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ABSTRACT 

It is widely acknowledged that bearing failures are the primary reason for 

breakdowns in rotating machinery. These failures are extremely costly, 

particularly in terms of lost production. Roller bearings are widely used in 

industrial machinery and need to be maintained in good condition to ensure the 

continuing efficiency, effectiveness, and profitability of the production process. 

The research presented here is an investigation of the use of acoustic emission 

(AE) to monitor bearing conditions at low speeds. 

Many machines, particularly large, expensive machines operate at speeds below 

100 rpm, and such machines are important to the industry. However, the 

overwhelming proportion of studies have investigated the use of AE techniques 

for condition monitoring of higher-speed machines (typically several hundred 

rpm, or even higher). Few researchers have investigated the application of these 

techniques to low-speed machines (<100 rpm), This PhD addressed this 

omission and has established which, of the available, AE techniques are suitable 

for the detection of incipient faults and measurement of fault growth in low-speed 

bearings. 

The first objective of this research program was to assess the applicability of AE 

techniques to monitor low-speed bearings. It was found that the measured 

statistical parameters successfully monitored bearing conditions at low speeds 

(10-100 rpm). 

The second objective was to identify which commonly used statistical parameters 

derived from the AE signal (RMS, kurtosis, amplitude and counts) could identify 

the onset of a fault in either race. It was found that the change in AE amplitude 

and AE RMS could identify the presence of a small fault seeded into either the 

inner or the outer races. However, the severe attenuation of the signal from the 

inner race meant that, while AE amplitude and RMS could readily identify the 

incipient fault, kurtosis and the AE counts could not. Thus, more attention needs 

to be given to analysing the signal from the inner race.  
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The third objective was to identify a measure that would assess the degree of 

severity of the fault. However, once the defect was established, it was found that 

of the parameters used only AE RMS was sensitive to defect size.  

The fourth objective was to assess whether the AE signal is able to detect defects 

located at either the centre or edge of the outer race of a bearing rotating at low 

speeds. It is found that all the measured AE parameters had higher values when 

the defect was seeded in the middle of the outer race, possibly due to the shorter 

path traversed by the signal between source and sensor which gave a lower 

attenuation than when the defect was on the edge of the outer race. Moreover, 

AE can detect the defect at both locations, which confirmed the applicability of 

the AE to monitor the defects at any location on the outer race. 
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Chapter One 

1 Introduction 

1.1 Background and Motivation 

Condition monitoring (CM) is the process of monitoring physical parameters that 

demonstrate a machine’s operational condition, give a measure of its integrity, 

and possibly, predict likely time before the operation has to be interrupted for 

repair and maintenance. Many industries use CM, especially for expensive, 

heavy machines and equipment such as generators, compressors, and turbines. 

This is because the monitoring process maintains the operational health of the 

plant and maximizes production volume. It also helps in detection of faulty 

conditions at an early stage, avoids accidents, and reduces downtime. 

Furthermore, these CM techniques are used to arrange proactive maintenance 

and increase the machinery efficiency by reducing downtime. 

In machine CM, greatest attention is given to the bearings as they tend to fail 

more frequently than other components, usually through fatigue. For instance, 

O’Donell et al. [1] stated that 41% of the failures in induction motors are due to 

bearing failures. Thus, a large number of studies have concentrated their effort in 

monitoring these components.  

There are two general types of bearings; sliding contact bearings and rolling 

contact bearings. Sliding contact bearings can be a guide, journal or thrust 

bearing. Guide bearings are usually used to guide the machine component 

motion along its length without rotation. Journal bearings have a cylindrical shape 

and require fluid lubrication. Thrust bearings are used to prevent motion along 

the shaft axis.  

Rolling contact bearings substantially reduce friction between components thus 

are also known as anti-friction bearings. This type of bearing can have either point 

contact or line contact with the bearing races. Rolling contact bearings have the 

ability to carry the radial load (radial ball or roller bearings), thrust (thrust ball 

bearing), or a combination of both (angular ball and roller bearings). The elements 
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for rolling contact bearings can be cylindrical, spherical, tapered, or barrel-

shaped.  

In industry, rolling contact bearings exist in a wide range of applications. They 

play a major role in rotating machinery, and their failure can require machinery 

shut down. Hence, research into the successful CM of these bearings is ongoing. 

Today, the major problem related to CM of bearings is to detect faults in their 

early stages. The problems related to monitoring these bearings are directly 

linked with machine complexity. For instance, while it is easy to monitor the 

bearing condition in an electric motor, the main bearings of aero-engine shafts 

require advanced signal processing techniques to extract the required signal from 

background noise.  

Rotating machinery can be divided into four categories based on the speed of 

rotation; high, moderate, low, and extremely low-speed. However, the boundaries 

for categorization have no universally accepted values. This research separates 

machine speed into four categories: high-speed (above 60,000 rpm [1 kHz]) as 

stated by Mba [2], moderate-speed (between 100 – 60,000 rpm [1.67 Hz - 1 kHz]), 

low-speed (between 10-100 rpm [0.167 - 1.67 Hz]) as mentioned in [3–5], and 

extremely-low-speed (below 10 rpm [< 0.167 Hz]) as cited by [2,6–8]. In the 

industrial sector, low-speed machines using bearings can be found in such areas, 

as sewage treatment plants, cranes, and wind turbines. Due to the high cost of 

these machines, it is important to monitor those bearings to minimise downtime 

and likelihood of failures. 

Thus, CM of low-speed bearings has become the subject of considerable 

attention and research, in defining which parameters to use for detecting fault 

initiation and fault propogation (i.e. fault size). This study investigates the 

applicability of Acoustic Emission (AE) to the detection of the early stages of 

bearing defect at low speeds (10-100 rpm). 

The main motivation for this study is to improve rolling element bearing reliability 

in machines. To undertake this task, an experimental investigation has been 

carried out using AE techniques to detect and monitor defect initiation and 

propagation in a roller bearing. The key task was to detect incipient faults at the 
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earliest possible stage. Detecting and diagnosing the fault at this early stage does 

not necessarily mean immediate replacement. Instead, the fault’s development 

can be tracked, and maintenance activity can be planned to maximize bearing 

life and minimize downtime. 

1.2 Project Scope 

In the past, machinery continued in use until it failed and then repairs and 

maintenance were carried out. Today, such an approach is not possible because 

run-to-failure is very expensive in terms of lost production, and as machines have 

become larger and more complex, their parts have become too costly to destroy. 

Thus, this research program investigates the use of AE as a viable condition 

monitoring technique to be used with low speed rotating machinery. Such a 

technique may offer: 

• The opportunity for arranging proactive maintenance and increase the 

efficiency of the machinery by minimizing production stoppages. 

• Effective detection of incipient faults. 

• Location of the AE sources. 

• Identification of the size of bearing defects. 

To achieve these goals the first and most important task of this research program 

is to demonstrate a correlation between AE and defect initiation and propagation 

in low-speed bearings.  

On the basis of a review of CM technologies, a test rig was designed and built for 

the bearing tests. The AE results were measured, recorded, and analyzed using 

such statistical parameters from the time domain as maximum amplitude, 

kurtosis, RMS, and the number of AE counts. 

1.3 Aim and Objectives of the Research 

The aim of this project is to demonstrate experimentally, the applicability of AE 

techniques to detect and monitor defect initiation and subsequent propagation on 

bearings rotating at low speeds. 
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The objectives of this research are as follows: 

• To conduct a set of experiments at low speeds, for different speeds, loads, 

and different defect sizes in both the inner and outer races of a roller 

bearing. 

• Compare the measurements obtained from both inner and outer races 

under similar conditions to check the applicability of AE techniques in 

detecting faults in these parts. 

• To investigate the applicability of AE to detect the defect initiation at both 

inner and outer races of bearings rotating within the low-speed range. 

• To consider the effect of defect size on the measured AE statistical 

parameters. 

• To study the applicability of the measured AE statistical parameters in 

detecting a defect at different locations on the outer race. 

1.4 Contribution to Knowledge 

An enormous amount of work has been carried out investigating the applicability 

of AE to the CM of bearings at high speeds. However, only limited studies have 

investigated the low-speed range. Thus, to date, there is a shortage of knowledge 

on the applicability of AE to monitor bearing degradation in the speed range 

between 10-100 rpm. This investigation addresses the applicability of AE 

techniques to monitor the early stages of bearing degradation in this speed range 

and so will offer a significant contribution to the existing body of knowledge on 

the applications of AE.  

The main contributions of study are: 

• AE is proved to be a suitable technique to monitor bearing conditions at 

low speeds (10-100 rpm). 

• This is the first known attempt to investigate the sensitivity of AE statistical 

parameters to varying speed and load at low speeds (10-100 rpm). 
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• This is the first known attempt to examine the sensitivity of AE statistical 

parameters to the presence of defects and defect size at low speeds (10-

100 rpm). 

1.5 Thesis Outline 

This thesis contains nine chapters. Chapter 2 reviews the relevant literature 

including an overview of bearing failure and available CM techniques for low-

speed bearings. A comprehensive review of vibration analysis is also included, 

followed by a review of the application of AE to the monitoring of low-speed 

bearings. Chapter 3 provides a critical review of signal processing techniques. 

Chapter 4 describes the research methodology and details of the experimental 

procedure, data acquisition, and calibration. 

Chapter 5 is devoted to an investigation of possible AE statistical parameters to 

be used for monitoring the outer race. The first objective of the chapter is to 

examine the sensitivity of the statistical parameters to speed and load variations. 

The second objective is to identify the most sensitive statistical parameters for 

defect existence and defect size. The same investigation is repeated for the inner 

race in Chapter 6. A comparison of the outcomes of chapter 5 (outer race case) 

and Chapter 6 (inner race case) is presented in Chapter 7. The applicability of 

the AE measured parameters to monitor defects at different locations on the outer 

race, and the effect of the defect size on the measured parameters are 

investigated in Chapter 8. This element of the research is restricted to only the 

outer race due to time constraints on the project. Finally, Chapter 9 provides 

conclusions and recommendations for future work. 
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Chapter Two 

2 Literature Review 

This chapter begins with an overview of the major failures in bearings and their 

likely causes. Then there is a brief discussion of available CM techniques and 

their possible application to low speed rotating machinery. Next, the application 

of vibration analysis to monitor bearing condition is critically reviewed. Finally, an 

in-depth description is given of the AE techniques used in previous work to 

monitor low-speed bearing conditions. 

2.1 Bearing Failure 

The accurate and correct design of rolling element bearings is essential to ensure 

that a machine performs efficiently in the long term. Furthermore, proper 

installation, maintenance, and lubrication of bearings ensure machinery longevity 

and efficiency. However, bearing defects can still arise due to an event such as 

improper maintenance and/or installation, poor lubrication, overheating, 

overloading, imbalance, misalignment, incorrect application, and so forth. [8,9]. 

Moreover, cyclic stresses can lead to crack initiation and propagation, followed 

by material flaking from the rolling surfaces. Bearing lifetime will be affected, and 

such bearings will fail earlier than expected [10]. 

Bearing defects are usually divided into distributed or localised [11]. Distributed 

defects include, for example, misaligned races or surface roughness and are 

generally due to manufacturing errors or abrasive wear. Localised defects include 

cracks, pits, and spalls. Of course, the capability to detect both distributed and 

localised faults is important, but the focus of this study is localised defects that 

are usually related to specific and distinct indicators contained in the acquired 

signals. For example, the harmonic characteristics in machine vibrations 

generated by the presence of a fault. The emphasis of this research is on 

localised defects as these will usually start with subsurface cracks and 

progressively propagate to the surface and present as pits and spalls [12]. 
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Spalling and brinelling are recognised as the most important causes of bearing 

failure [12]. Spalling can occur at contact points on the rolling elements on either 

the inner or the outer ring of a bearing, wherever there are an overloading and 

severe impact. Spalling is a failure due to fatigue and leads to the removal of 

discrete particles of either ring or the rolling elements themselves, see Figure 2.1 

(b). Once started the failure will progress and is always accompanied by 

increased vibration levels. Brinelling (the development of dents or indentations) 

is usually due to overloading the bearing beyond the prescribed elastic limit, see 

Figure 2.1 (a).  

 

Figure 2.1: Brinelling and Spalling [9] 

Researchers have adopted two general approaches to generating local bearing 

defects in order to study their properties. One is run-to-failure so that defects 

occur naturally [13–18]. However, to accelerate the process and reduce the time 

required for the tests, it is usual to apply significant loads or less graded bearing 

material. The second is to seed artificial defects into the bearing using, for 

example, an electric discharge machine (EDM) or engraving tool [19–23].  
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2.2 Condition Monitoring 

CM is the process applied to determine the operational health of a machine to 

detect potential failures before they develop into functional failures. CM usually 

consists of continuous or periodical data collection, analysis, and interpretation. 

Today, CM is expected to give an indication of the remaining working life of the 

component, and it is an integral part of Predictive Maintenance (PM) in which 

maintenance activities are scheduled only when a functional failure is likely. CM 

improves the operational efficiency and staff safety. Thus, it is important to find 

accurate and reliable methods of predicting the remaining working life of in-

service machinery.  

CM techniques frequently used for rotating machinery include vibration analysis, 

AE, thermography, and oil analysis [5]. Selecting an appropriate CM method can 

be quite difficult as there are many factors to consider. The key factors for 

choosing the best-suited technique are sensitivity, the number of components, 

monitoring accessibility, the cost of instrumentation, and the size of the machine 

being monitored. Of course, the capabilities and limitations of each monitoring 

technique should be understood. 

• Vibration Analysis  

In rotating machinery, vibration analysis is considered to be the most common 

form of CM method in the industrial field. This technique is used for many kinds 

of rotating machines, and it is a powerful tool in diagnosing faults [24–26]. 

Velocity, displacement, and acceleration are the most common parameters 

monitored in vibrations. There are different types of vibration sensors and they 

are selected based on the frequency range of interest: 

• Accelerometer sensors are used in the high-frequency range   

• Velocity sensors are employed in the middle-frequency range  

• Displacement sensors are used in the low-frequency range 

Various data analysis techniques are used to assess signals and extract specific 

data or information. The most commonly used techniques for analysing signals 
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are spectral analysis and cepstral analysis. Moreover, various statistical 

parameters, such as kurtosis, RMS, and peak value can be used to describe the 

time domain signals. Vibration analysis can be usefully applied to monitor various 

machine elements such as bearings, shafts, compressors, turbines (gas and 

steam), pumps, and gearboxes. The range of frequencies in which vibration 

analysis is effective is 1 - 50 kHz [27]. 

• Acoustic Emission Technology 

AE is considered as a successful technique for monitoring the condition of 

rotating machines [8]. It is a non-destructive testing as it does not affect the future 

usefulness of the object being tested. The typical range of AE frequencies is 

between 50 kHz to 1 MHz [28]. Signal processing techniques are used to 

measure AE signals and observe the different characteristics of defects. The 

properties of signals can be found with the help of statistical tools such as mean, 

standard deviation, skewness, and kurtosis. Details of AE technique are provided 

in Section 2.4. 

• Thermography 

Thermography is a quick observation technique used to monitor the condition of 

machines. The hot spots on the body of the machine can be detected by thermal 

images that are produced by infrared radiation from the surface. This radiation 

can be detected using the thermographic camera. The performance of a bearing 

can be determined by simple assessment. Incorrect alignment and other faults 

will be displayed as thermal patterns as mechanical work is converted into heat. 

• Oil Analysis 

Monitoring machinery based on the condition of the used lubricating oil has been 

standard operating procedure for more than 50 years and continues to be one of 

the most widely used techniques in CM. The condition of the spent oil is 

compared with the virgin oil to determine the condition of the equipment, see 

Figure 2.2. However, analysing oil and interpreting the data are time-consuming 

activities. 
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Figure 2.2: Typical Oil Analysis [29] 

A comparison between some of the CM methods used for rotating machines is 

shown in Table 2.1.  

Table 2.1: CM Techniques used with rotating machines 

Technology Feasibility Limitations 

 

Vibration 
Analysis 

Structural 
components, 

bearings, shafts 
and gears 

• Detects fully developed defects 
only  

• Not useful for very low-speed 
applications  

• Signals tend to be of low amplitude 

 

Thermography 

 

Technology 
involves sensors 

and electronic 
control systems 

• Run mostly in offline mode 

• Not able to identify the internal 
temperature when the medium is 
isolated by glass, polyethene or 
other materials 

• High instrument costs  

 

Oil Analysis 

Machine 
components, 

such as hydraulic 
system, bearing, 
gear, and shaft 

• Typically performed offline 

• Appropriate for a limited number of 
components which require 
lubricant  

• Requires accessibility 

• Time consuming 

Acoustic 
Emission  

Structural 
components, 

bearings, shafts, 
and gears 

• Very sensitive to low amplitude 
signals  

• Special sensors and signal 
processing are required 
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Before this century, researchers tended to focus on monitoring components such 

as bearings, shafts, gearboxes, and so forth at high-speed machines with limited 

research on monitoring the condition of low-speed rotating machines [8]. Some 

previous studies have investigated the applicability of AE, and vibration analysis 

to monitor bearing conditions at different speeds, see Table 2.2. AE and vibration 

analysis were chosen owing to their ability to be applied online and their 

sensitivity to bearing conditions. Table 2.2 divides some of the previous studies 

according to the speed range, as well as the type of defective method (natural or 

seeded).  

 

Table 2.2: Applications of AE and Vibration analysis for bearing monitoring 

Defect type Extremely low 

speed 

(S < 10 rpm) 

Low speed 

(10 ≤ S ≤ 100 rpm) 

Moderate 

and high speeds 

(S > 100 rpm) 

Natural 

defect 

[2,6,30–32] [5,13–15,17][33] [34–41] 

Artificially 

seeded 

defect 

[7,42–44] [45,46] [12,19–

21,23,33,45,47–64] 

 

 

Applications 

RBC (Rotating 

Biological 

Contactor), Steel 

mills, Paper mills 

Passenger ropeway, 

Wind turbine, Cranes, 

Sugar packaging 

machines, Bucket 

elevator 

Jet engine, Car 

engine, Trains, 

Rotating motor, 

Drilling applications 

From Table 2.2 it can be seen that only a limited number of researchers covered 

the low-speed range despite there being many applications.  

For a clearer understanding of the use of vibration and AE techniques for bearing 

CM, the next sections discuss both techniques. 



 

25 

2.3 Vibration Analysis 

Vibration analysis is a well-established technique used to monitor bearing 

degradation [11,65–67]. This technique has the advantage over the other 

methods in that it can be applied online. Furthermore, analysing time is shorter, 

and the process is less expensive than other comparable techniques. However, 

at low rotational speeds, there are numerous limitations which can be divided into 

four sections [2,68,69]:  

1.  Type of sensor required for low rotating speed applications 

The accelerometer is the sensor usually employed in vibration analysis, however, 

for low rotating speeds displacement sensors are better-suited [2]. This is 

because the sensitivity of the accelerometer decreases as rotational speed 

decreases. Figure 2.3 shows the relationships between the responses of the 

accelerometer, velocity, and displacement sensors with a change in rotational 

speed.  

 

Figure 2.3: Comparison of responses of several types of vibration sensor [70] 

Figure 2.3 clearly indicates that the most sensitive sensor that can be used to 

analyse vibration at medium to high rotational speeds (more than 6,000 rpm, 100 

Hz) is the accelerometer. Displacement is the most sensitive parameter at low 

rotational speed. However, as expected, velocity gives a flat response in that a 
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peak velocity at 600 rpm is the same to peak velocity at 60,000 rpm. Therefore, 

velocity sensors are used for setting alarm levels for machines that rotate in the 

range of 600 to 60,000 rpm [2]. 

2. Instruments limitations in low rotating speed applications 

Amplifiers at low rotational speeds cannot separate the signal from the noise, and 

any source of low-frequency noise will affect the results. 

3. Signal amplitude in low rotating speed applications 

The roll-off filter, which is included in most sensors, has an impact on the 

magnitude of the signals detected within the range of the roll-off frequency. 

4. Coupling should be taken into consideration in low rotating speed 

applications 

Coupling between sensor and machine should be taken into consideration. 

Murphy [68] has suggested that a robust and efficient magnetic clamp be used to 

attach the sensor to the machine to avoid any rocking effects and to reduce the 

levels of unwanted noise at low frequencies. Moreover, Robinson and Canada 

[69] advised using a coaxial cable to reduce any electrical noise, and the dynamic 

forces applied to the sensor.  

Furthermore, as the speed is reduced, the impact energy generated by the 

relative movement of the components will be reduced. The complexity of this 

technique and the difficulty of deriving information from the data collected (that 

relies on technical knowledge) can be noted as a limitation of this technique. 

2.3.1 Vibration Analysis for Low-Speed Bearing Fault 

The previously highlighted points make vibration monitoring of low-speed rotating 

machinery difficult, despite this, some attempts have been made. Kuboyama [3] 

has prepared a summary of the difficulties associated with monitoring low-speed 

rotating bearings. He has stated that it was possible to monitor the degradation 

and damage conditions using vibration techniques if the operating speed exceeds 

100 rpm. This is because the vibrations produce sufficient energy which can be 

file:///C:/Users/s226322/AppData/Roaming/Microsoft/Word/Literaturereview/Vibration/Murphy%201993.pdf
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monitored over a short period. Conversely, for speeds lower than 100 rpm, 

smaller amounts of energy are emitted and a longer measurement period is 

required. Also background noise can distort the vibration signals.  

Kuboyama suggested several methods for monitoring extremely low-speed (1 

rpm) bearing conditions. The peak level differential technique (PLDT) is one of 

the recommended techniques. The idea of this technique is to compare between 

two bearings one healthy and the other faulty (same type and size) and note the 

acceleration peaks that exceed pre-set threshold levels using a peak picker. The 

difference in peak levels between the bearings is calculated, if this difference and 

the number of occurrences are greater than a certain criteria then the bearing 

was considered as damaged. 

