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Abstract: During the sport of wave surfing, the fins on a surfboard play a major 

role on the overall performance of the surfer. This article presents the optimization 

of a surfboard fin shape, using coupled Genetic Algorithms with the FLUENT® 

solver, aiming at the maximization of the lift per drag ratio. The design-variable 

vector includes six components namely the chord length, the depth and the 

sweep angle of the fin as well as the maximum camber, the maximum camber 

position and the thickness of the hydrofoil (the four-digit NACA parametrization). 

The Latin Hypercube Sampling technique is utilized to explore the design space, 

resulting in 42 different fin designs. Fin and control volume models are created 

(using CATIA® V5) and meshed (unstructured using ANSYS® Workbench). 

Steady-state computations were performed using the FLUENT® SST k-ω (Shear 

Stress Transport k-ω) turbulence model at the velocity of 10 m/s and 10° angle 

of attack. By using the obtained lift and drag values, a Response Surface based 

Model (RSM) was constructed with the aim to maximize the lift-to-drag ratio. The 

optimization problem was solved using the genetic algorithm provided by the 

MATLAB® optimization toolbox and the RSM was iteratively improved. The 

resultant optimal fin design is compared with the experimental data for the fin 
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demonstrating an increase of lift-to-drag ratio by approximately 62% for the given 

angle of attack of 10°. 

Keywords: Genetic Algorithm, Computational Fluid Dynamics (CFD), Response 

Surf ace based Model (RSM), Latin Hypercube sampling, Optimization, 

Surfboard Fin. 

1 Introduction 

The shape of a surfboard used during the sport of wave surfing has evolved 

through various designs over the past several years which included introduction 

of V-bottoms and twin fins1,2. The surfboard fins generate lift with lateral direction 

opposed to the water flow, thereby stabilizing the board’s trajectory and providing 

maneuverability through changes of weight distribution of the surfer on the 

surfboard. A third fin was introduced to the surfboards, when Simon Anderson 

won the 1981 Bells Classic, to avoid the problem of spinning out of the surf in 

large waves1,3. The surfboards initially came with the fins permanently attached 

to them. However, in mid-nineties, the idea of fin-boxes was introduced, and this 

concept allowed the surfers to change the fins on their surfboards accordingly. A 

surfboard fin is a hydrofoil installed at the rear part of the surfboard with the aim 

to improve the maneuverability of the surfer.  

Lift and drag of the surfboard fin play an important role in improving the 

manoeuvrability and performance of the surfer. The lift is related to the speed of 

the fin and the hence the surfer. Fin designs which induce more lift, move more 

quickly. To effectively understand, the connection between lift and speed on 

surfboard fins, a small reference will be made to lift on sailboats. In the case of 



sailboats, these are sucked forward by the sail, resulting in an increase of the 

sailboat speed. Consequently, increased wind speed results in an increase of the 

produced lift. This procedure feeds itself until the boat moves faster in comparison 

with wind speed and towards the wind direction. In a similar way, efficient fin 

designs which induce higher amounts of lift move faster4.  

As far as drag is concerned, it is a force parallel to the water flow with a backwards 

direction. Consequently, drag is a force which slows down the surfboard and 

decreases the ability of the fin to produce lift. It must be mentioned that surfers 

can surf using surfboards with draggy fins as they allow them to stick easily to the 

wave. However, the majority of the surfboard manufacturers are trying to 

maximise lift and at the same time minimise drag as this combination allows 

surfers to accelerate efficiently, direct the surfboard more easily and position 

themselves better in the wave. Finally, finding an efficient fin shape is a 

complicated procedure, as a fin design which performs well in straight movement 

may underperform when turning and vice versa4. 

