multi-objective
algorithms have been chosen to undertake design synthesis, firstly NSGAII (Deb et al (2000)) and
finally SPEA2 (Zitzler et al (2001)). Both algorithms have been explored in terms of performance
and applied successfully over a number of areas and problems outside and within MEMS design
synthesis. These multi-objective algorithms are used as the base optimisation to compare the
outlined MDO method for both case studies outlined. The default parameters for both algorithms
across both case studies are shown in table 9.

Table 9: Default Algorithm Parameters NSGAII and SPEA2

Algorithm Parameter Default Value

Population Size 100
Offspring Size 100
Selection Size 100

Replacement Size 200
SBX Distribution Index 20

Polynomial Mutation Distribution Index 20
Probability of SBX Crossover 0.8

Probability of Mutation 0.142857
Generations 100

Tests 5

The speed reducer case study uses a mixed integer and real-valued tree-based chromosome
structure, while the bandpass filter case study uses a varied length tree-based structure to ac-
count for the decrease or increase in resonator tank numbers. In order to account for this varied
length approach new crossover and mutation operators have been introduced or adapted from
those present within both NSGAII and SPEA2. The details of these can be found in (Farnsworth
et al (2010)) but they essentially allow for the insertion and removal of resonator tanks and there
associated variables within the chromosome during variation. The standard single level represen-
tation of the bandpass filter design problem is shown in figure 7. This also includes an overview of
related structural tags and node markers. Structural tags relate to specific branch nodes within
the representation and the nodes that control the count or number present. Node markers are
used to provide additional information for a particular operator such as SBX crossover within
NSGAII, marking certain nodes that can have crossover performed or not.

As discussed in order to undertake the MDO approach each case study has been decom-
posed into a number of subsystems. The speed reducer follows past examples (Gunawan et al
(2003)Gunawan et al (2004)) and the representation used throughout this experiment is shown
in figure 8 for both the two and three objective problems. The MEMS bandpass filter case study
is detailed in figure 9 and contains the system, subsystem and coupled variables created from
the decomposition of the original design problem. This decomposition is based upon the relation
certain variables have with the particular objectives set out in each system or subsystem. At
the system level the objectives naturally remain the same as the original conception, but only
the voltage, finger number and thickness variables are evolved. These values influence the comb
transducer of the bandpass filter device and in the circuit model its effect on resistance values
of each individual LCR tank. Subsystem one focuses upon passband ripple and insertion loss
that is directly affected by the capacitance and inductance of each individual resonator tank.
Subsystem two variables focus upon the bandwidth of the device, which is heavily influenced by
the coupling spring capacitance and tank number of the device. At the end of each subsystem
cycle coupled variables are swapped between subsystem solutions.
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Fig. 7: Bandpass filter design template, with overview of problem, default representation, asso-
ciated structure tags, node markers and global variables

The design process of the multidisciplinary strategy is essentially split between system and
subsystem calls, and the cycle between them. Both the system and subsystem levels have the
same default algorithmic parameters and population levels and therefore there is a choice into
how many cycles each level is run in order to allow successful design optimisation within a budget
of 10,000 functional evaluations. In the system level multidisciplinary optimisation design process
the system level is run every 10 cycles, while each subsystem is run concurrently every cycle, this
allows each subsystem to evolve its local population for 10 generations before the solutions are
passed up to the system level. The population parameters for both algorithms and case studies
are shown in table 10.
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Fig. 8: Speed reducer multidisciplinary optimisation representation

Table 10: Population Parameters Multidisciplinary Optimisation

Algorithm Parameter Default Value

System Population Size 100
System Offspring Size 100
System Selection Size 100

System Replacement Size 200
Grand Pareto Size 300

Subsystem Population Size 100
Subsystem Offspring Size 100
Subsystem Selection Size 100

Subsystem Replacement Size 100
Subsystem Total Size 200

5 Results

The results for both case studies are presented below and consist of a number of final population
sets, hypervolume values, solution characteristics and additional analyses. In order to assess
the performance of each of the algorithms on the two case studies the hypervolume metric is
used to both evaluate the Pareto spread and dominance of the objective space each of the tests
final populations has produced. The mean and bound hypervolume results for each algorithm
are shown for each example, with the chosen nadir point for the objectives indicated below the
specific table.

