
 

Abstract— We introduce a forensic analysis system called 
ECLfinder that identifies the influential members of a criminal 
organization as well as the immediate leaders of a given list of 
lower-level criminals. Criminal investigators usually seek to 
identify the influential members of criminal organizations, 
because eliminating them is most likely to hinder and disrupt the 
operations of these organizations and put them out of business. 
First, ECLfinder constructs a network representing a criminal 
organization from either Mobile Communication Data associated 
with the organization or crime incident reports that include 
information about the organization. It then constructs a 
Minimum Spanning Tree (MST) of the network. It identifies the 
influential members of a criminal organization by determining 
the important vertices in the network representing the 
organization, using the concept of existence dependency. Each 
vertex v is assigned a score, which is the number of other vertices, 
whose existence in MST is dependent on v. Vertices are ranked 
based on their scores. Criminals represented by the top ranked 
vertices are considered the influential members of the criminal 
organization represented by the network. We evaluated the 
quality of ECLfinder by comparing it experimentally with three 
other systems. Results showed marked improvement.  
 

  Index Terms—Forensic investigation, digital forensic, social 
network, criminal network, mobile communication data.  

I. INTRODUCTION 

Social groups and their relationships have long been identified 
using Social network analysis (SNA) [2, 21, 22]. Inspired by 
SNA, researchers in digital forensic investigation have been 
employing similar network analysis techniques for identifying 
criminal communities, their relationships, and their influential 
leaders [12]. As a result, digital forensic has emerged as an 
important tool for investigation crimes. Usually, forensic 
investigators study and analyze communication records for the 
purpose of identifying criminal communities and their leaders. 
Recently, forensic investigators have shown a growing interest 
on using Mobile Communication Data (MCD) that belong 
criminal organizations to construct networks that depict the 
organizations and analyze these networks [12].  

           The interest on constructing networks from MCD came 
from the fact that most criminals involved in organized crimes 
(such as terrorism, drug trafficking, and criminal gangs) plot 
and contemplate their criminal activities through mobile phone 
communications [12]. Criminal forensic investigators analyze 
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such networks to infer useful information such as: (1) the 
structure of the criminal organization, (2) the relationships 
between the criminals, (3) the influential members of the 
criminal organization, and (4) the flow of communications 
between the criminals. Recently, criminal forensic 
investigators have also shown interest on constructing 
networks from Crime Incident Reports that contain 
information about a criminal organization [6].    

          We propose in this paper a forensic analysis system 
called ECLfinder (Efficient Criminal Leaders Finder). 
ECLfinder can identify the most influential members of a 
criminal organization. Given a list of lower-level criminals in 
a criminal organization, ECLfinder can also identify the 
immediate leaders of these lower-level criminals. Identifying 
the influential members of a criminal organization is one of 
the most important tasks that criminal investigators undertake. 
Usually, members of a criminal organization, who hold central 
positions in a criminal organization, are targeted by criminal 
investigators for removal or surveillance [4, 15]. This is 
because these central members usually play key and 
influential roles in the organization by acting as commanders 
who issue instructions to other members or serve as 
gatekeepers, who receive and distribute information and goods 
to other members. Removing these central members is most 
likely to disrupt the organization and put it out of business.  

         Shang et al. [18] stated that a common problem in a 
criminal investigation involves a criminal organization is to 
identify the leaders of the organization. Memon [16] stated 
that the identification of key actor(s) in criminal covert 
networks is a major objective for criminal investigators and 
eliminating these key actors can destabilize the criminal 
network. Wiil et al. [25] stated that the identification and 
elimination of key nodes in a terrorist network would decrease 
the ability of the network to function normally.  

         In the framework of ECLfinder, a network can be 
constructed from either Mobile Communication Data (MCD) 
that belongs to a criminal organization or from crime incident 
reports that contain information about a criminal organization. 
A vertex in a network represents an individual and an edge 
represents the relationship between two individuals. First, 
ECLfinder constructs the Minimum Spanning Tree (MST) of 
the network. ECLfinder identifies the influential members of a 
criminal organization by determining the important vertices in 
the network, using the concept of existence dependency. It 
employs this concept to identify for each vertex v, the set S of 
vertices, whose existence in MST is dependent on v. This is 
because, if the existence of S in MST is dependent on v, v is 
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influential to S. It then assigns a score to each vertex v, which 
is the number of vertices in the set S. Vertices are ranked 
based on their scores. Criminals represented by the top ranked 
vertices are considered the influential members of the criminal 
organization.   

