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Abstract: We present an algorithm that allows an interceptor aircraft equipped with

an airborne radar to meet another air target (the intercepted) by developing a guidance

law and automatically adapting and optimising the transmitted waveform on a pulse to

pulse basis. The algorithm uses a Kalman filter to predict the relative position and speed

of the interceptor with respect to the target. The transmitted waveform is automatically

selected based on its ambiguity function and accuracy properties along the approaching

path. For each pulse, the interceptor predicts its position and velocity with respect to the

target, takes a measurement of range and radial velocity and, with the Kalman filter, re-

fines the relative range and range rate estimates. These are fed into a Linear Quadratic

Gaussian (LQG) controller that ensures the interceptor reaches the target automatically

and successfully with minimum error and with the minimum guidance energy consump-

tion.

1. Introduction

The task of intercepting a target and/or rendezvous is an important technical challenge that oc-

curs in many defence operations as well as in civilian applications like robotics, Simultaneous

Localisation And Map (SLAM) [1] and similar . One of the first papers on optimal guidance

for interception and rendezvous dates back to 1971 [2]. In that paper, a sensor on the ground

delivers optimal guidance to the interceptor on the basis of the estimated trajectories of the

interceptor and the target to reach. The radar transmits a suitable waveform which, however,

does not change during the task. Another paper [3] years later develops a procedure to adapt the

radiated waveform to minimise the estimation error in a tracking case study. This procedure has

been recently named fore-active control.

It is known [4] that a bat looking for a prey (e.g. a moth or a butterfly), during its search, acqui-

sition, tracking and interception phases and along its trajectory to approach the prey, changes

The 18th International Radar Symposium IRS 2017, June 28-30, 2017, Prague, Czech Republic

978-3-7369-9343-3 c©2017 DGON

1

e805814
Text Box

e805814
Text Box
18th International Radar Symposium (IRS), 28-30 June 2017, Prague, Czech Republic 
DOI: 10.23919/IRS.2017.8008198


e805814
Text Box
© IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.





adaptively the radiated waveform of the calls in order to improve the location of the prey. More

precisely, the figures from [5][6] show the time-frequency spectrogram of the radiated calls in

the successive phases of the interception. It can be argued that the bat develops an optimal ren-

dezvous trajectory together with an adaptive radiated waveform which improves the location

capability of the predator.

In this paper, we take inspiration from the bat and develop an algorithm that guides an airborne

radar interceptor towards a target by jointly developing an optimal guidance and automatically

adapting and optimising the transmitted waveform on a pulse to pulse basis. We suitably com-

bine the techniques in [2] and [3], namely the optimal linear quadratic Gaussian (LQG) control

law and the fore-active control of the radiated waveform. The result we achieve is to emulate

what the bat does in its predation. This is an original contribution of [7]. Some preliminary

results of the proposed technique were presented in [8].

2. Theoretical Framework

We study the case of an interceptor and a target moving with linear kinematics described by a

matrix F and state equations xf (k) and xb(k) [9]. The trajectory of both the interceptor and the

target are subject to Gaussian random perturbations, Gwf (k − 1) and Gwb(k − 1), with zero

mean value and covariance matrices Qf and Qb, respectively.

xf (k) = Fxf (k − 1) +Gwf (k − 1)

xb(k) = Fxb(k − 1) +Bu(k − 1) +Gwb(k − 1)
(1)

The term Bu(k − 1) is used to model the ability of the interceptor to adapt and control its

trajectory at each step. The interceptor is modelled as a controlled system that accepts an input

vector u(k) which is combined linearly with a matrix B before being applied to the equations

describing the target kinematics. We define the difference between the state equations of the

interceptor and of the target as the error to reduce to the minimum value at the intercept point

e(k) = xb(k)− xf (k) = Fe(k − 1) +Bu(k − 1) +Gwe(k − 1) (2)

with Gwe(k − 1) being a Gaussian random processes with mean value zero and covariance

matrix Q. At each time k the interceptor transmits a waveform to measure its relative distance

and radial velocity with respect to the target and uses the measurements to control its trajectory

in order to intercept the target with a limited number of radar transmissions NT and with the

minimum energy consumption of the interceptor. We assume that the measurement ye(k) of the

distance and velocity relative to each transmission is a linear function of the error e(k) as [3]

ye(k) = He(k) + νe(k;θk) (3)

where H is the matrix that maps the error into the measurement and νe(k;θk) is a Gaussian

random process with mean value zero and a covariance matrix N(θk). The covariance matrix of

each measurement depends on the accuracy of the transmitted waveform s(t;θk) whose design

is fully described by the vector of parameters θk that identifies the key waveform properties,
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such as duration, bandwidth and time-frequency curvature. The mathematical expression of the

elements of θk and the vector length depend on the waveform design. It has been shown in the

literature that, when the measurement vector consists only of the measurements of the target

range and radial velocity, N(θk) corresponds to the Cramér-Rao Lower Bound (CRLB) of the

estimates of range and radial velocity [10][11][12][13]. The Fisher Information Matrix (FIM)

for range and radial velocity in the presence of noise with mean power N0 can be expressed as

