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Studying complex dynamic systems is usually very challenging due to limited prior knowledge and high complexity of relationships
between interconnected components. Current methods either are like a “black box” that is difficult to understand and relate back
to the underlying system or have limited universality and applicability due to too many assumptions. This paper proposes a time-
varying Nonlinear Finite Impulse Response model to estimate the multiple features of correlation among measurements including
direction, strength, significance, latency, correlation type, and nonlinearity. The dynamic behaviours of correlation are tracked
through a sliding window approach based on the Blackman window rather than the simple truncation by a Rectangular window.
This method is particularly useful for a system that has very little prior knowledge and the interaction between measurements is
nonlinear, time-varying, rapidly changing, or of short duration. Simulation results suggest that the proposed tracking approach
significantly reduces the sensitivity of correlation estimation against the window size. Such a method will improve the applicability
and robustness of correlation analysis for complex systems. A real application to environmental changing data demonstrates the
potential of the proposed method by revealing and characterising hidden information contained within measurements, which is
usually “invisible” for conventional methods.

1. Introduction

Complex systems feature a large number of measurable
components interacting simultaneously and nonlinearly with
each other and their environments on multiple levels [1].
Social systems consisting of people, the weather formed out
of air flows, the brain formed out of neurones, and even a
Computer Numeric Control (CNC) machine formed out of
components are all examples of complex systems. In fact,
most real systems are truly complex [2]. Complex systems
are typically studied based on modelling of the observed
measurements of systems. The conversion of these observed
measurements into a model about a physical object or system
has been one of themost important Inverse Problems because
it starts with the results and then calculates the causes.

Some advanced parametric or nonparametric modelling
approaches, such as Neural Networks, tend to be complicated
to provide excellent prediction or approximations to the given
dataset. But the disadvantage is that the outcomes are often
opaque, are difficult to relate back to the underlying system,
and are difficult to analyse and therefore lack transparency or
interpretability [3].

Alternatively, some research focuses on revealing the
hidden interdependencies between measurements, which
enables a simplified and more feasible way to understand
complex systems. There are several ways to tackle this
problem either based on using an explicit generative model
that embraces the known causal architecture [4] or by simply
establishing quantitative dependencies between two signals
using cross-correlation, coherence, phase synchronisation, or

Hindawi
Complexity
Volume 2017, Article ID 8570720, 14 pages
https://doi.org/10.1155/2017/8570720

https://doi.org/10.1155/2017/8570720


2 Complexity

theGranger causality test.Themost commonly usedmethods
are cross-correlation and coherence, which are easy-to-use
and computational inexpensive but they usually assume that
the system is linear and stationary [5, 6]. They, therefore,
cannot sufficiently reveal and characterise hidden correlation
between complex signals that is unusually nonlinear and
dynamical. Fast time variation is associated with applications
where rapid changes have been observed, which is usually
nonlinear, for example, abrupt climate change [7], emergence
of infectious diseases [8], epileptic patients moving from a
normal state to a seizure [9], or a severe fault suddenly arising
in a machine [10].These methods cannot be applied in any of
these scenarios.

A well-established and fundamental approach to detect
causal influence between two coupled signals is the Granger
causality test [11]. To calculate the Granger causality of the
input 𝑋 to the output 𝑌, an unbiased model has to be
preestablished which defines the relationship between the
present 𝑌 and past information 𝑌− and past information of
the input𝑋−, expressed as 𝑌 = 𝑓(𝑌−, 𝑋−). This model can be
nonlinear autoregressive and nonlinear autoregressive exoge-
nousmodels, the theory of reproducing kernelHilbert spaces,
and so on. Based on the sampled data the parameters in the
model 𝑓(𝑌−, 𝑋−) are estimated and then the predictions of 𝑌
based on 𝑌− alone and on 𝑌− and𝑋− together are generated.
The Granger causality is defined as the ratio between the
variances of both prediction errors, which basically quantifies
the prediction improvement. One advantage of this method
is that if the model structure is chosen appropriately, the
approach can be used for both linear and nonlinear systems.
However, for a complex system, this condition cannot be
always satisfied. Another important class method to study
interactions in bivariate time series is cross prediction based.
The main difference between this method and Granger
causality is that Granger causality must consider the past
information of the output 𝑌 in the relationship between 𝑌
and 𝑋 while the cross prediction methods are not necessary.
Cross prediction is valuable to quantify the coupling strength
and predictability improvement to elicit directionality of the
interactions in short and noisy bivariate time series. Recently
some nonparametric methods have been developed. One
well-established method is based on transfer entropy that
allows nonlinear and model-free estimation [12]. However,
in general, nonparametric methods tend to require larger
datasets or averaging over many realisations to mitigate the
effects of noise. The noise in the signals is usually unknown
prior to analysis but simple averaging methods will not work
well if the noise is highly correlated and nonlinear, whichmay
be expected if the relationships are also nonlinear.

This paper introduces a new parametric nonlinear corre-
lation analysis approach, called Windowed Error Reduction
Ratio (WERR), which directly measures the correlation
between input signals and output signals without producing
a full model. Similar to the cross prediction methods, in
this method the past information of the output is not
considered. Using this method, complex systems can become
analysable, especially systems (a) without or with very little
prior knowledge of model structure, (b) with nonlinear and
nonstationary relationships between the variables, (c) where

observed data length is too limited to identify a full unbiased
model, or (d) with rapid change of correlations. The paper is
organised as follows.Themethodology of theWERRmethod
is introduced in Section 2.Three simulation examples are pre-
sented in Section 3 to investigate the influence of the selection
of the window function on the accuracy and precision of the
onset detection of correlation, the detectability of a short-
duration correlation between signals, and the sensitivity of
a specific parameter on the results. A real application to
environmental change data is then presented in Section 4 to
demonstrate how to use the proposed method to solve real
problems. Conclusions are given in Section 5.

