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SUMMARY

for unsteady flows is set forth for

which diffusion flames are regarded as discontinuity surfaces.
A lineavized theory is then developed for weak explosions associated

with planar, cylindrical, and spherical symmetries. A simple

b

combusticn ncdel for a ternary mixture of fuel, oxidant, and product

species is utilized. The one~dimensional linearized shock-tube
problem i

s analyzed in detail. Explicit results are obtained

for the flame motioﬁ and the flame and flow-field development

for arbitrery Prandtl number, Schmidt number, and second coefficient
of viscosity. Wave frontsassociated with the flame disturbance,
initial pressure disturbance, and the value of the Prandtl number
are delineated. The motion of a spherical flame associated with
weak spherical explosions is analyzed and found ultimately to

move toward the origin. The structure of the diffusion flame

is analiyzed by means of matched asymptotic expansions wherein the
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tructure are described by an "inner' expansion
that is matched to the "outer” expansion that was obtained, to
lowest order, with the flame treated as a discontinuity surface.

3

Thus the variation of the flame structure with time is obtained
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two combustible gases, an oxidant and a fuel, initially
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';vm-«_

VEE Lnﬁ

brought into contact with one another, a

chemical resction will ensue at the contact interface. The
behaviour of the reaction will depend on a number of factors,
such @s the nature of the gases, the ambient temperature, the
density of the gases, reaction rates, and features associated with
the initiation of combustion. When the reaction is very intense
and localized; the vreaction region is referred to as a Fflame.

3

In particular, it is referred tc as a diffusion flame since the

O

ombt
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sticn is fed by processes of diffusion. The problems

o

envisaged here are inherently unsteady and involve propagation
of various disturbances arising from the flame itself as well
as the initial conditions. Thus we are generally concerned with
explosions, and those in particular that involve diffusion flames.

Among a number of factors, we are interested in knowing, for instance,

what temperature the flame obtains and how it varies with time.

the flame itself move?  How does the flow
with time?  Finding the answer to these
is the subject of this investigation.

When the disturbances produced by the initial conditions
as well as by the flawe are large, the analysis required for the

problem is of considerable difficulty. Indeed this

true for strong explosions even when there is no
combustion involved On the other hand, when the disturbances
are small, a considerable amount of progress can be made. Happily

enough, this limiting situation is of significant practical and



utilize lilnearized theory
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lames in weak explosions.

It is consistent in this limit to deal with laminar flows and

Linearized theory has long been a mainstay in fluid-mechanics
problems. It contains the embryonic behaviour of a good part

of the more complete non-linear problem. As such it yields
&

knowledge and insight of the more difficult complete problem.

Some of its shortcomings can be dealt with by treatment of regicns
of nonuniformity. t often forms a foothold from which a stronger
attack on the non-linear problem can be launched. A similar
problem to the explosion problems treated herein, that of two gas

behind & solid cylinder and producing a diffusion

]

flame, was examined by Clarke (1967a, 1967b) by means of linearized

examined in this investigation. Application

linearized theory to nonequilibrium and chemically reacting
ficws has been developed and discussed by Clarke and McChesney
{1984}, Vincenti and Kruger (1965), and Clarke (1969). A recent
baper by Wu and Turner (1974) also elaborates on the linear theory.
A paper by Sforza and Bloom (1965) bears a remote connection to

the explesion problems considered here

»

though diffusion flames associated with steady flows have

e

intrinsically unsteady flows have not

met with the same interest or thoroughness. Clarke and Stegen

investigated some unsteady behaviours of diffusion-flame

sheets. Their investigation considered perturbationsto a basic
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flow field. In the present analysis we consider

T

dy flows associated with weak explosions.  The

onsidered is that of the one-dimensional shock-
tube problem, wherein a fuel and product mixture are separated
initially from an oxidant and product mixture by a diaphram. At

a given instant the diaphram disappears, and the subsequent motion
and compustion flame are to be determined. The outer problem
wherein the flame is replaced by a discontinuity surface is analyzed

by means of linearized theory. Aside from this approximation

.

and the utilization of simple fuel, oxidant, and product ternary
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minimum of other major restrictions. he
Prandtl number and Schmidt number are left arbitrary and the second

coefficient of viscesity is retained as an arbitrary value. A

number of general results are established and explicit expressions

rge Time are obtained. The initial motion of a spherical

flame associated with weak spherical explosions is also obtained.

ssociated with the flame discontinuity
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surface has been determined, the structure of the flame is then

ated by regarding it as the companion “inner" problem in

B

a scheme of matched asymptotic expansions. The “outer' problem

is thug recognized as the flow field associated with the flame

&

3

treated as a Burke-Schumann discontinuity sheet. Details of the
structure of the flame and its variation with time are thus obtained
for reaction broadening.

his investigation begins with some generality in the formulation

of unsteady-flow problems containing diffusion flames. This is

conditions holding across an unsteady

}m.(

the genera



Ffusion flame sheet appear not to have been explicitly stated,

axcept perhaps by Clarke and Stegen (1968) in the context of their

own investigation. A number of general results associated with
conservation of species, mass, momentum, and energy are derived

without specification of particular constitutive relations.  The
constitutive relations associated with the Navier-Stokes approximation
are utilized as a special case. Thus, with specification of appropriate
constitutive relations, problems involving non-Newtonian flows may

be treated directly in future investigations by utilization of the .

eneral results derived here. In this connection, constitutive

]
D

relations for the heat-flux and diffusion-flux vectors are derived
by methods of continuum mechanics. Such a methodology could prove
useful for non-Newtonian problems where results from kinetic theory

are not readily obtained or directly applicable.



2. GENERAL FORMULATION OF THE PROBLEM

.1 Bazic Fauotions

The fundamental equations of change for mass, species,

momentum, and energy for a gaseous mixture of /7 reacting species

are
N . i
SO a4 = ¢
e # J’f et (2.1)
7
Wiy
n 0 fluw e
T .(:fﬁl = gt D AP /(;
1Y N of /. o
sir A (2.2)
& & g"! . 7 5
F e - pp iy
o (2.3)
a2 by Ao
;LA o wf) oy . - R ‘{:A 7w e
FEL - 2p L FE - 2.5
Py g - . ®
£ d LT ,f‘/ J

where ¢~ 1is the mass density, # the mass mean velocity vector,

-
Z the mass fraction of species of , gt( the diffusion—flux
. . . , L X . ;
vector for species of 11% the species mass production rate
D]
unit mass, ?ﬁ» the pressure, Z? the viscous stress tensor,
- - . J -
& the rate of strain tensor, / the enthalpy, and /g the

. — . .
heat-flux vector. The species terms 94 . jf 3 and jz; satisfy
g T

(2.5)
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and hence are not all independent. Body forces have been omitted.

¢

2.2 Comstitutive Relations

We assume the stress-rate-of-strain relations are given by

the Navier—Stokes relations

gfu = ,,,{‘/‘/5/’ & 7> /’3 {.,!f':,ﬁ o / Z
‘ (2.8)
o b4 :;:h } , U :lj
< = pyo s (ry) 4 (2.9)
vhere/xzf and /A are the first and second coefficients of
viscosity, restricted by ¢/ > ¢ and {C& %yaﬁt}»zw Consistent

with these rvelations, we assume that the diffusion-flux and heat-—

flux vectors are given by

s SO () 73
P o= > L FO = L Phesy — D g .
f:;ﬁ; - — e # {;/5 {{ 174";7{; 1"{ Ptow 7 , (2 10)
¥ j’_{“:‘j -
o = 40 -/

/7»«/ . 7 f1- -/ (2.11)
= 4 oo — b TS 57 ==
7= hvr e 2 () G2 4797
& o=y L g "‘,r’“/ " o

4/&1);‘2,,@

Only the first -7 variables ¢, and ;?; are regarded as independent
, A

here, the variables ¢ and 1 being determined from (2.5) and
£

7

(2.6). Equations (2.10) and (2.11) can be derived from kinetic
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’"‘Tﬂ' =T

he Chapman-Enskog expansion for the Boltzmann

equations (see Hirshfelder, Curtiss, and Bird 1954). They also

o

can be stablished from principles of continuum mechanics. Since
this technique is not widely known in gas dynamics, a derivation

from this point of view is given in Appendix A. The multi-
A

component diffusion coefficients are denoted by gﬁ » only some

a4
of which are independent, as delineated in Appendix A. The
s . (p . s s ;!
pressure-~diffusion coefficients ¢2, and the coefficients /{%ﬁ
are functions of z2%£ » also delineated in Appendix A. The
_ ) - A7)
first /-4  thermal-diffusion coefficients 2, are independent,
e
nth coefficient being determined consistently with (2.6).
thermal conductivity is denoted by 4  and is positive.
e ! (7 / .
The coefficients Iaﬁ»’ {g, , and 4 , as well as the first
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and se icients of viscosity, A{ and A, can be
evaluated by means of kinetic theory when particular molecular

interactions are specified. For our purposes here, we regard these

coefficlents as phencomenological, to be evaluated empirically or by

Ic close the system of equations, we need to add thermal and

caloric equations of state in the Forms

Ao e, Lo s « Ve 3 X

;ﬁy ’;{ 'tjj "} o, 5 é..l 5 é,‘?—-/) (2.12)
Ho= Ale 7 o¢ & v ) (2.13)
§ LA J’“} ; 4 J i J -y
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fic expressions for the species source

77 . N 4 e . .,
Lerms j&d . We shall defer this till later when we consider

a special simple chemical reaction.
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onditions Across & Diffusion~Flame Discontinuity.

We now want to treat a diffusion flame as a surface of
discontinuity, somewhat akin to the treatment of Clarke (1967%).
he jump conditions across an arbitrary surface of discontinuity
are well known for mass, momentum, and energy. Let the subscriéé

conditions on either side of a surface of
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discontinuity, and let »f and s7 be the velocity and unit normal
of & point on the surface of discontinuity. By the analysis of

{1967}, for instance, we can obtain the jump conditions

for mass, momentum, and energy as

.4

»-—;é,}}r’f} :::tJf/1 Z";&*j)’/’/” = 777

oo P T oy e (2 ® 16)
[ VI S B Y -y e o
s R B = Py ,jf 7o 5’1 . [‘%J "5\') 7&-—-/2% o J)

If we now assume, along with Clarke (1967a), that the flow

[
ables g , ﬁx . Y é; , and )~ are continuous

across the flame discontinuity, then (2.14) is identically

[

var



satisfied. it follows from the momentum equation (2.15) that

the stress vector is continuous across the flame discontinuity;

s
Vs #4 A
7 :}V = g o
7. L te 4 (2.17)

The energy egquation (2.16) yields that the normal component of the

ar~flux vector is continuous across the flame sheet:

-}m A e 4
K}fj e /7 o= /3/“2 P (Z . 18)

Relations (2.17) amd (2.18) are quite general and do not depend
on the nature of the constitutive equations. When the constitutive
ielatiﬂns {(2.10) and (2.11) are admitted, then (2.18) leads to
a jump relation between the normal components of temperature,
pressure, and copcentration gradients,

We still have to establish a jump condition appropriate for
the eguation of change of species. To do this we must examine
the nature of the source terms, i ,as they pertain to a

o

ionn flame. The essence of a diffusion flame is that it

,«‘
j
o

separates two species that diffuse into the flame and produce

an intense chemical reaction. The flame moves in such a way that
the two species are annihilated by the flame and one or more new
species are produced as a result of the chemical reaction. As
Clarke (1967a) spells out, the pertinent chemical reaction that
produces the diffusion flame is characterized by two reaction
times, a forward reaction time, %; , and a reverse reaction

. Because of the intense behavior of the f[lame, é;

. P i . « e e o .
is very small and %; 18 very large. In the limiting situation
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N One the other hand,.ﬁg. pertaining

to the species participating in the chemical reaction producing

usion flame will be zero on either side of the flame since
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one or the other species required for the reaction is not present,
At the diffusion flame itself, the two species combine and produce
an intense reaction since é;'ﬁ?67. In this limit the flame can

be regarded as a discontinuity surface. In a fashion akin to that

of Clarke (19672) we now regard EQ as made up of two parts and

te

b
[
=N

g

v = »\yf 7 ?fféf 5.("%"2/?} . (2.19)
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Here 7 represents all the reactions not associated with the

Fh
ot
e
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iscontinuity aﬁé&éig?ﬁg)represents those associated with
the diffusion flame. The function 5(2,) is a Dirac delta function
and 2 is a coordinate measured normal from the flame discontinuity
and equal to zero on the discontinuity surface. The variable
kﬁi is the flame strength of the flame and may vary from point
to point on the flame surface, as well as with time. The
functionﬂdﬁfi is assumed to be free of any intense localized

of
behaviours associated with flame discontinuities.