The increasing demand for improvements in the fin performance, due to the high 

competition and professionalism in surfing, has resulted in an increasing interest 

in investigating the hydrodynamics of a surfboard fin. Over the years, 

computational fluid dynamics (CFD) has played a major role in the aerodynamic 

performance improvements for various sectors and thus has been found to be a 

very suitable tool to study the hydrodynamic performance of the surfboard fins. A 

virtual prototype of the fin can be analysed eliminating the need to conduct 

experiments in cavitation/wind tunnels, consequently resulting in huge time and 

cost savings. 



The radical increase in the computational power over the last few decades has 

created new prospects for CFD applications. In specific, CFD coupled with 

optimisation algorithms has been found to be beneficial in supporting product 

design and development. CFD has strongly demonstrated to be a tool that can 

be used to obtain the flow pattern for a given number of design-variables. One of 

the main applications of the CFD based optimisation is the shape-optimisation, 

especially in the aerodynamics field. The hydrodynamics of a surfboard on a 

wave define a complex system and could be difficult to analyze. Hendricks5 

conducted one of the first studies on the surfboard hydrodynamics, where they 

demonstrated the existence of separating flow depending mostly on the surfboard 

fin geometry. Some examples of CFD studies upon different fin geometries and 

configurations are6-9. Brandner and Walker10 conducted an experimental study, 

investigating the flow around a surfboard fin, observing the lift, drag and moment 

variations as a function of the angle of attack at various Reynolds numbers to 

demonstrate that stall is a result of secondary flow effects and presented results 

for stall near the tip of the fin.  

There has been substantial work in the area of surfboard fin shape 

optimisation1,8,9. Larvey and Carswell9 examined the hydrodynamics of the 

surfboard fins with the aim to understand the flow around the fins. They 

investigated several foils including NACA 4- and 6-series and conducted 

experiments involving various fin parameters. They also employed the use of fluid 

structure interaction (FSI) and CFD to investigate the flow around these fins and 

in order to develop an optimised shape of the fin. However, there is still a dearth 

of research in the optimisation techniques available or explored in this area. 



Consequently, works about aerodynamic shape optimisation were conducted and 

any useful information obtained was adapted to the particularities of the present 

study, which is a hydrodynamic optimisation of a surfboard fin.  

A plethora of works have dealt with optimising the shape of flow devices for better 

aerodynamic performance, hence a few of them are going to be reported. Jeong 

et al.11 conducted two-dimensional airfoil shape optimisation, applying the Kriging 

model and using the PARSEC airfoil parametrisation and coupling Navier-Stokes 

code with genetic algorithms. The Kriging model is a response surface model, 

connecting the objective function with the design-variables using stochastic 

process. The first optimization was at a condition of Mach 2 and an angle of attack 

(AoA) 2°, with constrained cross-sectional surface, such that it is identical with 

RAE2822. Painchaud-Ouellet et al.12 performed single-point and multi-point 

optimisation of two-dimensional airfoil design in transonic regime by using non-

uniform rational B-splines parametrisation. A Navier-Stokes flow solver was used 

to obtain the aerodynamic coefficients.  A design of experiments was conducted 

to reduce the number of the design-variables. The results showed that the non-

uniform rational B-splines parameterisation resulted in smooth optimised airfoils 

and the multipoint optimisation resulted in airfoils with good efficiency at a specific 

Mach range. Chernukhin and Zingg13 studied multimodality in two- and three-

dimensional airfoil shape optimisation problems. The design-variables for the 

two-dimensional optimization were the y coordinates of the B-spline control 

points, while the x, y and z coordinates of the B-spline control points were the 

design-variables of the three-dimensional optimization. The optimisation showed 

that none of the problems was highly multimodal and the majority of the two- and 



three-dimensional airfoil optimisation problems were unimodal. It must be 

mentioned, though, that three-dimensional optimisation problems, which included 

substantial geometric deformation, seemed to be somewhat multimodal. Epstein 

et al.14 applied various CFD-based optimisation techniques aiming to obtain an 

optimal three-dimensional wing shape, which presents the minimum drag. He 

used three different optimisers, namely SYN107 (Intelligent Aerodynamics Int’I), 

MDOPT (The Boeing Company) and OPTIMAS (Israel Aerospace Industries). A 

numerical solution of Navier-Stokes was performed using multigrid multiblock 

structured code FL017. The results were verified by running numerical 

simulations for the obtained optimal designs. All the aforementioned optimisation 

tools resulted in aerodynamically feasible shapes, which satisfied the defined 

constraints and presented less drag at all design points. Further CFD-based 

shape-optimisation studies can be found in other references15-18.  