2. Method

Considering a complex system with multiple measurable
variables, the aim of this paper is to quantitatively measure
and track over time the correlation between these variables.
The properties of correlation that this paper primarily focuses
on include (a) direction, the casual direction among variables
(defining inputs and outputs); (b) strength, a value ranging
from 0% to 100% to quantify the correlation level between
an input and an output; (c) significance, a significance level
above which the estimated correlation is significant; (d)
latency, the time delay between the input and the output;
(e) correlation type, whether the input makes a positive
or negative impact on the output; and (f) nonlinearity, the
percentage of nonlinear correlation strength in the total
correlation. For most systems, the definition of inputs and
outputs is known a priori (e.g., a multiple inputs andmultiple
outputs system (MIMO)), so the direction of correlation is
therefore known. This paper primarily focuses on such a
MIMO system.

2.1. Time-Varying NFIR Model. Considering a dynamic
MIMO system with input time series {𝑢1, 𝑢2, . . . , 𝑢𝐴} and
time-varying output time series {𝑦1, 𝑦2, . . . , 𝑦𝐵}, where𝐴 and𝐵 denote the number of inputs and outputs respectively.
To quantify and track the correlation of each input to a
considered output 𝑦𝑗, this paper uses a Nonlinear Finite
Impulse Response (NFIR) model, also known as the Volterra
Nonlinear Regressivewith eXogenous (VNRX) Inputsmodel,
to represent a MIMO system. It can be expressed as

𝑦𝑗 (𝑡) = 𝑓 (𝑢1[𝑡−𝑛1], 𝑢2[𝑡−𝑛2], . . . , 𝑢𝐴[𝑡−𝑛𝐴]) + 𝜀𝑗 (𝑡) , (1)

where 𝑡 (𝑡 = 1, 2, . . .) is a time index, 𝑓 is an unknown
linear or nonlinear mapping which links the system output𝑦𝑗 to the system inputs; 𝜀𝑗(𝑡) denotes the model residual. The
symbol 𝑢𝑖[𝑡−𝑛𝑖] (𝑖 = 1, 2, . . . , 𝐴) denotes the current and past
information of the input 𝑢𝑖, which can be expanded as

𝑢𝑖[𝑡−𝑛𝑖] =
𝑛𝑖⋃
𝑗=0

𝑢𝑖 (𝑡 − 𝑗) , (2)

where 𝑛𝑖 is the maximum temporal lag to be considered for
the input 𝑢𝑖.
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If the system is time-invariant, a commonly employed
implementation to specify the function 𝑓 in (1) is a polyno-
mial function [13], which can be expressed as

𝑦𝑗 = 𝜃0 + 𝑁∑
𝑚=1

𝜃𝑚𝑝𝑚 + 𝜀𝑗, (3)

where 𝑝𝑚 is the 𝑚th model term selected from a candidate
terms’ set constructed from all input vectors. Note that 𝑝𝑚,
in general, can be linear or nonlinear. The constant 𝜃𝑚 is
the coefficient of each term; 𝑁 is the total number of model
terms.

If the system is time-variant, (3) can be extended to

𝑦𝑗 (𝑡) = 𝜃0 (𝑡) + 𝑁(𝑡)∑
𝑚=1

𝜃𝑚 (𝑡) 𝑝𝑚 (𝑡) + 𝜀𝑗 (𝑡) , (4)

where the number of terms, the model structure, and the
coefficients are all time-varying. This paper focuses on this
type of system.

If the model order is set as 𝑞, the candidate term set,
denoted by 𝐶, can be expressed as

𝐶 = 𝐶1 ∪ 𝐶2 ∪ ⋅ ⋅ ⋅ ∪ 𝐶𝑙 ∪ ⋅ ⋅ ⋅ ∪ 𝐶𝑞, (5)

where 𝐶1 is the linear term set, expressed as

𝐶1 = 𝐴⋃
𝑎=1

𝑢𝑎[𝑡−𝑛𝑎], (6)

𝐶2 is the 2nd-order nonlinear term set, expressed as

𝐶2 = 𝐴⋃
𝑎1=1

𝐴⋃
𝑎2=𝑎1

𝑢𝑎1 [𝑡−𝑛𝑎1 ]𝑢𝑎2 [𝑡−𝑛𝑎2 ], (7)

and 𝐶𝑙 is the 2nd-order nonlinear term set, expressed as

𝐶𝑙 = 𝐴⋃
𝑎1=1

𝐴⋃
𝑎2=𝑎1

. . . 𝐴⋃
𝑎𝑙=𝑎𝑙−1

𝑙∏
𝑖=1

𝑢𝑎𝑖 [𝑡−𝑛𝑎𝑖 ], (8)

If the maximum of time lag for each input is the same,
denoted by 𝑛, the number of total candidate terms is

𝑀 = (𝑛 + 𝑞 + 1)!𝑞! (𝑛 + 1)! . (9)

If the inputs and output of a system are observable, the
model represented by (4) can then be identified based on the
principle of least square errors. In this paper, the orthogonal
least squares (OLS) algorithm [14] is used to determine
the model structure from the observations and estimate
the unknown parameters 𝜃𝑚. The OLS algorithm searches
through the candidate model term set 𝐶 to select the most
significant model terms which are then included to build the
model term by term. The significance of each selected model
term is measured by an index, called the Error Reduction
Ratio (ERR), which indicates how much of the variance
change in the system response is caused by the considered
term, in a percentage form.