II. BACKGROUND AND OUTLINE OF THE APPROACH 

A. Background 

A number of methods have been proposed for identifying the 
set of suspicious source nodes (e.g., fake followers, botnets, 
etc.) on a given criminal network. The authors of [1] 
investigated the network structure of Mafia syndicates by 
building two networks representing Mafia gangs operating in 
the North of Sicily. In the networks, a vertex represents an 
individual and an edge connecting two vertices represents the 
existence of at least one reciprocated phone call between the 
individuals associated with these vertices. The following are 
the objectives of the authors of [1]: (1) to understand the 
functional roles of the members of the Mafia syndicates, (2) to 
quantify the ability of a Mafia syndicate to react to police 
operations after the detention of some of its members, and (3) 
the resilience of Mafia syndicate to disruption caused by 
police operations.  

            The authors of [10] presented LogViewer, a Web-based 
criminal network analysis framework to study combinations of 
geo-embedded and time-varying data sources like mobile 
phone networks and social graphs. LogViewer aims at: (1) 
identifying criminal behaviors and uncovering illicit activities, 
(2) investigating the centrality of vertices representing 
criminals, (3) studying the flow of information over time, and 
(4) determining the physical closeness effects on networks. In 
2013, Catanese et al. [7] introduced an initial version of a 
system called LogAnalysis. In this initial version, the system 
was intended for forensic visual statistical analysis of mobile 
phone logs. The system helps in understanding the hierarchies 
within criminal organizations and discovering key and central 
members inside the organizations [7].  

           Despite the success of most current methods for 
identifying the vertices that are important to query vertices, 
these methods suffer incomplete contribution and inconsistent 
contribution. Incomplete contribution occurs, if some query 
vertices do not contribute to the overall relative importance 
value of a vertex. The inconsistent contribution occurs, if 
query vertices contribute unequally to the overall relative 
importance value of a vertex. Let v be the current vertex under 
consideration. ECLfinder overcomes the problem of 
Incomplete Contribution by: (1) considering the importance of 
each query vertex to v, and (2) assigning a weight to each 
incoming edge to v that is outgoing from one of the query 
vertices (this weight represents the importance/rank of this 
vertex relative to all incoming edges to v). ECLfinder 
overcomes the problem of Inconsistent Contribution by: (1) 
considering the importance of each query vertex to each 
vertex connected to v, and (2) accounting for the degree of 
relativity of v to all query vertices. 

B. Outline of the Approach  

We present below an overview of our approach in terms of the 
sequential processing steps taken by ECLfinder to identify the 
influential members of a criminal organization. 

1) Constructing a network: A network is constructed from 
either MCD associated with a criminal organization or 
crime incident reports that contain information about the 
members of a criminal organization. 

2) Assigning a weight to each edge in the network: In a 
network constructed from MCD, the weight of an edge 
represents the number of phone calls/messages between 
two criminals. In a network constructed from crime 
incident reports, the weight of an edge represents the 
number of co-occurrences of the names of suspects and 
accomplices in the same reports. 

3) Computing the shortest-path edge betweenness: We 
compute the “shortest-path edge betweenness” [11] for 
each edge based on the initial weights described in step 
2. We replace edges’ initial weights by their shortest-
path betweenness. 

4) Assigning a score to each edge: Edges’ shortest-path 
betweenness are replaced by their inverses. This is 
because we will construct the MST of the network, 
which spans all vertices with the minimal sum of 
weights. The inverses are used as the scores of the edges. 

5) Assigning a score to each vertex in the network based 
on the concept of existence dependency: We construct 
the MST of the network based on the edges’ scores 
described in step 4. ECLfinder assigns a score to each 
vertex v in the network. The score of the vertex v is the 
number of other vertices, whose existence in the MST is 
dependent on v. The score represents the relative rank 
(i.e., importance) of the criminal represented by the 
vertex v in the criminal organization. 

6) Identifying the influential members of the criminal 
organization: Vertices are ranked based on their scores 
described in step 5. Criminals represented by the top 
ranked vertices are considered the influential members of 
the criminal organization. 