The major aim of the current work is to employ the genetic algorithms and 

Response Surface based Model (RSM) to present a technique for the surfboard 

fin shape optimisation. The study combines CFD simulations using the FLUENT® 

code with genetic algorithms to obtain an optimal fin shape, which presents 

maximum lift-to-drag ratio (L/D ratio). The objectives are summarised below: 

 Design the experiments using the Latin Hypercube sampling technique.  

 Perform CFD simulations on the different fin designs and construct a 

Response Surface based Model (RSM), which approximates the L/D ratio 

of each fin design. 



 Apply the genetic algorithm to the RSM to minimise drag-per-lift value and 

obtain the fin shape with maximum L/D ratio. 

 Improve the RSM iteratively until an optimal fin shape is obtained. 

 Perform CFD simulations on the optimal fin design and validate the 

improvement of L/D ratio along with an investigation of the flow field around 

the fin (lift and drag variation as a function of the angle of attack, stall point 

detection and flow visualisation). 

 

2 Methodology 

A fin design (initial fin), similar to the one used in Brandner and Walker10, was 

modelled initially to validate the reliability of the CAD model, the mesh and the 

CFD solver parameters setup. The main geometry characteristics of the initial fin 

are summarized in the Table 1. The validated initial fin design was then followed 

by the design of experiments using the Latin Hypercube sampling technique and 

the resultant fin designs, which explored efficiently the design space, were 

modelled. The next step was to construct the RSM using the lift and drag values 

obtained from the CFD simulations for the aforementioned fin designs. Finally, 

the RSM was optimised using genetic algorithms and was iteratively improved 

until an acceptable design was obtained. The CAD models of the fin designs and 

the corresponding control volumes surrounding them were created using CATIA® 

V5 software. 



The meshing of the models was performed using the ANSYS® Workbench 

meshing software. In the current work, an unstructured mesh was chosen due to 

the ease it offers during the meshing process as a number of different fin 

geometries were needed to be modelled. Refined mesh was used at the surface 

of the fin, and the meshes were constructed with the obtained y+ values of around 

1. The inflation layer was then applied to the surface of the fin to capture the big 

velocity gradients that are induced by the boundary layer effects. Inflation is the 

generation of three-dimensional prism elements at selected surfaces to capture 

recirculation and other complex flow phenomena with acceptable accuracy at 

near-wall regions. The credibility of the mesh was confirmed by conducting a 

mesh sensitivity analysis, with respect to lift and drag coefficients for the initial fin 

design at various angles of attack with the convergence criterion of 10-6. It must 

be mentioned here that this analysis was carried out with half section of the fin. 

 

2.1 CFD Methodology 

The double-precision three-dimensional FLUENT® solver was used to solve the 

incompressible Reynolds Averaged Navier-Stokes (RANS) equations. The SST 

k-ω turbulence model was applied, as it is suitable for separating flows and 

adverse pressure gradients19. As far as the boundary conditions are concerned, 

the inlet of the control volume was defined as the velocity inlet, the outlet of the 

control volume was defined as the pressure outlet, the top and the side 

boundaries of the control volume were defined as symmetry and the fin as well 

as the bottom of the control volume (representing the surfboard) were defined as 



the wall. The velocity at the inlet was set to be 10 m/s and was kept stable for all 

simulations, as the results in Brandner and Walker10 showed that the variation of 

Reynolds number in this case has negligible effects on the lift and drag 

coefficients. As the flow velocity is low enough not to cause compressibility20, 

hence the flow was considered incompressible. The working fluid was defined as 

liquid water with a density of 998.2 kg/m3 and a viscosity of 0.001003 kg/ms. The 

SIMPLE scheme was chosen as the solution method with second-order spatial 

discretization. Finally, the standard initialization was used, and the solution was 

initialized by the values at the inlet of the control volume. 