Because the system is time-varying, the model structure
and coefficients vary with time. Before applying the OLS
method, the way to address this time variability must be
determined.This paper proposes to apply a window function𝑊 = 𝑤(𝑡), (𝑛 = 1, 2, . . . , 𝐻) on the inputs and the
considered output, where𝐻 is thewindow size.Theprocess of
model identification and correlation quantification is applied
on each window, by which the correlation can be tracked
through sliding thewindow.The time resolution of tracking is
determined by the sliding step.The simplest window function
is the Rectangle window, where the weighting of the input
at different times is the same. A challenge for all sliding-
window-based methods is the selection of window size. A
selection of a small window size indicates a fast response
to the change of correlation over time, but it may produce
inaccurate correlation measurement due to insufficient sam-
pling. On the other hand, a selection of a large window
size can improve the accuracy of correlation measurement,
but it may slow down the model response to the change
of correlation over time, so the time resolution is reduced.
Under this condition, there will be a higher chance that
the model misses a short-duration correlation. This paper
proposes to use a unique nonrectangle window function to
reduce the influence of the window size. Details of this will
be discussed in Section 3.

2.2. Tracking Correlation Strength. Given the windowed out-
put 𝑦𝑗 within the window [𝑡 − 𝐻/2 + 1, 𝑡 + 𝐻/2], denoted as𝑦𝑗,𝑤[𝑡 − 𝐻/2 + 1, 𝑡 + 𝐻/2], and the windowed inputs within
the same window, denoted as 𝑧𝑖[𝑡 − 𝐻/2 + 1, 𝑡 + 𝐻/2] (𝑖 =1, 2, . . . , 𝐴), where

𝑧𝑖 [𝑡 − 𝐻2 + 1, 𝑡 + 𝐻2 ] = 𝑢𝑖 [𝑡 − 𝐻2 + 1, 𝑡 + 𝐻2 ] ⋅ 𝑊, (10)

𝑦𝑗,𝑤 [𝑡 − 𝐻2 + 1, 𝑡 + 𝐻2 ] = 𝑦 [𝑡 − 𝐻2 + 1, 𝑡 + 𝐻2 ] ⋅ 𝑊, (11)

(4) can be rewritten as

𝑌𝑗 = 𝑃Θ, (12)

where

𝑌𝑗 =
[[[[[[[[[[
[

𝑦𝑗,𝑤 (𝑡 − 𝐻2 + 1)
𝑦𝑗,𝑤 (𝑡 − 𝐻2 + 2)...
𝑦𝑗,𝑤 (𝑡 + 𝐻2 )

]]]]]]]]]]
]

,
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𝑃 =
[[[[[[[
[

𝑃𝑇 (1)
𝑃𝑇 (2)
...

𝑃𝑇 (𝐻)

]]]]]]]
]
,

Θ =
[[[[[[
[

𝜃 (1)
𝜃 (2)
...

𝜃 (𝑀)

]]]]]]
]
,

(13)

where

𝑃𝑇 (𝑘) = (𝑝1 (𝑘) , 𝑝2 (𝑘) , . . . , 𝑝𝑀 (𝑘)) . (14)

The symbol 𝑝𝑖(𝑘) is a candidate term selected from the term
set 𝐶 constructed by the windowed inputs 𝑍𝑖. The symbol𝑀
denotes the number of all candidate terms.

Matrix 𝑃 can be decomposed as 𝑃 = 𝑋 × 𝑉 where

𝑋 =
[[[[[[
[

𝑥1 (1) 𝑥2 (1) . . . 𝑥𝑀 (1)𝑥1 (2) 𝑥2 (2) . . . 𝑥𝑀 (2)... d d
...

𝑥1 (𝐻) 𝑥2 (𝐻) . . . 𝑥𝑀 (𝐻)

]]]]]]
]

(15)

and 𝑉 is an upper triangular matrix with unity diagonal
elements

𝑉 =
[[[[[[[[[
[

1 𝑒12 𝑒13 . . . 𝑒1𝑀1 𝑒23 . . . 𝑒2𝑀
d d

...
1 𝑒𝑀−1𝑀1

]]]]]]]]]
]

. (16)

Therefore, (12) can be rewritten as

𝑌𝑗 = 𝑋𝐺, (17)

where 𝐺 = 𝑉Θ = [𝑔1 𝑔2 ⋅ ⋅ ⋅ 𝑔𝑀]𝑇.
The next step is to estimate the contribution of each term

to the variation of the system output. Initially, the algorithm
sets values 𝑒11 = 1, 𝑥1(𝑘) = 𝑝1(𝑘) and estimates

𝑔1 = ∑
𝐻
𝑘=1 𝑥1 (𝑘) 𝑦𝑗,𝑤 (𝑘)∑𝐻𝑘=1 𝑥12 (𝑘) . (18)

For 𝑏 = 2, 3, . . . , 𝐻, the algorithm sets 𝑒𝑏𝑏 = 1 and then
calculates

𝑏𝑖𝑏 = ∑
𝐻
𝑘=1 𝑥𝑖 (𝑘) 𝑝𝑏 (𝑘)∑𝐻𝑘=1 𝑥𝑖2 (𝑘) , (19)

where 𝑖 = 1, 2, . . . , 𝑏 − 1. Next calculate
𝑥𝑏 (𝑘) = 𝑝𝑏 (𝑘) − 𝑏−1∑

𝑖=1

𝑒𝑖𝑏𝑥𝑖 (𝑘) (20)

and estimate

𝑔𝑏 = ∑
𝐻
𝑘=1 𝑥𝑏 (𝑘) 𝑦𝑗,𝑤 (𝑘)∑𝐻𝑘=1 𝑥𝑏2 (𝑘) . (21)

The ERR value for each term 𝑝𝑖, as a criterion to measure
the contribution of each term to the variation of the system
output 𝑦𝑗, is defined as

ERR𝑗,𝑖 (𝑡) = 𝑔𝑖2 ∑
𝐻
𝑘=1 𝑥𝑖2 (𝑘)∑𝐻𝑘=1 𝑦𝑗,𝑤2 (𝑘) . (22)

Values of ERR range always from 0% to 100%. The larger
the value of ERR, the higher the dependence between this
term and the output. To stop the search procedure and
determine the number of significant terms 𝑁, a criterion
called Penalised Error-to-Signal Ratio (PESR) is used [15]. It
can be written as

PESR𝑗,𝑚 (𝑡) = 1
(1 − 𝜆𝑚/𝐻)2 (1 −

𝑚∑
𝑖=1

ERR𝑗,𝑖 (𝑡)) . (23)

This criterion is introduced to monitor the search procedure,
where 𝑚 denotes the index of the selected terms. The search
procedure stops when PESR𝑗,𝑚(𝑡) achieves a local minimum.
PESR has been successfully used to monitor the search of
model structure for various applications [16, 17].