III. CONSTRUCTING A NETWORK 

In the framework of ECLfinder, a network can be constructed 
from information gathered from MCD associated with a 
criminal organization. A vertex in such a network represents a 
criminal caller and/or receiver. An edge represents the flow of 
communications between two criminals, through phone calls 
or messages. The weight of an edge represents the number of 
phone calls/messages between the two criminals represented 
by the two vertices connected by the edge. 

          In the framework of ECLfinder, a network can also be 
created from crime incident reports that contain information 
about the members of a criminal organization. In such a 
network, a vertex represents a criminal. An edge represents the 
relationship between two criminals, determined based on the 
co-occurrences of the criminals’ names in the same crime 
incident reports. ECLfinder employs the concept of space 



approach [5] to construct networks automatically from crime 
incident reports [6]. ECLfinder employs the techniques of 
Stanford Named Entity Recognition [17] to determine the 
names of people in reports. It uses a tokenizer and stemmer to 
match a sequence of words against persons’ names. Let n be 
the number of co-occurrences of the names of two suspects (or 
accomplices) in the same crime incident reports. n is 
transformed into similarity weight for the edge connecting the 
two vertices in the network representing the two suspects.           

          We compute the “shortest-path edge betweenness” [11] 
for each edge based on the initial weights described above. We 
adopt the concept of edge betweenness proposed by Girvan–
Newman [11]. We consider the shortest-path betweenness of 
an edge as the actual weight of the edge. Therefore, we replace 
edges’ initial weights by their shortest-path betweenness. This 
is because the shortest-path betweenness of edges reflect the 
relative degree of relatedness between vertices better than the 
number of phone calls/messages between the vertices (or the 
co-occurrences of names in reports). The shortest-path edge 
betweenness computes the fraction of shortest paths passing 
through an edge. It can measure the rate at which information 
passes along each edge. Eventually, the weight of each edge is 
represented by the edge’s shortest-path betweenness.       

            Finally, a score is assigned to each edge. The score of 
an edge is the inverse of the edge’s shortest-path betweenness 
weight. Therefore, a smaller score represents a stronger 
relationship between the two vertices connected by the edge. 
That is, the smaller the score of an edge the closer the 
relationship between the two vertices connected by the edge. 
We adopt this approach in order to construct the MST of the 
network. This is because the path of the MST spans all 
vertices with the minimal sum of weights: the MST’s path has 
the smallest sum of the weights of edges connecting all 
vertices compared to all other paths that span all the vertices.  

IV. IDENTIFYING THE INFLUENTIAL MEMBERS OF A CRIMINAL 

ORGANIZATION 

A. Assigning a Score to each Vertex in the Network based on 
the Concept of Existence Dependency 

We construct the Minimum Spanning Tree (MST) of the 
network based on the edges’ scores described in section III. A 
MST is a tree that spans all the vertices of a network and the 
sum of the scores of the edges connecting the vertices is the 
smallest among all other trees that span all the vertices. We 
construct the MST, because its path spans all closely related 
vertices (i.e., its path connects the vertices that represent the 
criminals, who have the highest degree of relationships). 
Usually, a criminal organization is hierarchically structured in 
terms of power. The MST can represent the path of passing 
information through this hierarchical structure. 

            Algorithm CONSTR-MST in Fig. 1 constructs an MST 
based on Prim’s algorithm. Let V be the set of vertices in the 
network. Let MST be a set that stores the edges of the tree. At 
each step, an edge with a light score is added to the current 
tree MST that connects the tree to an isolated vertex. The 

inputs to the algorithm are a network NW, the scores of the 
edges S (recall section III), and the root vertex r. In line 3 of 
the algorithm, the parent of each vertex u is assigned to NIL 
and stored in variable π[u]. In line 5, a priority queue Q is 
initialized to contain all the vertices. Line 7 extracts from 
queue Q the vertex u whose key is the minimum. For each 
vertex v adjacent to a vertex u (line 8), if the score of the edge 
(u, v) is less than the key of v (line 9), then edge (u, v) is added 
to MST (line 10) and the key of v is given the score of the edge 
(u, v) (line 11). 
 