FIM = −SNR
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where c is the speed of propagation, λ is the wavelength at the central angular frequency w0,

SNR = 2Es/N0 is the Signal to Noise Ratio and χk(τ, ν) is the normalised narrowband Com-

plex Ambiguity Function (CAF) of the signal
√
Ess(t;θk) of energy Es defined as

χ(τ, ν;θk) =

∫ ∞

−∞

s(t;θk)s
∗(t+ τ ;θk)e

j2πνtdt (5)

The CRLB is obtained as the inverse of FIM and

N(θk) = [FIM]−1
(6)

gives the minimum values of variances and covariances of the measurements of range and range

rate.

At each time k, the interceptor makes a prediction of the estimation error covariance matrix

Pk|k−1 = FPk−1F
T +Q (7)

and then selects the waveform parameters θk so to minimise the determinant of the residual

matrix

Sk = HPk|k−1H
T +N(θk) (8)

as described in [3]. The interceptor then produces a pulse, takes a measurement with a waveform

of the preselected parameters θk, and uses the covariance matrix N(θk) to calculate the Kalman

filter gain Kk as

Kk = Pk|k−1H
TS−1

k (9)

The Kalman gain is then used to calculate the estimation error covariance matrix at the kth step

as Pk = (I−KkH)Pk|k−1 and an estimate of the error as

ê(k|k − 1) = Fê(k − 1) +Bu(k − 1)

ê(k) = ê(k|k − 1) +Kk [ye(k)−Hê(k|k − 1)]
(10)
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Eq. 10 shows that the estimate of the error at the kth time step only depends on the control input

at the k-1th time and this will allow us to select the most appropriate control input at the kth

time based solely on the estimate of the error.

As previously mentioned, the control task is carried out to ensure the interceptor reaches the

target as efficiently as possible. To do this, we define and minimise the cost function

J = E

{

eT (NT )Me(NT ) +

NT
∑

k=0

uT (k)Ru(k)

}

(11)

of the kind of a typical LQG control framework [2]. In Eq. 11 NT is the predefined number

of transmissions used to intercept the target and M and R are two suitable matrices that are

applied to the dynamic state error and to the input control signal, respectively. It is worth noting

that when M and R are identity matrices the cost function is minimised when the error at time

NT is minimised and when the energy of the input signal u(k) is also minimised. The solution

of Eq. 11 is well known in the literature (e.g. see [2]) and it is such that the control input signal

at the time k is a function of the estimate of the error at the time k and of a matrix Lk

u(k) = −Lkê(k) (12)

where

Lk+1 =
(

BTUk+1B+R
)−1

BTUk+1F (13)

and

Uk = FT
(

Uk+1 −Uk+1B
(

BTUk+1B+R
)−1

BTUk+1

)

F , with UNT
= M (14)

We note that the interleave between fore-active control and LQG control is new and represents

one of the contributions of [7].

2.1. Gaussian Linear Chirp

We limit the study to Linear Frequency Modulated chirps (LFM) with a Gaussian amplitude

modulation of the form

s(t;θk) =

(

1

πλ2
G

) 1

4

e
− t

2

2λ2
G ejbGt2ej2πf0t (15)

whose design depends solely on the parameters λG and bG, that is θk = [bG λG]
T . Selecting and

diversifying these parameters results in waveforms with a different time duration T = 2λG and

bandwidth B = bGT/π. The use of a Gaussian linear chirp simplifies the analysis because the

covariance matrix of the estimators of range and range rate is known in the literature (e.g see

[3] and [14]) and can be expressed as

N(θk) =

(

c2λ2
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(16)
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It can be easily shown that the determinant of the FIM is equal to SNR2 16π2

c2λ2 and does not depend

on the parameters bG and λG [3]. This will significantly simplify the calculations of the optimal

θk.

3. Two-dimensional Case Study

We study the case of a static target and an interceptor that moves on a two-dimensional plane.