Because of the properties of the Dirac delta function, any

P .
inite volume integral of‘ijfﬁﬁa)over a region ﬂ%A that includes

portion of the diffusion flame can be expressed as a surface

R
integral
e 5o 7” 4 5
S]] edosznar = /' VRS (2.20)
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over the enclosed flawme surface > . We can now apply this
/,«

resuit to the integral equation governing the change of mass cof

. . T3
species <« in the region (A . We have
e ;5' L = - P N J5
Py df;l,’ V//U __j',,"}/ O/fa{ v 77 ol re /;f f J.‘L)( ﬁ:‘}[‘/ (2.21)
* M :/,_
s
A = &

. oo, N - -
where .5 is the surface that encloses & .

We now shrink the region 5%) so that it embraces the flame

i

~ < - ; »
surface - Since Jﬁ and ¢ are regarded as continuous, the
: of
ieft~hand integral vanishes when the volume is reduced to zero,

13 - / . . . -
as does the volume integral over fﬁ;jz . The diffusion—flux
u of

4

. . . . ¢
vector, however, is allowed to be discontinuous, and since ,éa
..
is arbitrary, we obtain the jump conditions for J;' to be
;’:. ‘ ';* A i 5
P ] e & f’} ..1L f’ ‘ﬁ/
dedy 0 7 oo, = et (2.22)
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where s is the unit normal that points from side 1 towards side

jae]
]
h
ot

he flame discontinuity, and dﬁg is the value of the density

on the flame sheet. Thus the jump in the normal component of

N

gl

the diffusion—flux vector is equal to the strength of the flame
sheet. Again (2.22) is a general result and does not depend on
the constitutive relation for the diffusion-flux vector.¥
Because the two species that participate in the diffusion-
flame reaction are continuous and vanish on one side of the flame
or the other, it follows that the mass fractions of these two species,

say {_ and Qkf)must vanish on the flame sheet:

Aacross edch 1

PP S T - VY e rp s . -
ronalader of Lhe disoussion A4S

f oy ey ey Yy L . R
(2.272) hoias
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{2.18), (2.22), and {2.23) are to be imposed as boundary con-

lame sheet. The flame strength ;gg, and the position
of

g ey o PR
ditions at the fle

cf the flame are to be found as part of the solution. It is interesting

; ¥ Y . .
to note that kﬁ¥ has the dimensions of speed.

2.4 Simple Fuel-Oxidant Combustion Model

In this investigation we wish to fix our attention on the

interaction of diffusion flame and the gas dynamics of weak

disturbances. Along with Clarke (1967a), therefore, we fix our

attention on a simple single reaction process described by

_ 7
x X + £~ = 9L (2.24)
z. 0

where X , 4~ , and /’ represent oxidant, fuel, and product

represent the respective

x , & , and jf
p

stoichiometric coerficients. The reaction rates for this case are
X F
L4 ” L4
g { {‘,3‘" & = [_1
= - s il
94 .. —— £
=L Z 2, 4
I4 f:‘ I
e e “;Z: o ’4"‘
i [
— i e e
- I I — (2.25)
L A
#
K F g
. -7 ! s ;:
v 7 . ‘L’? !;!i)r !: —;x' }.: _ (_.Z) z
25 mz} ‘ri .Jf) i s f _j
£z s

A

where éki; s fﬁij , and 2%;‘ are the molecular weights of the



and product species. When the diffusion flame

. - . - : ; S
a2 discontinuity surface then éi“yﬂ7, {r‘”&mjand
F

since either ?X or (. 1is zero, except on the flame surface
. e
stself, the appropriate limiting approximations are

a2 g -7 e p
VR AR A Y D)

(2.26)
TAT < e o
‘Z’/;r” - j:i)\ ;fi/' AS «; f Z:&jr )
A - / v
F v
e ;\_.”jf P RN A ") s -"5;/ . . v:aff /),;r]/’,); Jﬂ = g [:f,ﬂ A()'{

is the strength of the flame which may vary
with time and with position on the flame sheet. For this situation
the functi@nxﬁil in (2.19) is zero.

Even though there are three species in this model, we
essentially have to deal with binary mixtures on either side of
the flame discontinuity since either the fuel or oxident species
is absent. This leads to a considerable simplification in the

analvsis of these kindsof problems.
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iternative Form of the Energy Equation

It is useful to rewrite the energy equation (2.4) in terms
of the temperature instead of enthalpy. To do this we eliminate

the enthalpy by means of the caloric equation of state (2.13).
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where .

The first term on the right is associated with work done on a

ement by the pressure forces in compression or expansion

of the fluid. The last term is a flux term associated with energies
crossing the boundary of a fluid element. The second, third, and
fourth terms are apparent sources of temperature arising from

viscous dissipation, diffusion, and chemical reactions. The apparent
gources of temperature arising from viscous dissipation and diffusion

are nonlinear and will disappear in a linearized approximation,

leaving only the linearized version of the fourth term as an apparent

temperature source, or heat-of~reaction. For a mixture of thermally
o . Py 5 *f‘: fyf 3 s - :
perfect gases, the term{ afp vanishes, but this does not
e,
'9{

provide any essential simplification in a linearized theory.



LINEARIZED UNSTEADY FLOW
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ic Assumptions and Definitions

Je now consider a basic ambient state made up entirely of

P
ta
W

a product gas with pressure, density, and temperature denoted by

Ao s f, 5 and 7z » The speed of sound for this ambient state
i o

is dencted by ¢, . We introduce nondimensional primed perturbation

variables defined by

/
., - 5 F', 4 , SN
j' JZ’ . {’\f J
7= Jo s T)
s
{:,‘~ el {j’ .
il X (3.1)
oo !
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P s P ¢ A
hoo= [ 28 = ~ L4 (7
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where we have taken = . and L (:{? . We
,<;’ . . o ’
Z, = FPu/¢, where ¥ is the ratio of specific heats

e sldentify Cle s Fhg ;f’/ B sl Seleriglt 3 e ,
or the product gas. f Further we normalize the time and space

g%’ P %?I:%i ra
4
(3.3)
it - R
Fos Jo % 7

;- 8 o, . . - -
= A S A, is the reduced or effective viscosity.
The "barred” space variables are dimensional and the unbarred are

dimensionless.  The dimensionless "del" operator is denoted by

inary mixture prevails on either side of the

flame, the diffusion~flux vectors for the oxidant and

fuel species can be written

e L o - i/ﬂ') — ) [ 2l BNV
R Ol 2 - L Pl 7T
4 xZ X £ =

shown 1n Appendix A, or by kinetic theory, the pressure-diffusion

coefficients and thermal-diffusion ccefficients vanish when their
corresponding mass fractions, qg or Qr,, vanish. Thus when
the ambient medium does not contain any oxidant or fuel species,
the perturbation contribution arising from the pressure-diffusion

and thermal-diffusion terms are non~linear and can be neglected
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in & linearized theory, In this case, therefore, Ficks law prevalls,

and we have for the linearized case

. A o s
7 ) 7V’
fx Xz, =
(3.5)
’;{ . o e .ZJ : 1":”; & i
a7~ L s

Along with Clarke (1967a) we further assume, for the sake of simplicity,
that the binary diffusion coefficients for oxidant=-product and

fuel-product diffusion are equal, that is,

X T ¢ (3.6)

Correspondingly, the Dufour effect in the heat-flux vector gives
rise to a non—linear contribution when the fuel and oxidant are
not present in the basic ambient conditions. The appropriate

afé&
linearized version is thus

— / o e A yo— : d e
% ‘::; '"”/féﬁ 7T '%'2; /zjfa )i i f*//jg - é’i )‘/F (3.7)

£

Non—dimensional variables associated with the diffusion~flux

nd heat-~flux vectors are the Prandtl and Schmidt numbers:

o

%Z ff'/.:»w

o b

£y >3

“ (3.8)
— x452
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D,
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inally 2 nondimensional effective heat of reaction, &/ , can be

defined as

L %y
iﬁ*{ —

. ) (3.9)

and a nondimensional flame strength as

v SJ

S= = (3.10)

Linearized bquations

{2
i
1]

bk

The nondimensional linearized versions of the mass;species,

momentum, and temperature-energy equations, appropriate for diffusion
flames discussed in the previous section, are
o (3.11)

(2. (3.12)

(3.13)

27 ) (3.14)

g 5 A / P . P e .
e fffi;i»i i_.jf: ol E/Y s e C:"}ﬁ:‘f 3 (/ 27, ) (3-15)




ion equation for the thermal equation

2 nary mizxture of thermally perfect gases,
I ) s o ¢ 4 &
A P i > + IS . .
J;‘ wd s P } ( \3 - l C )
whers
= _ 7
(3.17a)
N e
o = A , (3.17b)
= e
A7 ’
/ )A &
47 are specific gas constants. Use was made
. ¥ - i
- . -

CooomO (3.18)

which is the perturbation counterpart of (2.5).

A

. . F e . L
flame sheet vanishes, « =&, and when there

= /> , the above equations reduce

o g,
Lt
well as others.
3.3
In the general problem, the velocity vector can be divided
inte rotational and irrotational parts (see Eringen 1967).



cencern ourselves with those problems that are

of problems will usually be one-dimen~
sional or with cylindrical or spherical symmetry such that curl

v/  ddentically vanishes. For these irrotational flows,

o~
G
.
o
((a]

-

where ¢ is a dimensionless (scalar) velocity potential.
Ef

We can now integrate the momentum equation {3.14) once and obtain

j ( 3.20 )

(N
b
T
S
e

Notice for irrotational flows the first and second coefficients

o "

ot B
of viscosity always appear in the combination ./ =744 +J

The continuity equation (3.11) can now be written

. Py C
7 (3.21)

With the introduction of the velocity potential the problem

becomes considerably simplified.