Kuboyama [3] carried out a comparison between two pinch bearings rotating at 1 

rpm using PLDT. He stated that surface cracking on the inner race of one of the 

bearings was successfully detected. In his investigation, neither the 

characteristics of the sensor that was used nor the measuring equipment was 

described. Furthermore, several alternative techniques were used in his study; 

including self-correlation and cycle histogram. It was concluded that due to 

technical difficulties none of these techniques could be applied successfully in the 

present research program. 

Robinson and Canada [69] developed a system known as Slow-Speed 

Technology (SST) for measuring vibrations on low-speed machinery. This system 

separates the machine's high-frequency noise from the low-frequency signatures 

of interest using an analogue integrator. It was noted that analogue integrators 

distort the low-frequency components, but that was determinist distortion. This 

system was applied to a variable low-speed rotor unit rotating between 15 to 150 

rpm and was shown to give better performance than digital integration. Robinson 

and Canada claimed that the system could be applied to speeds as low as 10 

rpm [69]. However, with the development, recently digital integration shows better 

performance than the analogue integrators. 

Later, Robinson et al. [71] described a development of the PLDT for monitoring 

the vibration of low-speed machinery, called Peak Value Technique. In this 
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method, the time-domain vibration signal is separated into different lengths 

depending on the sampling frequency, and the peak values for contiguous time 

breaks for processing are obtained by either analogue or digital circuitry until the 

anticipated standard number is reached.  

The experimental investigation of Robinson et al., used low-frequency 

accelerometers to monitor two drying machines with eight bearings each rotating 

at 10 rpm. The signal was assumed to be a high-frequency carrier with low-

frequency modulation. Envelope analysis which involved both high and low pass 

filtering as well as rectification was used to separate the two. When this method 

was applied to the two drying machines, it was found that the envelope of the 

signal was dependent on machine speed, but sensitivity decreased swiftly with a 

decrease in machine speed, and the technique became unreliable at low speeds. 

Robinson et al., claimed that this method was able to detect defects in the inner 

race one month before failure occurred, but failed to describe the nature of the 

failure.  

Another attempt was conducted by Mechefske and Mathew [4,72] to generate 

frequency spectra for low-speed (≤100 rpm) roller bearings with three different 

defects. In this investigation, autoregressive parametric models were used to 

generate frequency spectra. An important benefit claimed for this technique is 

that considerably shorter signal lengths are required for fault detection and 

diagnosis than for conventional techniques. A new index called the probability of 

fault existence (𝑃𝑓𝑒) based on a statistical distance measure is used to detect 

bearings defects. It was claimed that this index was easy to apply and was found 

to be suitable for detection of bearing defects.  

Patidar and Soni [73] conducted a review of the applicability of vibration analysis 

for bearing faults diagnosis. The review concluded that using the high-resolution 

capabilities of time-frequency techniques, bearing faults could be easily detected. 

It was also concluded that envelope and wavelet analysis were proved as useful 

tools for diagnosing the early stages of bearings faults. Furthermore, to detect 

bearing faults fast and accurately, Artificial Neural Network (ANN) and Fuzzy 

Logic-Based techniques can be used, and their efficacy has been proven by 
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many researchers [74–76]. However, at low speeds, background noise can 

distort the vibration signals. Thus it is hard to apply these techniques to detect 

bearing degradation at low speeds. 

In summary, it appears where faults have been detected in low-speed machines 

using vibration methods, the time between the successful detection and 

subsequent failure was short, suggesting well-developed faults, not incipient 

faults, were detected. This also suggests that faults could develop to the stage 

where the machine would require costly repairs before being detected. 

Furthermore, in most of the previously mentioned studies, important information 

on the equipment (e.g. sensor) used in the investigation is missing.  

 

In conclusion, it can be said that the use of vibration measurements to monitor 

low-speed bearing conditions is fraught with difficulties: low amplitude signals 

obscured by background noise is a serious limitation on the use of vibration 

analysis for CM of low-speed rotating machines. However, this is not the case for 

AE which is well suited to detecting very small energy release rates. The concept 

of using AE technique to monitor bearing degradation is presented in the next 

section. 

2.4 Acoustic Emission Technique 

In the last few decades, AE has received a great deal of interest and is reported 

to be a robust and powerful diagnostic tool for CM with the ability to detect even 

tiny defects [8,19,44]. It is claimed that AE can generate an early warning of 

machine problems, allowing proactive maintenance activities to be planned, 

scheduled, and carried out. In this section, AE CM technique is discussed in more 

detail. 

2.4.1 Acoustic Emission Phenomena 

Acoustic emission is a phenomenon in which transient elastic waves are 

generated by local sources within a material [28]. The typical frequency content 

of AE is in the range between 50 KHz and 1 MHz [28]. Sources of AE in rotating 
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machinery include friction, cyclic fatigue, cavitation, corrosion and other sources 

such as crack propagation. 

The AE emissions propagate as Rayleigh waves on the surface of the material. 

Other types of the wave associated with AE propagation include longitudinal, 

Lamb, and shear waves. AE signals are often divided into two types, continuous 

and burst (transient). Burst signals are the product of individual random events 

separated in time; that is one signal ends before the next commences. The 

beginning and end of a burst signal deviate clearly from the background noise. 

Continuous signals are produced when there are sufficiently numerous individual 

AE events to overlap and produce an apparently continuous signal with variations 

in amplitude and frequency content. 

Detection and measurement of these high-frequency elastic waves are achieved 

by AE sensors coupled to the surface of the structure being investigated. The 

signals from these AE sensors are fed directly to low-noise preamplifiers, then 

filtered to remove unwanted noise and then sampled and digitally processed [77]. 

2.4.2 Advantages of Acoustic Emission Technique 

AE can be used in fatigued materials to detect the initiation and propagation of 

cracks, and it can localise the defect sources. This method is more sensitive than 

other non-destructive methods, such as vibration analysis. In contrast to vibration 

analysis, AE covers a frequency range of 50 kHz to 1 MHz. Therefore, an AE 

signal is unlikely to be influenced by mechanical noise originating in rotating 

machines, including misalignment and imbalance, which cannot be removed 

easily and comprehensively. Thus, AE is superior in some areas than vibration, 

especially for incipient fault detection in rolling element bearings [19]. 

2.4.3 Limitations of Acoustic Emission Technique 

AE CM methods have some significant drawbacks, including the non-

repeatability of the AE signal, whereas other techniques can be applied again and 

again. Attenuation is a major drawback of this technique, and AE sensors have 

to be close to the signal source. Further, AE is sensitive to insignificant noise and 

ultrasonic sources. AE measurement needs a high sampling rate, normally 
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between 1 to 5 MHz [78]. This becomes a shortcoming because at low-speed 

applications, longer data recording time is required to detect the defect and this 

can impose a limitation on the hardware in term of memory and data storage. 

2.4.4 Applications of Acoustic Emission Technique 

For over fifty years, AE techniques has been used to identify discontinuities in 

pressure vessels and cracks in materials and structures [79]. AE has also been 

progressively used for CM of engineering assets such as industrial machinery. 

Mba and Rao have critically reviewed AE and state that AE can help to avoid 

accidents and damage by playing a significant role in monitoring and detecting 

faults in structures and machines such as bridges, pipes, and nuclear power 

plants [8]. The successful implementation of the AE can be seen in various civil 

and industrial fields as: 

• Material testing: including testing materials to analyse their strength and 

fatigue level, as well as crack testing and corrosion detection [80–83]. AE 

is also widely applied for the detection of welding defects. 

• Civil engineering: structural testing of concrete buildings, bridges, dams, 

and tunnels. It helps in the continuous monitoring and assessment of 

repairs required in these structures [84–86]. 

• Chemical and petroleum industries: integrity testing of pressure vessels, 

storage tanks, and cryogenic tanks. AE is also used to monitor formation, 

oscillation, and cavitation of air bubbles in multiphase flow [87–91]. 

• Electric and power plant industries: monitoring of power plants and 

diagnosis of high-pressure vessels [92,93]. 

• Aircraft and aerospace industries: numerous tests such as proof testing, 

ageing tests, and fatigue tests of aircraft to assess their integrity [85,94].  

• Transportation industry: locating and detecting flaws in rails, tanks trucks, 

and trailers [85,95]. 

file:///C:/Users/s226322/Desktop/Literaturereview/AE/Kim%20etal%202007%20Experimental%20Study%20on%20Condition%20Monitoring%20of%20Low%20Speed%20Bearings%20Time%20Domain%20Analysis.pdf
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• Medical field: one example is using AE techniques to monitor joint 

conditions in humans [85,96]. 

Other applications include detection of bad sectors in hard disks due to cracks, 

grinding, and machining. This technique is also used in various geological and 

seismological applications. 

2.4.5 Acoustic Emission Sensors 

Selecting the right sensor is essential for the success of any CM process.  AE 

sensors detect the motion of a surface that generate AE events and convert this 

motion into voltage signals in the time domain. These signals are used in all 

subsequent stages in the AE measurement process.  

To detect AE events, a wide range of transducers is available; including laser 

interferometers, displacement sensors and capacitive transducers. However, the 

most commonly used AE sensors are piezoelectric transducers. A specially 

processed ceramic such as Lead Zirconate Titanate (PZT), see Figure 2.4, forms 

the transduction element [97–99]. The sensor is firmly coupled to the surface of 

the structure under test to maximise energy transmission into to the piezoelectric 

element. 

 

Figure 2.4: AE sensor basic setup [97] 

The dynamic strain is transmitted to the piezoelectric element that converts 

mechanical energy to electrical signals via the piezoelectric effect. Then these 

electric signals are fed to a preamplifier that can also reduce unwanted 
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background noise and match sensor impedance to that of the following filter so 

the signal can be transmitted with minimum energy loss. Traditionally, the 

preamplifier was connected to the sensor by short, coaxial cables to avoid any 

electrical or magnetic noise and to decrease the level of interference. Nowadays, 

to minimise errors, and to make for a more robust system, the pre-amplifier is 

integrated within the sensor housing. 

2.4.6 Acoustic Emission Measurements 

In this research program, the AE signals were successfully recorded and 

analysed using two approaches. The first method was the so-called “classical AE 

technique” or Hit Driven Data Measurements; the second was a signal based AE 

technique or Time Driven Data Measurements. Then signal processing was used 

to extract the required data from the captured signal.  

2.4.6.1 Hit Driven Data Measurements 

In this method, the signal itself is not stored, although a set of conventional 

parameters such as amplitude, peak level, rise time, counts, and energy are 

extracted from the captured signal and stored (conventional AE method). A 

correlation between one or more of these features and the defect formation can 

be developed. Figure 2.5 illustrates the commonly used parameters [97]. 

 

Figure 2.5: Commonly used parameters of AE signals [100] 
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• AE event: This refers to an elastic wave, produced under load or stress in 

a material by a micro-structural displacement, whose amplitude exceeds 

a pre-set threshold level. 

• AE count: The number of times the amplitude of the signal exceeds a pre-

set threshold level. 

• Energy: The total elastic energy emitted by an emission event which is the 

area under the rectified signal envelope. 

• Amplitude: The largest trip peak voltage achieved by the waveform of a 

signal from an emission event. 

• Duration: The time between the signal initially rising above the pre-set 

threshold level and the last time the signal drops below the threshold level. 

• Rise time: The time between the AE signal crossing the pre-set threshold 

level and reaching its peak amplitude. 

• Threshold: A pre-set signal level above which the signal is recognised as 

an event and counted. 

2.4.6.2 Time Driven Data Measurements 

In this method, the AE waveform is continuously recorded and stored digitally via 

an analogue to digital (A/D) converter. Using this approach will allow a more 

comprehensive analysis of the data. Such an approach was only made possible 

by the development of high-speed high-storage computers, and the parallel 

development of highly sensitive wide-band sensors. Such capability is now 

available with the new AE system that can continuously capture AE waveforms 

at different sampling rates. Hence, the characteristics of AE sources can be 

described from the captured waveform. Figure 2.6 shows an example of a typical 

AE waveform. Nowadays, commercially available signal processing software 

enables rapid extraction of the AE parameters listed above for defined sampling 

rates and time constants. 
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Figure 2.6: Example of AE waveform 

 

2.4.7 Trends of Acoustic Emission in Bearing Fault Diagnosis 

During the past 30 years, many researchers have applied AE to the CM of 

bearings [8,11,101]. Possibly the earliest paper addressed the use of AE 

technology to identify artificially-induced defects in rolling element bearings was 

done by Balderston [8,102]. Balderston investigated the applicability of AE to 

detect seeded defects on the inner race, outer race, and ball elements of a 

bearing, as well as lack of lubrication. The vibration analysis and AE were 

compared, and the advantages of AE over vibration were confirmed. 

Balderston detected two types of AE signatures; burst-type emissions were 

detected with seeded defects on the inner and outer races, and ball elements of 

a bearing, as well as lack of lubrication. Continuous type AE signatures were 

detected due to lack of lubrication. He also suggested that due to the 

interconnection of components, any defect that occurs can result in the 

generation of frequencies that make the results difficult to interpret. It has been 

mentioned that when the rotational speed was low, the impact energy is low, 

which suggested that application of vibration techniques would be limited.  

Balderston concluded that AE has been applied successfully and offered a direct 

correlation between amplitude level and defect severity. Furthermore, as more 

sophisticated sensors were developed, AE would become important practical CM 

tools.  
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About ten years later, AE was used in the industrial field by Rogers [55] to monitor 

low-speed rotating bearings on cranes. The results from AE were compared to 

those obtained from vibration analysis. Rogers stated that it was hard to apply 

vibration analysis for online CM because of the low rotational speed of the crane. 

However, using kurtosis at different frequency rates, AE resonant transducers 

could be utilised for the online monitoring of the bearings. 

Two similar scenarios applied by Sundt [103] to the detection of bearing defects 

using AE. The first scenario involved the generation of high-frequency signals by 

a hairline crack on the outer race. The defect frequency detected using AE was 

above 100 kHz, but was not detectable by vibration analysis. The signal occurred 

only at an initial stage of crack generation. Subsequently, the bearing appeared 

to be in a satisfactory condition for normal operation. Sundt then successfully 

applied AE to detect the presence of particulate matter in pump unit bearings 

[103]. However, he did not describe the characteristics of the equipment used in 

the experiments. 

Yoshioka and Fujiwara [41] conducted a study and showed that AE techniques 

could identify defects in a bearing earlier than vibration analysis. AE generating 

sources were identified during fatigue life tests on ball bearings. Later, Hawman 

and Galinaitis [47] obtained similar results to Yoshioka and Fujiwara concerning 

AE’s advantages over vibration analysis for the detection of bearing faults. They 

explained how bearing defects were diagnosed through the modulation of high-

frequency AE burst at the defect frequency of the outer race. The AE signatures 

modulation at frequencies of the bearing defect has also been observed by other 

researchers [104,105]. Hawman and Galinaitis [47] used Root Mean Square 

(RMS) and Fast Fourier Transform (FFT) techniques for monitoring the bearing 

condition and recommended the use of adaptive noise cancelling (ANC) 

techniques to overcome noise interference. 

All the early studies used bearings with seeded defects. The first known attempt 

to identify natural degradation in bearings was conducted by Yoshioka [106]. The 

identification of rolling contact, subsurface, and fatigue cracks was the focus of 

Yoshioka’s study. Through time-delay analysis, which related to the AE events 

file:///C:/Users/s226322/Desktop/Literaturereview/AE/Roger%20application%20of%20AE%20on%20cranes%201979.pdf
file:///C:/Users/s226322/Desktop/Literaturereview/AE/YOSHIOKA%201982%20A%20new%20acoustic%20emission%20source%20locating%20system%20for%20the%20study%20of%20rolling%20contact%20fatigue.pdf
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37 

acquired by different sensors, it was demonstrated that AE could locate the defect 

source. Furthermore, Yoshioka stated that the size of cracks could be identified 

using the AE techniques.  

The tests performed by Yoshioka were restricted to a roller bearing with only three 

rollers which is not a typical operational bearing. The test measurements were 

ended after AE activity increased so that the distribution of subsurface defects 

relative to surface defects was not observed properly. The outcomes of this study 

indicated that AE is more sensitive than vibration analysis and can detect faults 

earlier. 

Another laboratory study monitoring the condition of extremely low-speed rotating 

machinery using AE techniques was conducted by Mba [2]. This study consisted 

of two parts: the first in which AE was used to detect the early stages of loss of 

mechanical integrity in extremely low-speed bearings; and in the second part, 

Mba enhanced and improved a monitoring system for a rotating biological 

contactor (RBC) rotating at 1 rpm. He also evaluated the possibility of using AE 

to monitor extremely low-speed bearings with diameters between 80 and 125 

mm. On a purpose, a test rig was built and he found signs of AE for every fault 

condition.  

Mba considered the use of autoregressive coefficients instead of traditional AE 

techniques, such as energy, counts, RMS, and amplitude. He concluded that 

autoregressive coefficients provide useful information about the condition of the 

RBC. Moreover, the application of AE to the monitoring of extremely low-speed 

rotating machines was successfully demonstrated.  

Later, Jamaludin et al. [44] showed how AE techniques could be used to identify 

the initial stages of bearing deterioration at a rotational speed of 1.12 rpm. 

Attempts were made to generate natural defects in the bearing’s components, 

such as running the test bearing for 800 hours without lubrication, but no defects 

were detected visually on any bearing components. In this experiment, the test 

bearing was under a load of 55 kN.  
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Jamaludin and Mba [107] continued their work with the same test rig at speeds 

of 1.1 and 1.2 rpm to monitor the integrity of the test bearing using AE. In this 

experiment, autoregression was used and could successfully classify the defect 

signature of the bearings in both time and frequency domains [6]. Furthermore, it 

was again demonstrated that AE was more sensitive than vibration analysis for 

these types of applications. Also, the simplicity of the AE technique and the use 

of commercially-available equipment made such a monitoring system very 

attractive [7]. From this study, it was concluded that AE is a successful method 

for monitoring extremely low-speed bearings. 

Miettinen and Pataniitty [32] conducted another experimental attempt to monitor 

faults at extremely low-speed bearings using AE techniques and compared 

results with those obtained by vibration measurement. The measurements were 

taken using a laboratory test rig at rotational speeds ranging from 0.5 to 5 rpm 

and load of 70 kN. A spherical roller bearing was used and lubricated with grease. 

Before the tests began, the tested bearing was damaged on its outer race and 

resulting AE and vibration measurements were compared. 

The vibration measurements included the time domain signal, peak values, 

envelope spectrum and acceleration signal derivation. They used the pulse count 

method and time signal for AE measurement. It was concluded that the AE was 

superior to vibration analysis in detecting bearing defects for extremely low-speed 

rotating machinery [32]. 

Sato [108] explored the manner in which AE can be used to monitor damage in 

extremely low-speed bearings and demonstrated that AE could be used to 

monitor a defective journal bearing rotating at 5.5 rpm. It was noticed that even 

slight metallic contact led to an increasing in the duration of the AE bursts. 

Furthermore, growing metal wear resulted in a larger amplitude of the waveform. 

However, no correlation could be found between the increasing signal strength 

and wear. 

Parizi et al. [33] used AE to compare a healthy bearing and a naturally-damaged 

bearing at a rotational speed of 60 rpm. These bearings were used in a conveyor 

that transported ground ironstone. Parizi et al., used wavelets to remove the low-

file:///C:/Users/s226322/Desktop/Literaturereview/AE/Jamaludin%202002%20PART1%20Monitoring%20extremely%20slow%20rolling%20element%20bearings%20Part%20I.pdf
file:///C:/Users/s226322/Desktop/Literaturereview/AE/Jamaludin%202002%20PART2%20Monitoring%20extremely%20slow%20rolling%20element%20bearings%20Part%20II.pdf
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frequency noise and then compared statistical parameters for normal and 

defective bearings. Statistical measures used included crest factor, kurtosis, and 

energy factor. This study provided evidence that statistical parameters are more 

effective in detecting defects in a low-speed bearing if the data is first transformed 

by removing low-frequency noise, in this case by using wavelet analysis. 

In the investigation of Parizi et al., two balls were removed from the cage of a 

roller bearing, which meant that the bearing had already reached a state of failure 

by the commencement of the measurements. Thus, it was easy to distinguish 

between healthy and faulty bearings using AE techniques. It was reported that no 

other defects existed on either inner or outer race so the failure could be regarded 

as due to improper installation. Moreover, it was mentioned that vibration analysis 

could not detect the bearing failure. Although, there is no description was given 

either for vibration instrumentation used nor the outcomes of vibration. 

Elforjani and Mba [5] conducted a study to validate the application of AE to locate, 

identify and monitor the initiation and propagation of natural defects in a thrust 

rolling bearing. To speed up the initiation of a natural crack, a combination of 

thrust ball bearing and a roller thrust bearing was used with an electric geared 

motor with a speed of 72 rpm. Traditional parameters were used in this study to 

monitor the integrity of bearings, such as counts, amplitude, energy, and average 

signal level (ASL).  

It is shown that both RMS and energy dramatically increased at defect initiation. 

Thus, it was concluded that these AE parameters are sufficiently robust and 

sensitive to detect crack initiation in low-speed bearings. It was also shown that 

the AE source could be successfully located during the operation using the AE. 

This was the first known attempt to correlate AE with the generation of a natural 

defect and locate the defect in low-speed bearings [13–15,109].  

Furthermore, this study compared defect size with burst duration at various load 

conditions, but no link was found between burst duration and load, although the 

burst was linked to defect size. However this study employed a combination of a 

thrust ball bearing and a thrust roller bearing to accelerate natural crack initiation, 

and this is not representative of a typical operational bearing.  
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Tavakoli [46] examined the applicability of AE in monitoring radially loaded needle 

bearings rotating at 80 rpm, under three conditions: 1) with fully-lubricated, 

healthy bearings, 2) with unlubricated, healthy bearings, and 3) where two 

adjacent needle elements were missing. Both time and frequency domain 

analysis were applied to analyse the signal captured. 