The state variables are expressed in polar coordinates and consist of the range between the target

and the interceptor ρ, the radial velocity ρ̇ and the relative angle θ. Although, in practice, prob-

lems of tracking in 2D and 3D are treated in the Cartesian coordinates with the use of non-linear

equations, using polar coordinates allows the treatment of the problem tackled in this paper with

linear equations. The use of linear equation is of particular importance as it guarantees the con-

vergence of the LGQ control. A noisy perturbation is applied to the component representing the

acceleration and to the angular velocity of the interceptor. To represent this scenario, we define

the matrices F and G as

F =





1 Ts 0

0 1 0

0 0 1



 (17)

and

G =





0 0

1 0

0 1



 (18)

The resulting interceptor state equations in absence of control are







ρ(k) = ρ(k − 1) + ρ̇(k − 1)Ts

ρ̇(k) = ρ̇(k − 1) + a

θ(k) = θ(k − 1) + b

(19)

where Ts is the radar scan period and a and b are two independent Gaussian processes with zero

mean value and variance σ2
a and σ2

b , respectively.1

The sensor measures the distance between the interceptor and the target, their relative radial

velocity and the relative angle. The matrix H is defined as

H =





1 0 0

0 1 0

0 0 1



 (20)

1Here, we consider the case of one pulse per scan and hence the scan period corresponds to the Pulse Repetition

Interval (PRI) of the radar.
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The covariance matrix of the measurement is obtained by modifying Eq.16 so to account for

the measurement of the angle as

N̂(θk) =






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
(21)

under the assumption that the measurement of the angle is statistically independent of the mea-

surements of the range and the radial velocity. The waveform parameters of the Gaussian linear

chirp θk = [ bG λG ]T at the k-th time step can be estimated from the element pij of the matrix

Pk|k−1 so to minimise the determinant of the matrix Sk. After some simple algebra it can be

shown that the determinant of Sk is minimised for

bG =
γw0

4β
(22)

and

λG =

(

β

δ

)0.25

(23)

with






















p̂ = p3,3 + σ2
θ

α = p̂p2,2 − p3,2p2,3
β = p̂p1,1 − p3,1p1,3
γ = p3,2p1,3 − 2p̂p1,2 + p3,1p2,3
δ = w2

0α− 2γw0bG + 4b2Gβ

(24)

4. Simulation Results

Simulations are carried out for the case of an interceptor that for k = 0 is at 10 km from the

target moving with a relative radial velocity of -50 m/s and with a relative angle of 0 degrees
(

e(0) = [104 − 50 0]T
)

. The filter is initialised with ê(0) being a realisation of a Gaussian

random variable with mean value e(0) and covariance matrix P0. This is a diagonal matrix

with all the elements on the diagonal equal to 106. The covariance matrix P0 is very large in

order to guarantee the filter accepts the first set of measurements which typically, for a single

radar pulse, are characterised by a very large covariance matrix due to the low accuracy of a

single chirp. The SNR at time zero is set to 20 dB and the parameter σθ is fixed to 0.017 as a

representative beamwidth of a 0.5 m aperture at 35 GHz. The control is set to reach the target

within NT = 300 transmissions and the scan rate Ts is equal to 1 s. Figure 1 shows the range-

range rate diagram for the case with constraints on both the pulse width and the bandwidth of the

chirp. The pulse width cannot assume values below 1 µ sec and cannot assume values that would

generate eclipsing. The eclipsing limit is calculated by using the estimate of the range between

the target and the interceptor at each step k as 2ρk/c. The bandwidth cannot reach values below

20 MHz, corresponding to a minimum range resolution equal to 7.5 m. Results show that LQG

control converges as expected and that the interceptor reaches the target within the predefined
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Figure 1: Range- Range Rate diagram for the case with constraints applied to the chirp parameters.
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Figure 2: Pulse width of each transmission for the case with constraints applied to the chirp parameters.

NT transmissions. The error at the beginning of the sequence is reasonable because, due to

the applied constraints, the chirp parameters assume values that result in a lower measurement

covariance matrix starting from the very first transmissions. Results in Figure 2 show that the

pulse duration assumes values between 5 µs up to about 15 µs. The bandwidth remains constant

throughout the sequence at 20 MHz.

Figure 3 shows the AF of the 1st, 75th, 225th and 300th transmitted waveforms. Results show

that the wedge of the AF rotates anti-clockwise along the trajectory. When the interceptor

approaches the target, the bandwidth does not change significantly and the range resolution

remains constant. However, as the pulse duration becomes shorter the Doppler resolution de-

creases. The waveform is Doppler tolerant throughout the mission2, that is the output of the

matched-filter remains high in the presence of a Doppler mismatch.

2Doppler tolerance is a characteristic of linear chirps when the narrowband approximation is satisfied [14].
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Figure 3: Contours of the AF of the 1st, 75th, 225th and 300th transmitted waveforms for the case with constraints

applied to the chirp parameters.

5. Conclusions and Future Work

In this paper, we have presented an algorithm that allows an interceptor aircraft with an on-

board radar to adapt its trajectory in order to intercept a target and to automatically optimising

the transmitted waveform on a pulse to pulse basis. To achieve this, we have suitably com-

bined two techniques, namely the optimal Linear Quadratic Gaussian (LQG) control law and

the fore-active control of the radiated waveform. Simulation results show that the interceptor

can successfully reach the target within the predefined number of transmissions and automati-

cally adapt the waveform during the mission. Future work will look at using different types of

waveform designs and different optimisation criteria.
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