5.1 Speed reducer problem

Looking at the results in the two and three objective speed reducer problems there is similar
performance in terms of population spread across both algorithms and strategies as shown in
figure 10. The hypervolume results shown in table 11 indicate some difference in performance
across the five runs with the single level NSGAII outperforming all others on the two objective
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Fig. 9: Bandpass filter multidisciplinary optimisation design template, with overview of problem,
default representation, associated structure tags, node markers and global variables

problem and the MDO algorithm outperforming the others on the three objective problem. If we
are to compare these results with past examples found in (Kurapati and Azarm (2000)) for the two
objective and (Gunawan et al (2003)) for the three objective problem we see similar performance,
with less functional evaluations required and more solutions generated. As a validation of the
outlined MDO algorithm the speed reducer case study has proven a successful demonstration of
its capabilities.

5.2 MEMS bandpass filter

The results presented are the individual final population sets for each of the five tests performed
by each algorithm of the MDO strategy, shown in figures 11. Also shown are the best frequency
transmissions found by the MDO strategy for each algorithm, ranked by the filter frequency
objective in figure 12. The objective values of the best result ranked by the filter frequency
objective for every run are held in table 12. Finally the hypervolume values for both algorithms
are shown in table 13, with the best results shaded.

Undertaken by both NSGAII and SPEA2 the characteristic performance of both shows the
single level SPEA2 outperforming the single level NSGAII in this example. Though the SPEA2
MDO implementation performed similar to the single level strategy its results seem to indicate
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that this is possibly not due to convergence to a suboptimal front as was prevalent in the single
level strategy. Instead the Pareto population sets for the SPEA2 MDO results are more frag-
mented, with both poor and good fitness response fronts in the objective space. The structured
nature of the MDO strategy, with separate subsystems and objectives can result in an inefficient
use of resources or in this case functional evaluation cost as populations migrating from the
system to subsystem levels need to be re-evaluated. This cost equates to about 1600 functional
evaluations of lost search, a significant amount, which could have lead to the algorithm refining
those transmissions from a 1400 filter response error to a lower one. NSGAII MDO on the other
hand shows a robust performance over the 5 runs, significantly performing better than its single
level counterpart as shown in table 12. An interesting characteristic of this approach is that
a number of population fronts are continuous over a large range of the frequency fitness error
objective. Whether the internal workings of the NSGAII algorithm and its crowding operator
has had a positive effect on the solution spread which is filtered through to the MDO strategy
in some way is a possibility though not certain and for brevity is left unexplored. The overall
performance of both algorithms when compared against the single level strategies is shown in
figure 13, with NSGAII outperforming the single level significantly and SPEA2 showing similar
performance.

Two examples of a generational system population set for SPEA2 MDO are shown in figure
14 showing each population set progressively moving towards the optimal in separated fronts
indicating how each cycle contributes to Pareto objective fitness. A major component of the
MDO strategy is its structured system and subsystem hierarchy and the exchange of genetic
material between each subsystem every generation. The partitioning of the design process into
system and subsystem cycle events breaks up the design process as population sets are transferred
from system to subsystem and vice versa. Figure 15 highlights the generational change to each
subsystems population set through the individual hypervolume values of each run. The effect
on subsystem one is negligible with steady improvement throughout the design process and
typical of the system MDO level hypervolume results. However subsystem two shows a marked
decrease in hypervolume or performance of the Pareto front after every system level update,
where a new offspring population set is passed to each subsystem. This is in part due to the
possible loss of good solutions through the passing of the offspring set, or the disparity of the
genotype / phenotype of these solutions from the system level objective space, which uses the
standard central frequency and filter response objectives, to subsystem two objectives of stop
band and bandwidth. There is a slight exaggeration of the hypervolume dip because solutions
with a stop band of 0 are not found at the system level, these are evolved afterwards. The loss in
the hypervolume performance of the population set is often linked to the bandwidth objective of