The effect of the adjustable parameter 𝜆 on the results is
not much sensitive. Wei and Billings suggested that 𝜆 should
be chosen between 5 and 10 [15]. Different values of 𝜆 have
been tested in this study and there is no significant difference
to the results. A sensitivity analysis of this parameter is
presented in Section 3.4. In all examples in this paper, the
value of 𝜆 is chosen as 6.

The estimation of the coefficient of each selected term can
be computed from

𝜃𝑁 = 𝑔𝑁
𝜃𝑖 = 𝑔𝑖 − 𝑁∑

𝑘=𝑖+1

𝑎𝑖𝑘𝜃𝑘, 𝑖 = 𝑁 − 1, . . . , 1. (24)

To calculate the contribution of each input to the output 𝑦𝑗,
the sum of ERR of all selected terms, denoted by SERR𝑗, is
calculated by

SERR𝑗 (𝑡) = 𝑁∑
𝑖=1

ERR𝑗,𝑖 (𝑡) . (25)

Note that 𝑁 is the number of the selected terms, not the
number of total candidate terms, 𝑀. The value of SERR
describes the percentage explained by the identifiedmodel to
the system output. If the considered inputs can fully explain
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the variation of the system output, the value of SERR is equal
to 100%.The contribution of the 𝑖th input, 𝑢𝑖, to the variation
of the system output 𝑦𝑗, denoted by WERR𝑠(𝑦𝑗, 𝑢𝑖, 𝑡), is
defined as the sum of ERR values of the selected terms
that include the windowed input variable 𝑧𝑖. Because some
selected nonlinear terms may involve more than one input,
the sum ofWERR𝑠 for all input can be greater than SERR. To
overcome this problem, the value of WERR𝑠 is normalised
and written as

WERR𝑠 (𝑦𝑗, 𝑢𝑖, 𝑡)
= ∑𝑁𝑏=1 (ERR𝑗,𝑏 (𝑡) | 𝑧𝑖 ∈ 𝑝𝑏)
∑𝐴𝑎=1∑𝑁𝑏=1 (ERR𝑗,𝑏 (𝑡) | 𝑧𝑎 ∈ 𝑝𝑏) × SERR𝑗 (𝑡) .

(26)

The value of WERR𝑠(𝑦𝑗, 𝑢𝑖, 𝑡) is then always between 0% and
100%.

2.3. Significance Test. ThecalculatedWERR𝑠 value represents
the strength of correlation between the input and the output,
including both linear and nonlinear interactions. However,
the reliability of the identified NFIR model depends on how
many observed data points are sampled. Even for the same
number of sampling data, the reliability is also affected by the
model structure. Therefore, a hypothesis test is required to
decide whether the correlation in the sampled data is strong
enough to be used to model the correlation of the whole
population. The hypothesis is that “the considered input
has significant correlation with the considered output.” The
decision can be made by either using the 𝑝 value or using a
threshold.This paper uses the latter solution by introducing a
significance threshold calculated by the BootstrapHypothesis
Test. Bootstrapping operation builds the probability distri-
bution of a measure/estimator by randomly resampling the
data with replacement and recalculating the estimator value
[18]. Repeating this process multiple times will lead to the
description of an empirical distribution, from which mean,
variance, and confidence intervals can be extracted. Here is
the procedure.

Step 1. Resample. The inputs and output are chosen as white
noise sequences. For the considered number of inputs 𝐴, the
window size 𝐻, the window function 𝑊, the model order𝑞, and the maximal time lag 𝑛, the value of WERR𝑠(𝑦, 𝑢𝑖, 𝑡)
is calculated to establish a reference. This step is repeated
hundreds of times. In this study, there were 100 repeats.

Step 2. Calculate the bootstrap distribution. If the sampled
data length is sufficient, the WERR𝑠 value of each input
should have the same distribution. Therefore, the average
contribution from all inputs is then calculated.

Step 3. Use the bootstrap distribution. The 95% quantile of
the averaged distribution is determined as the threshold,
expressed as 𝜏(𝐴,𝐻,𝑊, 𝑞, 𝑛). If the calculated WERR𝑠 value
of observed data is higher than this threshold, the correlation
is determined as significant.

Such an approach has been applied in other research [19].
It should be noted that the calculated threshold of this

approach is independent of the observed data, and a search
table can therefore be established to reduce computational
time. A more complex and accurate method is surrogate
data based approach that resamples the observed time series
randomly or resamples the phase of the data while preserving
the amplitude [20]. This approach requires reapplying the
significance test whenever the observed data are different,
and usually, it requires high-computational time.

2.4. Estimation of Other Properties. To study the latency of
correlation between an input and the output, this paper
introduces a strengthmap in time-latency domain, written as
WERR𝑚(𝑦𝑗, 𝑢𝑖, 𝑙, 𝑡), where 𝑢𝑖 denotes the considered input,𝑦𝑗
denotes the considered output, 𝑙 (0 ≤ 𝑙 ≤ 𝑛) denotes the time
lag, and 𝑡 is the time. The value of WERR𝑚(𝑦𝑗, 𝑢𝑖, 𝑙, 𝑡) can be
computed by

WERR𝑚 (𝑦𝑗, 𝑢𝑖, 𝑙, 𝑡)
= ∑𝑁𝑏=1 (ERR𝑗,𝑏 (𝑡) | 𝑧𝑖 (𝑡 − 𝑙) ∈ 𝑝𝑏)∑𝐴𝑎=1∑𝑁𝑏=1 (ERR𝑗,𝑏 (𝑡) | 𝑧𝑎 ∈ 𝑝𝑏) × SERR𝑗 (𝑡) .

