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Abstract—In this work, we investigate diffusion-based molecular
communication between two mobile nano-machines. We derive a
closed-form expression for the first hitting time distribution, by
characterizing the motion of the information particles and the
nano-machines via Brownian motion. We validate the derived
expression through a particle-based simulation. For the infor-
mation transfer we consider single particles of different types,
where transposition errors are the dominant source of errors.
We derive an analytical expression for the expected bit error
probability and evaluate the error performance for the static
and the mobile case by means of computer simulations.

Index Terms—Brownian motion, double random walk channel,
first hitting time, mobile molecular communication, transposition
error.

I. INTRODUCTION

M
OLECULAR communication (MolCom) broadly de-
fines the transmission of information using chemical

signals [1]. The information can be encoded in the number
of particles, the release time of particles and the type of
particles. Diffusion-based MolCom is a promising approach
due to its ultra-high energy efficiency [2] and biocompatibility.
Since the potential applications of MolCom are in the area
of nano-medicine or nano-sensing (e.g., communicating nano-
robots for targeted drug delivery [1]), it is likely that the
communication takes place between mobile nano-machines.
Mobile MolCom has been considered in [3]–[10]. A clock
synchronization scheme between a static and a mobile nano-
machine is proposed in [3]. A protocol for mitigating inter-
symbol interference for diffusion-based mobile MolCom is
presented in [4]. Similarly, the work in [5] investigates dif-
ferent coding strategies for mitigating transposition errors for
flow-induced diffusion mobile MolCom. In the works [3]–[5]
the mobility of the nano-machines is modeled through a
time-varying distance (e.g., distance increases with equal dif-
ference [3]). Mobile bacteria networks are proposed in [6],
applying an i.i.d. mobility model. That is, in each time-slot
a network node chooses its new position independently and
identically distributed over the entire network. Mobile ad-hoc
nano-networks are considered in [7] and [8], where the mobile
nano-machines freely diffuse in a three-dimensional (3D)
environment via Brownian motion. In [7] the information
transfer is accomplished through neurospike communication
after collision and adhesion of the nodes and in [8] it based
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on Förster resonance energy transfer if the nodes are in
close proximity of each other. A mathematical model of
non-diffusive mobile MolCom networks is presented in [9],
describing the two-dimensional mobility of the nano-machines
through the Langevin equations. Recently, a systematic ap-
proach for modeling time-variant channels for diffusive mo-
bile MolCom systems is proposed in [10]. Similar to [7]
and [8], the mobility of the nano-machines is characterized by
a 3D Brownian motion model. But in contrast to [7]–[9], the
information transfer is accomplished through freely diffusing
particles. The channel impulse response of the time-variant
channel is derived by modifying the diffusion coefficient of
the information particles.

In this letter, we derive a closed-form expression for the first
hitting time distribution for diffusion-based mobile MolCom.
Similar to [10], we characterize the movement of the nano-
machines by Brownian motion. However, unlike [10] we
incorporate the variation of the transmitter position in the
derivation of the first hitting time distribution. We consider
MolCom systems that use single particles of different types
to transfer information. In such systems, transposition errors
are the dominant source of errors and, thus, fundamentally
limit the performance [11]. We derive an analytical expression
for the expected bit error probability and evaluate the error
performance for the static and mobile case by means of
computer simulations.

II. SYSTEM MODEL

We consider a semi-infinite one-dimensional (1D) fluid envi-
ronment, whereby the length of propagation is large compared
to width dimensions. We assume constant temperature and
viscosity. A point source transmitter nano-machine (TX) and
a point receiver nano-machine (RX) are placed in a row at a
certain distance. We assume that the TX sends K information
bits b = [b0, . . . , bK−1]

T to the RX, where bk ∈ {0, 1} denotes
the transmitted bit in the kth bit interval. As modulation
scheme, we adopt binary molecule shift keying [1]. At the
beginning of an interval, the TX releases a single type-A or
type-B particle to send bit 0 or bit 1, respectively. Each re-
leased particle propagates independently via Brownian motion.
The RX detects the type of the particle and removes it from
the environment, referring to a fully absorbing receiver [12].
The transmitted bits are estimated based on the particle type
and their order of arrival [11]. We assume no background
noise, i.e. no other particles than type-A and type-B are in
the environment. Due to the stochastic nature of the channel,
the particles arrive at the RX at random time. The arrival
time of a particle released at time Txk