3.6 Reduction of the Differential Equations




defined as
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- - ) .'i 2 p .
= ’ . (3.22)
P
Differenting equation (3.16) first with time and then with /7

e

and then eliminating the temperature by means of equation (3.15),
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After expanding the left-hand side of this equation by means

3

3.24L), we have

th the right-hand side equal to zero, was utilized

5} and by Rasmussen and Lake (1973).

£ /
The presence of the terms (' and (- on the
Lre Try

right-hand side of equation (3.24) representsthe effect of

The derivatives of the Dirac delta function represent

he discontinuity associated with the flame sheet; on either
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is useful to deal with equations (3.24) or (3.25)

and (. can be determined
r~

(3.12) and (3.13),

with their initial and boundary conditions, are uncoupled

¢

y.e

he from equation (3.23) by operating
the mass-diffusion operator, s defined as

= (3.26)
is a seventh-order equation for ¢/

nvolving only derivatives of delta

+

ide of the flame sheet.

[
[

which vanish on either

seventh-order eguations, but with different combinations

functions on the right-hand sides, can be obtained

- / v o
variables (7 , /Q; , and 7.
v A

7

)
L

s th

2

t is, when the Lewis number is unity,
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the side of {3.25) vanishes on either side of the flame
. in the governing equations for 4 , as well
. ; X
as or &, 0, ;7 s are order and are the sane

ations studied by Bienkowski (1965) and Rasmussen

73) for homogeneous media.

ame Sheet.
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For the simple irrotational flows considered here, let
¥  represent the Cartesian coordinate in one dimensional flow
or the polar ccordinate for flows with cylindrical or spherical

the coordinate normal to the flame sheet can

7 (3.27)

the position of the flame sheet as a function

where

flame sheet point in the
the Jjump condition (2.22)

A= x_. leads to the relations

A
g
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- e 5 et e ( 3. 28)
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notation indicates the change in the variable

rackets between the limits shown, Becaus
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of the

(3.29)

been determined by means of this boundary

well as the flame position Xy (¢ ) , the flame

from (3.28).

together with (2.22) and (3.7),

on the temperature gradient:

e ATl PR
L0 TOLL0OWINE

- (3.30)

& o ; Y
is known when the flawe strength, . /¢7)

from the uncoupled diffusion problem.

o %
7
the thermal-diffusion cooeffi and

o~

sguations for the present unsteady flow problems to be considered

from the linearized equations utilized for the

planar steady flow problems studied by Clarke.

to those set up by Clarke (1967a,b).  The governing differential



fermulation of the linearized theory now complete,
shock-tube problem in some

of the flame properties
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4,1 Description and Imitial Conditions,

Consider a planar diaphram at X+ © that initially separates
n the right-hand side of the

be a mixture of product gas and a

Un the left-hand, X< , let there

and a small amount of oxidant gas.

temperature and pressure on the left-hand side

b
o X

by small amounts from the prevailling ambient conditions

on At the instant Z =+, the diaphram

instantaneously disappears. We assume that the ambient temperature

, are sufficiently high that combustion

We wish to determine the flow field

that develops because of The removal of the diaphram. The

depicted in Sketch 1.
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bustion is always stoichiometric, that is,

moves such that the fuel and oxidant are completely
. 7 o . . . )
&3 . When & is less than unity, ;ﬁ is negative and

(-%.
e
)
)

moves into the oxidant vegion. The initial config-

to be fuel rich. Correspondingly
configuration can be said to be

2 illustrates the X~ 7 diagram for

< Jeehwomeine ) S

L
L P / Qk
O e F
Cx K S .
/ o
o 7
//,
rd

~ir
>

4§
7

Sketrch 2. Dependence of Flame Motion on .
Analogous solutions for the flame produced by two streams
a parabolic cylinder were found by Clarke (1967b)

who introduced parabolic coordinates in the study of his steady

oblom, Also some similar conclusions were reached by

and (1968

Stegen

The strength of the flame, o {5(}, can now be determined

-

e - §nomv
from {(3.28).

We obtain
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The strength of the flame decreases with time and depends of

uel-oxidant ratio.
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4.3 Analysis of Flow Field for Stoichiometric Conditions, & -/

We now consider the flow field when #/=/ . In this
case the flame is stationary at X, = & . Analogously to
Rasmussen and Lake {1873}, we use Laplace transforms to analyze

the linear initial value problem. We first note from equation

- A vy i 4
- Y X

{(4.,13)

It can be shown that the higher time derivatives of ¢ wvanish at

/= ¢ . Denoting the Laplace transform of 4 (x,7#}with time
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as ' { X ), we take the Laplace transform of equation (3.25)
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ransforms of the density, pressure, and temperature

(3.20), and (3.186).
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e > e

Afe 5 the value 2. .=/
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corresponds to an actual Prandtl number ﬁr’;?/,g that is,

. This is in accord with many gases, such as
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Ye can obtain an approximation for small time by expanding
the transforms for large s and then inverting. As Bienkowski
(1865) and Rasmussen and Lake (1973) point out, however, the
Navier-Stokes equations may not be valid in this limit, and
bence this limiting approximation is not particularly useful,
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useful for extracting numerical re: nterpre-~

tation. Consequently, we shall use asymptotic-approximation



A wave behaviour in the problem will not appear if the
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from the problem. This occurs when the parameters /4 and &

vanish. Perusing (4.27), (4.28), (4.29), and (4.30), we find
o . I . s . Sy

that A and & vanish when _;iiuf . A@/:ﬁ g £ =80 and

v — T & S e N s L

5= e . It follows from (4.22) that ga,f: ¢> , and hence
is a constant-pressure solution. further, since we have

the requirement that

() « must have the

g
value
= XL o 7 e
x T {(4.31)
definitions of §Lig , and .4 , we can
] A

deduce that {(8.31) will be satisfied, at least, if the oxidant,

fuel, and product gases are calorically perfect and all have the

specific heats at the ambient temperature 7~ .
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. . C e
L7 Conditions on the Flame,

& -~

The values of the flow variables on the flame, X =7,

can be evaluated for certain asymptotic situations. The transform

o / { 4o 7 ¢

T - ,ﬁ, . 2 ERPEA \ P S o ¢

gi(es) = —— }1 = S ,3:/“ (1#¥53) f’w’S; Az Vi Ajdg # S ¢
b - 5 it

AS(A,+A5)

(4.37)
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The transform of the density reduces to

o sy = Ap - drdr Ao i
i “ 4 N - ’ ?

25 AS(h,#h2) L /7S

N

The temperature on the flame is given by

- s
P , Y e - y/ 3 -:\‘-‘ f'b’"‘[ { E\ { H
s {,ﬁ S 07 /0’ (/0/ S ) - \j& :Ly ) {u4.,10)



Consider now the values that obtain for large times.

In this limiting case we consider the limit S+ . We observe

that
T ) (B ]
P A= J— I L e
Ay VES | 27 T

when S-¥ 0. In

behaves as

£
H
J
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A § T T ¥4
if Auﬁij
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Hence U [ﬁ} 2 ) s for large time, varies as

s \ 4 [ ] A b -y B A 3 / )
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Thus the velocity that arises because of diffusion and thermal
affects dies out with time. The velocity that persists is the

as dynamical part that arises out of the initial pressure
Y p

A

oq

(4.4u)
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Hence we obtain, for large time,
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The density does have a component that arises because of diffusion
and the heat of reaction.

The transform of the pressure reduces to

N ' £ & PR e Y T N A o
Pe,s) S8 b o [ 5 E )T ) (s ) o e
’ ’ ) S 4272}5’ Ly _z; / £y 5 ( 7 f{ (4.46)

Just as for the velocity, only the effect of the initial pressure

disturbance persists for large time, and the effects of diffusion
and heat-of-reaction die out with time.

The temperature, from (4.40), behaves as

~ s s

R Y Lo At (b B b J .o [lz )\

ﬂjé’ i/_/.!ém (4.48)



at the flame is composed of a part due to the
initial temperature discontinuity and a part arising from the

heat of reaction.

.8 Solution for Large Time.

For large times the appropriate expansion in the Laplace
transforms pertains to S/ , and Ai , and A_L behave as

;’. o
s A

shown by {(4.41). In this limit the parameters /4

4?'* , and /3' take the limiting forms
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the effects of the flame as well as the

are present without a flame, it is
5 7 P
necessary to keep three order of & in A4 and 4 , but only

~.

the lowest order in 4 and 4 since all the effects appear
in the same order in these two parameters.
1 'Nv T -
When /k, is approximated by )I—-/Jg,s for small §
- P 47 - | PN
the Laplace transforms associated with /} and 4 can be easily

inverted, In order to invert those transforms associated with

, . , . . -
ss and 4, we must deal with an exponential of the form

exp(ﬁfﬁg,X} . These terms lead to wave behaviour when .V
is small, that is, for large time. Here we malke use of the

method of Rasmussen and Lake (1973), which is outlined in

Appendix B. In the exponential term, Aﬁ_ is replaced by

A Y .

A, © 2 4 IR b ] ) (4.56)
e

where - P

Lxpression (4.56) is valid to second order when S-#0 .

4.4 Velocity Field for Large Time.

When the approximations in the previous section and in

Appendix B are utilized, we obtain for the velocity




[ 7}«21,

: i»«‘f“ 4

(4.57)

T

(4.58)

where

1y (4.59)

i/,',X ¢ 7 (4.63)

77 ( X F /\, = ;_}’éf (w_X/ 2“’) (4.64)
;f/f (A’“ 1) = 4 [,Z’&(X) ]“) (4.65)

7o (x2) = ) (xF) (4.66)
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The first two exponential terms in (4.57) and (4.58) describe
the diffusive-type relaxation of the initial disturbance caused

by the disappearance of the diaphran. This disturbance dies
{

. - z - - - 3
out like 27 , something akin to the special exact solution
7 # :

. z
(4.33}. The functions L%} . L{; , and éi; are wave-like

St

in behaviour. The functions [ are the dominating of these

e
three terms, and correspond to a compression wave in one direction
and an expansion wave in the other, the directions depending
+

on the value of 4 . Since ({,. are proportional to A4 )

~ = 7
they are of gasdynamic origin and are related to those waves

A

studied by Rasmussen and Lake (1973). In Fig. 1, Z{; is

%% for various values of 27 . As

plotted asz function of
F—w e, this plot approaches the results of classical inviscid
gasdynamics. The center of the wave front is at Ké} =/,
where the speed of the front is &, .
: zZ
The functions Zﬁé describe the waves generated by the
flame, which are a pair of compression waves traveling in opposite
directions when 4 é}fﬁf%r >(Zf A+ \and expansion waves
- e * £ ‘x Vo /“é’ P
o ',.,vr N = . « . . e .
when,jgga{i;%?<f({;§x;%kgﬁﬁ . When the,lnlflal pressure differential
o z
across the diaphram, ;%&,, vanishes, Zéf also vanish, and Z?:_
p7;
become the dominating wave disturbances. Apparently the quadrature
-
in the definition of Zii cannot be evaluated in terms of known
tabulated functions. When 27 approaches in infinity, however,

one can establish directly from the Laplace transforms that
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vz Zﬁ; « (/- g—; ) < |

X
;s F (4.67)
= o , = s
.. . e . . .
A numerical evaluation of Zf@{ is shown in Fig. 2. The magnitude of
the disturbance is largest near the wave front, at XxX= 2 ,
which travels with the speed &£, . The magnitude is associated
with the strength of the flame that generated the disturbance.
Since the flame strength dies out with time, the strongest part
d-
of the disturbance igAthe wave front, which was generated earliest. The
wave front is diffused out because of viscosity and heat conduction.
For a fixed value of f{%’ ) Zﬂ; dies out approximately like Z°
except near the wave front. Hence for large time and Aybaff’ .
S e .
Zi% is small compared to ZZ; , but it is the dominating disturbance
when there is no initial pressure differential.
1‘.‘ ‘w
The functions Z%Zz and Z%;T constitute a compression wave
traveling in one direction and an expansion wave traveling in the
other, the directions depending on the value of the parameters
SR
in (4.63). The combination ¥#2° éé%- is shown in Fig. 3. This

disturbance behaves as a pulse, centered at X=2  , and traveling

with the speed 5Z¢ . At the wave center, A=/7" , the magnitude
[/

of Z%;? dies out like X ; hence for large time and A§w¢f‘¢léﬁf

is small compared to Zé;f-and acts as a higher order contribution.