The vector of the design-variables for the present study consisted of six 

parameters, which defined the shape of the surfboard fin; these parameters are 

presented in Table 2. The hydrofoil was parameterized using the NACA four-digit 

parametrization. NACA four-digit airfoils are defined by three parameters, 

namely, the maximum camber as a percentage of the chord length, the maximum 

camber position as tens of a percentage of the chord length and the thickness as 

a percentage of the chord length. The design-variables are presented in Figure 1 

(a) and (b), and the computational grid created for this geometry is shown in the 

Figures 2, 3 and 4 along with the domain dimensions. 

The design space is the area bounded by the upper and lower limits of the design-

variables. The upper and lower limits of the maximum camber, maximum camber 

position and thickness were defined according to the NACA airfoil 

parametrization. The upper and lower limits of the chord length, the depth and 

the sweep angle were defined after conducting research upon various 

commercial surfboard fin designs, in order to avoid any unrealistic designs. 



2.2 Latin Hypercube Sampling 

The design of experiments was performed using the Latin Hypercube Sampling 

technique. Latin Hypercube Sampling is a statistical technique, used for obtaining 

a set of feasible values for the design-variables from a multidimensional 

distribution and is widely used in computational experiments. Further information 

regarding Latin Hypercube Sampling technique can be found in21. For the 

construction of the Latin Hypercube Sample, the function “lhsdesign” provided by 

the statistics and machine learning toolbox of MATLAB® was used. The version 

of the function, which was used, iteratively generates Latin Hypercube Samples 

to find the best one according to the “maximin criterion” (maximizes minimum 

distance between points). The resultant Latin Hypercube Sample consisted of 42 

different fin designs.  

 

2.3 Response Surface based Model (RSM) 

A quadratic regression polynomial was used to approximate the response of the 

system. Polynomial regression is a model, which can be used to approximate 

non-linear responses22. The general form for polynomial regression is  

y = ∑ βi · xi

k

i=0

 

(1) 

where y is the response of the system, x the design-variables vector and βi are 

the regression coefficients. The general form of a quadratic regression 

polynomial, which approximates a multivariate function, is  



y = β0 + ∑ βι · xI

n

i=1

 + ∑ βjj · xj
2  +  ∑ ∑ βij · xi · xj

n

j=i+1

n−1

i=1

n

j=1

 

 

(2) 

 

The number of regression coefficients (N) is equal to 

𝑁 =
(𝑛 + 1) · (𝑛 + 2)

2
 

(3) 

where n is the number of the design-variables. The number of design-variables 

for the present case is six; hence, the regression polynomial included 28 

regression coefficients. After conducting the CFD simulations, an over-

determined system was formulated with the unknown regression coefficients. 

This system was solved by least-squares fitting using the “mldivide” command of 

MATLAB® to obtain the regression coefficients and the formula, which 

approximates the response of the system. The aim of the present study is to 

maximize the L/D ratio through the system’s response of drag-per-lift values 

obtained through the CFD simulations. This is achieved as the optimization 

algorithms search for the minimum of the drag-per-lift function. The objective 

function of the optimisation was the resultant polynomial which represented the 

variation of the drag-per-lift ratio as function of the design-variables. The 

optimization process minimized the drag-per-lift; hence, the L/D ratio became 

maximum, which was the principal aim of the present study. The operating point, 

at which the surfboard fin was optimized, was at a velocity of 10 m/s and angle 

of attack 10°. This angle of attack was chosen to ensure that all fin designs were 

evaluated before stall point, as after stall point CFD accuracy is limited due to the 

separation of flow and the fact that the results come from averaging. The process 



flow chart for the Response Surface based optimization procedure is shown in 

the Figure 5. 