= kT , i.e. at the
beginning of the kth bit interval with duration T , is given
by Tyk

= Txk
+Tn. The random propagation time until the first
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arrival is denoted by Tn, which is hereafter referred to as first
hitting time. In the next section, we discuss the distribution of
the first hitting time for non moving as well as moving TX
and RX.

III. FIRST HITTING TIME DISTRIBUTION

In this section, we first revisit the first hitting time distribution
for fixed TX and RX and then we derive a closed-form
expression for the first hitting time distribution, considering
a moving TX and RX.

A. Fixed Transmitter and Receiver

Assuming a fixed TX and RX, the first hitting time
for 1D diffusion-based channels with no flows follows a Lévy
distribution. Its probability density function (PDF) is given
by [13]

fTn
(tn) =

R0
√

4πDpt3n
exp

(

− R2
0

4Dptn

)

, tn > 0, (1)

where R0 denotes the Euclidean distance between TX and RX
and Dp is the diffusion coefficient of the information particles.

B. Mobile Transmitter and Receiver

We now assume that TX and RX diffuse with diffusion coeffi-
cients Dtx and Drx, respectively, and that the movement does
not disrupt the diffusion process of the information particles.
We model the movement of TX and RX as 1D Gaussian
random walk (cf. motion of the information particles [1]).
We assume that TX and RX move independently of each
other and that they cannot pass through each other. Possible
collisions between TX and RX are considered by exploiting
the equivalence between interacting and noninteracting par-
ticles presented in [14]. In particular, it is shown in [14]
that except for the particle labeling the space-time trajectories
of two interacting particles are equivalent to the space-time
trajectories of the non-interacting particles. In other words, the
distance between TX and RX after collision is equivalent to the
distance if they walk through each other. In the following, we
first derive a closed-form expression for the first hitting time
distribution taking into account a moving TX and RX and then
we evaluate the derived expression for different parameters and
verify it through a particle-based simulation.

1) Derivation: First we consider the case of a moving RX
and a static TX. To obtain the first hitting time distribution we
apply the concept of relative diffusion from [15]. It states that
the absorption of information particles by a moving RX can
be accurately described by assuming a static RX and particles
diffusing with an effective diffusion coefficient defined by the
summation of the individual diffusion coefficients. Thus, the
first hitting time distribution for a mobile RX and a fixed TX
is given by (1), substituting Dp by Dp,eff = Dp +Drx.

Next we consider the relative movement of TX and RX and
determine the distribution of the Euclidean distance between
them at certain intervals. We define the initial position of TX
and RX at time t = 0 by the x-coordinates x0,tx and x0,rx,
respectively. Hence, the initial Euclidean distance is given by

R0 =
√

(x0,tx − x0,rx)2 (cf. (1)). The motion of TX and RX is
described by a sequence of x-coordinates xk,tx and xk,rx, each
coordinate representing the position at the time t = kT (kth

interval) [1]. Hence, the Euclidean distance between TX and
RX at the time t = kT is given by

Rk =
√

(xk,tx − xk,rx)2 =
√

d2k, (2)

with xk,u = x0,u +
∑k

i=1
∆xu, u ∈ {tx, rx}, and

dk = (xk,tx −xk,rx). The random displacement of TX and
RX during the interval duration T is denoted by ∆xu and
follows a Gaussian distribution with zero mean and variance
σ2
u = 2DuT [1]. Thus, the actual position xk,u and the dis-

tance dk follow a Gaussian distribution

xk,u ∼ N (x0,u, kσ
2
u) (3)

dk ∼ N (d0, σ
2
k), (4)

with d0 = x0,tx −x0,rx and σ2
k = k(σ2

tx + σ2
rx). To determine

the distribution of the Euclidean distance Rk the following
definitions are helpful.