The experiment demonstrated that the spectral density of the RMS voltage was 

different for all three conditions. It also showed that the main source of AE in the 

bearings under all three conditions was friction. Nevertheless, some experimental 

details were missing from the published paper, and the analysis process applied 

to the data was not fully explained as the focus of the paper was to present a 

literature survey of methods used in the CM of bearings. 

McFadden and Smith [110] also investigated the application of AE transducers to 

monitor the conditions of the roller bearing elements at moderate speeds. The 

basis of the experiment was to insert a fine scratch on the inner raceway and 

place AE sensors on the bearing housing. The AE transducer had a frequency 

response beyond 3 MHz but failed to perform at moderate rotational speeds 

(below 850 rpm). 

The findings of McFadden and Smith were confirmed by Smith [111] who carried 

out an experiment to investigate the response of an AE transducer attached to a 

bearing housing for a low rotational speed (10 rpm). The AE transducer 

responded to the minute strains in the housing which appeared as spikes 

superimposed on the original time domain signal. This study concluded that at 

low speeds and steady loads, the AE transducer could detect signatures from tiny 

defects in rolling element bearings.  

Couturier and Mba [112] showed that AE activity depends on load and speed 

variation. Two experiments were performed using a split roller bearing. In one the 

speed was fixed, and the load varied, and in the other, the load was fixed and the 

speed varied. The results obtained proved that AE activity depends on speed and 

load and increases with either or both. It was also observed that AE activity was 

more sensitive to changes in speed in comparison to load. This result could be 
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due to the fact that speed contributes more to variation in lubricant oil thickness 

as compared to load.  

According to Oh et al. [113], degradation on fan bearings can be predicted by 

studying various types of parameters, which include vibration, AE, and lubricant 

temperature. The investigation was conducted by simulating lubricant starvation. 

This study showed AE to be the best precursor technique reflecting the condition 

of dry bearings.  

In conclusion, AE has been shown to be a suitable technique for detecting and 

monitoring bearing degradation. Furthermore, AE is superior to vibration in term 

of detecting the fault faster and being more sensitive, and vibration tending to 

detect faults after they have fully developed. 

2.5 Closing Remark 

Several studies have described the difficulties of applying vibration analysis in 

monitoring bearing degradation at low speeds, and the lack of any clearly 

successful investigation in this area speaks volumes. 

On the other hand, an enormous amount of practical research has been carried 

out applying AE to the CM of bearings at moderate to high rotation speeds. 

Nevertheless, there remains only limited knowledge regarding CM of bearings in 

the speed range 10 to 100 rpm. There have been only two substantive 

investigations of the CM of bearings in this speed range, and each had severe 

limitations. For one study, the bearing was in failure mode as two rollers were 

dropped from the cage. Thus it could not be said that AE was applied to detect 

the early stage of failure [33]. The second study suffered from the serious 

limitation that the researchers did not use a typical operational bearing but 

combined the races of one bearing type with another.  

Accordingly, more research should be undertaken on bearings rotating at low 

speeds to investigate: 

• The applicability of AE to monitor bearing degradation under conditions of 

low speed (10-100 rpm). 
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• The ability of AE to detect the early stages of bearing failures bearing under 

conditions of low speed (10-100 rpm). 

• The influence of speed and load on the AE signal at rotational low speeds. 

• The influence of a defect size on the AE signal at such low speeds. 

To investigate these points, signal processing techniques needs to be applied to 

analyse the data from captured signals. In the next chapter, several types of the 

signal processing techniques are demonstrated. 
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Chapter Three 

3 Signal Processing Techniques 

An essential requirement for the successfully CM of bearings is to be able to 

extract fault features from the AE signals in the presence of high levels of 

background noise. Various techniques are used to identify and interpret specific 

source within the recorded signals. The parameters to be measured and the 

sampling rate of the sensor signal are important considerations.   

3.1 Sampling Rate 

Figure 3.1, presents the aliasing effect in the time domain. Sample at a too low 

rate and a high-frequency signal could appear to have a lower frequency. This 

problem is resolved by use of the Nyquist theorem which states that a signal must 

be sampled at more than twice the maximum frequency of interest [114]. 

 

Figure 3.1: Aliasing effects in the time domain [115] 

3.2 Techniques of Signal Processing 

The signal is subjected to the processing techniques to identify and interpret 

sources within the digital signal and these techniques can be divided into three 

types: 

1- Time domain 

2- Frequency domain 

3- Time-frequency domain 
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3.2.1 Analysis of Time Domain 

Statistical analysis to extract features of interest is used mainly with time domain 

signals. Peak-to-peak amplitude, RMS, kurtosis, and crest factor are some 

examples of such statistical measures. In this section, statistical parameters are 

discussed, followed by a review of studies which used these parameters for the 

CM of bearings. 

3.2.1.1 Root Mean Square 

The most used measure of signal intensity is the root mean square (RMS), which 

is calculated according to Equation (3.1). A change in the dynamic behaviour of 

the machine or its integrity can result in a change in the signal RMS.  

𝑅𝑀𝑆 = √
∫ |𝑠(𝑡)|2𝑑𝑡

𝑡2
𝑡1

𝑡2−𝑡1
……………………..………………………...………..… (3.1) 

S(t): Signal in time domain 

t: Time over which the average is taken 

The RMS of the time domain signal is commonly used for CM. The RMS value 

observed when a defect is present in a machine’s components, such as gear or 

bearings is expected to increase [19,47].  

This approach difficulty determine incipient defects because, by definition, such 

defects are small and the energy generated makes little difference to the RMS 

value. 

3.2.1.2 Kurtosis 

Kurtosis represented the level of signal impulsiveness and defined in Equation 

(3.2) as the fourth statistical moment. Kurtosis has been successfully applied to 

detect incipient faults in bearings [116–118]. The advantage of this techniques is 

that a prior history is not essential for judging bearing condition. The value of 

kurtosis is evaluated with respect to the value 3, which is the value obtained for 

the Gaussian distribution (which is assumed to be the normal condition bearing). 

At its start, a small or incipient fault will increase the value of the kurtosis, but 
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when the fault is well-advanced, the value of kurtosis reduces to the level of an 

undamaged bearing [119]. 

The values of kurtosis as given in Equation (3.2) are calculated for time domain 

signals as: 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
∑ (𝑆𝑖−𝜇)4/𝑁𝑁

𝑖=1

𝜎4 ……………………..……………………..……..… 
(3.2) 

𝑆𝑖: Signal data points 

𝜇: Signal mean 

𝜎: Standard deviation 

N: Number of data points 

3.2.1.3 Skewness  

Skewness measures the lack of symmetry in distribution, or data set and 

calculated using Equation (3.3): 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
∑ (𝑆𝑖−𝜇)3/𝑁𝑁

𝑖=1

𝜎3 ……………………..…………………………...… 
(3.3) 

Where the symbols have the meanings given above. 

For a normal distribution, the skewness is zero. Positive skewness indicates data 

that are skewed to the left, and the opposite is true for the negative values. The 

main drawback of this parameter is that it is not sensitive to all conditions as load, 

speed, and defect deterioration [61]. Both kurtosis and skewness can be 

represented in histograms. 

3.2.1.4 Energy Index  

In order to overcome the shortcoming associated with RMS and kurtosis, the 

Energy Index (EI) can be used. The numerical value of the EI is obtained by 

squaring the value obtained by dividing the RMS value associated with a segment 

of a signal with the RMS value of the entire signal. The equation for the EI is: 

𝐸𝑛𝑒𝑟𝑔𝑦 𝐼𝑛𝑑𝑒𝑥 = (
𝑅𝑀𝑆𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠

𝑅𝑀𝑆𝑡𝑜𝑡𝑎𝑙
)2……………………..…………………….… (3.4) 
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The application of EI to the CM of gears and bearings is gaining importance as it 

has been shown to detect symptoms of incipient faults, including spalling when 

the signal to noise ratio is as low as 0.25 [54]. 

EI analysis divides the signal into segments – the number of segments depends 

on the nature of the signal and is directly associated with EI sensitivity. In the 

case of a stationary and uniform signal having a sufficient length, the EI value for 

all segments is 1.0. The value of the EI will be more than unity if transient activities 

occur within that segment. That is, a high value of EI means a higher than 

expected energy activity in that segment, which could mean an abnormality such 

as a fault.  

In the case of a gearbox, the number of segments is determined by the number 

of gear teeth. For bearings, and for convenience, the signals are initially split into 

100 segments [54]. This technique has been applied successfully in monitoring 

bearing conditions and has demonstrated distinct advantages over other 

techniques. However, as mentioned previously, the selection of the number of 

sections depends on user experience. 

3.2.1.5  Crest Factor (CF) 

Crest factor (CF) is the ratio of the peak value to signal RMS, see Equation (3.5). 

It is a traditional method used for assessing the smoothness of a signal and is 

considered to be reliable only in the presence of significant impulses [114]. For 

healthy bearings, typical CF values are from about from 2.5 to 3.5, while for a 

bearing with an impulsive defect the CF could be as high as 11 [114].  

𝐶𝑟𝑒𝑠𝑡𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑃𝑒𝑎𝑘𝑣𝑎𝑙𝑢𝑒

𝑅𝑀𝑆
……………………..…………………………..… (3.5) 

Previous Work on Statistical Parameters 

Al-Ghamdi and Mba [19,120] conducted a comparative study to identify bearing 

defects and to quantify outer race defects using statistical analysis of the AE and 

vibration signals. Four shaft speeds were employed in the range between 600 to 

3000 rpm, under three load conditions ranging from 0.1 to 8.86 kN. The 

experiment was divided into two test programs; the first related to the detection 
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of defects with a change in load and speed using AE and vibration analysis. The 

second program investigated the correlation between AE activity and increasing 

defect size. It was concluded that AE RMS, peak amplitude, and kurtosis are 

more sensitive to the defect initiation and defect growth than vibration.  

Furthermore, it was observed for both AE and vibration, that as the load 

increased, RMS and peak amplitude increased. The same was found with 

increasing speed. Additionally, a relationship was noted between defect length 

and AE burst duration. This allows the user to monitor defect propagation using 

AE, which is unachievable with vibration analysis. 

To confirm the findings of Al-Ghamdi and Mba [19], Al-Dossary et al. [20] 

conducted an investigation to determine the relationship between AE burst 

duration and the actual dimensions of the defect on a roller bearing. Different 

bearings were tested at speeds ranging from 600 to 3000 rpm under loads 

between 2.7 and 8 kN with seeded faults of different dimensions and the AE 

waveform recorded. Several parameters were used for the fault detection, 

included AE maximum amplitude and energy. 

A strong relationship was found between the actual defect size on the outer race 

and the AE burst duration. Also, the energy parameter was successfully used to 

identify the severity of the defect in both the inner and outer races of the bearing. 

However, AE maximum amplitude could be used only to monitor defects on the 

bearing outer race, as the signal was too strongly attenuated on the transmission 

path from the inner race to the AE sensor. This study agreed with [19], 

demonstrating that AE techniques can be effective in monitoring outer race 

conditions. 

Tandon and Nakara [121] attempted to correlate AE statistical parameters such 

as counts and peak amplitude with outer race defects of different sizes for 

different speeds and loads but, surprisingly, found the AE count was independent 

of both. From this study, it was concluded that the diagnosis range of AE counts 

was limited because it was restricted to detecting defects of diameter 250 μm, or 

less. However, the ability of AE peak amplitude to detect outer race defects was 

not limited by defect size.  

file:///C:/Users/s226322/Desktop/Literaturereview/AE/al-ghamdi.pdf
file:///C:/Users/s226322/Desktop/Literaturereview/AE/Al-dossary%202006%20Acoustic%20Emission%20Waveform%20Changes%20For%20Varying%20Seeded%20Defect%20Sizes.pdf
file:///C:/Users/s226322/Desktop/Literaturereview/AE/al-ghamdi.pdf
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Later, Choudhury and Tandon [53] conducted a parallel experiment to monitor 

defective bearings, but with a wider range of speed, load, and defect size. They 

found that for a healthy bearing, the AE count was less than for a damaged 

bearing. According to Tandon and Nakara [121], the AE count for both damaged 

and undamaged cases should be independent of speed and load, but in this 

study, it was found that as speed increased, the AE count for both the undamaged 

and damaged bearings increased.  

Tan [122] and Tan et al. [123] explored the dependability of AE count by varying 

operational conditions and attempting to identify the optimum AE count 

parameter and its threshold level. Tan posited that the AE count rate is dependent 

on factors such as the threshold level, pulse amplitude, and signal frequency. 

Morhain and Mba [21] carried out an investigation into the application of AE 

statistical parameters for CM of a radially loaded bearing. A test rig was designed 

to allow seeded defects in both the inner and outer races of a split roller bearing. 

In the experiment, three rotational speeds were used (600, 1500, and 3000 rpm) 

at three loads between 0 and 4.8 kN. The results achieved showed that AE 

parameters such as RMS and counts are robust measures that can be used for 

detecting bearing deterioration. Furthermore, it was found that the relationship 

between AE counts and the mechanical integrity of the bearing was dependent 

on the selected threshold level. These results were in agreement with the 

published results of researchers [53,121,122] and has become the basis of 

studies on the effect of threshold levels on AE counts. 

Miettinen and Andersson [124] conducted an experiment, in which they used AE 

to monitor bearing condition. Several types of grease were used in this 

experiment, which classified the AE signals according to the type and impurity 

level of four contaminants; quartz, iron, steel and iron oxide. The size of the 

contaminant grains was between 5 and 40 μm. AE counts and standard deviation 

were used to analyse the condition of the bearing lubrication. It was observed 

that both AE count and standard deviation increased when contaminated grease 

was added to the bearing. It was also noted that for contaminated grease, the AE 

count decreased with the size of the contaminant, while the harder the 
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contaminants, the greater the amplitude of the spikes in the AE signal. The 

dependence of the AE signal on the grain size can be reasoned by the 

agglomeration property of fine particles.  

Miettinen and Andersson also explored replacing the grease in bearing 

lubrication. In this experiment, the bearing already lubricated with contaminated 

grease was cleaned and clean grease applied. As expected, a reduction in the 

level of the AE activity was observed to the half of the AE level with the 

contaminated grease. It was concluded that re-greasing could improve the 

lubrication of the bearing. 

Another study based on analysis of the AE time domain signal for bearing fault 

detection was carried out by Elmaleeh and Saad [125]. They used AE peak 

amplitude, CF, standard deviation, and kurtosis. These parameters were used to 

distinguish between a healthy bearing, the same bearing with a defective inner 

race, and then with a defective outer race. It was found that the value of the 

standard deviation and peak amplitude for a healthy bearing did not exceed 0.5 

and 1.5V, respectively. These values increased to as much as 12 when either 

inner race or outer race faults were present. It was concluded that standard 

deviation and peak amplitude were appropriate to differentiate between normal 

and defective bearings, but CF was not. 

He et al. [23] conducted an experimental investigation using various AE 

parameters for bearing CM. In this study, it was proposed to extract the 

characteristic frequencies of the bearing fault based on the AE short-time RMS 

(STRMS) and autocorrelation functions. Additionally, several more traditional AE 

parameters such as amplitude, counts, energy and kurtosis were also measured 

for various speeds, loads, and defect sizes. It was concluded that rotating speed 

has a strong influence on the AE parameters. This conclusion was in agreement 

with the findings of several other researchers [19,21,126]. Moreover, it was 

observed that AE counts increase exponentially with increasing rotating speed 

and defect size which agreed with [122,126] 

Kim et al. [78] conducted an experimental study of incipient fault detection in 

bearings at a speed of 140 rpm using AE. Statistical parameters as RMS, peak 
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value, skewness, kurtosis, and entropy were used to distinguish between the 

healthy and defective bearings. To find the best-suited frequency band, six band-

pass filters ranges up to 100 kH were applied. To evaluate the effectiveness of 

these statistical parameters for incipient fault detection, a separation Index (SI) 

was introduced as calculated from Equation (3.6). 

𝑆𝐼 =
𝑀𝑒𝑎𝑛(𝑃𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒)−𝑀𝑒𝑎𝑛 (𝑃ℎ𝑒𝑎𝑙𝑡ℎ𝑦)

𝑆𝑡𝑑(𝑃𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒)−𝑆𝑡𝑑 (𝑃ℎ𝑒𝑎𝑙𝑡ℎ𝑦)
………………..……………………....… 

(3.6) 

Where, Mean and Std are the mean and standard deviations of Phealthy and 

Pdefective, which are the relevant parameters for the healthy and the defective 

bearings, respectively. 

They concluded that RMS and entropy are the best suited statistical parameters 

to distinguish between normal operation and a faulty bearing. This finding was 

observed for bearings with faults on the inner race, outer race, and roller elements 

[45].  

Additionally, Kim et al. [127] have demonstrated an online CM system for 

moderate-speed machinery using both AE and vibration analysis. This system 

includes noise removal techniques to improve the signal-to-noise ratio and peak-

hold-down-sampling to reduce the massive data load. This method has been 

applied on a site machine and successfully detected an incipient bearing defect. 

This study also concluded AE was superior to vibration analysis in early stage 

fault detection.  

Another attempt to monitor bearing degradation [52,128,129], investigated the 

effectiveness of AE parameters such as RMS, peak amplitude, and energy for 

defect deterioration. Speeds in the range 222-2980 rpm and loads in the range 

0.3 to 2.2 kN were used with defects of several sizes on both inner and outer 

races.  

The above studies confirm that statistical parameters are suitable for detecting 

incipient faults and bearing deterioration. However, while time domain analysis 

provides the time waveform, it lacks information on the frequency content of the 

signal which provides valuable information to specify the defective component.  
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3.2.2 Analysis of Frequency-Domain 

Certain frequency bands are linked with various elements of the machine, such 

as gears, bearings, and shafts, and a distinctive rotational frequency is 

associated with each element of the machine. These frequencies can be obtained 

from analysis of recorded signals made during the CM of machines. If there is an 

increase in the energy of a frequency band associated with any particular element 

of the machine, this could indicate the presence of a fault in that bearing 

component.  

Bearing Fundamental Frequency 

The bearing in the presence of a surface anomaly on the raceway will generate 

an impulse every time it meets the fault, at a fundamental frequency often referred 

to as the fault frequency. The fault frequencies can be calculated knowing bearing 

geometry (the pitch and roller diameters), and the relative speed of the two 

raceways from Equations (3.7) to (3.12) [130]:  

Possible fault frequencies of interest are listed below and may be used to indicate 

a likely source from the frequency of the captured signal. 

Ball/Roller (BSF) =
Pd

2Bd
∗ s ∗ (1 − (

Bd

Pd
)

2

(cosØ)2)   ……………………….. 
(3.7) 

Inner race (BPFI) =
Nb

2
∗ s ∗ (1 +

Bd

Pd
cosØ) ………………..………...…..… (3.8) 

Outer race (BPFO) =
Nb

2
∗ s ∗ (1 −

Bd

Pd
cosØ) ………………..…………..... (3.9) 

Cage (FTF) =
S

2
(1 −

Bd

Pd
cosØ) ………………..……………………….…… (3.10) 

Shaft Frequency = S ∗ Gear ratio ………………..……………….………. (3.11) 

Gear Mesh Frequency (GMF) = S ∗ Nb    ………………………...………. (3.12) 

Where: Pd= Pitch diameter, Bd= Ball diameter, S =Rotational speed (Hz), 

Ø=Contact angle and Nb= Number of balls, see Figure 3.2. 
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Figure 3.2: Bearing parts [131] 

The frequency spectrum of the acquired signals is obtained using a Fast Fourier 

Transform (FFT). The FFT is extremely powerful in demonstrating the presence 

of a discontinuity in a signal but provides no information on the time-based 

localisation of the source. This means that, strictly, the FFT is not applicable for 

nonlinear and nonstationary signal [132].  

The Fourier transform of signal S(t) and the signal’s frequency spectrum is shown 

in Equation (3.13) [133]. 

𝑆(𝜔) = ∫ 𝑆(𝑡)𝑒−2𝜋𝑖𝑡𝜔𝑑𝑡
+∞

−∞
………………..………………….………….… (3.13) 

Where: ω: Frequency and S(ω): Signal in frequency domain 

3.2.2.1 Envelope Analysis 

Every time a rolling element passes over a localized bearing defect an impact 

occurs and a signal pulse is generated. The duration of the pulse is very short 

compared to the time between pulses. Being of short duration the energy 

spectrum of the pulse will be wide-band, across an extensive range of 

frequencies which may well include the resonant frequencies of elements of the 

surrounding structure, and which may well be excited. It should also be noted that 
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the signal being of very short duration, the FFT technique cannot be used to 

extract fault frequencies. However, envelope detection can be used with a bipolar 

to unipolar converter followed by a smoothing circuit to analyse the bearing 

frequencies using FFT [134]. 

Ho and Randall [135] described the using of the Hilbert Transform (HT) for 

envelope analysis but only for those frequency bands where the signal to noise 

ratio was a maximum. Rai and Mohanty [136] investigated the diagnosis of 

bearing faults using the Hilbert-Huang Transform (HHT) to obtain frequencies 

characteristic of specific defects. HHT delivers multi-resolution for the different 

frequency scales and takes into account the variation of the frequency content of 

the signal with time. However, it contains a  subjective error in the calculation of 

defect frequencies characteristic of rolling element bearings. To improve HT 

resolution in the frequency domain Ho and Randall included FFT intrinsic mode 

functions (IMFs) from the HHT method. 

Another way of applying enveloping analysis is to square the signal and apply the 

low pass filter (LPF) in order to remove the unwanted noise captured as done in 

[137]. 