  Algorithm CONSTRUCT-MST (NW, S, r) 
1.   for each u    V [NW] 
2.           do ][ukey  
3.                  π[u] ← NIL 
4.    0][ rkey  

5.    ][NWVQ  

6.    while Q ≠ Ø 
7.             do )(QMINEXTRACTu   
8.                   for each ][uAdjv  
9.                           do if v     Q and ),( vuS < ][vkey  
10.                                  then π[v] ← u 
11.                                           key [v] ← S(u, v) 
12.                                           MST ← (v, π[v]) 
 Fig. 1: Algorithm CONSTR-MST 
 

         We observe that a vertex v is important to a set S of 
vertices in a network, if S is existence dependent on v through 
the paths of the MST that connect v and S. That is, v is 
important to S, if the existence of S in the network is 
dependent on the existence of v. An existence dependency 
relation will be added between vertices u and v if, wherever v 
exists, it is as part of u; the presence of v implies the presence 
of u [20, 23, 24]. Thus, if the relationship between u and v 
represents existence-dependency, u and v are closely related. 

          A vertex u is existence dependent on a vertex v, if the 
removal of v causes u to be unable to reach each other vertex 
in the network through the paths of MST. If so, the removal of 
v from the MST will require the removal of u. Because the 
removal of v from the MST causes u to become unable to 
reach each other vertex in the MST, v is influential to u. If we 
calculate the sum of the scores of the edges located in the path 
from u to v in MST, we find that this sum is the lowest among 
all other paths located in the paths from u to v.  

            ECLfinder identifies for each vertex v, the set S of 
vertices, whose existence in MST is dependent on v. The 
removal of v causes each vertex u   S to be unable to reach 
each other vertex through the paths of the MST. Finally, 
ECLfinder assigns a score to each vertex v in the network. The 
score of the vertex v is the number of other vertices, whose 
existence in MST is dependent on v. The score reflects the 
relative rank/importance of the criminal represented by the 
vertex v in the criminal organization. 

B. Identifying the Central Vertices 

Vertices are ranked based on their scores described in 
subsection IV-A. Criminals represented by the top ranked 
vertices are considered the influential members of the criminal 
organization. Let the scores of vertices v and u be n and m 







respectively. v controls the flow of information between n 
criminals, and u controls the flow of information between m 
criminals. Let mn  . Intuitively, v should be ranked higher 
than u, for the following reasons: (1) v controls the flow of 
information between more criminals than u, (2) u itself can be 
existence dependent on v in the MST (i.e., the criminal 
represented by v can control the flow of information initiated 
by the criminal represented by u).  
          Criminal investigators may want to know the immediate 
leaders of a given list of lower-level criminals in a criminal 
organization. These criminals are usually the ones in the 
organization, who carry out crimes; therefore, they are easier 
to be arrested and incriminated. ECLfinder can also identify 
the immediate leaders of a given list of lower-level criminals. 
We use the term “query vertices” to refer to a given list of 
vertices representing lower-level criminals. Let q1, q2, … qn 
denote a list of query vertices. A criminal represented by a 
vertex v in a network is considered an immediate leader of the 
criminals represented by q1, …, qn, if: (1) v has the highest 
score among the vertices located at the convergences of the 
subtrees of the MST that pass through q1, …, qn, and (2) the 
existence of each of q1,…, qn in the MST is dependent on v.   

V. CASE STUDIES 

We use a partial snapshot of Friendster social network [28] to 
demonstrate the techniques employed by ECLfinder. The 
network is publicly available as part of the Stanford Network 
Analysis Project (SNAP) [28]. Fig. 2 shows the partial 
snapshot of the network. A vertex in the network represents a 
user. An edge represents a relationship between two users. The 
score of an edge is the inverse of the shortest-path 
betweenness of the edge (recall section III). The bold/thick 
edges show the path of the Minimum Spanning Tree (MST) of 
the network.  

           Fig. 3 shows the same network in Fig. 2 after assigning 
a score to each vertex in the network using the techniques 
described in subsection IV-A. The score of a vertex v is the 
number of other vertices whose existence in MST is dependent 
on v. The following describe how the scores of some selected 
vertices in the network in Fig. 3 are determined: 

  The score of vertex STEVEN is 4, because the following 
four vertices are existence dependent on STEVEN in 
MST: THOMAS, JOHN, LARRY, and JERRY. That is, 
the removal of vertex STEVEN will cause the four vertices 
to be unable to reach each of the remaining vertices 
connected with the root vertex through the paths of the 
MST. Observe that vertex JASON, for example, is 
unaffected by the removal of vertex STEVEN, since it can 
still reach each other vertex connected with the root vertex 
through the paths of the MST.  