(27)

The linearity of correlation is represented by the sum of ERR
of the terms that are linear, and it can be computed by

WERR𝐿 (𝑦𝑗, 𝑢𝑖, 𝑡)
= ∑𝑁𝑏=1 (ERR𝑗,𝑏 (𝑡) | 𝑧𝑖 ∈ 𝑝𝑏 ∈ 𝐶1)∑𝐴𝑎=1∑𝑁𝑏=1 (ERR𝑗,𝑏 (𝑡) | 𝑧𝑎 ∈ 𝑝𝑏) × SERR𝑗 (𝑡) .

(28)

The nonlinearity of correlation is represented by the sum of
ERR of the terms that are nonlinear, and it can be computed
by

WERR𝑁 (𝑦𝑗, 𝑢𝑖, 𝑡)
= ∑𝑁𝑏=1 (ERR𝑗,𝑏 (𝑡) | 𝑧𝑖 ∈ 𝑝𝑏 ∉ 𝐶1)∑𝐴𝑎=1∑𝑁𝑏=1 (ERR𝑗,𝑏 (𝑡) | 𝑧𝑎 ∈ 𝑝𝑏) × SERR𝑗 (𝑡) .

(29)

The correlation type of each term is determined by the sign
of the estimated corresponding coefficients. If the coefficient
is positive, the impact of this term on the output is positive;
otherwise, the impact is negative. Determining the correla-
tion type of the input variable to the output can be difficult
if the nonlinear term is coupled by multiple inputs. Potential
solutions to this issue can be using either the sign of linear
term or the sign of the most important term of each input.

3. Selection of Window Functions

This section aims to investigate how the selection of window
function and size affects the performance of the proposed
WERR method, particularly in accuracy and precision of
onset detection for rapid changing systems, accuracy of
tracking slow changing systems, and the success rate for
detection of short-duration correlation.
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A total number of 500 data points were generated using a
one input one output time-varying model, written as

𝑦 (𝑡) = 𝑘 (𝑡)
⋅ [𝜃1𝑢 (𝑡 − 1) + 𝜃2𝑢 (𝑡 − 2) − 𝜃3𝑢 (𝑡 − 1) 𝑢 (𝑡 − 2)]
+ 𝜀𝑦 (𝑡) ,

(30)

where 𝜀𝑦(𝑡) is a white noise sequence with zero mean and
the standard deviation of 0.1 and 𝑢(𝑡) is a random input data
sequence uniformly distributed in [−1, 1].The parameter 𝑘(𝑡)
is the weight of correlation between 𝑢 and 𝑦, which controls
the change speed of correlation. The function of 𝑘 can be
illustrated by Figure 1, where the variables 𝑡𝑠 and 𝑡𝑒 are the
start and end time of the correlation and Δ𝑡 denotes the
period of transition. The parameters were randomly selected
as

𝜃1 = −0.07
𝜃2 = 0.32
𝜃3 = −1.

(31)

3.1. Precision and Accuracy of Onset Detection. Example 1
aims to assess the detection of the onset of interaction. In
this example, the time when correlation starts was chosen
as 𝑡𝑠 = 200, the time when correlation ends was chosen as𝑡𝑒 = 300, and the period of transitionΔ𝑡was chosen as 0. Five
commonly used window functions, including Rectangular,
Triangular, Hann, Blackman, and Welch, were tested. The
mathematical representation of these windows is shown in
Table 1. The NFIR model order 𝑞 was chosen as 2, and the
maximal time lag 𝑛 was chosen as 4. The initial polynomial
model therefore can be written as

𝑦 (𝑡) = 𝜃0 (𝑡) + 𝜃1 (𝑡) 𝑢 (𝑡) + 𝜃2 (𝑡) 𝑢 (𝑡 − 1) + ⋅ ⋅ ⋅
+ 𝜃5 (𝑡) 𝑢 (𝑡 − 4) + 𝜃6 (𝑡) 𝑢 (𝑡)2
+ 𝜃7 (𝑡) 𝑢 (𝑡) 𝑢 (𝑡 − 1) + ⋅ ⋅ ⋅
+ 𝜃10 (𝑡) 𝑢 (𝑡) 𝑢 (𝑡 − 4) + 𝜃11 (𝑡) 𝑢 (𝑡 − 1)2
+ 𝜃12 (𝑡) 𝑢 (𝑡 − 1) 𝑢 (𝑡 − 2) + ⋅ ⋅ ⋅

Table 1: Mathematical representation of tested windows functions,
where𝑁 denotes the window size.

Window function 𝑤(𝑛)
Rectangular 1

Triangular 1 − 
𝑛 − (𝑁 − 1)/2𝑁/2


Hann 0.5 (1 − cos( 2𝜋𝑛𝑁 − 1))
Blackman 0.42 − 0.5 cos( 2𝜋𝑛𝑁 − 1) + 0.08 cos( 4𝜋𝑛𝑁 − 1)
Welch 1 − (𝑛 − (𝑁 − 1)/2(𝑁 − 1)/2 )2

+ 𝜃14 (𝑡) 𝑢 (𝑡 − 1) 𝑢 (𝑡 − 4) + ⋅ ⋅ ⋅
+ 𝜃20 (𝑡) 𝑢 (𝑡 − 4)2 + 𝜀 (𝑡) .