When there is no initial pressure differential, however, Zé%f

becomes significant when ji varies significantly from unity. When there is no

flame, and no initial pressure differential, the entire wave disturbance is

o ‘f‘ - -
associated with Eé%, and vanishes only when Jf;::'/ .

4,10 Pressure Field for Large Time.

The corresponding approximations for the pressure become

Cranfield Institute of Technolegy

Department of Aerodynamics
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The functions associated with the initial pressure differential,
- -
§ (7. ana §°Z7, , dominate the pressure distribution. The

-2

other contributions die out at least as fast as 2 . The
pressure wave generated by the flame is described by the functions
Jfgéw and J’zﬁ;” . When 4%jx¢?and there is no flame, the
residual pressure wave is described by the functions 3’2%;? and

¥ {4 , and this contribution vanishes when ,zi =/

4,11 Temperature Field for Large Time.

The inversions of the Laplace transforms for the temperature

yi@ldjfor large time,

R o 7 P Xl.:‘-:{r ) A 7

(4.71)
e o T
o) T (1) 8 L],
- - T 7
vz 2w AL RIS Selaki-LoN U VYN Y ) (4.72)
(x=2, = z% 7 A, J2f6£gftﬁ'j (. ) /-

@
) y r C X S ‘ ¢ 1
/ - O XA 4T 4 7 “e X/ HE
it { KT é:& ‘j - s — ! ( I ;ﬁ? Q:— (’«5‘ / . =
_/4l \ ’ Alrr }_ Vi “ W‘;‘i‘g* e &
z ,L)C
- e
;o7 ;7T T
A Z{; AXYLL T /o (4.68)

} y P - A’FX//%zV . _ X! e
,;g, {,{:i & Z”’;} = /g?(_, - “};L‘T' 2 [ L’Zf{”{) & W ;;’:_) Ay An € = AZ’
/ b Aprr L B Tz

‘ A
- — - (4.69)
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There are higher-order diffusion terms, akin to the first two

terms in (4.68) and the second two terms in (4.69), that have been
omitted in the temperature expressions. These terms arise out of
terms of d?(f} in (4.49) and (4.50). They vanish on the flame

and are small elsewhere, but they should be retained when 4§w;: <

and when there is no flame in order to be consistent with the

expressions for the pressure and velocity.
The effect on the temperature field of the flame is shown

oL ks
in Fig. 4. The effects of ?é, and ié& are small and die out

with time and hence were omitted in the calculations for Fig. L.

551

or this calculation the initial temperature jump is taken as zero,
A%ri; o . The temperature at X= ¢ 1is thus due entirely

to the flame. Por this case the heat of reaction was arbitrarily

3 7 - -~
AT 7o 4 & y-/
?/‘ s e, = i Aﬁ/
= e MU 5
for the purposes of illustration. The corresponding pas dynamic
cm with no flame, <§ﬁ:i &>, is shown in Fig. 5. s for the

classical shock-tube problem, the initial pressure difference
causes a compression wave to travel to the right and an expansion
jave to the left. Without a flame, the contact discontinuity
at A= ¢ is smoothed out because of thermal conduction. With

a flame, the temperature increases at X =0 because of combustion.

The flame is fed by diffusion of oxidant and fuel species, which
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tends to cause the temperature to increase with time. This process
is balanced off by thermal conduction of energy away from the flame.
The fluxes of fuel and oxidant into the flame and of energy away
from the flame all decrease with time. The flame temperature

k1

adjusts itself to a steady value such that the energy increase
because of the heat of reaction is just balanced by the energy
decrease caused by thermal conduction.

If there were no initial pressure difference, .ép =,
then the picture would differ significantly from Fig. 4. The

—y f

wave fronts would be described primarily by the functions éé; and
P g - . . ) " Lo, 4 ; B e
5{% , at least when /. %/ such that [/, and [{;r
are negligible. In this case the amplitudes of the wave fronts
die out with time, as indicated by Fig. 2. The temperature of
the flame, however, would reach a steady-state value as before.

The temperature distribution on either side of the flame would

be symmetric when xﬂ7~$=£? ) %%y‘:ﬁp and.iﬁz‘/.

4,12 Thickness of Pressure-Induced Wave Front.

+ P

In Figs. 1 to 5 the wave fronts appear to be steepening
as v . This occurs because the amplitude is plotted as
a function of %ﬁ%& and means that the width of the wave front
is becoming smaller compared to the extent of the disturbance,
that is, compared to 7. When the amplitude is plotted as a
function of X , the width of the wave front is found to increase
with 7 , that is, the wave front tends to flatten out. With
the use of sketch 3, we can evaluate the width of the wave front
analytically. The wave front assoclated with the initial pressure

¥ - 5 y » g N 5
differential , (7, , is shown in Sketcn 3 at a given instant.
s
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Sketch 3. Wave~Front Thickness.
We define the nondimensional thickness of the wave front as
Ap
- = Y Sy
(',/ — | L\
(,/ZT ) (4.74)
2
X Ix=Z
Making usge of formula {4.61)}we obtain, for large Z~ ,
S —— —
¢ = Jx;(wﬂd)f
1 = (4.75)

2

The thickness of the front increases like the square root of 2~
1t also depends on the ratio of specific heats, 5’ ., and the
reduced Prandtl number, JiL , of the ambient gas. The variation
of the wave-front thickness with Jﬁl is shown in Fig. 6. For
near unity and greater, the variation in S5 is

Ty e o R
values of 2

The dependance on Y 1s also weak.

The viscosity and heat conduction in the linearized problem

cause the wave {ront to spread. On the other hand, it is well

known that the nonlinearities in the problem cause compression

waves to steepen and expansion waves to flatten. The balance

between the steepening of the nonlinearities and the flattening

[
=

of the vigcosity leads to the formation of shock waves. It transpires

that the second-order theory, corresponding to the present linear
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theory, breaks down because of both nonlinear and dissipative
effacts, The breakdown appears in the form of secularities, and
the solution is not uniformly valid in the far field. A recent
analysis dealing with this behaviour is given by Halabisky and
Sirovich (1973).

We can deal with this nonuniform behaviour in this 1inear

analysis by interpreting the nondimensional time, 2~ , as a com-

bination of a Reynolds number, J@c?afaéfz , and a wave time, e Z',
| A

where £ 1s some characteristic length of interest. We then have

2
pe Ll Rhdot g ) (47
S AL 2z 7

The time ( 1is then large by virtue of the Reynolds number being
large. The far-field non-uniformities,on the other hand, are
associated with holding the Reynolds number fixed and letting the

wave time grow large.

4,13 Radiation in an Optically Thick Medium.

When the departure from radiation equilibrium is small,

a gas can be classified as optically thick (see Vincenti and Kruger

1865}, In this case the radiative heat flux can be expressed

by the Rsseland diffusion approximafion:

A - - f:g , ﬁ/m of 7 { /"ﬁ" gy )
where % _ A s
ﬁ@ .
mf.ﬁgy

and {J7 and “Q’ are the Stefan-Boltzmann constant and the Rosseland
mean absorption coefficient, Omitting contributions of diffusion,

we can write the total heat [lux vector as
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T 5 5 \ .
4 = — x‘“‘{ o oy //)/ /‘
i Fi. " P St -
ye (Ao P ) § (4.78)
where 4 1is the molecular conductivity and wﬁﬂ” the radiative
N

conductivity.
The effects c¢f radiation in an optically thick medium can
easily be incorporated into the present analysis. The reduced

Prandtl number can be rewritten as

o . /ii;z C/QJ o
Vg - e (4.79)

e * p
t, + A

w

L

The effect of optically thick radiation is thus to effectively

reduce the Prandtl number below its ordinary molecular value.

When ﬂ% = 7§a , the effective Prandtl number becomes small.
i

Aer

4 .14 Discontinuities Across the Flame Sheet

We have asserted that the velocity, pressure, density,
temperature and concentration are continuous across the flame
sheet, In addition, the velocity gradient is continuous across
the sheet, as established by (2.17). Further, we have established
that the concentration gradients and temperature gradients are
discontinuous across the flame sheet and computed the value of
the jumps. The density gradient, pressure gradient, and second

derivative of the velocity are also discontinuous across the flame
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neet, and we now wish to evaluate the jumps in these quantities

for the one-dimensional shock~tube problem.

The jump in the Laplace transform of the density gradient

across the flame sheet can be determined from (4.12). We obtain

*_,
Faad —F R K} P
§ f‘;{j ‘ . e ey
A - o / ) (4.80)
LoeX JJ' SIS

where /£ 1is given by (4.29). By means of the convolution theorem,

the inversion of (4.88) can be written

- - — 2 7

o A A

| _;; | = mz/ /»:_ / _ J;{éﬁx,, AL (4.81)
{ & - X Vi &

I A, A

For large time the asymptotic expansion of (4.81) is

o~
o J—
el ] A X |
{ A s .- < R 4 T A (4.82)
o | o T i
Lo X . 7 3 . o & B

Thus the discontinuity in the density gradient dies out as onc over the

sguare root of time.
The Laplace transform of the pressure gradient can be determined

.22) or from (3.16) since the density, temperature,and

A

vom {4

iy

concentration gradients are known. We obtain

#
- o
» _ N
) ¥s A ~
. A (4.83)

[N

{

s

i
=



we ran dedyes that
“ P 7 - e
i P
| = 790 (4.84)
| dX - Py
0
which could have beed deduced directly from (3.20) and (3.21}.
Inversion of (4.83) yields
u«:’r
}? ifji - {“/‘c« A _/ (4.85)
> W X =
L & K - o !//;; > Z/Z:v -
The asymptotic expansion for large times is
~
o gD - . e
i Ay, i ﬁf:‘ v//‘*Cl, X . g ./4/” “75»
:l e / o - p ;;/‘ 0( & (4.86}
.’;)}(’ 7 7 Vi /‘/72
i 2 X }ﬁ' 4 L 2

Thus the discontinuity in the pressure gradient dies out faster

than the discontinuities in the other gradients.