  The score of vertex PETER is 9. This is because the 
removal of vertex PETER will cause the following 9 
vertices to be unable to reach each of the remaining 
vertices connected with the root vertex through the paths 
of the MST: ERIC, JEFF, SCOTT, JASON, STEVEN, 
JOHN, THOMAS, LARRY, and JERRY. 

 
Fig. 2: A partial snapshot of Friendster social network [28]. The score of an 
edge is the inverse of the shortest-path betweenness of the edge. The 
bold/thick edges are the paths of the MST of the network 

 
Fig. 3: The partial social network presented in Fig. 2 after assigning a score to 
each vertex. The number inside each vertex represents the vertex’s score. The 
score of a vertex v is the number of other vertices whose existence in MST is 
dependent on v. Edges in the figure represent the paths of the MST 

         Table 1 shows the names of the 17 users represented by 
the 17 vertices in the partial snapshot of the Friendster social 
network shown in Fig. 2. The names in the table are ranked 
based on the scores of the vertices representing them and 
shown in Fig. 3 (see vertices’ scores in Fig. 3). The top ranked 
users in the table are the influential ones in the social network. 



TABLE 1 
THE 17 USERS REPRESENTED BY THE 17 VERTICES IN THE PARTIAL NETWORK 

SHOWN IN FIG. 2 RANKED BASED ON THEIR SCORES SHOWN IN FIG. 3  
Rank Score Criminal Name 

1 16 JAMES 
2 13 DAVID 
3 12 MARK 
4 11 BRIAN 
5 10 JOSE 
6 9 PETER 
7 6 SCOTT 
8 5 JASON 
9 4 STEVEN 

10 1 JOHN, ROBERT, LARRY, ERIC 
14 0 THOMAS, PAUL, JERRY, JEFF 

 
Consider Fig. 3 and the following query: Q(“THOMAS”, 
“LARRY”). The query asks for the immediate leader of 
THOMAS and LARRY. As Fig. 4 shows, STEVEN is the 
immediate leader, because of the following: (1) vertex 
STEVEN is located at the convergence of the subtrees of the 
MST that passes through vertices THOMAS and LARRY 
(recall the last paragraph in subsection IV-B), and (2) the 
existence of vertices THOMAS and LARRY in the MST is 
dependent on vertex STEVEN (the removal of vertex STEVEN 
will cause the two vertices to be unable to reach each of the 
vertices in the other subtree containing the root vertex). 

 
Fig. 4: The red paths show that vertex STEVEN is located at the convergence 
of the subtree of the MST that passes through vertices THOMAS and LARRY  

 

Consider Fig. 3 and the query: Q(“JERRY”, “ERIC”). The 
query asks for the immediate leader of JERRY and ERIC. As 
Fig. 5 shows, PETER is the immediate leader, because of the 
following: (1) vertex PETER is located at the convergence of 
the subtrees of the MST that passes through vertices JERRY 
and ERIC (recall the last paragraph in subsection IV-B), and 
(2) the existence of vertices JERRY and ERIC in the MST is 
dependent on the existence of vertex PETER. 

 
Fig. 5: The red paths show that vertex PETER is located at the convergence of 
the subtree of the MST that passes through vertices JERRY and ERIC. 

VI. EXPERIMENTAL RESULTS 

We implemented ECLfinder in Java, run on Intel(R) 
Core(TM) i7 processor, with a CPU of 2.70 GHz and 16 GB 
of RAM, under Windows 10. We evaluated the quality of 
ECLfinder by comparing it with LogAnalysis [8], CrimeNet 
Explorer [12], and our previously proposed system SIIMCO 
[19]. The following are brief descriptions of the three systems: 
 LogAnalysis [8]: It employs Girvan & Newman [11] 

algorithms to identify the degree of relationships between 
vertices representing criminals in a criminal network. It can 
identify the influential members in criminal organization. It 
can use mobile phone communication data that belongs to a 
criminal organization to construct a network depicting the 
relationships between the criminals in the organization.  

 CrimeNet Explorer [12]: It uses hierarchical clustering 
techniques to partition a network representing a criminal 
organization into subnetworks based on the strength of the 
relationships between the vertices in each subnetwork. It 
employs the Closeness, Degree, and Betweenness centrality 
metrics to determine the important vertices in a subnetwork. 
It first identifies the degree of relationship between vertices 
using the shortest path algorithm and Blockmodeling [3]. 