3.2.3 Time- Frequency Domain Analysis 

As mentioned previously, time domain analysis gives an idea of the time of 

occurrence of events and the corresponding amplitude but lacks information on 

the frequency of the signal. Conversely, frequency domain analysis gives an idea 

of the signal frequency content without the times at which those frequencies 

occur. To overcome these limitations, time-frequency domain analysis is advised, 

as it shows both time and frequency content. 

3.2.3.1 Short-Time Fourier Transform (STFT) 

Short-Time Fourier Transform (STFT) is a method that is adopted for the analysis 

of signals that are non-stationary. STFT helps in the extraction of a number of 

signal frames with the help of a window (often the Hanning window) that moves 

along the record of the signal in steps that overlap and carries out an FFT for 

each window. This identifies a relationship between frequency and time. In other 
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words, STFT is a form of FFT in which the signal is taken in segments, and FFT 

is applied to each, rather than as a whole. The equation for the STFT is [138]: 

𝐺[𝑓](𝑡, 𝑤) = ∫ 𝑓(𝜏)𝑔(𝜏 − 𝑡)𝑒−𝑖𝑤𝜏𝑑𝜏
∞

−∞
………………..…………………… (3.14) 

Where: 𝑓(𝜏): Signal to be analysed, 𝑔(𝜏 − 𝑡): Window function, 𝜏: Centre or mean 

location of window function in time, 𝑤: The centre or mean location of the window 

function in frequency. 

STFT can be represented in a spectrogram, which is a way of representing 

spectral information as it varies over time in one single plot, using colour-coding 

to represent magnitude. The main drawback of using an STFT is that the best 

resolutions of time and frequency cannot be achieved together; if there is a good 

resolution in time, the poor resolution will found in frequency and vice versa [139].  

3.2.3.2 Spectral Kurtosis 

Spectral Kurtosis (SK) is an effective technique for the detection of signals that 

are transient and non-stationary. In this procedure, firstly, the signal is analysed 

using an STFT, and the spectra obtained plotted sequentially in a 3-D array with 

time, frequency and amplitude as the three axes. A particular frequency is 

selected, and the kurtosis values are calculated [139]. A critical review of the SK 

and its application in monitoring bearing conditions is presented in [140]. 

3.2.3.3 Wavelet transform 

To overcome the disadvantages inherent in the STFT, Wavelet transform (WT) 

techniques are advised.  

In most cases, CM signals contain both high- and low-frequency components. 

Windowing techniques require a short time window adequate time resolution at 

high frequencies but a long window for adequate time resolution at low 

frequencies. These requirements appear to be contradictory. Fortunately, 

wavelet analysis allows for variable window lengths, and one such approach is 

Multi-Resolution Analysis (MRA).  

This wavelet analysis process is based on the adoption of a prototype function 

which is known as the mother wavelet or, sometimes, the analysing wavelet. The 
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family of wavelets is composed of dilated and translated forms of the respective 

prototype function [138]. 

The dilation and translation of the mother wavelet along the time and space axes 

are determined by the scale and shift features of the wavelets. If the scale factor 

exceeds the value of one, then it represents the dilation of the mother wavelet 

along the horizontal axis, while the positive shift of the scale factor corresponds 

to the translation of the wavelet towards the right along the horizontal axis. The 

continuous wavelet transform is defined as (3.15) [138]: 

𝐶𝑊𝑇𝑥
𝜑(𝜏, 𝑠) =

1

√|𝑠|
∫ 𝑥(𝑡)𝜑∗ (

𝑡−𝜏

𝑠
) 𝑑𝑡………………..…………………….… (3.15) 

Where 𝜑(t) is the mother wavelet which is a transformation function. The 

translation, 𝝉, is used in a similar way in both CWT and STFT analysis and refers 

mainly to the window location. There is a correspondence of this term with 

information about time consumed in the transform domain. There is no frequency 

parameter in the CWT; rather a scale, s, parameter is used, defined as 

1/frequency. In the above equation, the transformation signal can be considered 

as comprised of two different variables, namely 𝝉 and s.  

3.3 Closing Remark 

Several studies have been demonstrated the usefulness of statistical parameters 

obtained from both AE and vibration spectra, in both time and frequency domains, 

for the CM of bearings at medium and high speeds. 

Furthermore, this chapter shows several advanced signal processing techniques 

in term of both time and frequency domains, used to monitor bearing degradation. 

However, there is a severe lack of knowledge on the applicability of these 

statistical parameters to the CM of bearings at low speeds. Given the experience 

contained in the industry relating to AE techniques and the capital invested in 

instrumentation and training, it is highly desirable to demonstrate that it is possible 

to extend present technique to the monitoring of low-speed bearings. If such an 

approach were found to be acceptable, it would save industry considerable time 

and money. 
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To investigate these possibilities an experimental programme has been carried 

out, and details of the methodology are presented and discussed in Chapter Four. 
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Chapter Four 

4 Research Methodology 

This study aims to demonstrate the applicability of AE techniques to diagnose 

early degradation in bearings operating at low rotational speeds. The research 

methodology is based on experimental testing of a roller bearing under various 

loadings and speeds, see Figure 4.1. Experimental investigation of the failure 

modes of rolling element bearings has shown that the component that most 

frequently fail is the inner race followed by the outer race [141]. Thus, the 

monitoring of these elements has become the subject of considerable attention. 

In this experimental study, an electric engraver was used to simulate faults of 

several sizes on the inner and outer races, see Figure 4.1. Further details of 

bearing test rig design, seeded faults, experimental setups, and procedures are 

discussed later in this chapter. 

Bearing Test Rig

Acoustic Emission

Load Speed  Defect Location  Defect severity

0 kN
2.5 kN
3.4 kN

10 rpm
20 rpm
30 rpm
40 rpm
50 rpm

60 rpm
70 rpm
80 rpm
90 rpm

100 rpm

Outer Race (Centre)

Inner Race (Centre) 

No Defect

Time Domain Analysis

RMS
Kurtosis

AE Counts
Maximum Amplitude

D1-D13

Outer Race (Edge)

 

Figure 4.1: Bearing test rig conditions 
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4.1 Experimental Setups 

To determine the applicability of AE techniques in detecting bearing degradation 

at low speeds, a series of experiments was carried out using the test rig shown 

in Figures 4.2 to 4.4. In this rig, a cylindrical roller bearing is assessed under static 

loads to test the likelihood of bearing failure. The test specimen (bearing) was 

mounted on the overhanging shaft, and the shaft supported by a pair of spherical 

roller bearings as shown in Figure 4.3. An air cylinder was positioned horizontally 

to exert a steady radial load on the specimen housing, see Figure 4.4. The 

rotating shaft was driven by an electric motor, connected to the shaft by a flexible 

coupling. A load cell was used for measuring the load and placed in front of the 

air cylinder. Two handheld tachometers were used to measure the shaft rotational 

speed.  

The main components of the test rig are as follows: 

• Specimen housing 

• Specimen 

• Shaft 

• Support bearings and housing 

• Air cylinder 

Figure 4.5 shows a schematic of the test rig arrangement, with an air cylinder, 

load cell, and bearing housing assembly. It also shows a sectional view of the 

bearing housing. 
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Figure 4.2: Different views of the bearing test-rig drawing [142] 

 

Figure 4.3: Front view of the bearing test rig 

  

Figure 4.4: Side view of the bearing test rig 

Air cylinder  

Support bearings 

Air cylinder 

pressure 

gauge 

Electric Motor 

Coupling 

Test bearing 

Test bearing 

Speed Controller 

Air cylinder  
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Figure 4.5: An overview of the bearing test rig arrangement 

4.1.1 Specimen Housing 

The bearing housing used was as advised by Cooper Bearings Ltd (see Figure 

4.6). The connection of the air cylinder to the housing was considered to apply 

the load. 

 

Figure 4.6: Specimen housing (01 BCP 35MM GR ATL) 
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4.1.2 Specimen 

A Cooper split cylindrical roller bearing (type 01 B 35MM GR) was used in this 

experiment. This bearing was selected as it can be assembled and disassembled 

easily, thus allowing the test bearing to be regularly checked throughout the test 

programme with minimum disruption to the test rig during the introduction of 

defective components. All the elements of the test specimen were split into two, 

as shown in Figure 4.7, which illustrates (a) bearing parts and (b) their assembly. 

The dimensions of the specimen were: 

• Bore (internal) diameter, 35.00 mm  

• External diameter, 84.14 mm 

• Roller diameter, 11.91 mm 

• Pitch circle diameter, 62.71 mm 

• Number of rollers, 10 

 

Figure 4.7: Specimen (a) in parts, and (b) assembled 

4.1.3 Shaft 

Given the dimensions of the specimen and the support bearings, the shaft had 

the dimensions presented in Figure 4.8. To ensure no misalignment, a flexible 
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coupling was used which linked the main shaft to the drive shaft that was 

supported by two spherical roller bearings. 

 

Figure 4.8: Drawing of shaft (bearing at “top”) [143] 
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4.1.4 Air Cylinder 

For applying the static load, an air cylinder (SMC, Type CS1LN250-25) was used. 

This is a single rod cylinder with a maximum pressure of 1 MPa, a bore size of 

250 mm and maximum shaft travel of 25 mm. Foot style parts are used to support 

the cylinder on the rig.  

Figure 4.9 shows a view of the cylinder, and its dimensions are as shown in Figure 

4.10.  

 

Figure 4.9: Air cylinder 

 

Figure 4.10: Dimensions of the air cylinder [144] 
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4.2 Data Acquisition System  

Two Physical Acoustics Nano-30 miniature AE sensors (Figure 4.11 (a)), having 

a frequency range from 125 to 750 kHz, were used for the AE tests. This sensor 

is ideal for applications where small size is important. This sensor features an 

integral of 1-meter coaxial cable, which exits from the side of the sensor (see 

Figure 4.11) terminating in a BNC connector.  

 

Figure 4.11: A Nano-30 miniature AE sensor 

The AE transducers were cemented with superglue onto the bearing housing, 

see Figure 4.12. To ensure even distribution of the couplant across the face of 

the sensor, a small amount of glue was placed in the centre of the sensor’s 

intended position and the sensor carefully pressed onto the surface, spreading 

the couplant uniformly. To ensure obtaining a high amplitude signal, the AE 

sensors were positioned within the loading zone and close to the defect source 

to reduce signal attenuation. Whether the AE sensors were placed on a vertical 

or horizontal surface made no difference to the AE signal. This observation was 

confirmed, see Figure 4.13 which shows the AE RMS for the two channels for the 

same running conditions. 
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Figure 4.12: Close-up of test bearing 

 

Figure 4.13 shows the RMS value of the AE signal for each of the two channels 

for a healthy bearing for an applied load of 3.4 kN and speeds from 10 to 100 

rpm. From this chart, it was observed that the two AE sensors had the same 

response, though the signal from Channel 1 was of higher amplitude than for 

Channel 2 as it was closer to the source. This was also found to be the case for 

several defect severities. Therefore, in this research, the Channel 1 signal will be 

used for all analyses.  

 

Figure 4.13: AE RMS for the two AE channels at applied load of 3.4 kN 
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Figure 4.14: Schematic diagram of acquisition system 

 

With these sensors, the acquisition system was as shown in Figure 4.14. For the 

AE test, Physical Acoustics type 2/4/6 pre-amplifiers were used to provide initial 

amplification of the AE signal and reduce electromagnetic noise. These pre-

amplifiers contain a plug-in analogue high-pass filter to eliminate low-frequency 

acoustic noise and show better temperature performance than could be achieved 

with an integral pre-amplifier. These pre-amplifiers have a selectable gain of 20, 

40, or 60 dB, see Figure 4.15.  

 

Figure 4.15: Pre-amplifier 

 

For this particular experiment, the pre-amplifiers were set at a 40dB gain to get a 

suitable signal with low noise. Co-axial cables less than 1 m long were used to 

connect the AE sensors with the pre-amplifiers to avoid electromagnetic noise 

[69,91]. The pre-amplifiers were connected directly using coaxial cable to a 

commercial data acquisition card (DAQ) within a Pentium host PC (PCI-2 Based 

AE System with six channels) which provided a sampling rate of up to 10 MHz 

with 18-bit precision giving a dynamic range of more than 85 dB. The PCI-2 was 

selected because of its superior low noise system combined with low cost [145]. 

file:///C:/Users/s226322/Desktop/Final%20Work/Experiment/Experiment%20parts%20pictures/AE%20System_user%20manual.pdf
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In the analogue-to-digital converter (ADC), the card has anti-aliasing filters that 

can be tuned (i.e. the band pass altered) by the software directly.  

Each experiment was repeated three times for each condition to reduce the 

likelihood of anomalous results, and the data recorded for two minutes at each 

test. During the 2 minutes, several AE waveforms can be captured which gives 

more opportunity to ensure the accuracy of the results.  

The sampling rate for the AE test was chosen as 2 MHz to get better data 

resolution according to the Nyquist Theorem [146,147] so that the aliasing effect, 

which causes different signals to become indistinguishable after sampling, would 

be avoided. For each case, the specific waveform recording length based on the 

rotational speed is listed in Tables A.1 and A.2 in Appendix A. The lower the 

speed, the longer the required recording time to observe the defect frequencies. 

For each speed, waveform recording length is calculated from bearing fault 

frequency equations shown in Section 3.2.2. 

For the purpose of data acquisition, the longest recording time (for 10 rpm) was 

set to cover at least 4 pulses over the defect at each speed condition. Therefore, 

5.94 and 4.04 seconds was set for the outer and inner races defective cases, 

respectively. Furthermore, for hit driven data, a trigger level was set as 38 dB to 

ensure that the captured signal is not sourced from the background noise, this 

setteing was achieved after running several experiments and analysis. The 

feature extraction and analysis for both AE and vibration was performed on 

MATLAB R2014a. 

4.3 Experimental Procedures 

Prior to the experiments, an attenuation test was carried out which will be 

described in Section 4.4. Furthermore, a series of experiments were conducted 

before any defects or faults being seeded into the system and baseline (normal 

bearing conditions) were recorded for each running condition. Before 

commencing each experiment, the test rig was run for at least 30 minutes to bring 

it to thermal equilibrium.  
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• The first test programme aimed to establish a correlation between AE 

activity and increasing speed and load conditions. This was accomplished 

by increasing the speed from 10 - 100 rpm, in steps of 10 rpm, at a 

constant radial load. This procedure was repeated three times with loads 

of 0, 2.5 and 3.4 kN, see Figure 4.1. These loads were chosen according 

to the limitations of the of the test rig and bearing. Moreover, this step was 

carried out for all the defectives from D1 to D5 as show in Table 4.1.  

• The second test programme was intended to establish a correlation 

between AE activities and level of defect in the outer race (at the centre) 

by having incremental increases in the defect at a fixed speed and load. 

This involved starting a sequence on a bearing with a point defect (D1) at 

the centre of the outer race, followed by line defect (D2) and then 

increasing defect width and/or length (D3, D4, D5), see Table 4.1. The 

defect sequence is illustrated in Figure 4.16. All defects were of depth 0.03 

mm. 

 

Figure 4.16: Outer race defect severities (at the centre) 

 

It should be noted that the defect length is along the race in the rolling 

direction and the defect width is across the race. An engraving machining 

with a carbide tip was used for creating the defects shown in Figure 4.16. 

• The third test program was a repeat of the first and second test programs, 

but for the inner race as presented in Figure 4.17. This step was to check 

the applicability of AE techniques to detect the defect on the inner race at 

such low speeds. 
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Figure 4.17: Inner race defect severities 

• The final program was intended to establish a correlation between AE 

activity and increasing defect size at the edge of the outer race, see Figure 

4.19. The size of the defect was increased incrementally at a fixed speed 

and load. This test sequence began with a line defect of given length (D6), 

followed by increasing the width with the same length (D7-D9), see Figure 

4.18 (a). After that, beginning with the line defect of given width (D10) and 

increasing the length but retaining the same width (D11-D13). These 

defect sequences are illustrated in Figure 4.18 (b). Furthermore, to 

investigate the effect of fault location and the applicability of the measured 

parameter to monitor the defect at any location on the outer race. The 

measured parameters for two faults of the same dimensions (D4 and D12) 

at deferent locations were compared. As fault D4 was located at the centre 

of the outer race as shown in Figure 4.16 while D12 is at the edge, see 

Figure 4.18 (b).  
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Table 4.1: Defect sizes 

Named as Case Defect Type (L x W) mm 

ND ND Normal condition (free Defect) 

D1 Point Dent (D=0.5) 

D2 L1XW1 2.5 X 0.9 

D3 L2XW1 6.0 X 0.9 

D4 L2XW2 6.0 X 3.0 

D5 L3XW3 12.0 X 6.0 

D6 L4XW4 3.0 X 5.0 

D7 L4XW5 3.0 X 7.0 

D8 L4XW6 3.0 X 10.0 

D9 L4XW7 3.0 X 12.2 

D10 L5XW2 2.0 X 3.0 

D11 L6XW2 4.0 X 3.0 

D12 L2XW2 6.0 X 3.0 

D13 L7XW2 8.0 X 3.0 
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(a)                                                            (b) 

Figure 4.18: Outer race defects at the edge 

 

4.4 Calibration and Attenuation Test 

Calibration techniques can, typically, be categorised into two general groups 

namely, equipment testing and sensor calibration. AE tools are commonly 

designed to extract a set of parameters from the recorded AE signals and then 

store them. Thus, the characterizations of these signals rely mainly on the type 

of equipment commercially available and consequently comprehensively 

verifying the AE signal parameters recorded by these tools is essential. 

However, before the full-scale AE tests, a performance verification test of the AE 

tools was undertaken and the results compared with the published performance 

criteria provided by the manufacturers. Prior to starting the experiments, the AE 

system was calibrated by the MISTRAS Group Limited Company. The 

manufacturer also provided calibration certificates for all the AE sensors. These 

certificates contain the characteristics and the technique used for calibration, see 

Figure 4.19. This calibration was performed according to ASTM Standard E976 

[148], the standard guide for determining the reproducibility of AE sensor 

response. 
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Figure 4.19: AE sensor calibration certificate [148] 

 

Attenuation can be defined as any reduction in the AE signal strength in the form 

of amplitude or intensity occurring when the signals have travelled any distance 

through the medium. This is expressed in decibels (dB’s). In AE applications, 

attenuation is critical as it rapidly reduces signal strength with the distance 

between source and sensor. Thus, it plays a significant role in determining AE 

sensor locations. Additionally, attenuation is directly affected by the thickness and 

type of the medium. For each type of medium, there is an attenuation coefficient 

(β) used to determine the decay rate of AE signal based on its frequency. 

Attenuation can be expressed as a function of transmission distance (r), the 

medium’s attenuation coefficient (β), and the signal frequency (f). 

𝐴𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 =  𝛽 ∗ 𝑟 ∗ 𝑓 ………………..……………..…………………… (4.1) 

Thus, in practice, AE waves which propagate through a structure under test may 

be distorted and strongly attenuated, so AE sensor attenuation test was 

performed on a daily basis to check the quality of the sensor. 

The attenuation between two different locations i.e. the signal source location and 

the sensor location can be calculated knowing the signal voltage and/or the signal 

power at each location. If Vs and Ps, respectively, are the signal voltage and the 

signal power at the signal source location, and Vd and Pd, respectively, are the 

signal voltage and the signal power at the sensor location, the attenuation 

between the two locations can be calculated by Equations (4.2)and (4.3) 
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𝑆𝑖𝑔𝑛𝑎𝑙 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝐴𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛(𝐴𝑡𝑉) = 10 log10 (
𝑉𝑠

𝑉𝑑
)……………..………… (4.2) 

Or: 

𝑆𝑖𝑔𝑛𝑎𝑙 𝑃𝑜𝑤𝑒𝑟 𝐴𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛(𝐴𝑡𝑝) = 10 log10 (
𝑃𝑠

𝑃𝑑
)……………..………...… (4.3) 

An AE sensor attenuation test was carried out before any AE testing. The first 

step is to simulate an AE source, and this can be achieved by using a Hsu–

Nielsen source, shown in the Figure 4.20, which based on the breaking of a pencil 

lead. This method is commonly used because of its simplicity and repeatability. 

It was used here to evaluate the AE attenuation across the bearing. 

 

Figure 4.20: Hsu-Nielsen Source (pencil lead break) [149] 

 

The test was carried out by breaking a pencil lead (Hsu Nielsen pin) of 0.3 mm 

diameter (2H) at several locations on the test rig, see Figure 4.21. As would be 

expected various levels of attenuation were observed depending on whether the 

“pin” was located on the roller, inner race, outer race, or the other locations as 

listed in Table 4.2. 
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Figure 4.21: Determining attenuation characteristics across the bearing 

 

The purpose of this test is to ensure that the sensors are in good acoustic contact 

with the part being monitored and to ensure direct contact between the outer race, 

inner race, roller and the bearing casing.This was accomplished by positioning a 

roller at right-dead-centre in a direct path with the load. Each calibration test was 

performed five times to check reliability and repeatability of sensor sensitivity. 

Taking the reference level (Vd) as due to the pencil lead being broken on the 

casing between the two sensors and calculating the relative attenuation using 

Equation (18). It was found that the relative attenuation of the AE signatures in 

terms of maximum amplitude was 0.1 dB for the outer race, 1.8 dB for the inner 

race, and approximately 2.9 dB for the roller. These attenuations are explained 

as due to the different clearances present in the bearing. At each interface, the 

AE signal will be partially transmitted and partially reflected. The different paths 

from the sources to the sensor will include differing numbers of interfaces so that 

the attenuations will vary. As shown in Figure 4.21, at the left dead-centre of the 

roller, a clearance exists between the roller and the races and that is the reason 

for the substantial difference, irrespective of the loading [21].  