The discontinuity in the second derivative of the velocity

obtained from either of equations (3.20) or (3.21).

e get
-
# ~
[y - 4 s "
| ;2]
/ L A
5 = — 1 |
] . o .
| ¥ X t - (4.87)
4 - - e
o

Thus the Jump in the second derivative of the velocity dies out

s

like ¥ for large time, just as for the pressure gradient.

The weaker discontinuities in the velocity and pressure for this
problem are akin to the velocity and pressure being continuous across the

contacl — surface discontinuity in the classical inviscid shock-

tube problem whereas the other variables are all discontinuous.
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That the density gradient is discontinuous across

+he flame sheet derives from the fact that the linearized equatiohs
were used in the analysis. If the nonlinear equations were
utilized, the density gradient would Le continuous. This can

be seen from the continuity equation, which, when the non-linear

terms are written on the right-hand side, appears as

S’ 7 7 cgp’
s L pys | ) Y
A A R A
o 4 \ - A ; ,
ot 2X X 2 X

Since jﬁf and i;€%;< are continuous, it follows that Aaiééx
is continuous. If the linearized equations are used also in
the analysis of the structure of the flame, that is, in the
"inner'! problem (see section &), the discontinuities are
smoothed out by virtue of the matching conditions. This, of
course, would also be true for the nonlinear problem, but the

nonlinear analysis would be a far more difficult proposition.

g WEAK SPHERICAL EXPLOSION

5.1 Description and Initial Conditions

Consider a spherical diaphram at r=r. Outside this

sphere, [ >/, , let there be a mixture of product gas and a

small amount of fuel gas. Inside the sphere, < f; , let there

s mixture of product gas and a small amount of oxidant gas.

he &
Let the temperature and pressure inside the sphere differ by small
amounts from the prevailing ambient conditions outside the sphere.

At the instant 2 =&, the diaphram instantly disappears, and we

h to determine the subsequent development of the flow field.
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that the ambient temperature and density, /. andt/a )
ciently high that combustion is immediately initiafed.

s

o~
o

)
id

conditions are depicted in Sketch 4.
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Initial Conditions and Configuration for the Sphere.

Again we

introduce nondimensional variables as described in Section

3. The {lame is at the position P {ff’ D y where Iyl ) T A,
5.2 The Problem for the Concentrations and Flame Position
The diffusion equations in spherical coordinates are
o .t 7
& P "K PR 2
)] - . o~ —~
S, 2 = TE L, £ Iy (5.1)
Py S s 1
/ ! A z ¢ / PR 4 ( 5 2 )
o 4 5 3t - ~ 5
g = L < cF ; T
st rooar
The initial conditions are
i A r g
{- . ¢ { o Y o
. LA, ) X K @ ( 5.3 )
s
S ey = . ~ ~
Cz (7, ) AL ) oo
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The boundary conditions at the origin and infinity are

= P

(5.4)
a(“i
R .
—= (e, j‘) =
27
The boundary conditions at the flame are
Ce (107), &) = o
57 L P - (5.5
Ce (508), ) =92
'
ﬁ{jm - . P -
ol w( / — — ;3
—= s 5#} G 2 (5.6)
s py / j
F
where
) B 4 3.{
& = x 7 . (5.7)
B X I%g

5.3 Approximation for Large Reynolds Numbers and Corresponding

Small Time

For suitably short times the flame will not travel far from its

- 3

original position at the diaphram /=4 . When /., is appropriately
large, the flow will appear to be one dimensional. The pertinent

= indl]

nendimensional variables (unbarred space variables) are defined by

{3.3). He now wish to establish an approximation that is valid when
the time # is fixed and the Reynolds number /o is suitably
large, or when 7 is fixed and Z¥ is suitably small. We begin

by trancferring the origin to the position of the diaphiram by means

of the transformation
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We alsc treat the Reynnlds number /[ as large and introduce a
small parameter & defined as
- / ,
£ = - e (5.9)
o
In terms of the new variables the diffusion equations become
- Sl S2 7 ,_ -
S X & C of & ' Cy
=T 7+ — —
S 5 z . - .
& 2 S E o 2
(5.10)
/ "C’ ;Z/a’, ,1? 5 7
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The initial and boundary conditions become
7 “
Lj..tf." {g.i 'f,'?} = AI 3 = <
Co(2,0) = Az 2 >0 (5.11)
)
¢
& Lo
R ! / - —
—= (- zf’) = O
& i
: (5.12)
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We develop an asymptotic approximation for small & by means

of the following expansions:

7
Z
T z, T vty P& by 7t (5.15)
G A . /C,;‘ A t:f/f’, S Lj/ -y e e et
(5.16)
e P - ) TS z s
2.() = AAF) + €L(F) 4 € FAUE) o
‘ (5.17)

These expansions are to be substituted into the diffusion equations,

initial and boundary conditions, and terms of corresponding powers

-
A i

of & collected, Since ¢ is small but arbitrary, the collected
coefficients of each powers of & must vanish. In this way a

hierarchy of equation& and auxillary conditions for each order of
approximation is established.  We should note that the boundary
conditions (5.13) and (5.14) involve a transfer of the flame conditions
evoth-order position of the flame.  This is done by

to the unknown ze

means of a Taylor expansion of the form
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o/ 2N s N P o
Flz.,0)= d(L, ) + €4 "‘“?fffg.f‘ ~ OE®) (5.18)

The equations for the zeroth-order problem are exactly the same
as for the one-dimensional shock-tube problem which was solved in
Section 4.1. The solutions for (' and (¢, are given by (4.8)

X o V.
and é;{?) is given by (4.7) and (4.9). The equations and auxillary

conditions for the first-order problem are

IR s - y ot
“““)C :i-——;i— - :___f_,‘f‘__f w r)(i e o o= &L A&
— el z 5
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Py S .
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52 ’ . (5.21)
fi%fﬁf / co, 54:> = O S
oz
= ! ara c/(: - L
Col( o F) » AlE) ZSe (g F) = o
)z
) F (5.22a)
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We note from the zeroth-order solution (4.8) that

zZ 2z -
5 - AZ2/LT
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Wy -z R
k= £ Ee
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With these results, (5.22) and (5.23) become
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By Laplace transforms or other means, one may establish that the

solution to this problem is

,/’m ’Mz Ve )
Ly (‘“zzt
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. f‘
.

S
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where, from (4.7),
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is given by
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(5.24)

(5.25)

(5.26)

(5.27)



and 4 is determined in terms of ¢ by (4.9).
If the fleme is to remain close to its origin, and if the
first order correction is to be small, then A4 and 7 must be

restricted by

€/t rct/) << | . (5.28)

3

o
If A and 45; are of order unity, then we can express the

limitation as

.
E <<
e o / il
o0 Zv < < ‘,,.'f‘,.: (5./9)
Writing /" in terms of the wave time, ZL,i? 4%‘%kfﬁ; , such that
R A A
z ;e ) (5.30)
-/
and recalling that & £ /] s We can recast the restriction (5.29)
in terms of the wave time as
AR o, RS
fw << (5.31)

Thus for wave times of order unity and large Reynolds numbers, [,
the above perturbation solution will be valid, and the wave processes
will transpire before the flame moves significantly from its original

position.
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5.4 Position of the Spherical Flame

The {lame position, subject to (5.29), can be written as

s/ ) o
Bl 44 VLl
7, Voo r®

gwfé . O / z’ ) (5.32)
Se L F Vol

The third term on the right-hand side, which arises from the

spherical geometry, always causes the flame to travel towards the

center of the sphere. The second term may be either positive or

negative, depending on the value of ,4 .

that is, when g/ is greater than unity

conditions being oxidant rich, the

When /9 is positive,
corresponding to the initial

flame travels outward initially

and then travels inward. This is shown in Sketch 5a.
;;v
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When stoichiometric initial conditions prevail { ¥= §,4::56,

the flame travels inwardly linearly with time, as shown in Sketch
5b. When the initial conditions are fuel rich, ¥/ < | , the flame
travels inward very rapidly at the beginning and then approaches

the linear behaviour with time, as shown in Sketch 5c. Because

the species outside the sphere is of infinite extent and the species
inside the sphere is of finite extent, the species inside the sphere
tends to be used up. Consequently, the flame will ulitimately
travel inward in order to add a relativa diffusion rate of the
vanishing inside species and thus maintain stoichiometric combustion
relative to the flame. When the flame reaches the origin one
species has been completely consumed and the flame becomes extinguished.
The approximations derived here are not valid near this limit, of

course.

5.5 Flame Strength and Temperature-Gradient Jump

With the concentration fields now determined the flame strength,
A
S , and temperature-gradient jump can be determined from

equations (3.28) and (3.30). For the flame strength, the terms of

order £ cancel out, and we obtain

w
s

~A ] .
) A e j / 5:/(6:2)/ (5.33)

KWL s v sfe(-A)

“Z
Thus, with terms of order & omitted, the flame strength 1s the

same as for the one-dimensional problem.
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With the flame strength thus determined, the temperature-gradient

FA i{t\ a7
<d

A { Fx ey g
§ 4 i} = - L GO (Z)

5.6 Further Comments

The work on spherical flames presented in section 5 was done
in collaboration with Ms. Karen Frair, a Ph.D. candidate at
the University of Oklahoma. The continuation of the spherical
explosion problem, something akin to the one-dimensional shock-tube’

problem investigated herein, is part of her doctoral dissertation

which will be completed in September 197h.
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6. STRUCTURE OF THE DIFFUSION FLAME

6.1 Preliminary Remarks

The preceeding analysis that treats the flame as a discontinuity
surface imbedded in the flow field is the outer expansion in
a scheme of matched asymptotic expansions. The complementary
inner expansion of this scheme deals with the structure of the
flame itself. Treatment of steady flows with flames by means
of inner and outer expanéions has been developed previously.
Here we make use of the analysis of Clarke (1967b) whose
mathematical problem, although one of steady flow, is very
similar in nature to ours. References to previous work are
given in Clarke's paper. Here we consider only ''reaction-broadened"
flames for which the reverse reaction time is so long that it
can be set equal to infinity and only fast forward reactions
considered in the combustion process. Thus we consider reaction
described by (2.25) with é?n%’and é} considered as very small.
We restrict ourselves to the one-dimensional shock-tube problem

i
for ¥ =1,

5.2 The Problem for the Species Concentrations

The flame is not actually a discontinuity surface but a
region over a small width of the field where the reaction rate
is very large by virtue of %; going to zero. We therefore

introduce a stretched coordinate by

>/’ - ‘jéz ) oo (6.1)
&
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where £ = ¢ and X
L *

£

parameters as given by (3.3). The exponent /7 1is to be

f‘i and éf are normalized by the viscous
determined so that the inner solution can be matched with
the outer. The species conservation equations (2.2) can be

now written

N . 2. / g - 3
LI . S o ol am=/ A
€ O 2 TIE - e auls, Cp O
oz oy *
4 2z < i
LA o« D 6) ‘. AR =7 o A )J,f’f
e’ s 2 - 2 e L . s 6Tl
3 A ~ z e [ X
i 2 )”

We now seek an inner expansion of the form

; /)
4 7 - y
7 P - e fi § e < 4
e = € G *+ & Cra
7 ] ) . e
= - . #* - > ey
Lf: & C;? & 5}¢

where again /7 must be determined so that matching is possible.
The diffusion terms will now balance the forward reaction terms

if
am + (-1 +X FF)7 —/ =0 ,

and to lowest order we have

(6.4)

(6.5
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A first integration yields
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where 4, (7 )is a function of integration that depends on time.