Definition 1. If X is a Gaussian random variable with mean µ
and variance σ2, the random variable Y =

√

X2/σ2 follows

a noncentral chi distribution with one degree of freedom. The

PDF is given by

fY (y) = e−
y2

+λ2

2

√

λy I−1/2(λy),

with the noncentrality parameter λ =
√

µ2/σ2 and the

modified Bessel function of the first kind I−1/2(y).

Property 1. If X has the PDF fX(x) and Y = aX , then Y
has the PDF fY (y) = 1/|a|fX(y/a).

With Definition 1 and Property 1, we can obtain the PDF of
the Euclidean distance Rk as follows.

Theorem 1. Since the distance dk follows a Gaussian distri-

bution, the Euclidean distance Rk =
√

σ2
k

√

d2k/σ
2
k follows a

scaled noncentral chi distribution. The PDF is given by

fRk
(rk)=

1
√

σ2
k









e−





rk√
σ2
k





2

+λ2

2

√

λ
rk
√

σ2
k

I−1/2

(

λ
rk
√

σ2
k

)









,

(5)

with λ =
√

d20/σ
2
k.

Proof. Multiplying the numerator and denominator of the

Euclidean distance Rk defined in (2) with
√

σ2
k results in

Rk =
√

σ2
k

√

d2k
σ2
k

=
√

σ2
kR̃k.

with R̃k =
√

d2k/σ
2
k. Using Definition 1, the random variable

R̃k follows a noncentral chi distribution with the PDF

fR̃k
(r̃k) = e−

r̃2
k
+λ2

2

√

λr̃k I−1/2 (λr̃k) ,

and the noncentrality parameter λ =
√

d20/σ
2
k. The PDF of

the Euclidean distance Rk =
√

σ2
kR̃k can be found using

Property 1

fRk
(rk) =

1
√

σ2
k

fR̃k

(

rk√
σ2
k

)

.
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We are now interested in the distribution of the first hitting
time for a particle released at time t = Txk

= kT , taking into
account the mobility of TX and RX. This is accomplished by
considering the relative motion of the RX and the particles
as well as the relative movement of TX and RX. Formally,
we derive the PDF of the first hitting time for the mobile case
from the first hitting time PDF for the static case defined in (1),
with Dp substituted by Dp,eff, and by considering the distance
between TX and RX as random variable distributed according
to (5). The resulting PDF is parametrized by the discrete time
step k and can be calculated for tn > 0 as

fTn
(tn; k) =

∞
∫

rk=0

fTn|Rk
(tn|rk)fRk

(rk)drk,

=

√

kTDtotDp,eff

π
√
tn(kTDtot +Dp,efftn)

e
−R2

0
4kTDtot

+ fTn
(tn + kTDtot/Dp,eff)

× erf

(

R0

2

√

Dp,efftn
kTDtot(kTDtot +Dp,efftn)

)

,

(6)

with Dtot = Dtx + Drx and fTn
(tn) corresponds to the first

hitting time PDF for fixed TX and RX defined in (1). The

error function erf(x) is defined by erf(x) = 2/
√
π
∫ x

0
e−t2dt.

Note that when Dtx = Drx = 0m2/s, i.e. fixed TX and RX,
the PDF in (6) turns into the PDF of a Lévy distribution as
given in (1).
2) Evaluation: We adopt the parameters1 proposed in [10]
for evaluating the PDF of the first hitting time defined in (6):
R0 = 1µm, Dp = 5× 10−10 m2/s, T = 0.3ms and K = 10.
Figs. 1 and 2 show the impact of different TX and RX mobility
as well as the influence of transmitting at different intervals k,
on the first hitting time. If the mobility of TX and RX and the
interval number k increases, we observe a non-zero probability
for a small first hitting time. This is because, in this case
the variation of the distance between TX and RX becomes
larger (cf. (4)), which results in a non-zero probability that
they are in close proximity. It is important to note that for
low mobility and a small interval number the second term
on the right hand side of (6) mainly determines the PDF,
whereas the first term (6) is dominant in case of high mobility
and a large interval number. The transition between these two
regions can be observed in Fig. 2 for Drx = 5× 10−11 m2/s.
We verified the formulation of the first hitting time distribution
in (6), through simulating the movement of TX and RX as
well as the motion of the information particles using Brownian
motion [1] and determining the relative frequency of the first
particle arrivals. From Figs. 1 and 2 we observe a good match
between analytical and simulation results.
Fig. 3 shows the probability of a particle arrival during the
interval duration T = 0.3ms, when the particle is released at