 SIIMCO [19]: It uses a formula that quantifies the degree of 
influence of each criminal in a criminal organization relative 
to all other criminals. Given a set of query vertices, SIIMCO 
determines the relative importance of each vertex in the 
network with respect to the query vertices, using formulas 
that quantify the degree of influences of a vertex. One of the 
key differences between ECLfinder and SIIMCO is that 
SIIMCO adopts vertex-centric approach while ECLfinder 
adopts edge-centric approach. In SIIMCO, the importance of 
a vertex v is determined based on the importance of the 
vertices connecting v with the network. In ECLfinder, the 
importance of a vertex v is determined based on the 
importance of the edges connecting v with the network, 
using the concept of existence dependency. 



A. Compiling Datasets for the Evaluation 

We used the following two real-world communication 
datasets: Krebs’s 9/11 dataset [26, 27] and Enron email corpus 
[9]. We converted the datasets into networks. Below are brief 
descriptions of the datasets: 

 Krebs’s 9/11 dataset [26, 27]: We used the Krebs’s well-
known dataset of the 9/11 incident. The 9/11 were a series of 
four coordinated terrorist attacks on the United States on the 
morning of September 11, 2001. We used a weighted 
version of the Krebs’ 9/11 network dataset [26, 27]. The 
network consists of 62 nodes representing all individuals 
involved in the incident. The network contains 153 edges. 
These edges represent reported interactions between the 
actors involved in the incident. The average node degree in 
the network is 4.9. The weight of an edge reflects the degree 
of communications between the two individuals represented 
by the two nodes connected by the edge. 

 Enron email dataset [9]: Enron email corpus surfaced 
following a criminal scandal involved top Enron employees. 
The corpus includes 619,446 email messages belonging to 
158 Enron employees. We cleaned the dataset by removing 
emails that were exchanged between people other than the 
158 employees. The remaining dataset includes 200,136 
emails from 151 Enron employees. 

B. Evaluating the Accuracy of Identifying the Influential 
Members of a Criminal Organization 

1) Calculating the Recall, Precision, and F-value of the 
Systems by Comparing their Results with Results Determined 
by the Standard Network Metrics  

In this test, we measure the performance of the systems by 
comparing their results with the results determined by the 
standard Closeness, Betweenness, In Degree, and Out Degree 
Centrality metrics. Degree is the number of ties that a vertex 
has. Vertices with high degree centralities are central in the 
network. The betweenness centrality of a vertex v is the 
number of shortest paths between other vertices that pass 
through v. Closeness centrality is the length of the shortest 
path to all other vertices. It measures how a vertex is close to 
other vertices. We calculated the Recall, Precision, and F-
value using the following standard metrics: 
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where c
sN is the number of correct vertices returned by a 

system, top
mN is the number of actual correct vertices, and 

top
sN is the number of vertices returned by a system. Let Ltop be 

the list of top vertices returned by a standard network metric 
and let Ls be the list of correct vertices returned by a system. 

c
sN    Ltop and top

mN  = | Ltop |.  

          We submitted the networks representing the Krebs’s 
9/11 and Enron datasets to the four standard network metrics, 
and we also submitted the same networks to each of the four 
systems. We then calculated the Recall, Precision, and F-value 
of the results returned by each of the four systems. The results 
are shown in Tables II and III.  

TABLE II 
PERFORMANCE OF THE SYSTEMS USING THE 9/11 DATASET COMPUTED BASED 

ON THE TOP VERTICES RETURNED BY THE STANDARD NETWORK METRICS 

 Recall Precision F-value 

ECLfinder 
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0.66 0.61 0.63 

SIIMCO 0.62 0.55 0.58 

CrimeNet Explorer 0.54 0.58 0.56 

LogAnalysis 0.51 0.49 0.50 

ECLfinder 
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0.59 0.57 0.58 

SIIMCO 0.55 0.50 0.52 

CrimeNet Explorer 0.49 0.43 0.46 

LogAnalysis 0.39 0.43 0.41 

ECLfinder 

In
 D

eg
re

e 
C

en
tr

al
it

y 

0.66 0.68 0.67 

SIIMCO 0.64 0.59 0.61 

CrimeNet Explorer 0.52 0.46 0.49 

LogAnalysis 0.52 0.54 0.53 

ECLfinder 
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 0.71 0.67 0.69 

SIIMCO 0.69 0.55 0.61 

CrimeNet Explorer  0.57 0.51 0.54 

LogAnalysis  0.66  0.61 0.63 

TABLE III 
PERFORMANCE OF THE SYSTEMS USING ENRON DATASET COMPUTED BASED 

ON THE TOP VERTICES RETURNED BY THE STANDARD NETWORK METRICS 
 Recall Precision F-value 