Rollers 

Outer Race 

Inner Race 

Hsu Nielsen pin 
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On the other hand, it should be noted that for all locations other than the tested 

bearing, the signal attenuated totally before it reached to the sensor. Thus, it has 

been ensured that the captured signal was not from any source other than the 

bearing being tested. 

 

Table 4.2: Description of the attenuation test 

File 
Name 

Location 

S0L1 Motor, top middle casing 

S0L2 Hydraulic support, on the top of the support 

S0L3 Steel bed plate bottom side of the test bearing 

S0L4 Rollers, the two support bearings 

S0L5 Inner race, the two supports bearings 

S0L6 Outer race, the two supports bearings 

S0L7 Casing of the two support bearings 

Shaft  

S0T1 Shaft before coupling, Top Dead Centre 

S0T2 Shaft after coupling, Top Dead Centre 

S0T3 Shaft before the tested bearing, Top Dead Centre 

S0T4 Shaft after the tested bearing, Top Dead Centre 

S0T5 Shaft between the two supported bearings, Top Dead Centre 

Bearing  

S0B1 Right bearing casing, between the AE sensors 

S0B2 Outer race of the test bearing at 90° from right dead centre to the top  

S0B3 Inner race of the test bearing at 90° from right dead centre to the top 

S0B4 Roller of the test bearing, left Dead Centre 
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Chapter Five 

5 Outer Race Fault Diagnostics 

5.1 Introduction 

This chapter examines the applicability of AE to the CM of low-speed bearings. 

The chapter reviews the experimental monitoring of bearing conditions for both 

healthy bearings and bearings with a seeded defect on the outer race.  

There is no single best measure for the CM of bearings, so this chapter presents 

and discusses the statistical parameters most commonly used to monitor bearing 

conditions: RMS, kurtosis, the maximum amplitude, and the number of counts. 

However, the temperature of the bearings at such low speed bearings is not a 

good indicator of the presence of a fault. This is because the low rotational speed 

allows the heat generated to be lost by convection and conduction and so this 

parameter is not used in this research investigation. Neither is it expected to affect 

the AE signal generated. 

One major benefit of statistical parameters is their sensitivity to variation in speed 

and load of the item under test. Several investigations of this matter have been 

made, and some contradictory observations have been reported in the literature. 

For example, at moderate speeds, Al-Ghamdi et al. [19] observed that the RMS 

values of both AE and vibration signals are sensitive to both speed and load 

variation. Although, He et al. [23] agreed with these findings for changes in speed; 

they found no significant variation with load. Unfortunately, there is limited 

knowledge of the influence of load and/or speed within the low-speed range (10-

100 rpm) of interest here.  

Another key issue in bearing diagnostics is the detection of a developing fault at 

an early a stage as possible before it can develop into a catastrophic failure. 

Thus, this chapter also investigates the use of AE to detect fault initiation and 

propagation in the outer race of a roller bearing in the low-speed range by 

investigating the effect of the fault size on the outer race using several statistical 

parameters. 
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In summary, this chapter investigates two points: 

1. The influence of speed and load on the statistical parameters for low 

speeds (10-100 rpm) 

2. The applicability of the statistical parameters to detect defect initiation and 

propagation at the outer race (i.e. sensitivity to defect size). 

This chapter present results of the first and second programs mentioned in 

Section 4.3 for a healthy bearing (ND) and five defective bearings at the outer 

race (D1 to D5) as described in Table 4.1 and shown in Figure 4.16. 

The results demonstrate the usefulness of AE in the monitoring of both fault 

initiation and propagation in the bearing outer race at low speeds. 

5.2 RMS Observations 

RMS  is a powerful statistical tool used for bearing CM. The RMS value of the AE 

signal is directly related to the mechanical deformation of the material when strain 

energy is released [23]. Thus, AE RMS is considered to be a suitable parameter 

for evaluating the presence of a defect and likely bearing failure. 

The RMS values of AE signals under various loads and speeds are shown in 

Figure 5.1.  
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Figure 5.1: AE RMS as a function of shaft speed with three loads for a healthy 

bearing and five bearings with various faults on the outer race 

Generally, for all the bearings tested, the AE RMS value increased with 

increasing speed of rotation, see Figure 5.1. This agrees with the data published 

by Graney and Starry [130] and indicates that the excitation energy supplied by 

the bearing’s speed excites resonant frequencies (usually in the bearing itself) 

and hence generates the continuous emission that is characteristic of the raw 

signal profiles. This suggests a credible explanation for the increase in the value 

of the AE RMS with an increase in speed. 
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The rate of increase in the AE RMS appears to accelerate once the speed 

reaches 30 rpm. Furthermore, it was noticed that for the defect-free bearing (ND), 

the rotational speed has less influence on the AE RMS than for the defective 

cases. This because for the latter cases, the transient elastic waves (AE) are 

generated by the interaction of the bearing rollers with the inner and outer races, 

and also from the impingement of the rollers on the seeded defect in the outer 

race. While in the ND case, AE is generated only from the first source. 

However, the AE RMS value appears to increase only very slightly with an 

increase in load, save for the no-fault case (ND) and fault D1. Nevertheless, even 

here the increase was not shown to be statistically significant. 

The change in RMS values of the AE signals with a gradual increase in the size 

of the outer race defect at 80 rpm for three load conditions is presented in Figure 

5.2. The increase of the defect size started with a point defect (D1), followed by 

line defect (D2) and then the defect width and length were increased (D3, D4, 

D5), see Table 4.1. The incremental values (IR - the ratio of the measured value 

relative to that measured for ND, using Equation (5.1)) for the measured AE RMS 

values for each of the five defective cases was calculated at 80 rpm and 

presented in Table 5.1. This incremental value is used to clarify the influence of 

the defect existence and the defect size, in each case, on the measured 

parameter.   

Furthermore, Figure 5.2 and  

Table 5.1 were repeated at 30, 50, and 100 rpm and are presented in Appendix 

B. This was done to demonstrate that the same trends existed for other low 

speeds. 

Incremental value, IR =  
𝑃𝐷𝑖

𝑃𝑅
……………..……………………………….. (5.1) 

Where:  

𝐷𝑖: is defective case i, ( = 1, 2 ... 5) 

𝑃𝐷𝑖
: Parameter value for the 𝐷𝑖 case 
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𝑃𝑅: Parameter value for the ND case (healthy condition)   

 

Figure 5.2: AE RMS for outer bearing race for healthy and five fault conditions, at 

80 rpm for three loads 

From Figure 5.2, it can be seen that the AE RMS for fault D1 was significantly 

higher than the AE RMS for the healthy condition and that the AE RMS increases 

with increase in defect size and for all defective cases.  

 

Table 5.1: RMS IR values for five bearings with five fault conditions on the outer 

race, at 80 rpm for three loads 

Fault Defect 

Dimensions 

(mm) 

0 kN 2.5 kN 3.4 kN 

D1 Dent (D = 0.5) 1.43 1.35 1.31 

D2 2.5 X 0.9  1.47 1.38 1.39 

D3 6.0 X 0.9 1.67 1.49 1.42 

D4 6.0 X 3.0 1.67 1.50 1.43 

D5 12.0 X 6.0 1.89 1.73 1.62 
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The increases in the IR for AE RMS are not uniform because the increase in size 

when going from one fault to the next was not uniform, see  

Table 5.1. However, between D3 and D4 it did remain almost constant, probably 

because of the defect length, in these two cases, was the same while the width 

is increased. These remarks also hold true for the other low speeds tested, see 

Appendix B. 

In summary: These observations confirmed a strong correlation between AE 

RMS and shaft speed but failed to show any significant relation between AE RMS 

and load. This confirms the results of He et al. [23] and others [21,53,128,129], 

however Al-Ghamdi et al. [19] did mention a significant influence of the load on 

the AE RMS value. This could due to different load conditions. 

Physically, AE signals are released due to deformation or damage within or on 

the surface of the material affected, and a constant load (once applied) has very 

little influence on the deformation mechanism of material and AE generation [23]. 

Hence, a constant load has a little influence on AE RMS. However, increasing 

rotational speed will increase the impact frequency and strength of the impact at 

the defect point, causing the AE RMS to increase. 

It is concluded that AE RMS could be a good indicator to detect the initiation and 

propagation of outer race defects, which agrees with [19,22]. An explanation for 

this is that when the defect size is tiny the rolling element can roll easily over the 

defect with little obstruction or disturbance to its rolling motion. However, as the 

defect size increases, there comes a moment when the edge of the defect 

interferes with the motion of the rolling element to the extent that there is a 

sufficient change in momentum to register as an impact that can be detected by 

the AE sensor.  

5.3 Kurtosis Observations 

Another parameter commonly used for diagnosis of bearing defects is kurtosis 

[119]. A fault present in a bearing casing causes a shock pulse to be generated 

every time the roller passes over the fault. Consequently, the fault will produce a 
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periodical impulse which can be detected, and which can excite structural 

resonances in the bearing or the machine [150,151]. 

Hence, kurtosis - which is a measure of the peakiness of a signal - can be used 

as an indicator for defect existence, at least in its early stages. At high-speed 

applications, it has been observed that kurtosis is not sensitive to variations in 

speed and load [114]. However, it is essential to investigate if this measure can 

be useful at low speeds. The variation of AE kurtosis with speed and load for all 

six test runs (one healthy and five with faults at the outer race, and for three loads) 

is shown in Figure 5.3. 

 

 

 

 

Figure 5.3: AE kurtosis as a function of shaft speed with three loads for a healthy 

bearing and five bearings with faults on the outer race 
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Figure 5.3 shows that AE RMS from the bearing without defects (ND) has a 

kurtosis value of close to 3 (as would be found for a Gaussian distribution) or 

slightly higher due to the presence of noise. This observation is in agreement with 

many other studies [19,114,119] 

However, once the defect exists, and especially above about 30 rpm, the number 

of periodic impulses with larger amplitude increases and the AE kurtosis 

increases greatly. Nevertheless, in Figure 5.3, D5, for instance, with the 3.4 kN 

load and about 80 rpm, it can be seen that with further increases in shaft rotational 

speed the AE kurtosis ceases to increase as the system transfers from one 

Gaussian distribution to another and kurtosis starts to decrease. While, at low 

speeds (lower than 30 rpm) of all faulty cases, kurtosis value is relatively close to 

the Gaussian distribution value. However, no obvious influence of the load on the 

AE kurtosis can be noticed in Figure 5.3. Thus applying a constant load does not 

change the system’s state. 

Figure 5.4 present the change in the AE kurtosis with a change in the size of the 

outer race defect for the three load conditions, at 80 rpm. The incremental value 

of each defective condition related to the ND was calculated using Equation (5.1) 

and listed in Table 5.2. 

 

Figure 5.4: AE Kurtosis for outer bearing race for healthy and five fault 

conditions, at 80 rpm for three loads 
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From Figure 5.4, the AE kurtosis for ND was between 3.3 and 4 for all loads which 

indicated the Gaussian nature of the AE signal. Although once the defect exists, 

the AE kurtosis increases then it decreases again till D4 which after the AE 

kurtosis rose again. 

From Table 5.2, for 80 rpm, for fault D1 at all three loads, the IR for the kurtosis 

increased to between 2.02 and 5.44 which indicates that the signal became very 

much peakier. For fault D2, the kurtosis IR increased (except at 2.5 kN), while for 

faults D3 and D4, even as the fault size increased, the kurtosis IR generally (with 

two obvious exceptions) fell, that is their peakedness reduced. However, a further 

increase in defect size (D5) led to a substantial increase in kurtosis IR. These 

observations also hold true for the other low speeds (30, 50, and 100 rpm) tested 

see Figure B.2 and Table B.2 in Appendix B. 

 

Table 5.2: Kurtosis IR values for five bearings with five fault conditions on the 

outer race, at 80 rpm for three loads 

Fault Defect 

Dimensions 

(mm) 

0 kN 2.5 kN 3.4 kN 

D1 Dent (D = 0.5) 2.96 5.44 2.02 

D2 2.5 X 0.9  5.38 0.93 2.66 

D3 6.0 X 0.9 1.94 2.12 1.38 

D4 6.0 X 3.0 1.32 2.83 1.75 

D5 12.0 X 6.0 27.64 35.73 56.10 

 

Given that the AE kurtosis value for fault D1 (minimum size fault) is significantly 

larger than for ND (except at 10 and 20 rpm). It can be stated that for shaft speeds 

of 30 rpm AE kurtosis is a good indicator of the first stage of a defect. However, 
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it is not sensitive to the subsequent defect growth as it produces a continuous, 

not impulsive, signal as the first impulse does not terminate before the second 

one is produced which cause kurtosis to decrease again. This is consistent with 

observations made at moderate speeds [23,119].  

To summarise: once the defect exists in the bearing, the AE kurtosis is strongly 

related to rotational speed but is widely independent of load. 

By using a physical description of Kurtosis, some insight can be drawn from 

Figure 5.4. When the defect first emerges, periodic impulses will be generated, 

increasing the AE kurtosis level. However, it is accepted that if the fault is severe 

enough and increases sufficiently in size, the signal will lose its peakiness, and 

the value of the kurtosis will decrease and eventually stop being useful as a 

measure of the presence of a fault [152]. 

5.4 Amplitude Observations 

As defined in Section 2.4.6.1, the amplitude of the AE pulse is the largest peak 

voltage achieved by the waveform of a signal from an emission event. It is 

expressed in decibels (dB), see Equation (5.2). The amplitude will depend on the 

particular mechanism generating the AE signal, the transmission path, and the 

test conditions including the response characteristics of the sensor [23]. 

Figure 5.5, presents the measured AE amplitude as a function of shaft speed for 

the three loads, for a healthy bearing and five bearings with faults on the outer 

race.  

 

 

 

 

 

𝑑𝐵 = 20 log (
𝑉𝑚𝑎𝑥

1𝜇−𝑣𝑜𝑙𝑡
)……………..……………..……………..…………… (5.2) 
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Figure 5.5: AE Amplitude as a function of shaft speed with three loads for a 

healthy bearing and five bearings with faults on the outer race 

Figure 5.5, shows a strong correlation between AE amplitude and shaft rotational 

speed when a defect exists in the bearing. However, for the defect-free bearing 

(ND), the shaft rotational speed has little effect on the AE amplitude, even when 

a load is applied. 

From Figure 5.5 it is noticeable that AE amplitude not influenced by the load 

increasing at ND and D1. However, for the other cases, AE amplitude increases 

with increasing the load from zero load to the 2.5 kN and then decreased at 3.4 

kN. Therefore, it can state that AE amplitude has no apparent trend with load. 
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The effect of changing the size of the outer race defect on AE amplitude is shown 

in Figure 5.6, at a shaft speed of 80 rpm. The IR values, calculated using Equation 

(5.1), are shown in Table 5.3. 

 

Figure 5.6: AE Amplitude at shaft speed of 80 rpm with three loads for a healthy 

bearing and five bearings with faults on the outer race 

From Figure 5.6 and Table 5.3, it is seen that the AE amplitude, at a given load, 

initially increases with defect size, reaches a maximum at D2 (3.4 kN) or D3 (0 

and 2.5 kN), after which it decreases. These results mean that AE amplitude will 

increase noticeably when a defect emerges in the outer race of the bearing. 

However, once the defect already exists, the AE amplitude might even decrease 

as defect size increases and so cannot be used to identify the size and extent of 

the defect. This remark also holds true for the other low speeds tested, see 

Section Appendix B. 

Furthermore, from Table 5.3, it is observed that AE amplitude remain almost 

constant between D3 and D4, which again probably because of the defect length. 

To better relate defect size with AE amplitude and RMS further experiments will 

be reported in Chapter 8 regarding fixed width and variable length and vice versa. 

 

 

0

10

20

30

40

50

60

70

80

90

ND D1 D2 D3 D4 D5

A
m

p
lit

u
d

e 
(d

B
)

Defect

80 RPM 0 KN

2.5 KN

3.4 KN



 

88 

Table 5.3: AE amplitude IR value at shaft speed of 80 rpm with three loads for five 

bearings with several fault conditions on the outer race 

Fault Defect 

Dimensions 

(mm) 

0 kN 2.5 kN 3.4 kN 

D1 Dent (D = 0.5) 1.20 1.13 1.09 

D2 2.5 X 0.9  1.18 1.25 1.18 

D3 6.0 X 0.9 1.26 1.37 1.14 

D4 6.0 X 3.0 1.26 1.36 1.14 

D5 12.0 X 6.0 1.11 1.24 1.10 

 

In summary: If there is no defect in the bearing, then the AE amplitude is not 

influenced obviously by varying shaft rotational speed and/or load. Once a defect 

has been seeded into the bearing, the AE amplitude is affected by rotational 

speed, but not by the applied load. These remarks support the observations of 

[23,53,128,129].  

This again suggests that as the applied load has little influence on the 

deformation mechanism generating the AE signal, then it will have little influence 

on the AE amplitude. However, increasing shaft rotational speed will increase the 

impact strength and the impact frequency at the defect point, thus causing an 

increase in the AE signal amplitude. Furthermore, defect generation changes the 

deformation mechanism in the defect area. However, such deformation of the 

defect area is not influenced by the defect size obviously. This explains the 

reason of the insensitivity of the AE amplitude to the defect size. 
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5.5 AE Counts Observations 

As shown in Figure 2.5 in section 2.4.6.1, the AE counts is the number of times 

the amplitude of the signal exceeds a pre-set threshold level. Thus the AE counts 

reflects the AE activity level. Unfortunately, AE counts are easily influenced by 

the test conditions, such as the geometrical shape of the specimen, the 

characteristics and mounting condition of the transducer, and the performance of 

the amplifier and the filter, so care must be taken to maintain these as constant 

as possible. Figure 5.7  shows the comparison of AE counts for the healthy 

bearing and five faulty bearings for three applied loads as a function of shaft 

rotational speed.  
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Figure 5.7: AE counts as a function of shaft speed with three loads for a healthy 

bearing and five bearings with faults on the outer race 
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Furthermore, Figure 5.7 shows that, for ND and D1, the AE count is not influenced 

by the increasing load. However, with D2, it is noticeable that as the load 

0

50

100

150

200

250

300

350

10 20 30 40 50 60 70 80 90 100

A
E 

C
o

u
n

ts

Shaft speed (rpm)

ND
0 KN
2.5 KN
3.4 KN

0

50

100

150

200

250

300

350

10 20 30 40 50 60 70 80 90 100

A
E 

C
o

u
n

ts

Shaft speed (rpm)

D1
0 KN
2.5 KN
3.4 KN

0

50

100

150

200

250

300

350

10 20 30 40 50 60 70 80 90 100

A
E 

C
o

u
n

ts

Shaft speed (rpm)

D2
0 KN
2.5 KN
3.4 KN

0

50

100

150

200

250

300

350

10 20 30 40 50 60 70 80 90 100

A
E 

C
o

u
n

ts

Shaft speed (rpm)

D3
0 KN
2.5 KN
3.4 KN

0

50

100

150

200

250

300

350

10 20 30 40 50 60 70 80 90 100

A
E 

C
o

u
n

ts

Shaft speed (rpm)

D4
0 KN
2.5 KN
3.4 KN

0

50

100

150

200

250

300

350

10 20 30 40 50 60 70 80 90 100

A
E 

C
o

u
n

ts

Shaft speed (rpm)

D5
0 KN
2.5 KN
3.4 KN



 

91 

increased, the AE counts increased. The same phenomenon was observed with 

D3, D4 and D5 when the load was increased from zero to 2.5 kN, however, at 3.4 

kN, the AE count decreased to a value lower than for the other load conditions. 

Thus, AE count does not have an obvious trend with the load. 

The number of AE counts for the five outer race defects and three load conditions 

at 80 rpm is presented in Figure 5.8, and the IR values are listed in Table 5.4. 

The figure shows that at 80 rpm, the AE counts increased with the defect size 

from D1 to D3, after which the AE counts decreased. From the table, it is seen 

that the AE IR values for all defective cases were greater than one, which means 

greater than for the healthy bearing. However, these IR values do not have any 

noticeable trend with increasing defect sizes. 

 

Figure 5.8: AE counts at shaft speed of 80 rpm with three loads for a healthy 

bearing and five bearings with faults on the outer race 
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Table 5.4: AE counts IR value at shaft speed of 80 rpm with three loads for five 

bearings with several fault conditions on the outer race 

Fault Defect 

Dimensions 

(mm) 

0 kN 2.5 kN 3.4 kN 

D1 Dent (D = 0.5) 1.92 1.94 1.68 

D2 2.5 X 0.9  2.06 2.44 2.44 

D3 6.0 X 0.9 4.24 4.11 3.33 

D4 6.0 X 3.0 4.02 3.87 3.26 

D5 12.0 X 6.0 1.41 2.04 1.64 

 

In summary: AE counts are not sensitive to varying load applied to the bearing, 

but generally increase with rotational speed. This generally agrees with the 

findings of [23,114], though other studies have found that AE counts are sensitive 

to the load [19,153]. 

Furthermore, from above observations, it can be said that the AE counts is 

sensitive to the defect’s existence but do not provide a clear and consistent trend 

with defect size. This finding is in agreement with Mba [153], of non-sensitivity of 

the AE counts to the defect size at moderate speeds. Although in [23], it was 

found that at moderate speeds, AE counts were not effective in identifying 

incipient defects. Likewise, the same AE counts observations found for the other 

low speeds, are presented in Figure B.4 and Table B.4 in Appendix B. 

An explanation for these observations may be that AE counts reflect the activity 

level of the AE source, and the activity is mainly determined by the properties of 

the material, the defect condition, and the manner of excitation. The load does 

not directly affect these factors, especially at low speeds and so does not 

significantly affect AE source activity. However, increasing shaft rotational speed 
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will increase the frequency of excitation and strength of the impact between the 

rollers and the defect and, hence, will meaningfully increase the AE counts. 