Table 11: Speed Reducer Two and Three Objective Design Problem Hypervolume Metric Values

Speed Reducer 2 Objectives

NSGAII SPEA2 MDO NSGAII

SU 1927425.898 1926371.720 1926094.169

SM 1927096.298 1925150.499 1925560.005

SL 1926533.553 1921631.936 1924012.468

Speed Reducer 3 Objectives

NSGAII SPEA2 MDO NSGAII

SU 669348872.86 674722574.432 672953351.4

SM 667099790.88 667656079.534 670425237.7

SL 664741675.34 660545560.310 666497637.0

*(SUSMSL)1 [5800, 1350] *(SUSMSL)2 [6000, 1350, 1100]
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Table 12: Bandpass Filter Results

NSGAII

Test Index Filter Objective Central Frequency Objective Voltage Tank Number

1 0 1750.493 101 61.34 3
2 0 1680.625 235 105.75 3
3 31 1248.642 32 190.34 3
4 0 3315.054 910 30.64 2
5 0 2148.439 206 144.01 3

Multidisciplinary Optimization NSGAII

Test Index Filter Objective Central Frequency Objective Voltage Tank Number

1 25 1103.233 310 183.27 3
2 28 1323.016 711 105.25 3
3 2 1268.895 370 133.04 3
4 9 1128.922 308 111.34 3
5 8 832.363 23 56.044 3

SPEA2

Test Index Filter Objective Central Frequency Objective Voltage Tank Number

1 29 984.904 430 11.785 3
2 15 1936.521 160 199.10 3
3 1 1925.665 180 139.56 3
4 8 1012.157 40 85.27 3
5 80 1643.993 175 48.73 3

Multidisciplinary Optimization SPEA2

Test Index Filter Objective Central Frequency Objective Voltage Tank Number

1 4 1117.323 350 147.73 3
2 15 1493.894 490 177.23 3
3 4 1789.087 82 134.85 3
4 60 1489.723 212 13.81 3
5 15 1412.127 147 70.87 3

Table 13: Hypervolume Results for NSGAII and SPEA2

NSGAII

Hypervolume Single Level Multidisciplinary Optimisation

SU 43755994.223 45837863.064

SM 39634066.167 44060899.260

SL 32507262.763 43035839.206

SPEA2

Hypervolume Single Level Multidisciplinary Optimisation

SU 44945558.089 44084774.987

SM 42433896.104 42559736.279

SL 40276362.685 41041427.413

* (SU SM SL) [10000, 5000]

subsystem two, where solutions at the system level often have smoother pass bands with peaks
within the pass band range giving smaller bandwidths then those evolved locally before. The
subsystem then has to search and evolve past solutions with an equivocal bandwidth.