 

2.4 Optimisation using Genetic Algorithms 

The resultant RSM was optimized using the genetic algorithm, provided within 

the MATLAB® optimisation toolbox. Genetic algorithms are a subcategory of 

evolutionary algorithms, and the main concept, on which they are based, is to 

generate a set of possible solutions for a specific problem. In computer science, 

the procedure of searching the best solution for a given problem among multiple 

possible solutions is known as searching for the search space and the set of the 

possible solutions as the search space. Chromosome corresponds to a point in 

the search space. The genetic algorithm evaluate populations of chromosomes 

and iteratively transitions from one population to another. Another main element 

of a genetic algorithm is the fitness function, based on which every chromosome 

in a specific population is assessed and gets a corresponding score (fitness). 

Fitness expresses how efficiently the corresponding chromosome resolves the 

given problem. Further information about the genetic algorithms can be found 

in23. The constructed RSM was defined as the fitness function of the optimisation 

problem. The constraints were defined as presented in Table 3. It must be 

mentioned that the last constraint is non-smooth and that is the main reason the 

genetic algorithm was chosen to solve the present problem, as the other 

optimization algorithms provided by MATLAB® were not able to handle such a 



constraint. The final optimal design resulted after improving iteratively the RSM. 

The basic steps of the process are summarized below: 

 Optimal design obtained applying the optimisation algorithm to the RSM 

 CFD analysis for the optimal design was performed and the response of 

the system was obtained 

 The values of the design-variables for the optimal design were added to 

the set of samples of the RSM 

 The response was added to the set of responses of the RSM 

 The process stopped when the value obtained solving the optimisation 

problem differed within an acceptable tolerance in comparison with the value 

obtained from the numerical analysis. 

 

3 Results and Discussion 

Lift and drag forces were non-dimensionalised as:  

𝐶𝐿 =
𝐿

1
2 · 𝜌 · 𝜐2 · 𝛢

 
(4) 

  

𝐶𝐷 =
𝐷

1
2 · 𝜌 · 𝜐2 · 𝛢

 
(5) 

 

where L is the lift force, D is the drag force, ρ is the fluid density (998.2 kg/m2), υ 

is the fluid velocity (10 m/s) and A is the planform area of the fin (0.00962 m2). 



Three meshes were used to perform the mesh sensitivity study for the initial 

design namely coarse (0.6 Million elements), medium (1 Million elements) and 

fine (1.4 Million elements) grids. The results of the mesh sensitivity study are 

presented in Table 4. The results show that the medium mesh capture with 

sufficient accuracy the lift and drag values as the difference between the obtained 

values using the medium and fine meshes are negligible. The coarse mesh 

successfully obtained the drag value but the lift value differs substantially in 

comparison with the values obtained using the medium and fine meshes. 

Consequently, the medium mesh was used for the present study and the 

convergence criteria was set to of 10-6 for all cases.  

 
Pressure contours and velocity contours at the plane parallel to the bottom of the 

control volume and lies 0.05 m above it, are presented in the Figure 6.  The 

pressure and velocity contours are in accordance with each other, because in 

areas with high velocities (upper and lower surface of the foil) low pressures are 

noticed, while at the leading and trailing edge, which are low-velocity areas, high 

pressures are observed. Moreover, the optimal fin has an efficient trailing edge 

of foil, as low pressures are not present at the rear part of the fin. Flow 

visualisations demonstrate that for the AoA = 0° the flow is uniform and stable 

around the fin, which is expected as the hydrofoil is symmetrical. As the AoA 

increases, vortices are noticed near the tip of the fin which are gradually 

increasing with respect to size and intensity as shown near the tip of the fin in the 

Figure 7. Further, the velocity contours at planes parallel to the inlet of the control 

volume for AoA 18° are presented in the Figure 8. Flow separation is noticed at 

the third and the fourth plane (right to left) near the tip of the fin; hence these 



contours are in accordance with the aforementioned assumption, that the stall 

point is detected at 18°.  