At this

stage we can evaluate /7 and /7 so that the outer limit

of the inner solution matches the inner limit of the outer

sclution, that is,
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ions (6.8) can be written independent of & only since

¢, (%) is independent of & , from which it was deduced that

w1 o= A7
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, and hence from (6.4) that
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We further deduce that

AC - >
G, (F) = _":’ £ (o Z)

X !
_ Ag ) S y (6.10)
7z

This is in accord with (3.29) for #'=/ . A further integration
of (8.7) yields

2 - 4 - _ y .

¥ =L Ey F 2 (6.11)

Ay 7

where the new function of integration is found to vanish as a
consequence of matching. The inner solutions for the concentrations

-

are depicted in Sketch 6. C;:

¢ CK

// - . .
ranec fimg 7

=
‘ T S of outes s ol tie
> X

Sketch 6. Inner Solution for the Concentrations

g

A single equation for the concentration &, can be

obtained by substituting (6.11) into (6.5):

o, 7 .2 P PR s e Y
- x (e raY) e




The boundary conditions are

éﬁ;?/ -7 ) ro= e
(6.13)
o " ; Ly - [
oy £, TE e ==
Y y
The governing equation (6.12) and boundary conditions (6.13)
can be put in a simpler, symmetric form by means of the
transformation
. N Dal2) By
&r, = o S(2) - 22 2z
2. Ly
(6.14)
Y= A Z
where . - ani®) A 2. £ j 7
A(e) = [ (B Ls ey L]
oL Az Ay .zfpggéii“
, _ A A - .
p(F) = L5 S(7)
We then have
z e £
~
A L (a-z) (A+2)
o 2"
A~ F 2 o (6.15)
) .

This is the same mathematical problem as obtained by Clarke (1967b)
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and his predecessors. There appears to be no solution to this
problem in terms of tabulated functions, and hence approximate

or numerical solutions must be obtained.

6.3 Rayleigh-Ritz Approximation

Consider a variational method referred to as the Rayleigh-
Ritz approximation. This means of approximation is discussed
by Hgldebrand (/9¢5) for instance. Let 5.4 be the variation
in the function A . We now multiply the equation (6.15) by

S A 2 , integrate over the whole range of Z , and obtain

[ oY , X, £
[ 2 N — . . ) ’
/ Z = - (A-2) (Ar2) /Ji/l;ﬁ”z? = & (6.18)
y P ]
g
The first term may be integrated by parts. The integrated part

vanishes when $.4 vanishes at the end points, that is, when A

is fized at the end points. We then get
Fov sty
/ r z
- i i / 'o:}../i._ e "
/ — [ === 7 <L 2 z = 5.17
5/ [ {2 & (A, )“/9/«’5 = (6.17)
—c
where

A
o _ | X f
{Ej'{”fL)‘ZE?') - ,‘ (/‘\ ” 2.’(> (/\f”a:'") o A .
<

The function -4 (2) is such that the integral in (6.17) is an
extremun.

In the Rayleigh-Ritz approximation, we choose a function
that satisfies the boundary conditions on -/l and that has several

free parameters that are to be determined such that (6.18) or
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(6.17) is satisfied for the function chosen. Here we choose
a plecewise continuous function as follows:
-/ ‘51 = 2 <
»__/’Z_ ey 2 7L 62/ 6: j
- 6.18

, - bz - ( ‘
o= A, = Z2 +fa e , 2 Ze
This satisfies the boundary conditions in (6.15) and is continuous

- - . . . . oA . . :
at =Z2=¢ ., We further require that the derivative 5> 1s continuous

&

at A=or, This leads to

@ = ,:ii (4, » 4)

(6.19)
There are thus two constants to be determined, é and 4% . When
X and F are unequal, then 4, and 4, will be unequal, which
reflects the asymmetry in .4 for positive and negative 2 .
When X and /? are equal, it should transpire from the analysis
that 5, and %z are equal.
The variation of A is
. 4, &
<4 =5, = - L (1-2a2)34 + 54 ]e‘,’ 2< 0
S =S, = o |(m2az)Sh S, , 22
(6.20)

/0 | 2y o) ]
SA = SA, =- / shor (r2ez)sh e 220

a7
We now substitute (6.18) and (6.20) into (6.16), collect coefficients
of 34, and .$£L , and set the collected coefficients equal to
zerc separately since 34, and ’541 are arbitrary. This gives

two equations for é, and 41 , which we can arrange to read



; L
) ; VZ .}L. /:’ i ) Ve P Py, 1,.’1, - (/f'f) L
2, L e [ (e ) e Y

"f" 5/‘3 = ‘{{)’ .j /;/ {
CJ
, , A N
cr P -4 w(/ﬁl)y
— T 5
7& LJW < *6”.1_ g 7‘ ) é)" “ !{jr

(6.21)

== - X_ f' rae o " W,
(f’i/ J ﬁ( ba ) {g (6.22)

é;ince

o

w@; = o— /A’, e )

£y A ;0 (6.23)
'é/

. R . . & 2
equation (6.22) amounts to a single equation for 2—- or Z .
y L

After it has been solved, the right-hand side of (6.21) can be

evaluated and .« determined, and hence 4, and 41Acan be

determined.

When \KJ:ff;?/7 , equation (6.22) yields that «¢Z -~ é:w(é; s

and equation (6.21) becomes

o
JAL ST ) NPV /}j I
Y - "'# / , PR D/ s (/ 4 7 s
{:*{f’ - ‘;;‘ u/ { /7‘ (76//\ ( 2{7 7y € ) éz (;.yg/ (& ou )
[¥]

The solution (6.18) can be written

iy — L ]

1 /=/ 7 2 e (6.25)
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When #=/ and Z , we obtain

77 : V2 2 = ALATS
e pLs
n . . & 52 7 . .
/) = 7. ! yos ps ( ‘.f.-w.,....._.,_/ L PAVIAN
F SO

The minimum value of L occurs when = =¢ for the symmetric case,

¥ =F=# ., The minimum value of —£ , which according to (6.25)

is Cfﬂ-, increases as the order of the reaction, /7 , increases.

The exponential term, exp(; d/£/> , governs the width of the

flame. We see that the width of the flame increases as /7 increases.

These features are depicted in Sketch 7.

A 4

n=2 n=i
\\§\\\“32N 7
\\\\\ — 65/nvf¢w*ﬁ5'

N 7
~ /4”’)

~
b =
Sketch 7. Dependence of A on /7, for X=F=/7.
Consider now the asymmetric problem when XL &/ . We

choose K=/ and F =4 , and (6.22) becomes
Y z * - » - e
3 /‘”” 2oy 2 2] (fé) i Loy 2 32
Vé S L e 27 4 by ) LW 27 4, a (41) | (6.26)

With relation (6.23) equation (6.26) is a higher-order polynomial

[«
for ;“ . It can be solved graphically or by other numerical
2§

mneans. We determine that
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I - g N
ol /: Rl ,wé,&.._ = O SO
4 / 4

e Da

The value of a may now be determined from (6.21). We obtain
&= / /& . It thus follows that

X=/ F=2 = w=/l/8 =78, 4, TLSE

J 7 / s

Further we may deduce that, if the values of X and £ are
interchanged,
" . — a /“/ - ,'J?‘

X =232 £t=7 =z @ = 4L/5 J =458 , é;v & 7
El

From the above Rayleigh-Ritz approximation we can now determine
for X=/ , £=/2 , that the minimum of /4 is 0.818 and it is
shifted to the point 2 =& A4&. When X =2 and /£ =/ , the
minimum is the same, but shifted to Z2=—/,/4& . The curve
approaches its asymptote rapidly on the side of the minimum,
but more slowly on the opposite side. The curve 1is illustrated

in Sketch 8. Aoa

§
a
a

=z

A 4
H .

r.

e

Sketch 8.  Asymmetry of 4 for X =/ , f=72
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It may be possible to obtain better Rayleigh-Ritz approximations
by a more judicious selection of a trial function than (6.18)..
Nevertheless, the present approximation allows trends to be
established for the different values of X and f7 . Further

work along these lines may be worthwhile.

&.4 The Remaining Problem for the Flame Structure

The problem for the remaining variables can be investigated
by first writing the continuity, momentum, and energy equations
in terms of the inner cocrdinate ) . With the functions in

ré , s a R
terms of the inner coordinate written as f>3w€(ﬁ'f9, fy‘xl?(fff) R

7

T=E(y#) s ¢ =C(vE), and iy = (5 7) , we have

(f: 7 ‘ c:/ ’ yd 7‘; E,.}_é:f e
SF 2y (6.27)
o e - »7 5 A .}ZZ,/'
o 7t ( 5’{' e — é’. ’d‘:‘)}..&- # ﬁ'm"Z
- o x oY 22 (6.28)
- e g ‘. L A=/ X F
S g 2PN L T N e
DAV It S e L2OQEC. (6.29)
Yol y or 59?/" X

The linearized equation of state appears the same as before:

s w

s

We now assume expansions of the form

Y R A R AV R
Y U A SV S T
ORI E. o » €7 B o+ e Ey p
27 T S S AT (6.31)
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The expansion for the concentrations are given by (6.3).

Substituting these expansions into the governing equations,

collecting like powers of 65#7, and requiring that these

collected coefficients vanish lead to

£ dlle o
av
RV
0D
o7 *
2
iwg.:? = >
o7 %
e > e
,xfi = Ao O
f;}? i -, e
a‘) %AC 7 (" Lj; (f:)
Y 27
. A
/ G\Zi o’ (/] _
y or oy *
e A /,‘
‘> é":/ b o~ 2 ]
2 2 4
=L L &0 Eyy Lo
>y
A A G A e “fy Cy,

7 qﬁf (/ /

-~

(6.32)

(6.33)

Lquations (6.32) plus the first two equations of (6.33) together

with the matching conditions yield that the zeroth-order inner

functions are simply the outer functions evaluated on the flame

sheet. (See section 4.7).

Hence we have

o = ' (o)

0
3 St
I
N
3

\WWMMNMM%\

(6.34)
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Here we should realize that the outer solution, analyzed previously}
is actually the linearized zeroth-order approximation for the
ocuter expansion. At this stage we further deduce that the first-

order velocity is given by

-y SR VRN Py ‘ \ ] i
1, ( A ) = - »f [ ) }/ . (6.35)

It may be verified that this matches with the outer zeroth-order
solution.

The functions égf/ and 527 can be regarded as known.
Hence the first-order inner temperature is determined by the
third equation in (6.33). To obtain a closed system of equations
for the first-order problem, we need the first two equations for

27 . .
the expansion corresponding to €. , which are obtained from

the continuity and momentum equations:

QA DLl

-

5’; Z/ 7 ;7/

(6.36)
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The last twn equations of (6.34) together with (6.36) provide

four equations for !f VN C':; , and [,'/1r .