Furthermore, the defect generation changes the deformation mechanism of the 

defect area, but this deformation was not influenced by the visible defect size at 

low speeds.  

5.6 Closing Remark 

The results show the applicability of AE techniques to detect defect initiation and 

propagation on the bearing outer race at low speeds. Table 5.5 summarises the 

relation and sensitivity of the parameters to the various conditions (load, shaft 

speed, and defect size) within low speeds range.  

 

Table 5.5: Summary of AE parameter sensitivity to various conditions at outer race 

of low-speed bearing 

Condition RMS Kurtosis Amplitude Counts 

Speed (greatly)  (when defect 

exists) then  

(when defect 

exists) 

(greatly) 

Load - - - - 

Defect size  (greatly) (when defect 

emerges) then 

(when defect 

emerges) 

then 

(when defect 

emerges) 

then 

 

From the outer race outcomes, it is concluded that the shaft rotational speed has 

a strong influence on the listed AE parameters. However, they are entirely 

independent of the load. Moreover, the defect size has some impact on the AE 

parameters, but of the parameters examined only RMS is sensitive to defect size. 

Nevertheless, all the mentioned parameter are sensitive to the defect existence 

on the outer race.  
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To demonstrate the applicability of AE for monitoring bearing conditions, a 

parallel investigation for the inner race will be described in Chapter 6. 
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Chapter Six 

6 Inner Race Fault Diagnostics 

6.1 Introduction 

In the literature, it is reported that around 37.5% of bearings failure is due to inner 

race deterioration [141]. Thus, it is necessary to examine the applicability of AE 

time domain analysis to monitor the conditions of the inner race. This chapter 

does that for low speeds. 

As in Chapter 5, this chapter investigates the two points: 

1. The influence of speed and load on the statistical parameters for low 

speeds (10-100 rpm) 

2. The applicability of the statistical parameters to detect defect initiation and 

propagation at the inner race (i.e. sensitivity to defect size). 

Again, as in Chapter 5, the results demonstrate the usefulness of AE to monitor 

fault initiation and propagation in the inner race of bearing rotates at low speeds. 

6.2 RMS Observations 

Figure 6.1 shows AE RMS as a function of shaft speed and three loads for a 

healthy bearing (ND) and bearings with five defects of increasing size at the inner 

race, from D1 to D5 as described in Table 4.1 and Figure 4.17. 
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Figure 6.1: AE RMS as a function of shaft speed with three loads for a healthy 

bearing and five bearings with faults on the inner race 

From Figure 6.1, for all test conditions, it is clear that the AE RMS value increases 

with increasing shaft rotational speed in all cases. However, it can state that the 

load has no obvious influence on the AE RMS which is in agreement with the 

finding of Section 5.2. 
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the defect width and length (D3, D4, D5) were increased as done in Chapter 5 for 
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the outer race, see Table 4.1. The IR value of the AE RMS values for the five 

defective cases relative to that measured for ND is presented in Table 6.1. 

 

Figure 6.2: AE RMS for inner bearing race for healthy and five fault conditions, at 

80 rpm for three loads 

From Figure 6.2 it is seen that at 80 rpm for all defective cases, the AE RMS was 

higher than the value obtained for ND. The same observation found for the other 

test speeds as presented in Figure C.1 in Appendix C. It also appears from Figure 

6.2 that at this speed the AE RMS level increased with a load for all the defective 

cases except for ND and D5. However, this observation does not hold true for the 

other low speeds tested, see Figure C.1. Hence, it can state that AE RMS does 

not have a clear trend with load varying. 

Furthermore, Table 6.1 shows that, as the defect size increased, the IR for AE 

RMS increased but not uniformly as the increase in size when going from one 

fault to the next was not uniform. However, between D3 and D4 it did remain 

almost constant, probably because of the defect length, as mentioned previously 

in Section 5.2. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ND D1 D2 D3 D4 D5

A
E 

R
M

S 
(m

V
)

Defect

80 RPM 0 KN

2.5 KN

3.4 KN



 

98 

Table 6.1: RMS IR values for five bearings with five fault conditions at the inner 

race, at 80 rpm for three loads 

Fault Defect 

Dimensions 

(mm) 

0 kN 2.5 kN 3.4 kN 

D1 Dent (D = 0.5) 1.11 1.26 1.37 

D2 2.5 X 0.9  1.26 1.36 1.49 

D3 6.0 X 0.9 1.28 1.39 1.51 

D4 6.0 X 3.0 1.32 1.41 1.52 

D5 12.0 X 6.0 1.47 1.42 1.53 

 

To summarise the RMS outcomes, there is a strong correlation between the shaft 

speed and AE RMS, which is entirely independent of the load. This statement 

supports the observations of [12] for inner race defects for bearings rotating in 

the moderate speed range. It is concluded that AE RMS is a good indicator of 

defect initiation and propagation of the inner race.  

6.3 Kurtosis Observations 

Figure 6.3 presents kurtosis values of AE signals under various conditions (speed 

and load) for a defect free bearing (ND) and five inner race defective bearings 

with increasing size of the defect. 
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Figure 6.3: AE kurtosis as a function of shaft speed with three loads for a healthy 

bearing and five bearings with faults on the inner race 

Figure 6.3 shows that AE kurtosis at both ND and D1 is close to 3 (or slightly 

higher due to the presence of some noise) which indicates the Gaussian nature 

of the signal captured. Also for ND and D1 bearing speed has little influence on 

the AE kurtosis, which is the same as found for all fault cases below about 30 

rpm. Above 30 rpm there is an increase in the AE kurtosis indicating the presence 

of periodic pulses within the AE signal. However, with further increases in rotating 

speed, more and more periodic impulse are produced within the captured AE 

signal, and the AE kurtosis decreases as shown in D3 to D5. 

Conversely, the load has little influence on the AE kurtosis for ND, D1, and D2. 

The same observation was correct for all the remaining cases for speeds lower 
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than 40 rpm. However, above 40 rpm, this behaviour changed for D3 and D4 the 

AE kurtosis increased with increasing load from zero to 2.5 kN and decreased 

again at 3.4 kN. The reverse observation was found for D5. Hence, AE kurtosis 

has no apparent trend with load, and thus, for inner race defects, AE kurtosis is 

not sensitive to load. 

The kurtosis for the AE signals with defect size at 80 rpm and three loads are 

compared in Figure 6.4. The IR values of the AE and vibration kurtosis are 

presented in Table 6.2. 

  

Figure 6.4: AE Kurtosis for inner bearing race for healthy and five fault 

conditions, at 80 rpm for three loads 

 

It can be observed from Figure 6.4 and Table 6.2 that for D1 there is no obvious 

increase in the AE kurtosis with respect to the healthy case, and the value was 

close to 3 and 4 which indicated the Gaussian nature of the signal. Once the 

defect had grown to the size of D2, AE kurtosis increased significantly, indicating 

the existence of a defect. The AE kurtosis decreased again for D3 after which it 

generally increased at D4 followed by a reduction at D5.  
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Table 6.2: Kurtosis IR values for five bearings with five fault conditions at the inner 

race, at 80 rpm for three loads 

Fault Defect 

Dimensions 

(mm) 

0 kN 2.5 kN 3.4 kN 

D1 Dent (D = 0.5) 1.01 1.01 1.02 

D2 2.5 X 0.9  1.26 1.35 1.48 

D3 6.0 X 0.9 1.11 1.28 1.31 

D4 6.0 X 3.0 1.45 1.84 1.24 

D5 12.0 X 6.0 1.19 1.35 1.24 

 

To summarise kurtosis outcomes of the bearing, there is no significant increase 

in AE kurtosis going from ND to D1, though once the defect reaches the size of 

D2, the AE kurtosis increases with increase in shaft rotational speed, regardless 

of the load. Thus, it can be stated that AE kurtosis is sensitive to the existence of 

a fault on the inner race once it reaches a specific size but not at the incipient 

stage.  

6.4 Amplitude Observations 

Figure 6.5 shows measured AE amplitude as a function of shaft speed with three 

loads for a healthy bearing and five bearings with faults on the inner race. 
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.  

 

 

Figure 6.5: AE Amplitude as a function of shaft speed with three loads for a 

healthy bearing and five bearings with faults on the inner race 

 

Figure 6.5, shows that for the ND, healthy bearing, the rotational speed has no 

significant influence on AE amplitude. However, once a defect was seeded into 

the inner race, the AE amplitude increased with increase in rotating speed. 

Furthermore, Figure 6.5 shows that the load, has no significant influence on the 

AE amplitude, except in some conditions for D3 and D4 where there are slight 

differences. Thus, there is no reason to regard these as due to increasing load 

alone. 
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The influence of changing inner race defect size on AE amplitude is shown in 

Figure 6.6, and the incremental values are given in Table 6.3. 

 

Figure 6.6: AE Amplitude at shaft speed of 80 rpm with three loads for a healthy 

bearing and five bearings with faults on the inner race 

 

Table 6.3: AE amplitude IR values for five bearings with five fault conditions at the 

inner race, at 80 rpm for three loads 

Fault Defect 

Dimensions 

(mm) 

0 kN 2.5 kN 3.4 kN 

D1 Dent (D = 0.5) 1.14 1.25 1.24 

D2 2.5 X 0.9  1.16 1.15 1.28 

D3 6.0 X 0.9 1.50 1.42 1.58 

D4 6.0 X 3.0 1.20 1.34 1.53 

D5 12.0 X 6.0 1.35 1.39 1.45 
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From Figure 6.6 and Table 6.3, it is seen that the AE amplitude initially increases 

with the initiation of the defect and continues to increase with defect size till it 

reaches D3 after which it decreases and then reverts to increasing above that 

(save for D2 at 2.5 kN load). These results strongly suggest that the AE amplitude 

increases noticeably with the emergence of a defect in the inner race of the 

bearing but, that once a defect exists, AE amplitude could decrease with increase 

in defect size and so cannot be used to identify the extent of a defect. The same 

observations found for other low speeds as presented in Figure C.3 and Table 

C.3. 

In summary, for the no defect case, the AE amplitude is not significantly 

influenced by either increase in shaft speed or load. However, once a defect 

exists in the bearing inner race, the AE amplitude increases with rotational speed, 

irrespective of the investigated load. Moreover, AE amplitude increased 

noticeably when the defect first emerges in the bearing inner race, but when the 

defect already exists, the AE amplitude is not sensitive to defect size. Thus, AE 

amplitude may be used to detect an incipient fault but not the size and extent of 

an established defect on the inner race.  

6.5 AE Counts Observations 

Figure 6.7 illustrates measured AE counts as a function of shaft speed with three 

loads for a healthy bearing and five bearings with faults on the inner race. 
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Figure 6.7: AE counts as a function of shaft speed with three loads for a healthy 

bearing and five bearings with faults on the inner race 

From Figure 6.7 it can be seen that for ND, D1, and D2, the AE counts increased 

with increasing rotational speed. However, this increase was slightly less 

noticeable than for the other defective cases. 

Furthermore, for plots ND, D1, and D2 there is no clearly discernible and 

consistent trend for AE counts against the load. Despite the apparently 

wide variety of AE counts with the load for D3, D4 and D5, no clear trend was 

discerned. 
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The influence of the inner race defect size on the AE counts is shown in Figure 

6.8, for a shaft speed of 80 rpm. The corresponding IR values are listed in Table 

6.4.  

 

Figure 6.8: AE counts AE counts at shaft speed of 80 rpm with three loads for a 

healthy bearing and five bearings with faults on the inner race 

 

Table 6.4: AE counts IR value at shaft speed of 80 rpm with three loads for five 

bearings with several fault conditions on the inner race 

Fault Defect 

Dimensions 

(mm) 

0 kN 2.5 kN 3.4 kN 

D1 Dent (D = 0.5) 0.99 1.07 1.02 

D2 2.5 X 0.9  1.06 1.53 1.28 

D3 6.0 X 0.9 2.76 2.40 2.42 

D4 6.0 X 3.0 1.74 1.99 2.21 

D5 12.0 X 6.0 1.97 2.21 1.67 
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From Figure 6.8 and Table 6.4, it is noted that the AE counts do not differ 

sufficiently from ND to capture defect initiation in the inner race until it reaches 

the size of the D2 fault when the AE count increases significantly for loads of 2.5 

and 3.4 kN. It then increased further as the defect raised to D3, after which it fell 

back and then increased. These observations also hold true for the other tested 

speeds as presented in Appendix C. 

In summary, the AE counts increased with shaft speed for ND and all defects. 

However, only for defects of the size of D2, or bigger, were the AE counts 

substantially influenced by the rotation speed. Thus, it can be stated that AE 

counts were susceptible to the existence of the defect when the defect reached 

the D2 size but not for D1, which represents fault initiation. Therefore, it can 

conclude that AE counts was not sufficiently sensitive or consistent to defect 

initiation and propagation at the inner race. This could be linked to the signal 

attenuation as it travels from the inner race to the AE sensor. Besides, for all 

cases, AE count was not sensitive to changes in the load applied to the bearing.  

6.6 Closing Remark 

This chapter assessed the applicability of AE techniques to monitor defect 

initiation and propagation on the inner race of a bearing rotating at low speeds. 

Table 6.5 presents the findings that AE measurement can detect a fault when it 

first emerges, but there are limitations on the sensitivity to the fault size.  
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Table 6.5: Summary of AE parameter sensitivity to various conditions at inner race 

of a low-speed bearing 

Condition RMS Kurtosis Amplitude Counts 

Speed (greatly)  (when defect 

propagated to 

D2) then  

(when defect 

exists) 

(greatly) 

Load - - - - 

Defect size  (slightly) (when defect 

propagated to 

D2) then 

(when defect 

emerges) 

then 

(when defect 

propagated to 

D2) then 

 

For faults on the inner race, the shaft rotational speed has a strong influence on 

the listed AE parameters. However, they are entirely independent of the load. 

Moreover, while AE kurtosis and counts cannot detect the existence of an inner 

race fault in its early stages, AE amplitude and RMS can detect the inner race 

faults at early stages. However, once established only AE RMS is sensitive to 

defect size.  

The next chapter will compare the sensitivity of the AE parameters for monitoring 

the conditions of the outer and inner races of low speed bearings. 
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Chapter Seven 

7 Outer and Inner Race Comparison 

7.1 Introduction 

Chapters 5 and 6 have demonstrated the ability of AE to monitor the condition of 

bearings rotating at low speeds. This chapter compares the outcomes reported 

from Chapters 5 and 6 to find the most suitable technique to monitor both races 

simultaneously. Furthermore, because Chapters 5 and 6 showed that the 

statistical parameters used were not sensitive to the load, this chapter will only 

compare: 

1. The influence of speed on the statistical parameters for low speeds 

(10-100 rpm). 

2. The sensitivity of the statistical parameters to detect defect initiation 

and propagation (i.e. defect size). 

This chapter confirms that AE measures are suitable for the CM of both outer and 

inner races of bearing rotates at low speeds. 

7.2 RMS Observations 

Figure 7.1 shows the AE RMS values for three identical bearings; one healthy, 

the second with the D1 fault (which represents fault initiation) seeded on the inner 

race, and the third bearing with the D1 fault seeded on the outer race. AE RMS 

values as a function of speed for speeds in the range 10 to 100 rpm and a load 

of 3.4 kN and the other tested loads shown in Appendix D. 
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Figure 7.1: Comparison of AE RMS as a function of shaft speed at 3.4 kN load, 

for a healthy bearing and two bearings with D1 fault on the inner and outer races 

Figure 7.1 shows that for all running speeds the AE RMS for the defective 

bearings is greater than for the healthy bearing. Also, the AE RMS for the outer 

race defect is higher than for the inner race defect. This is attributed to the shorter 

transmission path of the AE signal from the outer race to the AE sensor, and less 

signal interference. 

For all cases, the AE RMS increased with the increase in shaft speed which 

confirmed the sensitivity of the AE RMS to the speed variation. 

The consequence of changing defect size on inner and outer races on the AE 

RMS, for a shaft speed of 80 rpm and load 3.4 kN, is shown in Figure 7.2 and 

listed in Table 7.1 for the three load conditions. 
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Figure 7.2: AE RMS for six inner and outer races bearing conditions, at 80 rpm 

and 3.4 kN load 

It can be observed from Figure 7.2 and Table 7.1 that for both defective bearings, 

the AE RMS increased as the defect is grown. However, the incremental increase 

was more evident for the defect in the outer race. These observations also hold 

true for the other loads tested, see Appendix D. 

 

Table 7.1: AE RMS value for five fault conditions at both inner and outer races, at 

80 rpm and for three loads  

Fault Defect 

Dimensions 

(mm) 

Inner Race Outer Race 

0 kN 2.5 kN 3.4 kN 0 kN 2.5 kN 3.4 kN 

D1 Dent (D = 0.5) 0.474 0.468 0.466 0.474 0.468 0.466 

D2 2.5 X 0.9  0.528 0.589 0.639 0.592 0.650 0.702 

D3 6.0 X 0.9 0.598 0.638 0.696 0.608 0.663 0.745 

D4 6.0 X 3.0 0.609 0.650 0.703 0.689 0.714 0.761 

D5 12.0 X 6.0 0.627 0.659 0.708 0.691 0.723 0.765 
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Thus, AE RMS is a suitable parameter for monitoring the faults on both inner and 

outer races of a bearing rotating at low speed, but that the AE RMS for the outer 

race may be more reliable than for the inner race due to the lower attenuation of 

the signal. 

7.3 Kurtosis Observations 

Figure 7.3 shows the AE kurtosis values for three identical bearings; one healthy 

bearing, the second bearing with the D1 fault seeded on the inner race, and the 

third bearing with the D1 fault seeded on the outer race. These kurtosis values 

are presented as a function of speed for speeds in the range 10 to 100 rpm and 

a load of 3.4 kN, other loads are shown in Figures D.5 and D.6. 

 

Figure 7.3: Comparison of AE kurtosis as a function of shaft speed at 3.4 kN 

load, for a healthy bearing and two bearings with D1 fault on the inner and outer 

races 

From Figure 7.3, for the outer race defective bearing, the AE kurtosis increases 

with rotational speed over the range of speeds tested. However, it can be seen 

that with an increase in shaft rotational speed above about 80/90 rpm the AE 

kurtosis starts to decrease. This latter phenomenon was likely due to the 

transferring the system from one normal distribution to another normal distribution 

as discussed in Section 5.3. For the inner race defective bearing, the AE kurtosis 

remained close to the healthy bearing values. Thus, it can be said that generally 
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for the outer race, AE kurtosis was obviously influenced by the rotational speed 

from 30 rpm, while not for the inner race case at D1. 

Figure 7.4 shows the sensitivity of the AE kurtosis with an increase in defect size 

at both inner and outer races for shaft speed of 80 rpm and a load of 3.4 kN. 

 

Figure 7.4: AE kurtosis for six inner and outer races bearing conditions, at 80 

rpm and 3.4 kN load 

Figure 7.4, shows that AE kurtosis was able to detect the defect on the outer race 

at the early stage (D1), but did not detect the defect on the inner race until it 

reached the stage of D2. The histogram is fully consistent with the argument that 

AE kurtosis increases in the early stages of a fault, but as the defect developed 

it became less sensitive, decreases then increased again. The same 

observations found for the other loads as presented in Figures E.7 and E.8. 

7.4 Amplitude Observations 

Figure 7.5 shows the AE amplitude as a function of shaft speed for three 

bearings; healthy bearing, bearing with the D1 fault on the inner race, and bearing 

with the D1 fault on the outer race. These amplitude values are for speeds in the 

range 10 to 100 rpm and a load of 3.4 kN. 
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.  

Figure 7.5: Comparison of AE amplitude as a function of shaft speed at 3.4 kN 

load, for a healthy bearing and two bearings with D1 fault on the inner and outer 

races 

Figure 7.5 clearly shows the differences in the AE amplitude between the two 

defective bearings and the healthy bearing. Furthermore, the variation in the AE 

amplitude between the two faulty bearings at each speed is noticeable and is 

believed to be due to attenuation, as described above. Also, it is evident that 

rotational speed has a strong influence on the AE amplitude for both defective 

bearings, while for the healthy bearing, the rotational speed has no significant 

influence on AE amplitude.These observations also hold true for the other loads 

tested as shown in Appendix D. 

The consequence of changing defect size on inner and outer races on the AE 

amplitude, for a shaft speed of 80 rpm and load 3.4 kN, is shown in Figure 7.6. 
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Figure 7.6: AE amplitude for six inner and outer races bearing conditions, at 80 

rpm and 3.4 kN load 

As it indicated in Figure 7.6 that the AE amplitude increased significantly for both 

bearings at fault D1, which shows the applicability of AE amplitude to detect 

defect initiation at both races. For both bearings, AE amplitude increased with 

defect size to a maximum and then decreased. However, for the other tested 

loads, as the defect developed, AE amplitude gives a fluctuating response as 

shown in Figures E.11 and E.12. Hence, this parameter not consistently 

influenced by the defect sizes for either race.  

7.5 AE Counts Observations 

Figure 7.7 shows the AE counts for three identical bearings; healthy bearing, 

bearing with the D1 fault seeded on the inner race, and bearing with the D1 fault 

seeded on the outer race. These AE counts are presented as a function of speed 

for the range 10 to 100 rpm and a load of 3.4 kN. 
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Figure 7.7: Comparison of AE counts as a function of shaft speed at 3.4 kN load, 

for a healthy bearing and two bearings with D1 fault on the inner and outer races 

Figure 7.7 shows a higher number of AE counts for the outer race defective 

bearing than the other two bearings at all speeds. However, for the healthy and 

inner race defective bearing, the number of AE counts were relatively close to 

each other. Furthermore, from Figure 7.7 it can observe that for the three 

bearings, the AE count was significantly influenced by the rotational speed. Thus, 

it is concluded that the AE count is sensitive to the speed variations. 