 
The lift and drag coefficient variations as function of angle of attack are compared 

with the corresponding variation obtained in Brandner and Walker8 and the 

comparison is illustrated in the Figure 9. Drag coefficient variation is almost 

coincident for the two studies, while the curves representing the lift-coefficient 

variation present minor differences until an angle of attack 18°. After this angle of 

attack, the curves follow different trends. For the present study, the stall point is 

detected at 18° and it is under-predicted in comparison with the study of Brandner 

and Walker, in which the stall point was detected at 22°. The differences after the 

stall point could be a result of the limited accuracy of the CFD analysis at this 

region. Consequently, the created model is considered reliable for an angle of 

attack smaller than the stall point.  

The same meshing and CFD setup parameters (number of inflation layers, first 

layer thickness and size of elements) were used for simulating the fin designs of 

the Latin Hypercube Sample for angle of attack 10°. The geometric 

characteristics of the optimal fin design, which resulted from the optimization 

process, are presented in Table 5 which is the result obtained after nine iterative 

improvements. Table 6 presents the results of each iterative process for all the 

parameters in consideration.  

The observed L/D ratio for the optimal design at an angle of attack 10° was 14.32, 

while the L/D ratio of 8.81 was observed for the initial design at the same angle 

of attack. This increase in the L/D ratio indicates an overall improvement of 



approximately 62% which is a considerable improvement in the design. The 

difference between the drag-per-lift value obtained from the optimisation solver 

and the corresponding one obtained from CFD analysis indicates the error of the 

RSM predicting the drag-per-lift value of a fin design compared with the real value 

obtained from the CFD solver. The RSM error is presented as a percentage for 

the nine iterations in the chart of Figure 10. According to the aforementioned 

chart, the RSM is gradually improving until the 9th iteration, when the RSM error 

was 5.28%, which was considered an acceptable tolerance for the present study. 

There are mainly two indicators of the efficiency of an RSM, namely the adjusted 

root-mean-square error and the adjusted coefficient of multiple determination. For 

the improved RSM, the adjusted root-mean-square error was found to be 0.0063, 

which is relatively small compared with the drag-per-lift ratio values; hence the 

RSM is considered efficient based on the root-mean-square error. The adjusted 

coefficient of multiple determination was found to be 0.9504, which is considered 

close enough to 1, indicating the efficiency of the RSM. 

Figure 11 represents the lift and drag coefficients variations for the optimal design 

as a function of the angle of attack. The plot demonstrates that the lift and drag 

variations are in accordance with the established knowledge, as drag increases 

along with an angle of attack, while lift increases linearly up to the stall point and 

then drops. The stall point was detected at angle of attack 18°. A further 

comparison of lift per drag ratio of the two designs (initial and optimal) for more 

angles of attack was performed as demonstrated in the Figure 12. The 

comparison showed that while the initial design performs better for small angles 

of attack (0° and 4°), it becomes inefficient for angles higher than 4°. It can be 



clearly seen that the L/D curve drops very quickly after 4° AoA. On the other hand, 

the optimal design performs much better for the angles of attack larger than 4°. 

The aforementioned behavior is justified by the fact that the hydrofoil of the 

optimal design is symmetrical, while the one of the initial shape is a half section 

and non-symmetrical hydrofoils generate substantial lift even for small angles of 

attack.  