(32)

The total number of the candidate terms𝑀 is 21.The window
size, 𝐻, was varied from 30 data points to 200 data points
with a step of 1 point. For those times when the number
of available data samples is smaller than the window size,
such as the areas adjacent to the approaching the left and
right boundaries, the calculation of WERR𝑠 was neglected.
The computed correlation strength between the input and the
output using the proposed method is illustrated in Figure 2,
as well as the ground truth. The ignored time interval (dark
blue regions) increases following the increase of the windows
size, which justifies the shape of reversed trapezoid for all five
tested window functions. Inspection of the top right graph
of Figure 2 shows that the value of the calculated correlation
strength is dramatically affected by the window size when the
Rectangular window is applied. A large window size leads to
a lower strength than the ground truth due to the inclusion
of data outside of [𝑡𝑠, 𝑡𝑒], which justifies the shape of the
reversed triangular pattern. Results produced using the other
four window functions present a more similar pattern to the
ground truth, where the correlation strength is much less
influenced by the window size.

A test to quantify the performance of each window func-
tion in onset detection of interaction has been conducted.The
procedure can be summarised as follows:

(1) Produce the simulation data based on (30).
(2) For a selected window size 𝐻 of a selected window

function 𝑊, the proposed method was applied to
calculate the value of WERR𝑠(𝑦, 𝑢, 𝑡).

(3) Calculate the significance threshold 𝜏(𝐴,𝐻,𝑊, 𝑞, 𝑛),
where 𝐴 = 1; 𝑞 = 2; 𝑛 = 4 in this example.

(4) The first time when the calculated WERR𝑠(𝑦, 𝑢, 𝑡) is
above the threshold 𝜏(𝐴,𝐻,𝑊, 𝑞, 𝑛)was recorded and
denoted by 𝑡𝑠.

(5) Repeat steps (1) to (4) for 100 times to achieve
statistical significance of testing.
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Figure 2: Visualisation of computed WERR𝑠 against the window size using different window functions for Example 1. The 𝑥-axis denotes
the time (data point), the 𝑦-axis denotes window size, and the color intensity denotes the value of WERR𝑠. (a) shows the ground truth.

(6) Repeat step (1) to step (5) by varying the window size
from 30 points to 200 points with the step of 1 point.

(7) Compute the mean, standard variation, and his-
togram of 𝑡𝑠.

(8) Repeat step (1) to step (7) by changing the window
function.

Figure 3 illustrates the computed 𝜏 for five tested windows,
where it can be observed that the significance threshold
exponentially decreases following the increment of window
size. It can also be observed that, for the same window
size, the Rectangular window consistently has the lowest
significance threshold and the Blackman window has the
highest threshold. Note that the value of 𝜏 needs to be
recalculated whenever any parameters are changed.

Figure 4 shows the histogram of the estimated 𝑡𝑠 for all
tests, where the window size varies from 30 to 200 points
with a step of 1 point, and each window size was implemented
for 100 times. The ground truth of 𝑡𝑠 is 200. It can be clearly
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Figure 3: Significance thresholds against thewindow size for the five
window functions, where the parameters are 𝐴 = 1; 𝑞 = 2; 𝑛 = 4.
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Figure 4: Histograms of the point of the significant correlation start
for five windows functions. The window size varies from 30 to 200
and each window size was implemented 100 times for statistical
significance.

observed that the Rectangular window function produces
the worst result since the size of window has most effect on
the results. The other four window functions produced more
accurate and precise results, with the distributions being
closer to Gaussian. Table 2 shows the mean and standard
deviation of estimated 𝑡𝑠, which indicate the accuracy and
precision of onset detection, respectively. As expected, the
Rectangular window function has the significantly worst per-
formance in both accuracy (159.21) and precision (34.39).The
Welch and Blackmanwindow functions produce the best two
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Figure 5: Performance to detect the short-interval correlation with
different window functions, where the 𝑥-axis denotes the time
interval (data points) of correlation and𝑦-axis shows the success rate
calculated based on 100 tests for each time interval.The window size
was chosen as 50 data points.

Table 2: Precision and accuracy to detect the start of significant
correction for Example 1.
Window function Mean Standard deviation
Rectangular 159.21 34.39
Triangular 196.81 23.92
Hann 194.92 17.94
Blackman 195.90 14.94
Welch 188.72 14.21

performances in precision, 14.21 and 14.94, respectively, while
the Triangular and Blackman window functions produce
the best two performances in accuracy, 196.81 and 195.90,
respectively. The Blackman window function therefore has
the top two performances in both accuracy and precision for
onset detection.

3.2. Detection of Short-Duration Correlation. Example 2 aims
to assess the performance of five window functions against
short-duration interaction. Such a capability is important in
some real applications, such as EEG signal processing where
the correlation between channels can last for a very short
time. The same model shown in (30) and (31) was used, but
the time duration of correlation, 𝑡𝑒 − 𝑡𝑠, was varied from 1
data point to 50 data points. If the detected onset time, 𝑡𝑠,
is in the range of [𝑡𝑠 − 𝜖, 𝑡𝑒 + 𝜖], the detection is classified
as success. The symbol 𝜖 is a tolerance that was set as 10
data points in this example. For each selected correlation
duration, a total of 100 tests were repeated and the success
rate was computed. Figure 5 shows the results where the
window size was chosen as 50 data points. The Rectangle
window function has significantly lower performance than
the other four, with the success rate being lower than 30% for
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Figure 6: Full performance to detect the short-interval correlation with different window functions, where 𝑥-axis denotes the time interval
(data points) of correlation and 𝑦-axis shows the windows size and the color intensity indicates the success rate calculated based on 100
repeated tests.

all considered durations. The Welch window has the second
worst performance where the success rate is no higher than
80%. The remaining three functions present similar patterns
thatwhen the duration ismore than 15 data points, the success
rate is more than 80% and consistent, and when the duration
is smaller than 15 data points, the success rate starts to drop
dramatically. Furthermore, the Blackman window function,
again, produces the best performance, with the success rate
being almost 100% when the interval of correlation is larger
than 15 data points.