ECLfinder 
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0.58 0.50 0.54 

SIIMCO 0.52 0.46 0.49 

CrimeNet Explorer 0.37 0.30 0.33 

LogAnalysis 0.40 0.34 0.37 

ECLfinder 
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0.44 0.37 0.40 

SIIMCO 0.46 0.39 0.42 

CrimeNet Explorer 0.34 0.26 0.29 

LogAnalysis 0.44 0.39 0.41 

ECLfinder 
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0.69 0.67 0.68 

SIIMCO 0.64 0.61 0.62 

CrimeNet Explorer 0.40 0.34 0.37 

LogAnalysis 0.58 0.56 0.57 

ECLfinder 
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0.65 0.59 0.62 

SIIMCO 0.61 0.52 0.56 

CrimeNet Explorer 0.49 0.44 0.46 

LogAnalysis 0.45 0.38 0.41 

2) Calculating the Euclidean Distances between the Results 
of each System and the Results of the Network Metrics  

We measured the average Euclidean Distance between the top 
ranked n vertices returned by a system and the corresponding 
top ranked n vertices returned by a standard network metric. 
We considered n equals 5, 10, and 15. We used the following 
Euclidean distance measure.  
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mN  are the top n  vertices returned by network metric m. 

 m   
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mN

1,0  and 
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1,0  are the top ranked n vertices 

returned by metric m and system s, respectively. 
 )(vm , )(vs are the position of vertex v top

mN  in the lists 

m and
s respectively. Fig. 6 shows the average Euclidean 

Distances using the Krebs’s 9/11 and Enron datasets. 
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             CrimeNet Explorer [12]                                        LogAnalysis [8]                         

 
Fig. 6: Average Euclidean distances between the results returned by each of 
the four systems and the results returned by the standard network metrics 
using Krebs’s 9/11 and Enron datasets. 

C. Evaluating the Accuracy of Identifying the Immediate 
Leaders of Lower Level Criminals in a Criminal Organization 

We evaluated the accuracy of the four systems for identifying 
the most important vertices to a given list of vertices in the 
networks representing the Krebs’s 9/11 and Enron datasets. 
We randomly selected 50 lists of 2-query vertices, 50 lists of 
3-query vertices, and 50 lists of 4-query vertices from each of 
the two networks. We submitted the query vertices and the 
networks representing the datasets to the standard network 
metrics and to the four systems. We considered only the top 5 
vertices returned by each of the metrics as the list top

sN  (recall 

section VI-B-1). We compared the top 5 vertices returned by 
each system with the list 

topl . We then calculated the Recall, 

Precision, and F-value of each system. Figs. 7 and 8 show the 
results for the Krebs’s 9/11 and Enron datasets, respectively. 

       ECLfinder                                                                SIIMCO [19] 

        CrimeNet Explorer [12]                                            LogAnalysis [8]                         

 
                                                                     (a) 

 
                                                                    (b) 

 
                                                                      (c) 
Figs. 7: (a) Recall, (b) Precision, and (c) F-value of the four systems for 
identifying the important vertices to a given list of query vertices using the 
Krebs’s 9/11 dataset. In the figure, 2v, 3v, and 4v denote the following: 2 
query vertices, 3 query vertices, and 4 query vertices respectively. 
  

 

 
                                                                 (a) 

 
                                                                (b) 

 
                                                               (c) 
Figs. 8: (a) Recall, (b) Precision, and (c) F-value of the four systems for 
identifying the important vertices to a given list of query vertices using the 
Enron dataset. In the figure, 2v, 3v, and 4v denote the following: 2 query 
vertices, 3 query vertices, and 4 query vertices respectively. 