different intervals k, i.e. FTn
(T ; k) =

∫ T

0
fTn

(tn; k)dtn. We
observe that the arrival probability decreases as the interval
number k increases. Similarly, for a certain interval number k,
the arrival probability decreases as the mobility increases.
This is because, the probability for a large distance between
TX and RX becomes higher if the interval number k and/or

1We assume a similar diffusion coefficient for type-A and type-B particles,
i.e. Dp = Dp,A = Dp,B.
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with Drx = 0.5× 10−12 m2/s. The results of the particle-based simulation
are indicated by ◦.
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the mobility increases (cf. (4)), which results in a higher
propagation time. Ultimately, the arrival probability during the
interval T becomes zero for k → ∞ and/or Dtx, Drx → ∞.
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IV. IMPACT OF MOBILITY ON TRANSPOSITION ERRORS

In this section, we investigate the impact of mobility on the
performance of MolCom systems that use single particles for
the information transfer (cf. Section II). Due to the random
arrival time of the particles, they may arrive out of order
and, thus, particle transpositions occur. Since we assume
no background noise, transposition errors are the dominant
source of errors and fundamentally limit the performance of
such systems [11]. The expected bit error probability for a
transmission of K bits can be calculated as [16]

Pb =
∑

π∈P

Pperm(π)Pb(π), (7)

where P represent the set of all possible permutations on K
released particles. The probability that a certain permuta-
tion π ∈ P arrives at the receiver is given by

Pperm(π) =

∞
∫

0

tyπ(K−1)
∫

−∞

· · ·
tyπ(1)
∫

−∞

K
∏

i=1

fTn
(tyπ(K−i)

− Txπ(K−i)
; i)dtyπ(0)

· · · dtyπ(K−1)
,

(8)

where fTn
(tn; k) denotes the PDF of the first hitting time

defined in (6). The release time of the kth particle is denoted
by Txk

= kT (cf. Section II) and π(i) denotes the ith element
of the permutation π. The expected bit error probability for a
certain permutation can be obtained as follows

Pb(π) =
disp(π)

2K
, π ∈ P, (9)

where we denote the number of displacements of a permuta-

tion π by disp(π) =
∑K

i=1
⌈|π(i)−i|/K⌉ and ⌈x⌉ corresponds

to the mapping to the smallest following integer number.

Fig. 4 shows the bit error ratio (BER) versus the bit interval
duration T for different mobility levels of TX and RX2. For the
BER simulations, we used the parameters from Section III-2).
As expected, for the static case the BER degrades if the
interval duration T increases. This is also the case if TX and
RX are moving, but only up to a certain interval duration T .
Then, we observe an error floor, that becomes lower when the
mobility decreases.

V. CONCLUSIONS

We derived a closed-form expression for the first hitting time
distribution for diffusion-based mobile MolCom. For this, we
modeled the movement of the nano-machines by a Gaussian
random walk and considered the relative motion of the RX
and the particles as well as the relative movement of TX
and RX. Moreover, we investigated the impact of mobility
on the error performance of MolCom systems that employ
single particles of different types to transfer information. In
such systems, transposition errors are the dominant source of

2Please note that the calculation of the expected bit error probability in (7)
is only possible for small values of K, since P has K! elements. Thus, we
did not include analytical results in Fig. 4. However, a good match between
analytical and simulation results was shown in [16] for small values of K
and static TX and RX.
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Fig. 4. Bit error ratio versus the bit interval duration T with Dtx = Drx.

errors. We derived an analytical expression for the expected bit
error probability and computer simulation showed that due to
mobility the performance degrades and an error floor appears.
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