The consequence of changing defect size on inner and outer races on the AE 

counts, for a shaft speed of 80 rpm and load 3.4 kN, is shown in Figure 7.8 and 

for the other loads in Appendix D. 
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Figure 7.8: AE counts for six inner and outer races bearing conditions, at 80 rpm 

and 3.4 kN load 

From Figure 7.8 it can be seen that, at 80 rpm, the number of AE counts for D1 

in the outer race is significantly different from the value for ND, and the AE counts 

increased with the defect size from D1 to D3, after which the AE count decreased. 

However, the number of AE counts for D1 in the inner race is close to the value 

of ND, then increases from D2 to D3 before decreasing again. The AE counts 

produced by the inner race defective bearing, when tested for other loads, did not 

produce a consistent response; it first decreased and then increased with 

increase in defect size, see Figures E.15 and E.16. Again it is noted, for all defect 

cases, the AE counts at the outer race was greater than the inner race due to 

signal attenuation.  

It is concluded that AE counts is a suitable parameter for the detection of incipient 

faults in the outer race, but not in the case of the inner race as it detects the defect 

only once it has reached the stage of D2. 

7.6 Closing Remark 

It can be concluded that statistical measures of the AE signal are able to monitor 

both inner and outer races of a bearing rotating at low speeds. Furthermore, the 

rotational speed has a strong influence on the AE parameters. Once the defect 
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has been initiated, only AE RMS is sensitive to defect size for both races. Possibly 

more important, the AE parameters successfully detected faults on the outer race 

at the incipient stage, but only AE RMS and AE Amplitude did so with the inner 

race. Table 7.2 sums up the conclusions of this chapter. 

 

Table 7.2: Summary of the AE parameter sensitivity to the incipient fault and fault 

size 

 SENSITIVITY TO THE 

INCIPIENT FAULT 

SENSITIVITY TO THE FAULT 

SIZE 

AE RMS 

INNER 

YES YES 

AE RMS 

OUTER 

YES YES 

KURTOSIS 

INNER 

NO (Until it reaches D2) NO 

KURTOSIS 

OUTER 

YES NO 

AMPLITUDE 

INNER 

YES NO 

AMPLITUDE 

OUTER 

YES NO 

AE COUNTS 

INNER 

NO (Until it reaches  D2) NO 

AE COUNTS 

OUTER 

YES NO 

Next chapter will examine the applicability of the measured AE parameters to 

detect the defect at different locations on the outer race of bearing rotates at low 

speeds. 
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Chapter Eight 

8 Comparison of Defect Location and size 

8.1 Introduction 

This chapter investigates the applicability of AE measurements to detect and 

monitor defects located at different locations on the outer race of low-speed 

bearings and to compare the sensitivity of the AE parameters to speed and load 

variation at these locations.  

Another key issue in bearing diagnostics is to be able to monitor bearing 

deterioration. Here this was achieved by increasing the size of the seeded faults 

in a uniform manner. 

This chapter presents the results of the final programme described in Section 4.3 

for a healthy bearing (ND) and eight defective bearings with faults D6 to D13, as 

described in Table 4.1 and shown in Figure 4.18, seeded into the outer race. 

The results demonstrate the usefulness of AE in monitoring faults at any location, 

in the sense of the fault being in the middle or at the edge of the bearing’s outer 

race. Furthermore, it shows the sensitivity of the AE RMS to defect size, which 

the other measures were not. 

8.2 Defect Location Comparison 

This section reports the experimental monitoring of the condition of three 

bearings. These bearings are one healthy bearing and two bearings each with a 

seeded defect of size 6x3 mm, one with the defect in the centre (D4) and the 

other with the defect on the edge (D12) of the outer race, as shown in Figures 

4.17 and 4.19 (b). 

8.2.1 RMS Observations 

The RMS values of the AE signal under various speeds at zero applied load, and 

for speeds in the range, 30 to 100 rpm are shown in Figure 8.1. These values are 

for a healthy and two defective bearings each with a seeded defect on the outer 
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race; one in the centre (D4) and the other at the edge (D12), as described in 

Section 4.3. 

  

Figure 8.1: AE RMS as a function of shaft speed at zero applied load, for healthy 

and two defective bearings (D4 and D12)  

Figure 8.1 shows that for all running speeds the AE RMS for all bearings 

increases with increasing rotational speed. However, for the healthy bearing, the 

increment in the AE RMS was lower than the other bearings. Also, the AE RMS 

level of the bearing with the D4 fault (seeded at its centre) is greater than for the 

D12 fault (seeded at the edge), save at 100 rpm. This is attributed to the 

transmission path of the AE signal being greater for the D12 defect. Hence the 

attenuation will be greater. The same trends were found in tests performed under 

2.5 kN and 3.4 kN loads, see Figures F.1 and F.2. 

Figure 8.2 shows the AE RMS values for the three bearings at 90 rpm, for three 

load conditions. The incremental value of each defective condition related to the 

ND was calculated using Equation (5.1) and is listed in Table 8.1. 
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Figure 8.2: AE RMS for a healthy bearing and two defective bearings (D4 and 

D12), at 90 rpm under three loads 

Table 8.1: AE RMS IR value for two defective bearings (D4 and D12), for three loads 

Speed 

(rpm) 

D4 Fault (at the centre) D12 Fault (at the edge) 

0 kN 2.5 kN 3.4 kN 0 kN 2.5 kN 3.4 kN 

30 1.19 1.17 1.19 1.16 1.15 1.14 

50 1.48 1.29 1.29 1.26 1.23 1.25 

70 1.74 1.46 1.36 1.49 1.24 1.32 

90 1.76 1.69 1.45 1.65 1.46 1.41 

100 1.86 1.71 1.44 2.04 1.81 1.53 

 

From Figure 8.2 and Table 8.1, it is noticeable that for all conditions, the AE RMS 

value for both defective bearings was greater than for the healthy bearing. Hence, 

it can be stated that AE RMS is able to detect the presence of a 6𝑋3 𝑚𝑚2 defect 

at both locations, which confirms the applicability of this parameter to monitor the 

bearing condition.  
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On the other hand, it is observable from Table 8.1 that load variation does not 

provide any obvious trend on the RMS which confirmed the conclusion in Section 

5.2. 

8.2.2 Kurtosis Observations 

Figure 8.3 shows the kurtosis values for a healthy bearing and two bearings with 

faults D4 and D12 as a function of speed for speeds in the range 30 to 100 rpm, 

under zero applied load. The corresponding results obtained for loads of 2.5 kN 

and 3.4 kN are presented in Appendix F. 

 

Figure 8.3: AE kurtosis as a function of shaft speed at zero applied load, for a 

healthy and two defective bearings (D4 and D12) 

For both defective bearings, the AE kurtosis increased as the rotating speed 

increased (save for D4 at 70 rpm), see Figure 8.3, which confirms the outcomes 

of Section 5.3. Furthermore, for all speeds, the AE kurtosis for the fault at the 

centre of the outer race had the highest value. This observation also holds true 

for the other tested loads tested, see Figures F.3 and F.4. 

Figure 8.4 shows the ability of the AE kurtosis to defect existence of a fault at 

both locations (centre and edge of the outer race) by comparing them with a 

healthy bearing at a shaft speed of 90 rpm for three load conditions. Furthermore, 

the IR value of each defected bearing related to the healthy bearing was 

calculated using Equation (5.1) and is listed in Table 8.2. 
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Figure 8.4: AE kurtosis for a healthy bearing and two defective bearings (D4 and 

D12), at 90 rpm under three loads 

 

Table 8.2: AE kurtosis IR value for two defective bearings (D4 and D12), for three 

loads 

Speed 

(rpm) 

D4 Fault (at the centre) D12 Fault (at the edge) 

0 kN 2.5 kN 3.4 kN 0 kN 2.5 kN 3.4 kN 

30 1.14 1.20 1.10 1.09 1.04 1.15 

50 2.54 2.06 1.57 1.63 1.31 1.28 

70 2.67 1.91 1.68 1.54 1.45 1.25 

90 2.51 4.13 1.71 1.57 3.25 1.63 

100 4.66 18.32 1.92 1.61 3.56 1.92 

 

From Figure 8.4 and Table 8.2, it is shown, for all load conditions, the AE kurtosis 

for the defective bearings was higher than in ND case, which indicated the 

existence of the D4 and D12 defects. However, the AE kurtosis value for the D4 

0

2

4

6

8

10

12

14

16

ND Centre Edge

A
E 

K
u

rt
o

si
s

Fault location

90 RPM
0 kN
2.5 kN
3.4 kN



 

124 

bearing defect at the centre of the outer race was greater than for the D12 bearing 

at all conditions.  

From Table 8.2, it is clear that load variation did effect the kurtosis, but no clear 

trends were discernible. For the D4 fault, the IR fell when increasing the load for 

the speeds 50 and 70 rpm, but increased for the three speeds 30, 90, and 100 

rpm at 2.5 kN, and decreased again in 3.4 kN. For the D12 fault, the same 

variation was observed.  

In summary: it can be stated that AE kurtosis is able to detect the presence of a 

defect at both locations, which confirms the applicability of this parameter to 

detect defects at any locations within the outer race. Furthermore, as confirmation 

of the earlier conclusion in Chapters 5 and 6, AE kurtosis is strongly related to 

rotational speed but is independent of load. 

8.2.3 Amplitude Observations 

Figure 8.5 illustrates the measured AE amplitude as a function of shaft speed 

with zero applied load for a healthy and two defective bearings D4 (at the centre 

of the outer race) and D12 (at the edge). 

 

Figure 8.5: AE Amplitude as a function of shaft speed at zero applied load, for a 

healthy and two defective bearings (D4 and D12) 
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From Figure 8.5, it is noticeable that for all bearings the AE amplitude increased 

as the rotational speed increased, while the incremental increase for the healthy 

bearing was less than the defective bearings, and this shows agreement with the 

results reported in Section 5.4. This assessment also holds true for the other 

loads tested, see Appendix E. 

Figure 8.6 shows the maximum amplitude values for the three bearings at 90 rpm 

for three load conditions and the IR value listed in Table 8.3. 

 

Figure 8.6: AE Amplitude for a healthy bearing and two defective bearings (D4 

and D12), at 90 rpm under three loads 

Table 8.3: AE amplitude IR value for two defective bearings (D4 and D12), for three 

loads 

Speed 

(rpm) 

D4 Fault (at the centre) D12 Fault (at the edge) 

0 kN 2.5 kN 3.4 kN 0 kN 2.5 kN 3.4 kN 

30 1.30 1.44 1.22 1.02 1.03 1.01 

50 1.29 1.52 1.22 1.13 1.16 1.13 

70 1.25 1.38 1.29 1.06 1.11 1.13 

90 1.30 1.43 1.31 1.17 1.24 1.23 

100 1.27 1.43 1.32 1.14 1.26 1.21 
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From Figure 8.6 and Table 8.3, it is clear that the amplitude for both defective 

bearings was greater than for the healthy bearing, which is an indicator of the 

existence of a defect. This was the case for all the load conditions. Furthermore, 

it is shown that at 90 rpm the amplitude for the bearing with a seeded defect at 

the centre of the outer race (D4) is higher than for the D12 defect. This is 

attributed to the transmission path of the AE signal being greater for the D12 

defect, hence it has lower amplitude due to the attenuation.  

On the other hand, from Table 8.3, it can observe that the AE amplitude increased 

as the load increased from zero loads to 2.5 kN. However, it decreased again in 

3.4 kN. This again agreed with the finding of the previous chapters regards the 

non-sensitivity of the amplitude to the load variation at low speeds. 

8.2.4 AE Counts Observations 

The number of counts for the AE signals under various speeds at zero applied 

load is shown in Figure 8.7 for a healthy bearing and two bearings seeded with 

the same size fault; one in the centre (D4) and the other at the edge (D12) of the 

outer race. 

 

Figure 8.7: AE counts as a function of shaft speed at zero applied load, for a 

healthy and two defective bearings (D4 and D12) 
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the bearing with a defect at the centre (D4) of the outer race has a higher value 

than the other. This difference is ascribed to the attenuation suffered by the signal 

generated by the D12 fault. However, for all bearings, the number of AE counts 

increased with increase in rotational speed which also confirms the outcomes 

reported in Section 5.5. 

Figure 8.8 shows the ability of AE counts to detect the fault at either middle or 

edge of the outer race, at a shaft speed of 90 rpm and under three load conditions. 

The IR value for each defective bearing was calculated using Equation (5.1) and 

listed in Table 8.4. 

 

Figure 8.8: AE counts for a healthy bearing and two defective bearings (D4 and 

D12), at 90 rpm under three loads 
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Table 8.4: AE counts IR value for two defective bearings (D4 and D12), for three 

loads 

 

 

For both defects and all three loads, the AE count was higher than for the healthy 

bearing save for D12 at 30 rpm and 2.5 kN. Hence, it can be stated that AE counts 

were able to detect the given fault at both locations which mean this parameter 

can detect faults in any location on the outer race.  

However, the load variation does not show any clear trend with the AE counts as 

it increased in some cases with increasing load, and the reverse in other cases. 

Hence, this observation confirmed that load variation did not affect the AE counts. 

8.3 Defect Size Sensitivity 

This section examines the influence of defect size on the AE parameters. This 

was achieved by successively seeding faults of uniformly increasing size. This 

process has been carried out to confirm the outcomes reported Sections in 5.2 

and 5.4.  

The test sequence began by inserting a line defect of given width, 5.0 mm, and 

length, 3.0 mm (D6), on the edge of the outer race. This was followed by 

incrementally increasing the defect width while maintaining the length constant at 

3.0 mm, see D7-D9 in Table 4.1 and Figure 4.18 (a). Next, a line defect on the 

Speed 

(rpm) 

D4 Fault (at the centre) D12 Fault (at the edge) 

0 kN 2.5 kN 3.4 kN 0 kN 2.5 kN 3.4 kN 

30 5.89 6.59 2.65 1.11 0.96 1.34 

50 3.26 5.78 2.89 1.40 2.26 1.73 

70 3.55 4.09 3.50 1.58 1.89 1.51 

90 3.45 4.41 3.61 1.68 1.89 2.39 

100 3.86 5.55 3.94 1.81 3.04 2.72 
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edge of the outer race of given width 3.0 mm had its length incrementally 

increased, see D10-D13 in Table 4.1 and Figure 4.18 (b).  

Figure 8.9 shows the measured AE RMS values for a healthy bearing and 

bearings with various defect sizes on the outer race at 100 rpm, for three load 

conditions. The IR values, calculated using Equation (5.1), are shown in Table 

8.5.  

 

Figure 8.9: AE RMS for healthy bearing and eight bearings with various fault 

conditions at the outer race, at 100 rpm for three loads 
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Table 8.5: AE RMS IR values for a healthy bearing and eight bearings with various 

fault conditions on the outer race, at 100 rpm for three loads 

Fault Defect (L X W) mm 
 

0 kN 2.5 kN 3.4 kN 

D6 3.0 X 5.0 1.24 1.16 1.06 

D7 3.0 X 7.0 1.51 1.44 1.29 

D8 3.0 X 10.0 1.84 1.47 1.45 

D9 3.0 X 12.2 2.09 1.66 1.53 

D10 2.0 X 3.0 1.29 1.09 1.07 

D11 4.0 X 3.0 1.81 1.67 1.43 

D12 6.0 X 3.0 1.86 1.71 1.44 

D13 8.0 X 3.0 1.94 1.73 1.45 

 

From Figure 8.9 and Table 8.5 it can be seen that the AE RMS for all defective 

bearings was higher than for the healthy bearing. For all defective cases where 

the width of the defect was increased with fixed length, the AE RMS clearly 

increased as the defect width increased, see cases D6 to D9. The same general 

trend was found for defects D10 to D13, where the defect width was fixed at 3.0 

mm, and the length increased. 

However, the incremental increase is more obvious in the first four cases in which 

the defect width increased at a fixed length. This suggests that defect width has 

a greater influence on the AE RMS than defect length.  

Figures 8.10 and 8.11, respectively reveal the sensitivity of AE kurtosis and AE 

counts to various defects for a rotational speed of 100 rpm under three load 

conditions.  
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Figure 8.10: AE kurtosis for healthy bearing and eight bearings with different 

fault conditions at the outer race, at 100 rpm for three loads 

 

Figure 8.11: AE counts for healthy bearing and eight bearings with various fault 

conditions at the outer race, at 100 rpm for three loads  

 

Figure 8.10 shows that the kurtosis value for all defective bearings was higher 

than for the healthy bearings. With an increasing defect width at fixed length (D6-

D9), the AE kurtosis increased then decreased again, the same was true for the 

increasing defect length at a fixed width (D10-D13).  

The same observations can be made of Figure 8.11 for the AE counts. Thus, from 

these two sets of observations, it can be said that both kurtosis and AE counts 

are not sensitive to the defect size. This again confirms the outcomes of Chapters 

5 and 6 of the insensitivity of kurtosis and AE counts to the defect size. 
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Figure 8.12, presents the variation in AE amplitude for three loads at 100 rpm, for 

a healthy bearing and eight bearings with faults of different sizes in the outer race. 

The IR values, calculated using Equation (5.1), are shown in Table 8.6. 

 

Figure 8.12: AE Amplitude for healthy bearing and eight bearings with various 

fault conditions at the outer race, at 100 rpm for three loads 

 

Table 8.6: AE Amplitude IR values for a healthy bearing and several fault 

conditions on the outer race, at 100 rpm for three loads 

Fault Defect Type (L X W) mm 0 kN 2.5 kN 3.4 kN 

D6 3.0 X 5.0 1.04 1.11 1.07 

D7 3.0 X 7.0 1.07 1.13 1.12 

D8 3.0 X 10.0 1.10 1.14 1.19 

D9 3.0 X 12.2 1.13 1.28 1.19 

D10 2.0 X 3.0 1.07 1.15 1.12 

D11 4.0 X 3.0 1.11 1.19 1.14 

D12 6.0 X 3.0 1.18 1.26 1.21 

D13 8.0 X 3.0 1.14 1.24 1.17 
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From Figure 8.12 and Table 8.6, it is shown that for all defective bearings, AE 

amplitude was higher than for the healthy bearing. Furthermore, for the cases of 

fixed length (D6–D9), the AE amplitude increased as the width increased. The 

same observation was true for the cases of fixed width and increasing the length. 

Hence, it can state that the AE amplitude, for the defect sizes used here, 

generally increased with both defect length and width. However, when the defect 

width reaches 8.0 mm (D13), the AE amplitude did decrease slightly, and this last 

observation is taken as confirmation of the conclusion of Chapter 5, of non-

sensitivity of the amplitude to the defect size.  

8.4 Closing Remark 

It can conclude that statistical measures of the AE signal are able to monitor 

defects at both locations (middle and edge) on the outer race of a bearing rotating 

at low speeds, and hence AE is applicable for monitoring the condition of the 

bearing’s outer race.  

Additionally, the measured AE parameters had higher values when the defect 

was seeded in the centre of the outer race, possibly due to the shorter path 

traversed by the signal between source and sensor which gave a lower 

attenuation than when the defect was on the edge of the outer race.  

The defect size did have some impact on the AE parameters investigated, but 

only RMS was sensitive to defect size. This confirms the outcomes of Chapters 

5 and 6. However, RMS is more sensitive to the defect width than length. 
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Chapter Nine 

9 Conclusions and Recommendations for Future Work 

This chapter explains how well this research has met its specified aim and 

objectives, as set out in Section 1.3, and the contributions to knowledge that it 

has made. The major achievements of this research are described briefly and 

related to the original aim and objectives.  

This research project has investigated the use of AE as a viable monitoring 

technique to be used with low speed rotating machinery for defect detection. This 

has included investigating the use of statistical parameters to effectively detect 

incipient faults using AE signals. A series of test were conducted in which different 

defects were seeded into a bearing, and the AE signals monitored. These tests 

were for rotational speeds of between 10 to 100 rpm and three load conditions: 

zero applied load, 2.5 kN and 3.4 kN. 

Chapter 2 reviewed the literature relevant to bearing failure and CM techniques 

for bearings, followed by a review of the application of vibration and AE 

techniques to the monitoring of a bearing’s condition. Chapter 3 critically reviewed 

signal processing techniques and Chapter 4 described the research 

methodology, test rig design, construction and instrumentation, experimental 

procedure, instrument calibration, and data acquisition. With this new test rig, 

Cranfield University expects to be able to study low-speed bearings and develop 

diagnostic techniques. Section 4.3, detailed the faults to be seeded into the 

bearings. 

One objective of the research was to compare the measurements obtained from 

both inner and outer races under similar conditions to check the applicability of 

AE techniques in detecting faults in these parts. This was achieved in Chapters 

5 and 6. 

In Chapter 5, an investigation was made of AE techniques to determine their 

relative efficacy in monitoring bearing conditions. A healthy bearing and bearings 

with defects seeded into the outer race were monitored under set test conditions.  
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It was concluded that the shaft rotational speed has a strong influence on the 

measured AE parameters (AE kurtosis, amplitude, counts and RMS). 

Nevertheless, they were entirely independent of the load which agrees with the 

results of He et al. [23] and others [53,128,129]. However, Al-Ghamdi et al. [19] 

has stated another observation as he mentioned that the load had a significant 

influence on some of the AE parameters such as the RMS. 

All the AE parameters were sensitive to the existence of a defect on the outer 

race. Moreover, the defect size had some impact on the AE parameters, but only 

RMS was consistently sensitive to defect size.  

A parallel investigation for the inner race was carried out in Chapter 6. It was 

concluded that AE techniques are able to monitor defect initiation and 

propagation on the inner race of a bearing rotating at low speeds. This chapter 

showed that as for the outer race the listed AE parameters were strongly 

influenced by the shaft rotational speed, but were entirely independent of the 

load. Furthermore, from the inner race results, it was concluded that AE amplitude 

and RMS, were able to detect the inner race faults at an early stage, while AE 

kurtosis and counts did not. However, once the fault was established only AE 

RMS was consistently sensitive to defect size.  