D) Discussion of the Results 

The following are our observations of the experimental results 
using the Krebs’s 9/11 dataset: 

a)   ECLfinder was able to identify the key nodes in the 
network not only because they have more connections, 
but also because their links to other nodes in the 
network are much stronger compared to the links of the 
less central nodes.  

b)   ECLfinder was able to identify the nodes in the network 
representing the following most influential (i.e., central) 
actors in the incident: Atta, Al-Shehi, Jarrah, Khemais, 
Moussaoui, Hanjour, Al-Hazmi, Al-Shibh, and Essabar.  

c)   ECLfinder was able to identify the node representing 
Atta, the ringleader of the hijackers, as the most central 
node in the network.  

d)   Each of the top four nodes identified by ECLfinder 
represents one of the hijackers on one of the four planes.  

e)   ECLfinder ranked the nodes representing Khemais, 
Moussaoui, and Jarrah very high. It has been revealed 
that Khemais and Moussaoui served as coordinators 
between the hijackers and other actors involved in the 
incident. It has also been revealed that Jarrah was one of 
the masterminds of the 9/11 plot 

The top five nodes returned by ECLfinder in the Enron 
network represent the following actors in the Enron scandal:  

o Arthur Andersen (auditor). 
o Kenneth Lay (CEO). 
o Sheila Kahanek (accountant). 
o Andrew Fastow (financial officer). 
o Jeffrey Skilling (COO).  

Three of these five individuals have been charged and found 
guilty of various conspiracy and accounting frauds. 



           As Figs. 6-8 and Tables II and III show, ECLfinder 
outperformed the other three systems. Based on our 
observations of the experimental results, we attribute the 
performance of ECLfinder over the three systems to the 
following limitations of LogAnalysis, CrimeNet Explorer, and 
SIIMCO: 
1. LogAnalysis limitations:  

a)     It does not work well for clustering large-size 
networks. The results showed that it clusters small-
size networks more accurately than large-size ones. 

b)     It is biased to globular clusters. 

c)     It cannot detect and undo incorrect clustering that 
was done at an early stage. 

d)     If clusters have different sizes, it may not work well.  

e)     Due to the nature of its techniques, some vertices 
may not contribute to the overall importance value 
of a vertex (Incomplete Contribution) and some 
vertices may contribute unequally to the overall 
importance value of a vertex (Inconsistent 
Contribution).  

2) CrimeNet Explorer limitations:  
Let (u, v) be the most important incoming edge to 
vertex v. CrimeNet Explorer determines the weight of 
vertex v based solely on the weights of edge (u, v) and 
vertex u. 

3) SIIMCO limitations:  
It does not work well when the network consists of a 
large number of vertices and edges. We reached this 
conclusion after comparing SIIMCO with ECLfinder 
using datasets with various number of vertices and 
edges. We used for the comparison the following three 
real-world datasets compiled by the Stanford Network 
Analysis Project (SNAP) [28]: com-Friendster 
(65,608,366 nodes, 1,806,067,135 edges), com-Orkut 
(3,072,441 nodes, 117,185,083 edges), and com-
Amazon (334,863 nodes, 925,872 edges). We measured 
the performance of SIIMCO and ECLfinder by 
comparing their results with the results returned by the 
standard Closeness, Betweenness, In Degree, and Out 
Degree Centrality metrics using the same procedure 
described in subsection VI-B-1. We observed that 
ECLfinder achieved the highest performance over 
SIIMCO when the com-Friendster dataset was used. 
ECLfinder achieved the second highest performance 
over SIIMCO when the com-Orkut dataset was used. 
The least performance of ECLfinder over SIIMCO was 
when the com-Amazon dataset was used.   

VII. CONCLUSION 

We introduced in this paper a forensic analysis system called 
ECLfinder. The system can determine the influential members 
of a criminal organization as well as the immediate leaders of 
a given list of lower-level criminals associated with the 
organization. First, ECLfinder constructs a network 
representing a criminal organization from either MCD that 
belongs to the organization or from crime incident reports 

containing information about the organization. A vertex in 
such a network represents an individual criminal and an edge 
represents the relationship between two criminals. ECLfinder 
identifies the influential members of the criminal organization 
by determining the important vertices in the network 
representing the organization, using the concept of existence 
dependency. A vertex v is influential to a set S of vertices in 
the network, if the existence of S in the network is dependent 
on the existence of v through the paths of the MST that 
connect v with S. Each vertex v is assigned a score, which is 
the number of vertices in set S. Vertices are ranked based on 
their scores. Criminals represented by the top ranked vertices 
are considered the influential members of the criminal 
organization.  We experimentally compared ECLfinder with 
SIIMCO [19[, CrimeNet Explorer [12], and LogAnalysis [8] 
for identifying the important vertices in networks. Results 
revealed that ECLfinder outperforms the three systems. 
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