Exploring the effect of each subsystem and the decision variables under their control and how
the genes and their alleles evolve over the design process are presented next. Shown in figures
16 and 17 are a series of generational filter frequency transmissions for the best solution found
in the system, subsystem one and two population sets for NSGAII MDO run 1 and SPEA2 run
1 respectively. Each solution chosen was ranked by the filter frequency error, passband error
and bandwidth objective respectively and the objective values and tank values for each filter are
shown below the response.
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The frequency transmissions for both examples NSGAII run 1 and SPEA2 run 1 show an
incremental improvement over the three separate partitions, cycle 1, 11 and 21, and are followed
with phenotypes that show minimal change over the following examples in cycles 31 and 41. The
only deviation from this is in figure 17 and subsystem two results that switch to a phenotype
that is locally better than that of the best global system level solution. Looking at the specific
subsystems, each one begins with the evolution of tailored frequency transmission characteris-
tics, with subsystem one containing solutions focusing on the pass band region predominately
with little regard for the stop band if only to remain unconstrained. The overall characteristic of
the subsystem one solution in figures 16 and 17 takes on the shape of a typical bandpass filter,
though with an unrefined pass band, at cycle 11 until convergence to the final phenotype at
cycle 21. Subsystem two focuses upon both bandwidth and the stopband region of the frequency
transmission. The bandwidth of the frequency transmission between two or more peaks is estab-
lished around cycle 11 in both NSGAII and SPEA2 examples and this is evolved to give wider
bandwidths further on in the design process. The next question is to what effect each subsystem
and the solutions they evolve have on the global system level where the designer wishes to evolve
the solutions they want to match the target filter characteristics. Interestingly in both examples
the phenotypes of one subsystem match more closely the phenotype of the system level solution,
here NSGAII subsystem two and SPEA2 subsystem one show closer affinity. The genotypic val-
ues in figures 16 and 17 of each of these solutions also show a close correlation, with individual
capacitance and inductance values for each resonator tank closely resembling their system level
counterparts, in particular SPEA2 subsystem one being identical. The frequency transmission
of the system level solution begins to match more closely with the best subsystem one solution
from cycle 21 onwards, probably in part due to the pass band objective playing a more dominant
part in the system level frequency error objective at this stage of the design process. However
subsystem two frequency transmission results on a number of examples do not mirror the exam-
ple found or retained at the system level. The bandwidth of the subsystem two best solutions
are often associated with the 2nd and 3rd peaks with the 1st outside the target passband range
and therefore ignored.
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Fig. 10: Final population sets two and three objective speed reducer problem
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Fig. 11: MEMS bandpass filter run 1 - 5 final population sets for (left) NSGAII multidisciplinary
optimisation and (right) SPEA2 multidisciplinary optimisation
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Fig. 12: System level best filter response ranked by filter frequency objective for (left) NSGAII
multidisciplinary optimisation and (right) SPEA2 multidisciplinary optimisation

Fig. 13: Bandpass average hypervolume results for the 5 runs of the multidisciplinary optimisation
and single level NSGAII and SPEA2 strategies * (SU SM SL) [182000, 4150]
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Fig. 14: Generational system population plots for SPEA2 multidisciplinary optimisation runs 1
(left) and 5 (right) - each plot contains 5 equally distant generational plots

Fig. 15: hypervolume results for the 5 runs of the NSGAII multidisciplinary optimisation strategy
for subsystem one (Left) * (SU SM SL) [4000, 160000] and subsystem two (right) * (SU SM SL)
[12000, 2.0]
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Fig. 16: Best filter transmission plots for population (ranked by filter response objective), subsystem one (ranked by passband objective) and two best (ranked by
bandwidth objective) over 5 generations (1, 11, 21, 31, 41) for NSGAII run 1. Each plot includes objective values and genotype values for each solution
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Fig. 17: Best filter transmission plots for system population (ranked by filter response objective), subsystem one (ranked by passband objective) and two (ranked by
bandwidth objective) over 5 generations (1, 11, 21, 31, 41) for SPEA2 run 1. Each plot includes objective values and genotype values for each solution
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6 Conclusions and Future Work

The integration of MEMS into more complex commercial devices is only going to grow in the
coming decades as new fields such as biology and chemistry are opened up with lab-on-chip
devices. The function and utility of MEMS is also only going to increase further, often resulting in
devices that contain many components and covering a number of multidisciplinary behaviour. The
automated design synthesis and optimisation of these new MEMS devices will require the ability
to handle the multiple disciplines present and the large number of components that make up the
system. This paper has outlined a new multidisciplinary and multi-objective design optimisation
algorithm, validated and evaluated over two case studies. The last of which involved the design
optimisation of a MEMS bandpass filter comparing standard single level and multidisciplinary
optimisation methods through the use of both NSGAII and SPEA2 algorithms. Results show
good agreement in terms of performance with past multi-objective MDO methods with respect
to the first speed reducer case study, and superior performance for the design of the MEMS
bandpass filter case study. The MDO approach offers designers the ability to decompose design
problems, and their associated objectives, constraints and variables into specific subsystems.
These subsystems can then be evolved separately as a means to focus on a particular discipline
or design objective and then later recombined into a whole, providing the final design solution.
The next step in this work is to experiment on more MEMS design case studies across other
disciplines and modelling methods, for example finite element analysis.
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