Chapter 7 analysed the outcomes of Chapters 5 and 6 to find the most suitable 

technique to monitor both races simultaneously. First, Chapter 7 compared only 

AE measures to detect defect existence and, since Chapters 5 and 6 revealed 

that the statistical parameters used were not sensitive to load, this chapter 

investigated only the sensitivity of the AE measures to variation in rotational 

speed. It was concluded that statistical measures of the AE signal are able to 

detect a fault in both inner and outer races of a bearing rotating at low speeds. 

Importantly the AE parameters successfully detected the presence of a fault in 

both outer and inner races at an early stage, except for kurtosis and AE counts 

used with the inner race. However, once the defect had been initiated, only AE 

RMS was sensitive to defect size for both races. Moreover, with increasing shaft 

rotational speed, the AE parameters increased which showed the sensitivity of 

the parameters to the speed variation.  
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Chapter 8 reported the results of two investigations, the first with a healthy 

bearing and two defective bearings at different locations (centre and edge) on the 

outer race. The objective of this investigation was to check the applicability of the 

AE to monitor defect at both locations on bearing rotates at low speeds, ≤100 

rpm.  

The second program was a set of experiments investigating the effects of 

different defect sizes at the outer race of a roller bearing at low speeds. The 

objective of the program was to re-assess and extend the findings of Chapter 5 

by increasing the size of the seeded faults in a uniform manner on the outer race. 

The size of the defects was changed in two ways, in the first the length was held 

constant at 3 mm and the width increased, and in the second the width was held 

constant, and the length increased. The sizes of the defects and the positions on 

the bearing are shown in Table 4.1 and Figure 4.18. 

It was concluded that statistical measures of the AE signal (RMS, kurotsis, 

amplitude, and counts) could detect defects at any location on the outer race of 

a bearing rotating at low speeds. The term “ any location” is used since moving 

the defect from the centre to the edge of the race covers - in principle - all points 

on the outer race. Hence AE is suitable for monitoring the condition of the outer 

race.  

On the other hand, from the second programme it was concluded that the defect 

size has an impact on the AE parameters but, of the parameters examined (AE 

kurtosis, amplitude, counts and RMS), only RMS was sensitive to defect size, 

confirming the results of Chapter 5. However, the RMS value was more 

susceptible to fault width than length.  

In conclusion, this research has investigated several aspects of condition 

monitoring of bearing rotating at low speeds (10 -100 rpm). This research shows 

that the AE technique could be part of an early fault detection system for 

machines whose bearings operate in the low speed range.  
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To conclude the first and most important task of this research program was to 

demonstrate a correlation between AE and defect initiation and propagation in 

low-speed bearings which has been achieved. 

 

Recommendations for Future Work 

The results of the investigation into the use of AE techniques for monitoring of 

bearing at low speeds were encouraging, and it is hoped that future researchers 

will explore its full potential as it is a wide area.  

1. Advanced signal processing techniques  

Advanced signal processing techniques need to be used to analyse the captured 

AE signals to detect a fault more readily in its early stages for bearings rotating 

at low speeds. Furthermore, the application of neural networks should be 

encouraged, and to this end, statistical analysis could be used to provide a 

database to train neural networks for diagnosing bearing condition at low speeds 

and detecting incipient faults under various conditions.  

2. Heavily loaded bearings  

The work could be extended to more heavily loaded bearings as this research 

only covered lightly loaded bearing. Then a comparison between of a heavily and 

lightly loaded bearing could be carried out.  

3. Dynamic speed and load conditions  

Future work could be made more useful by simulating industrial conditions, by 

running the bearing under dynamic speed and load conditions. This would have 

the advantage of providing a reasonable opportunity to show the applicability of 

AE in real life monitoring of bearing conditions.  

4. Bearing roller monitoring  

A similar study could be performed on the AE measurements to improve the 

effectiveness of AE as a means of detecting defects in the rollers of bearing 

rotating at low speeds. 
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5. Natural bearing degradation  

Future work could demonstrate the use of AE measurements to detect, monitor, 

and locate natural degradation, and defect initiation and propagation in bearings 

rotating at low speeds. 

6. Fault prognostics and life estimation at such low speeds range is a critical 

area for future work.  
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APPENDICES 

Appendix A : Waveform Recoding length 

Table A.1: Waveform recording length for the outer race defect 

Speed (rpm) Recording length (sec) 

10 5.94 

20 2.97 

30 1.99 

40 1.49 

50 1.20 

60 1.00 

70 0.86 

80 0.75 

90 0.67 

100 0.60 

Table A.2: Waveform recording length for the inner race defect 

Speed (rpm) Recording length (sec) 

10 4.04 

20 2.03 

30 1.35 

40 1.02 

50 0.82 

60 0.68 

70 0.59 

80 0.51 

90 0.46 

100 0.41 
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Appendix B : Outer Race Fault Data 

B.1 AE RMS Observations 

The RMS values of AE signal under three loads and three speeds (30, 50, and 

100 rpm) are shown in Figure B.1. These values are for a healthy bearing (ND) 

and five defects, D1 to D5, in the outer race, as described in Table 4.1 and shown 

in Figure 4.16.  

 

Figure B.1: AE RMS for outer bearing race for healthy and five fault conditions 

for three loads 

 

The IR values for the measured AE values for each of five defective cases were 

calculated using Equation (5.1) and shown in Table B.1.  

 

 

0

0.2

0.4

0.6

ND D1 D2 D3 D4 D5

A
E 

R
M

S 
(m

V
)

Defect

30 RPM
0 KN
2.5 KN
3.4 KN

0

0.2

0.4

0.6

ND D1 D2 D3 D4 D5

A
E 

R
M

S 
(m

V
)

Defect

50 RPM
0 KN
2.5 KN
3.4 KN

0

0.5

1

1.5

ND D1 D2 D3 D4 D5

A
E 

R
M

S 
(m

V
)

Defect

100 RPM 0 kN
2.5 kN
3.4 kN



 

161 

Table B.1: AE RMS IR value for outer bearing race for five fault conditions, at three 

shaft speeds for three loads 
F

a
u

lt
 

Defect 

Dimensions 

(mm) 

AE RMS IR 

30 RPM 50 RPM 100 RPM 

0 kN 2.5 kN 3.4 kN 0 kN 2.5 kN 3.4 kN 0 kN 2.5 kN 3.4 kN 

D1 Dent (D = 0.5) 1.04 1.06 1.03 1.18 1.16 1.18 1.74 1.62 1.40 

D2 2.5 X 0.9  1.12 1.10 1.10 1.24 1.20 1.23 1.96 1.64 1.45 

D3 6.0 X 0.9 1.14 1.15 1.11 1.25 1.23 1.25 1.98 1.67 1.50 

D4 6.0 X 3.0 1.16 1.15 1.14 1.26 1.23 1.25 2.04 1.81 1.53 

D5 12.0 X 6.0 1.18 1.17 1.16 1.48 1.42 1.31 2.22 2.04 1.59 

 

B.2 AE Kurtosis Observations 

The kurtosis for AE signal for the given defects at 30, 50, and 100 rpm, under 

three loads, are shown in Figure B.2. The IR values of the AE kurtosis are 

presented in Table B.2. 
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Figure B.2: AE Kurtosis for outer bearing race for healthy and five fault 

conditions for three loads 

 

Table B.2: AE Kurtosis IR value for outer bearing race for five fault conditions, at 

three shaft speeds for three loads 

F
a
u

lt
 

Defect 

Dimensions 

(mm) 

AE Kurtosis IR 

30 RPM 50 RPM 100 RPM 

0 kN 2.5 kN 3.4 kN 0 kN 2.5 kN 3.4 kN 0 kN 2.5 kN 3.4 kN 

D1 Dent (D = 0.5) 2.15 0.94 1.39 3.41 4.27 2.22 2.91 2.20 2.05 

D2 2.5 X 0.9  1.47 0.98 1.10 3.71 5.61 1.11 12.7 16.86 10.77 

D3 6.0 X 0.9 1.84 1.52 1.25 2.45 2.12 1.05 3.69 2.90 2.71 

D4 6.0 X 3.0 1.09 1.04 1.15 1.63 1.31 1.28 1.61 3.56 1.92 

D5 12.0 X 6.0 4.41 5.84 16.06 29.4 33.13 54.70 37.8 28.39 39.21 
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B.3 AE Amplitude Observations 

The effect of changing the size of the outer race defect on AE amplitude is 

illustrated in Figure B.3, for shaft speeds of 30, 50, and 100 rpm, and three loads. 

The IR values, calculated using Equation (5.1) are presented in Table B.3. 

 

 

Figure B.3: AE Amplitude for outer bearing race for healthy and five fault 

conditions for three loads 
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Table B.3: AE amplitude IR value for outer bearing race for five fault conditions, at 

three shaft speeds for three loads 
F

a
u

lt
 

Defect 

Dimensions 

(mm) 

AE Amplitude IR 

30 RPM 50 RPM 100 RPM 

0 kN 2.5 kN 3.4 kN 0 kN 2.5 kN 3.4 kN 0 kN 2.5 kN 3.4 kN 

D1 Dent (D = 0.5) 1.21 1.21 1.02 1.25 1.23 1.13 1.15 1.30 1.24 

D2 2.5 X 0.9  1.12 1.33 1.14 1.19 1.38 1.20 1.22 1.35 1.27 

D3 6.0 X 0.9 1.30 1.46 1.24 1.30 1.53 1.23 1.29 1.44 1.20 

D4 6.0 X 3.0 1.30 1.44 1.22 1.29 1.52 1.22 1.27 1.43 1.32 

D5 12.0 X 6.0 1.35 1.40 1.02 1.26 1.40 1.16 1.14 1.40 1.24 

 

B.4 AE Counts Observations 

The influence of the outer race defect size on the AE counts under three loads is 

presented in Figure B.4, for shaft speeds of 30, 50, and 100 rpm, and three loads. 

The corresponding IR values are listed in Table B.4. 
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Figure B.4: AE counts for outer bearing race for healthy and five fault conditions 

for three loads 

Table B.4: AE counts IR value for outer bearing race for five fault conditions, at 

three shaft speeds for three loads 

F
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Defect 

Dimensions 

(mm) 

AE counts IR 

30 RPM 50 RPM 100 RPM 

0 kN 2.5 kN 3.4 kN 0 kN 2.5 kN 3.4 kN 0 kN 2.5 kN 3.4 kN 

D1 Dent (D = 0.5) 4.74 2.94 1.79 2.55 2.84 1.94 2.02 4.29 2.75 

D2 2.5 X 0.9  4.79 4.59 2.23 2.49 4.02 2.47 2.05 3.32 3.00 

D3 6.0 X 0.9 4.87 5.79 1.96 3.67 5.76 2.62 4.15 7.48 3.98 

D4 6.0 X 3.0 5.89 6.59 2.65 3.26 5.78 2.89 3.86 5.55 3.94 

D5 12.0 X 6.0 4.74 4.17 1.47 1.93 3.05 1.31 1.45 2.86 1.62 
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Appendix C : Inner Race Fault Data 

C.1 AE RMS Observations 

The RMS values of AE signal under three loads and shaft speeds of 30, 50, and 

100 rpm are shown in Figure C.1. These values for a healthy bearing (ND) and 

five defects, D1 to D5, in the inner race as listed in Table 4.1 and shown in Figure 

4.17. 

 

Figure C.1: AE RMS for inner bearing race for healthy and five fault conditions 

for three loads 

 

The IR values for the measured AE values for each of five defective cases at 

speeds of 30, 50, and 100 rpm and under three loads was calculated using 

Equation (5.1) and are shown in Table C.1. 
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Table C.1: AE RMS IR value for inner bearing race for five fault conditions, at three 

shaft speeds and for three loads 
F

a
u

lt
 

Defect 

Dimensions 

(mm) 

AE RMS IR 

30 RPM 50 RPM 100 RPM 

0 kN 2.5 kN 3.4 kN 0 kN 2.5 kN 3.4 kN 0 kN 2.5 kN 3.4 kN 

D1 Dent (D = 0.5) 1.08 1.07 1.06 1.08 1.09 1.17 1.40 1.46 1.19 

D2 2.5 X 0.9  1.11 1.15 1.15 1.21 1.16 1.20 1.53 1.58 1.38 

D3 6.0 X 0.9 1.19 1.19 1.21 1.22 1.20 1.26 1.59 1.62 1.44 

D4 6.0 X 3.0 1.19 1.22 1.25 1.22 1.21 1.39 1.68 1.69 1.46 

D5 12.0 X 6.0 1.41 1.43 1.42 1.39 1.30 1.43 1.70 1.69 1.47 

C.2 AE Kurtosis Observations 

The kurtosis for AE signal as a function of defect size, for speeds of 30, 50, and 

100 rpm, under three loads, are shown in Figure C.2. The IR of the AE kurtosis 

values are presented in Table C.2. 

 

 

Figure C.2: AE Kurtosis for inner bearing race for healthy and five fault 

conditions for three loads 

0

2

4

6

ND D1 D2 D3 D4 D5

A
E 

K
u

rt
o

si
s 

Defect

30 RPM
0 KN
2.5 KN
3.4 KN

0

5

10

ND D1 D2 D3 D4 D5

A
E 

ku
rt

o
si

s

Defect

50 RPM 0 KN
2.5 KN
3.4 KN

0

5

10

ND D1 D2 D3 D4 D5

A
E 

R
M

S 
(m

V
)

Defect

100 RPM 0 kN
2.5 kN
3.4 kN



 

168 

Table C.2: AE Kurtosis IR value for inner bearing race for five fault conditions, at 

three shaft speeds and for three loads 
F

a
u

lt
 

Defect 

Dimensions 

(mm) 

AE Kurtosis IR 

30 RPM 50 RPM 100 RPM 

0 kN 2.5 kN 3.4 kN 0 kN 2.5 kN 3.4 kN 0 kN 2.5 kN 3.4 kN 

D1 Dent (D = 0.5) 1.00 1.02 1.02 1.06 1.01 1.06 1.01 1.01 1.00 

D2 2.5 X 0.9  1.09 1.13 1.04 1.15 1.26 1.43 1.42 1.54 1.40 

D3 6.0 X 0.9 1.02 1.04 1.11 1.42 1.14 1.40 1.02 1.30 1.13 

D4 6.0 X 3.0 1.36 1.29 0.97 1.21 1.18 1.43 1.36 1.99 1.15 

D5 12.0 X 6.0 1.07 1.09 1.21 1.35 1.02 1.44 1.05 1.22 1.10 

 

C.3 AE Amplitude Observations 

The effect of changing the size of the inner race defect on AE amplitude under 

three loads, at shaft speeds of 30, 50, and 100 rpm is illustrated in Figure C.3. 

The IR values, calculated using Equation (5.1) are presented in Table C.3. 
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Figure C.3: AE Amplitude for inner bearing race for healthy and five fault 

conditions for three loads 

 

Table C.3: AE amplitude IR value for inner bearing race for five fault conditions, at 

three shaft speeds and three loads 
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Defect 

Dimensions 

(mm) 

AE Amplitude IR 

30 RPM 50 RPM 100 RPM 

0 kN 2.5 kN 3.4 kN 0 kN 2.5 kN 3.4 kN 0 kN 2.5 kN 3.4 kN 

D1 Dent (D = 0.5) 1.02 1.18 1.03 1.21 1.28 1.04 1.27 1.23 1.17 

D2 2.5 X 0.9  1.05 1.16 1.09 1.15 1.17 1.02 1.18 1.27 1.18 

D3 6.0 X 0.9 1.29 1.37 1.34 1.52 1.50 1.37 1.43 1.47 1.35 

D4 6.0 X 3.0 1.19 1.28 1.05 1.33 1.29 1.20 1.23 1.43 1.43 

D5 12.0 X 6.0 1.41 1.44 1.25 1.48 1.41 1.36 1.36 1.39 1.30 
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C.4 AE Counts Observations 

The influence of the inner race defect size on the AE counts under three loads is 

presented in Figure C.4, for shaft speeds of 30, 50, and 100 rpm. The 

corresponding IR values are listed in Table C.4. 

 

 

Figure C.4: AE counts for inner bearing race for healthy and five fault conditions 

for three loads 
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Table C.4: AE counts IR value for inner bearing race for five fault conditions, at 

three shaft speeds for three loads 
F

a
u

lt
 

Defect 

Dimensions 

(mm) 

AE counts IR 

30 RPM 50 RPM 100 RPM 

0 kN 2.5 kN 3.4 kN 0 kN 2.5 kN 3.4 kN 0 kN 2.5 kN 3.4 kN 

D1 Dent (D = 0.5) 1.05 1.02 1.00 1.01 1.04 1.03 1.07 1.08 1.06 

D2 2.5 X 0.9  1.17 1.30 1.86 1.15 1.12 1.20 1.19 1.72 1.39 

D3 6.0 X 0.9 3.19 2.09 3.00 2.41 2.74 2.33 2.57 2.44 2.24 

D4 6.0 X 3.0 2.66 2.48 1.26 1.42 2.16 1.55 1.05 2.08 2.08 

D5 12.0 X 6.0 5.36 4.06 2.94 1.96 2.50 2.02 2.09 1.95 1.86 
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Appendix D : Inner and Outer Race Comparison 

D.1  AE RMS Observations 

 

Figure D.1: Comparison of AE RMS as a function of shaft speed at zero applied 

load, for a healthy bearing and a D1 fault in the inner and outer races 

 

Figure D.2: Comparison of AE RMS as a function of shaft speed at 2.5 kN load, 

for a healthy bearing and a D1 fault in the inner and outer races 
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Figure D.3: AE RMS for a healthy bearing and five different faults in the inner and 

outer races, at 80 rpm and zero applied load 

 

Figure D.4: AE RMS for a healthy bearing and five different faults in the inner and 

outer races, at 80 rpm and 2.5 kN load. 
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D.2 AE Kurtosis Observations 

 

Figure D.5: Comparison of AE kurtosis as a function of shaft speed at zero 

applied load, for a healthy bearing and a D1 fault in the inner and outer races 

 

 

Figure D.6: Comparison of AE kurtosis as a function of shaft speed at 2.5 kN 

load, for a healthy bearing and a D1 fault in the inner and outer races 
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Figure D.7: AE kurtosis for six inner and outer race bearing conditions, at 80 rpm 

and zero applied load 

 

Figure D.8: AE kurtosis for six inner and outer race bearing conditions, at 80 rpm 

and 2.5 kN load 
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D.3 Amplitude Observations 

 

Figure D.9: Comparison of AE amplitude as a function of shaft speed at 0 kN 

load, for healthy bearing and bearings with a D1 fault in the inner and outer races 

 

Figure D.10:  Comparison of AE amplitude as a function of shaft speed at 2.5 kN 

load, for healthy bearing and bearings with a D1 fault in the inner and outer races 
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Figure D.11: AE amplitude for six inner and outer races bearing conditions, at 80 

rpm and zero applied load 

 

Figure D.12: AE amplitude for six inner and outer races bearing conditions, at 80 

rpm and 2.5 kN load 
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D.4 AE Counts Observations 

 

Figure D.13: Comparison of AE counts as a function of shaft speed at zero 

applied load, for a healthy bearing and bearings with a D1 fault in the inner and 

outer races 

 

Figure D.14: Comparison of AE counts as a function of shaft speed at 2.5 kN 

load, for a healthy bearing and bearings with a D1 fault in the inner and outer 

races 
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Figure D.15: AE counts for six inner and outer races bearing conditions, at 80 

rpm and zero applied load 

 

Figure D.16: AE counts for six inner and outer races bearing conditions, at 80 

rpm and 2.5 kN load 

 

 

 

 

 

 

0

50

100

150

200

250

300

350

ND D1 D2 D3 D4 D5

A
E 

co
u

n
ts

Case

0 kN
Inner race defective bearing

Outer race defective bearing

0

50

100

150

200

250

300

ND D1 D2 D3 D4 D5

A
E 

co
u

n
ts

Case

2.5 kN
Inner race defective bearing

Outer race defective bearing



 

180 

Appendix E : Defect Location Comparison 

This section presents the results of a healthy bearing and two bearings with a 

seeded defect size of (6X3 𝑚𝑚2) one at the middle (D4) and the other at the edge 

(D12) of the outer race as shown respectively in Table 4.1 and Figure 4.16 and 

Figure 4.18 (b). 

E.1 RMS Observations 

 

Figure E.1: AE RMS as a function of shaft speed at 2.5 kN, for healthy and two 

defective bearings (D4 and D12) 

 

Figure E.2: AE RMS as a function of shaft speed at 3.4 kN, for healthy and two 

defective bearings (D4 and D12) 
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E.2 Kurtosis Observations 

 

Figure E.3: AE kurtosis as a function of shaft speed at 2.5 kN, for healthy and two 

defective bearings (D4 and D12) 

 

Figure E.4: AE kurtosis as a function of shaft speed at 3.4 kN, for healthy and two 

defective bearings (D4 and D12) 
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E.3 Amplitude Observations 

 

Figure E.5: AE Amplitude as a function of shaft speed at 2.5 kN, for healthy and 

two defective bearings (D4 and D12) 

 

FigureE.6: AE Amplitude as a function of shaft speed at 3.4 kN, for healthy and 

two defective bearings (D4 and D12) 
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E.4 AE Counts Observations 

 

Figure E.7: AE counts as a function of shaft speed at 2.5 kN, for healthy and two 

defective bearings (D4 and D12) 

 

Figure E.8: AE counts as a function of shaft speed at 3.4 kN, for healthy and two 

defective bearings (D4 and D12) 
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