6.5 The Temperature in the Flame

x o F )
When the factor 525 &zﬁ is eliminated between equation

(6.5) and the third of equations(6.33) we obtain

N =
e /’, (—*; D6
T, SR ! (6.37)
o AT A vt
A& first integration gives
fgcgg o - ~in & ;)5ir1 e
N - " — 4y (L) (6.38)
a7 Sp UL DY

P . . v . B .
where 4;55,? is a function of integration. Matching with the

cuter solution yields that

o ‘
[y = £L (oh )
(6.39)

ey Z A ]
/A A -2 ) P o
y - }m AAAAAAAAA o £ T LD
") Y ) 7& / . 5(: Ly /

A second integration gives

(6.40)

< = = £ & & L UF) Y
— L ¢ )
W Ko
where the second function of integration is found to vanish by

virtue of matching. Thus the temperature function 6;fi8 determined

in terms of the concentration function, iiév )which has already

I

been snalyzed.



-T -

In terms of the function /L and the coordinate # s, defined

by (6.1%), the tenmperature GQ s Can be expressed as

S X W ~ , ,
R e RGO
£ A ’
where q / B o
Ay = 2 s Be X Mg
“o Ax 2@

L 4
Since for large time 47 does not depend on 7 , CE; can be

plotted as a function of only »* for large time. The shape of
the curve will depend on the values of the initial conditions

which determine the value of A7 . The three possible conditions

are shown in Sketch 9. The condition shown ~
~ v -
. & ) » &

/whynwfw¥as

\\ - 2 - }.\ > = ;",’/ > 2
/ T~ ~. /
B
- /
Ve
sl (-2 — 2 AT O O < A7

Sketch 9.  Temperature Profiles in the Flame.

by Sketch 9b corresponds to an outer temperature distribution

as illustrated by Fig. 4.



6.6 P“ressure, Density_and Velocity in the Flame

The second of equations (6.36, can be integrated once to

e
e
<
)
o+
oy

he pressure function as

2 - NP 3077
L=y f A EN S T G s
y i Yl oy | (6.42)

The function of integration was found to vanish because of matching.
Elimination of the velocity derivative by means of the first of

equations (6.36) yields

no ot e
5 — B 4 [ Ve N ’ ot A
L =y L (2 Y J B A ’
s 270 - (6.43)

Substitution of this expression into the last of equations (6.33)
yields a first-order differential equation for A2 since the

temperature and concentrations can be regarded as known. Integration

then gives P
— /’ Z—’ }P . fi -1
- & I~ AT / S
I z i’i}/ 57 (52) + &+ Cg, * 7 Cpy ”ji )
S ' - ST
&

Ixamination of the functions involved in the above expressions
shows that the pressure dies out faster with time than the density,
temperature or concentration. Hence for large time the density

is given approximately by

r >
G — oy Lo = o - s el
A 5 =2, T Ay by T s 5'}&“/ ]l ) ¢ (6.u45)

Accordingly the pressure is determined by (6.u43).



The velocity is obtained by integrating the first of equations

/A (6.16)
The function of integration vanishes because of wmatching.

6.7 Ccomposite Expansionys

It is useful to represent the entire flow field by a uniformly

valid approximation called a composite expansion. Let ‘QP represent
] /L)
function and QG and @5 its outer and inner expansiond.

e 7) . :
et ¢ frepresent the common part of the inner and outer expansion,

3

bt

that is, the parts that match. The additive method of forming
a composite solution is (see Van Dyke 1964)
e (U _ el ) o)
AF : T (G
e‘:é'f:’ ey g) Fal g) — 125
For the temperature perturbation, we have to the order of our

present analysis

7O = Te) s @ r €7 ]

S ol CP)
‘-‘ [ e 7 /fx X ]

s (6.47)
e 4 Py 7 " . — LEp
= k) o €7000E) T T X
where
e p >/ ’ "

lerd _f,f_/;- (o’ #) X

x o K ’ ’
] ST P 6. 48
- o7 (o z@} ), X <O ( )
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The composite solution is continuous in the first derivative.

Similar results can be written for the other variables.

6.8 Thickness of the Flame

The zone of significant reactions ceases when the inner solution
merges with the outer. The function that governs the inner region,
the flame, is A The width of the flame can be specified by
selecting some arbitrary value of Z , say 23; , which indicates
where _A mergés with 2 , the asymptotic value. The physical
thickness of the flame, Ziif, is related to A.ZF by means of (6.1u).

We thus have

. N Y . R
ar, = p A%
A/

_ S @) Ag ) S by g 4z
2 A e f b AW,

A

g7

s

As shown by (6.10), (&, varies like Z° , and hence A?; varies like
}jéwﬂ’}

ZL . Since #¥} is always less than or equal to 1/3, the flame

thickness is thus seen to increase with time. Correspondingly, however,

. . . . . ~
the intensity of the flame, associated with the amplitude of ey, at
Z =0, decreases with time, as might be expected since the flame

"
strength, S , decreases with time.

It is interesting to compare the present unsteady case with the
somewhat analogous two dimensional steady flame studied by Clarke (1967b).
In terms of the parabolic coordinate measured normal to the flame, 72/ ,
the width of the flame in Clarke's problem was found to decrease in
the downstream direction. The physical distance measured normal to the
flame, however, is determined by cﬁhv zfﬁ%;ﬁﬁﬂ where /ZV is the
appropriate scale factor. When this is taken into account, it is found
that the width of the flame in Clarke's problem also increases downstream,

and in a fashion directly analogous to the unsteady problem considered

here.



7. CONCLUDING REMARKS

An analysis for a diffusion flame associated with a weak
explosion, the one-dimensional shock-tube problem, has been treated
in gome detail. Further work along these lines would be valuable.
With continued use of the linearized theory, the results for non-
stoichiometric initial conditions shéuld be carried out. This
would provide a flow field associated with a moving flame.

It would also be very informative to deal with this problem
on a nonlinear basis, at least for slightly stronger explosions
if not for intense explosions. Hopefully the results of the linear
analysis can shed light on how to approach the more complicated
nénlinear problem. It may be worthwhile to consider Lagrangian

coordinates as an alternative to the Eulerian coordinates.
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APPENDIX A

CONSTITUTIVE RELATIONS FOR THE DIFFUSION-FLUX

AND HEAT-FLUX VECTORS

We consider a reacting mixture of /7 species of gases.
We assume small departures from equilibrium so that the change
of entropy of a fluid particle is described by the thermo-

dynamical relation

77
. ”)"5 o /; / :} - - 4 ?
7 L5 {l_, AT NS ¢, | s
L F 20 pr of 21 or 7 '

wher //g/ is the chemical potential of species ¢ and &
oA

is the mass fraction of species <4 . The mass fractions

are not all independent since they must satisfy the relation

/7

> e =/ | (A.2)

of =/

We thus arbitrarily select the first ,y-, mass fractions

as independent and determine 6;7 from (A.2). Thus equation

{A.1) may be rewritten as

o DS 1:’/1 2yy ' 2 C,
T R~ S E (A.2)

A, = ALy - A,



The energy equation can be written

04

2

i

Z

- .

|
R
\i\

7

Tl P
where /°  is the viscous stress tensor, ¢ the rate of

strain tensor, and Zﬁ the heat-flux vector. The equations

of change for the mass fractions (', are

N R - oz
. S ciis“j/ A f) A
fv / 4 o
D7
Here f#‘ is the diffusion-flux vector for species » and
~ 1is
X,

. 74
mass. The production rates,,xﬁx) and the vectors, 5ﬁ¥ s

the mass rate of production of species «f per unit

R,

are not all independent for they must satisfy the relatioms

/1 77
s e - - Vi - 7.7 = ’
P ?CXI Ly c’:}V‘»C’/ 2_“ -]&l“)ft K L4 (A.é)
o ,5; = l’ Uf =/

Je can regard the first -/ components as independent.
If we now eliminate 34/4§f and £C, /D7 in eq. (A.2) by
means of (A.4) and (A.5) we obtain for the rate of change

of entropy of a fluid particle

i e - A= ~ _
05 - FiE L p T a0 G s L diF
Fo = T =2 A T 2 A T I AW D
& 7 Fay =

The fluxes of entropy to the fluid particle are more clearly



trayed

A

if we rewrite Lq (A.7) as

*;i} -~
s &

- } /f f& - - . i 717
7 / A= o= JG‘ -
n-i 7! {/
;;-J/ /o‘) P =iz /@ ;;’- » /d (A.8)
oA =] - e

The divergence term on the right-hand side of (A.8) is

a flux term, and the remaining terms on the right-hand side

are source terms, or production terms. In accordance with

the principles underlying the second law of Thermodynamics,

we require that source terms be positive for all variations

of the independent wvariables involved. This sort of principle

underiies the Clausius-Duhem inequality in continuum mechanics

(see Eringen (1967), for instance.) Green and Laws (1971)

utilize such a principle in dealing with global properties

of mixtures, Here our approach is akin to that for binary

mixtures discussed by Landau and Lifshitz (1959). The

constitutive relations must be devised such that entropy

production is positive. For the Navier-Stokes stress relation

L

A1 E AN V) L

— - e T
4}3 7 e (PF) ]

(4.9)

P
theviscous dissipation term 72 J & is found to be positive

definite provided that ¢/ 1is positive and [:A 7 ?,{/) is



pogitive. Likewise, the species mass production rates per

upit mass, jﬁj » must satisfy the inequality

/7=
- > iy kK, > O ) (4.10)
of =/

The remaining source terms on the right-hand side of (A.8)

can be used to establish conditions on the diffusion~flux

e o
vectors, 5i% » and the heat-flux vector, ja .

&

The third and fourth terms on the right side of (A.8)

describe entropy production due to mass and heat diffusion.