The above test only considers one selection of the win-
dow size. To fully evaluate the performance under different
window sizes, Figure 6 shows the success rate maps for
five window functions, where the 𝑥-axis denotes the time
duration (data points) of interaction, and the 𝑦-axis denotes
the window size, varying from 30 to 100 data points. The
color intensity indicates the success rate calculated based
on 100 repeated tests. In terms of the success rate, the
Blackman and Hann window functions show the best two
performances, evident by the color patterns. Furthermore,

the Hann window function shows a sharper reduction of the
success rate than the Blackman window function when the
window size is more than 80 data points, which indicates
that the latter window is less sensitive to the window size.
Therefore, the Blackmanwindow shows the best performance
in both success rate and precision to detect short-duration
correlation.

3.3. Tracking SlowChanging System. Example 3 aims to assess
the performance of tracking a slow time-varying system. In
this example, the time when correlation starts was chosen
as 𝑡𝑠 = 100, the time when correlation ends was chosen
as 𝑡𝑒 = 400, and the period of transition Δ𝑡 was chosen
as 100. The parameter setting of the proposed method was
the same as that of Example 1. The results are shown in
Figure 7, where the contour of the estimated WERR𝑠 map
was illustrated for better comparison of gradient. It can
be inferred that the Rectangle window function has the
worst performance in terms of the sensitivity to window size
based on the observation of the shape of trapezoid of the
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Figure 7: Contour visualisation of computed WERR𝑠 against the window size using different window functions for Example 3. The 𝑥-axis
denotes the time (data point), the 𝑦-axis denotes window size, and the color intensity denotes the value of WERR𝑠. (a) shows the ground
truth.

inner contour.TheTriangular, Hann, and Blackmanwindows
slightly compromise the performance in precision for small
window size based on the observation of several islands. The
Welch window appears to have the best performance in terms
of both sensitivity to window size and the number of sampled
data. These observations indicate that the Welch window has
a slightly better performance to track a slow time-varying
system.

3.4. Sensitivity Analysis of 𝜆. This section aims to investigate
how the selection of 𝜆 in (23) affects the model structure
determination and strength estimation. In this example, a
total number of 500 data points were generated using the
model (30) and corresponding parameter setting (31) where𝑘(𝑡) was set as 1 and the Blackman window was chosen. The
setting of other parameters is 𝑞 = 2, 𝑛 = 4, and 𝐻 = 100.
Table 3 shows the produced PESR values against different
values of 𝜆, where the first valley is highlighted by bold font.
It has been observed that when 𝜆 is chosen from 3 to 7, the
selected number of terms is 3 which is correct based on the

model (30). When 𝜆 is larger than 7, less terms are selected,
which introduces a false negative indication of correlation.
When 𝜆 is smaller than 3, more terms are selected, which
introduces a false positive indication of correlation. Further
inspection of Table 3 shows that although the selection of 𝜆
can affect the selection of model structure, the effect on the
estimated strength of correlation is not significant.

4. Application to Environmental Change Data

The proposed approach can be applied in a complex system
where variables are measurable in spatial and temporal
domains, and the correlation between them is of interest.This
section introduces a real application of the WERR method
to understand the variation of climatic and glaciological
contributions to West Greenland iceberg discharge in the
twentieth century.

Iceberg discharge is a major component of the mass
balance of the Greenland Ice Sheet (GrIS) [21, 22]. While
bulk estimates of discharge variation over time exist, inferred
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Table 3: PESR values for different numbers of selected model terms against different values of 𝜆.The final number of model term𝑁 is chosen
when the PESR reaches the first valley (highlighted by bold font).

Number of terms 𝜆
2 3 4 5 6 7 8

1 0.08319 0.08670 0.09042 0.09440 0.09864 0.10318 0.10803
2 0.02305 0.02515 0.02754 0.03029 0.03348 0.03719 0.04157
3 0.01603 0.01840 0.02134 0.02505 0.02981 0.03607 0.04453
4 0.01533 0.01864 0.02314 0.02950 0.03889 0.05360 0.07854
5 0.01634 0.02120 0.02859 0.04064 0.06230 0.10731 0.22704
6 0.01762 0.02461 0.03676 0.06077 0.11911 0.33086 2.97778
WERR 0.99340 0.99084 0.99084 0.99084 0.99084 0.99084 0.09830

remotely frommeasurements of grounding line ice velocities
or Surface Mass Balance calculations, few detailed measure-
ments of discharge itself from individual marine-terminating
glaciers exist until recent years [23]. However, it has recently
been shown, through a combination of ocean-iceberg mod-
elling and nonlinear system identification, that the century-
long record of iceberg numbers crossing 48∘𝑁 in the West
Atlantic is a good first-order proxy for discharge from at least
South and West Greenland [24]. This example will measure,
track, and explore the time-varying linear and nonlinear
correlation of ice sheet, oceanic and climatic forcing of
iceberg discharge from these areas over the twentieth century.

The input variables to be used in developing the win-
dowed NFIR model were chosen, as in Zhao et al. [25], to
be Surface Mass Balance (SMB), North Atlantic Oscillation
(NAO), and the Labrador Sea Surface Temperature (LSST).
The output variable to be modelled is I48N, and the monthly
iceberg counts from the US Coast Guard’s International
Ice Patrol over 1900–2015. There were in total 1392 months
of data. The parameters selected for the proposed WERR
approach are as follows:

(a) The number of inputs, 𝐴 in (1), was chosen as 3.
(b) The maximal time lag for each input, 𝑛𝑖 in (2), was

chosen as 48 months, which was determined based
on prior knowledge and expert experience relating to
Greenland calving processes and the mean speed of
ocean circulation in the NW Atlantic.

(c) The model order, 𝑞 in (5), was chosen as 2, which
means that there are 11026 candidate terms. The
third- or higher-order model is unfeasible in this case
due to the computation complexity and limitation
of sampling number (e.g., a third-order model has
518665 candidate terms).

(d) The Blackman window function was chosen due
to its superior performance against other windows
functions, as shown in Examples 1 and 2 above.