S o e
They involve i%d . jZ » 44, + and 7. 1t is
reasonable to assume that ;z‘ and ;g?‘ depend on gradients

e
of/g& and 7 , at least for first order. Hence we assume

the following forms:

7=/

= b _— —_—— N

o= =2 Awffﬁ VA, - by V7 y A= AR
7 -y Fal

o (A.11)
!‘7"‘*’ /)"/

Y < . 7 < . 7 Y ~
) 2 2 A f,;{ = T 2 &y &’I{ VS
' A= ey (A.12)

We now must establish conditions on the parameters /7
qyg ’

35; » é?%, s and 4 such that the entropy production

is positive definite. Out of the vectors, /ﬁ s j& s gyﬁ .

and V7 , we choose j; and [~ 7 to be independent since



when

heat

there is no diffusion only |7/ should influence the

%4 £l
flux and not EQZ; . Hence we solve for glé in

terms of ?ﬂ{ and /7 in (A.11). We obtain

/M 5
> 7 7 o

E'fj«ﬁf; - 4;’”.“ c;{ ( (% s 5 = [ Nt 5 (8.13)
> e /5 |

-
where /{{ﬂ is the element of the inverse of the matrix

{’\.l’
sS4, 7 * (A, ,
7 »‘7“{?) Eq. (A.12) now becomes

A/ ) /"*{' . 77/

7
HhEreE
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/ . A

/

) ,
= 5 £y Ag - (4.15)
of =/

When (A.13) and (A.14) are substituted into the third

and fourth entropy production terms in (A.8), we obtain

, .y / /.7}{ v-;‘ /q.m/
& e - s 7 e ] — i
- L C i, - = (¢ ;,e:f“/ N ) e g
. (A. 16)
A=t , 7 fjmi P " \
LS ST Aap A “n o I C
T (2 5l = o Jf r7 4 (F /}l /U 'D /VT)
of Z ‘g.;é":" T f

In crder for (A.16) to be positive definite for independent

i
variations of 57(4 and V7 , we must have

of of (A.17)
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Ave = - {{M ,  SEA (4.18)
7t )
Loy = 7 "! ;_E_/_ /4,;;/;3/ fj; | (A.19)
s
v (A.20)

Expressions (A.17) and (A.18) require that the diagonal elements
of the array 25445§ are positive but out of ﬂ0~/)2’ elements
only /7{n-1)/2 ;re independent, and the off diagonal elements
are anti-symmetric. The thermal ccnductivity,ﬁé‘ , can be

identified as the positive quantity

s v
//é = -2 u by (a.21)
g T

woo—tte
and we can now write the expressions for y; and )Z as

A=t
5; = - 2 /49(;5 V/:% - &L, 77 (4.22)
fg.:j K N
pird
;o= dir 2B (75 8)T o
jz 4 “7"5 A I&g e I

7

The diffusion vectors can be written in terms of gradients

of %; s 7ar , and /7 if the functional relation (A.3) is

recalled. We then have

F/ZAdd " N s
v Sy b, )
vl = S5 Z% pe » T pp 2 opr @
Copm ooy S op ¥ ‘



Equation (A.22) can now be written as

Yrevyd
o S () (7)
4 = =S D,V =D ke - 2 s~
74 2 Cp Vo o £l AT wa
A=l
of = ,//{/' ol JIf
where
s ! 3/
p) = 3/ A? A
e o) T
/ pony >C (A.26)
2l = com Y 7
ar%ﬁdiffusion coefficients and
/7)
L. = 7 8y %2_ Aus ©
=1 J e)f
(A.27)

{jﬂ‘) 7= . i
2P = o 5 Ay 2%
£t &)/ﬂ/

are the thermal-diffusion and pressure-diffusion coefficients.
By simple matrix methods it is not difficult to show from

{A.27) that

5t / A~
-l A - 7)
— ; — <278
72 Ay By 7L - 3 A/M 2 (A.28)
of=f 7 o/ o =/

Hence the heat—flux vector, (A.23), can be written

VTR B

/{?Z =4 7T ,;:Z (z/ & (3})/4 /"ZZ r?’z ﬁ/f;/_; 2o

of =/ of = .5 44

which is a form involving the thermal diffusion coefficients



and similar to a form found in kinetic theory.

The parameters A&

ad

2 can be determined in terms of
el

5%, by means of (A.26). Let A/ = i%%z“, Then in
fg 4 }r
/w z‘:‘ﬁ/g
matrix motation (A.26) becomes
O = AN ) (A.30)
and it follows that
A = DN
ny a4 (A.31)
A = MD ]
One can alsoc establish that
Fa%d / [:;;”i
Al = { Py ) (A.32)
[z y <
! j:/ﬂﬂ é&
where (g = A‘“fif is the Gibbs free enthalpy. It then
can be shown that
/ N
" - %L;; 2
A, TS = [ . (4.33)
>
27 VO e
PR /(5
For a mixture of thermally perfect gases, we have
V.7
~ R A :
L, = T [l NS S
Yy 4 (A.34)
szg; ;7— .
= £ (,ff{ -/{}’7\f (A.35)
) Py /
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/ M=y
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Note that /ﬁf , 15 symmetric, and that 4~ ——— 18 the specific gas
, (ﬁb i

constant. By means of (A.36), %% can be determined in terms
v
of the diffusion coefficients Z%ﬁ with the use of (A.31).
Consider the special case of a ternary mixture of thermally

perfect gases. Equation (A.31) can then be written

o 1 : Y . - A, |
i A, m B "‘Mm;{ ﬂﬂﬂﬂﬂ _ D Ly 22 e (
h PO ' (A.37)
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My, = 7“; Fa , A5 (Ao = 45) (A.40)
P‘% g K0+ AL, + £3Cy
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Expansion of (A.37) yields
4 - -"Q/; /4'&; - */’h M /4
7 S
: = (A.42)
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_ D M, = D M,
A, = =z d el - Lo (A.43)
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by virtue of (A.18), the coefficients

are related by

K(‘} sk

Az
O, s 4, s, &3, are not all independent and
U R e
- 7 7
*/L,)// M : - ﬂj‘} /’f’/:,’_.j s 1:2;,, /f“/‘/n;!*;{_ - (A 46)

The pressure~ditfusion coefficients, (A.27), depend

v

on the diffusion coefficients 4;8 as follows:
4 -
”,)ﬁy) , : ‘I
F A (R, - Az (A.47)

ff&}

on the right—hand side of (A.29), we need to evaluate /4ﬁg

- 7“[ Aul £, -

’7 ifﬂ? }/’fo Ay ) My = (4 m)/»/ 5 ’ zf‘,‘, rm A3 ) w:i/iﬁi),;ju)i Z
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To compute the Dufour effect, that is, the third term
-/

From {A.31) we have
W e Y

il
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g f{/'! 17 A 12 if ’/ A jwji | [ é:zjbv o

;’ / LI e - i { ,U v (A .49 )
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Expansion of this expression gives
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Setting ,4/,{3. ”"/;’J/

The values for a binary mixture can be obtained by

»'f/)/,;) ‘/&/

again yields the condition (A.46).

(A.50)

(A.51)

(A.52)

(A.53)

setting the concentration of one species in the ternary mixture

equal to zero, say

it

Lo

We obtain then

ot
f]
g, Lo

ATy

C, . In this case ﬁ%iﬂ-'ﬁ;?—/(& as

g

— £ , and the values of A7, and A7, remain finite.

t s

Az ad <, Ay ¥ O y Ay &, 4, T o,

(A.54)

The pressure—-diffusion coefficients become for a binary mixture

2P T 1)
7y v

C 8o (R0 #8605 (£ -85) D,

My

2y

The inverse coefficient becomes

e )

- -~/

A/J = /‘//fj/ B

5 g
/j A k4

My Dy — A1 D,

(A.55)

(A.56)
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Since jﬁ nust vanish we deduce that £, vanishes also
when ¢, —¥ & .
Hence for a binary mixture we get the result
i 4 7 4 . " y]

- : C, 4 (RC, AR C3 )/, - K)o

— 3 ¢ % . A% (4 - pe
j; = =LV -~ (4. s 2, ;zzajg,

£ £z
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— 4 e T

- N A7, 7S —s
Z 77 f(%ﬁ,%)% f—};{g 5%

"

A

One may verify that these forms are the same as determined

by kinetic theory (see Hirschfelder, Curtiss and Bird (1954).

. . - e 7 ;
In kinetic theory the coefficients 4, R z? , and .¢£

are determined by the details of the molecular interactions
whereas in the present derivation they are phenomenological

coefficients that must be determined empirically.

(A.57)

(A.58)

(A.59)

(A.60)



APPENDIX B

LARGE TIME INVERSION OF CERTAIN LAPLACL

TRANSFORMS

We are concerned here with Laplace transforms of the form

_ - - X F(5)
((x,s)y = GlX5)& (B.1)

where S 1is the Laplace transform variable and é;{X;ﬁ) is the
transform of C?{X,i}). We assume that X 1is positive and that
F(3) is positive when S is real and positive. The function /(5)
is further restricted such that it is analytic at =¢ and such
that A {&)=¢ ., Such restrictions are associated with wave behaviour.
In particular, (5 ) is to be identified with AJ (3) defined
by (4.19).

In the asymptotic limit of large times, we are interested
in the corresponding limit S-» O for the Laplace transforms.
Thus we write the Taylor series expansion for /() about = =

as

— . . - /}. ¢ -, P L7, =
AU5) = Flo)s + S A p)s T # S F o) ST 4 (BL2)
. &
If only the first term in this expansion is retained, a discontinuous
wave front for é/(x)gﬂ is obtained in the inversion of (B.1l).

If the next term in (B.2) is retained, no simple and useful means



of inversion i1s evident. Hence, we wish to devise another expansion

for ~(35) , when s— {7, in terms of a function that leads to a

©

relatively simple inversion and in effect retains the first two
terms of (B.2).
Consider the following function and its corresponding Taylor

series expansion:

em—y

o : (s = ;
o?gy;ﬁf!'ﬁs‘f«zﬁ - A] 7 A S «

— 5~ = sT e (3.9
+4 &5

When ¢ and b are identified as

o = /‘:/f‘ff"')
{(B.4)

o ya
4 = 1’, - m)/,gz /:”({,J)] ,

then the first two terms of (B.1) and (B.3) are the same. Ye
- - . . -

assume that -~ {a‘f} > ¢ and A~ ”/ﬁ){ ¢ , which will be the case

in problems associated with dissipative wave behaviour. Taking

the difference between (B.2) and (B.3) yields

ag X -+ . We can now write, for S-» & ,
ey ek [J55 4]
- A = X o ) ”
¢ ~ & { A jf{:;(x) Ay (B.6)
A=2
where
- X : el j’(;é
v, (X Em“{/ﬁ J"'”ﬁ*":‘ z (B.7)
Ay 2 c LT g
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o

3
and the remaining /f;.s can be obtained by laboriocus algebra.

The inversion of the first term in (B.6) is é?/¢'”CBK‘)i
. { &
UL - -
el - rabx [y s e ’j’j; abx @ “
S = 2% =
= $ "z £ ¥= (.8)

By means of the convolution theorem, expression (B.1) with the
substitution of (B.6) can be inverted term by term. For the leading

term in (B.6), we obtain,

4(r-ax)

’ Z
b X . V) &
Uo (K, 8) = = G(x,¢t-7) Pz S e
C‘? -
We now observe that ¢/, and all its derivatives vanish at z = o

when X > ¢ (since the function (B.8) is exponentially small near

4 % ¢ when X = ). Thus the higher-order terms associated

with w"’;Tﬁin (B.6) are related to the corresponding /?fﬁ time derivatives
of U, . The complete asymptotic expansion for large time can

thus be written

\ oD
Uix,c) ~ [ /ot gg_} /Lfif;(x ;;; 7%(’65”) (B.10)

Since the functions /ﬁ; { X ) all vanish at X =¢ , expression
(B.10) is valid at X = ¢ . The function &/ (X, ¢) gives the
exact value of (/(x,¢) at X=0O. |

Consider the example when C}A: / , for which é;‘: jé; .

Evaluation of the integral in (B.9) then gives

2
;b Ny , sab X ' (B.
YAV = L 0 O { -t . ; )
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When ( = 3(t) and & =/ , we have

) z{"’zf‘ - 2x) )
. ‘ > r
N @ b X .
o (x,2) = — 3 (B.12)
vV zZ 7"

It may be suitable in some situations to expand the function

C}(XJ S ) in powers of ¥ , isolating singularities that occur at

i

3 cr o, A result similar in form to (B.10) can then be found.