(e) The window size, 𝐻 in (10), was chosen as 30 years
(360 months) based on the dynamical properties of
the original signals and the complexity of the chosen
model structure. As discussed in the above section,
the influence of window size on the correlation track-
ing has been significantly reduced in the proposed

method due to the employment of the Blackman
window function.

(f) The sliding step of the window was chosen as 12
months, which is reasonable small comparing with
the window size of 30 years.

(g) A boundary conditionwas considered in this example
to ensure the same length of sampling data for each
window. Therefore, zero values were added to the
beginning and end of the input and output signals.

After applying the proposed method, the computed prop-
erties of the correlation are illustrated in Figure 8. The first
graph plots the comparison between the observed annual
I48N (solid) and the corresponding model output (dot).
Note that although monthly data for I48N were sampled and
modelled, the annual I48N is plotted in Figure 8 for easier
inspection of fitting performance. The second graph plots
the correlation strength, including both linear and nonlinear
components, for each input. The significance threshold was
also calculated and plotted. The linearity and nonlinearity of
correlation are illustrated by the third graph. To understand
the latency between the inputs and the output, a correlation
map plotted in the time-latency domain for each input is
shown in the fourth, fifth, and sixth graph, respectively.

Figure 8 shows clearly that the flux of icebergs reaching
the Grand Banks (I48N) is a strongly nonlinear process, with
significant temporal variation in the contribution of themain
inputs to the signal. The direct atmospheric contribution to
iceberg calving and motion, encapsulated within the NAO
variable, has been below significant levels through much of
the twentieth century; it has only been since global warming
became a major environmental signal in the last 20 years
[26] that this variable has been consistently significant, but
with itsWERR value still only being ∼0.2. However, the main
significant correlations leading to the dramatic variability
of I48N are with SMB, a measure of the balance between
melting and growth of the Greenland Ice Sheet, and LSST, a
measure of the ocean temperature affecting tidewater glacier
calving. These two variables have oscillated in importance,
on a decadal scale, although it is noteworthy that the SMB
has had the largest WERR for a large part of the total period.
LSST’s importance is strong particularly in the 1970s and
1980s, when the recent period of very large iceberg fluxes was
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Figure 8: Continued.
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Figure 8: Results produced by the proposedWERR approach to understand the variation of climatic and glaciological contributions toWest
Greenland iceberg discharge. (a–f) Comparison of the measured annual iceberg numbers and the model output; the WERR value for each
input variable with the significance threshold; the linear and nonlinear contributions; the WERR maps against time and time lag for each
input.

initiated. The time-latency correlations show a distinct peak
around 10 months during this period for LSST, indicating
that it was the ocean temperature of the previous summer
that was driving the I48N variation.There is also a noticeable
periodicity in the time-latency plots, consistent with signals
from each of the past 3 years playing important roles in
producing iceberg calving at different stages of the last 115
years.

5. Conclusions

This paper has introduced a Windowed Error Reduction
Ratio (WERR) method to quantify the properties of correla-
tion between measurements of complex systems, particularly
for a system that has very little prior knowledge and the corre-
lation is nonlinear, time-varying, rapid changed, orwith short
duration. Established upon the Nonlinear Finite Impulse
Response (NFIR) model for a multiple inputs single output
system, the introduced method quantifies the strength of the
linear and nonlinear interdependencies between the inputs
and the output in a percentage form. Other properties, such
as significance level of correlation, latency between the input
and the output, correlation type, and linearity and nonlin-
earity, are also computed to form a relatively comprehensive
theory of correlation analysis. A sliding nonrectangular win-
dow function was used to track the time-varying correlation.
Examples 1 and 2, employing prescribed simple functional
relationships, clearly demonstrate the superior performance
of the proposed method using the Blackman window func-
tion to detect the onset of interaction and short-duration
interaction. A common problem in tracking technologies is
the difficulty in selecting an appropriate window size that
should balance the accuracy of correlation measurement and
the response speed to the correlation changes. Although the
window size still needs to be chosen due to the nature of
the sliding window technique, it has been inferred from the
simulation results that the window size in the new method
has significantly less influence on correlation measurement
performance than existing approaches. Such a characteristic
is important because it will improve the applicability and
robustness of correlation analysis for complex systems. For a
slow time-varying system, it appears that the Welch window
has a slightly better performance than the Blackman window.

The application of theWERRmethod to study the Greenland
iceberg discharge problem has been presented and the results
are encouraging. It has been found that the process leading
to iceberg calving is distinctly nonlinear, with distinctly
decadal signals in the dominant variable underlying this flux.
These observations show that the proposed method has the
potential to better understand complex systems by revealing
and characterising some hidden information contained by
measurements, which is usually “invisible” for conventional
methods.

It should be noted that, similar to the cross prediction
methods, the proposed method focuses on quantification
of coupling strength between inputs and outputs, where
the direction of causality is known a priori. Therefore,
the research context is different with other studies which
investigate the causality (cause-effect direction) between
measures. One difference of the proposed methods with the
cross prediction methods and Granger causality tests is that
an unbiased full model is not required and predetermined
and there is no prediction process involved. The model in
the proposed method is to be built up term by term in a
manner that exposes the significance of each new term that
is added. This feature is especially important for a complex
system where the underlying relationships are nonlinear and
dynamic and the measured observations are noisy because,
unless a complete and full model which accounts for any
potentially nonlinear noise effects is estimated, the other
methods’ result could be compromised. One limitation of the
proposedmethod is that the number of candidate terms could
dramatically increase by increasing 𝑑 and 𝑛 (see (9)), which
will lead to a high-computational cost. One potential solution
is to detect the range of model order and time lag before
applying this method.

Additional Points

Highlights. (i) Sensitivity of dependence estimation to the
sample length is significantly reduced. (ii) Rapid and non-
linear dependence between measurements can be better
revealed. (iii) Nonlinear dynamic systems with limited prior
knowledge become more analyzable. (iv) An application
to environmental data demonstrates the potential of the
method.
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