4 Conclusions 

The result of the optimisation was a high aspect ratio, medium swept design with 

almost symmetrical hydrofoil. The drag-per-lift ratio values obtained from the 

optimisation and the CFD solver differed by 5.26%. An overall improvement of 

approximately 62% has been obtained for the optimal design of the surfboard fin, 

where the optimal design presented the maximum L/D ratio for an angle of attack 

of 10° among the forty-two designs of the Latin Hypercube Sample. Taking into 

account the lift coefficient variation of the optimal design as function of the angle 

of attack, the stall point was detected at 18°. The comparison of the optimal 

design with the initial design for angles of attack from 0° to 20° showed that the 

initial design is more efficient for an angle of attack smaller than 4°, while optimal 

design is more efficient beyond this angle of attack. This is attributed to the fact 

that the initial design is a half section hydrofoil, while the optimal design is a 

symmetrical hydrofoil. The visualization of the flow around the optimal fin 

confirmed the existence of flow separation at angle of attack 18° near the tip of 

the fin. The RSM based methodology (along with iterative improvements) 

produce satisfactory results, as the resultant fin design has similar characteristics 

to commercial single fins, namely big depth, high aspect ratio, symmetrical 



hydrofoil and medium sweep angle. However, there is a lot of scope for 

improvements in the optimisation technique applied in the present study. Some 

indicative improvements could be the sensitivity study of the design-variables as 

well as the multimodal optimisation by replacing the non-smooth constraint and 

using more optimisation algorithms (e.g. multistart/singlestart SQP). 
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Figure 1. Design-Variables, (a) Fin, (b) Hydrofoil24. 

 



 

 

 

 

 

 

 

Figure 2. Computational Domain used for the Simulation along with the Dimensions. 
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Figure 3. Grid around the surfboard fin, XY-plane. 
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Figure 4. Grid around the surfboard fin, YZ-plane. 



 

 

 

Figure 5. Flow chart for the Response surface based optimization procedure. 

 

 

 

 



 

 

 

 

 
 

 
 
Figure 6. Pressure (top) and Velocity (bottom) contours for Optimal Design AOA = 0º. 

 

 

 

 

 



 

 

 

 

Figure 7. Velocity Streamlines for Optimal Design at various AoA. 

 

 

 

 

 



 

 

 

 

 

 

 

Figure 8. Velocity Contours Optimal Design, AoA = 18° 

 

 

 

 

 

 

 



 

 

  

 

 

Figure 9. Lift and Drag coefficients vs. Angle of attack, comparison with Brandner & 

Walker10. 
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Figure 10. RSM Error as function of Iterations 
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Figure 11. Lift and Drag vs. Angle of attack (Optimal Design). 
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Figure 12. L/D Ratio vs. Angle of Attack, Comparison of Initial and Optimal Designs. 
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Table 1. Main geometry characteristics of the initial fin. 

Parameter Value 

 

Chord Length (m) 

 

0.1 

Depth (m) 0.12 

Sweep Angle (°) 25 

Planform Elliptical 

Aspect Ratio 

Thickness/Chord 

Section 

3 

0.09 

Half NACA 0009 

  

 

 

 

Table 2. Vector of Design-variables in the Design Space. 

Parameter Lower 
Bound 

Upper 
Bound 

 

Chord Length (m) 

 

0.09 

 

0.2 

Depth (m) 0.1 0.3 

Sweep Angle (°) 0 45 

Max Camber (%) 

Max Camber Position (%) 

Thickness (%) 

0 

10 

1 

9.5 

90 

30 

 

 

 

 

 



 

 

Table 3. Vector of Design-variables in the Design Space. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Mesh Sensitivity Study Initial Design 

 Coarse Medium Fine 

 

Lift (N) 

 

49.2 

 

50.37 

 

50.52 

Drag (N) 6.05 6.08 6.09 

CL 

CD 

0.1025 

0.0126 

0.1049 

0.0127 

0.1052 

0.0127 

 

 

 

 

Parameter 

 

Lower Bound 

 

Upper Bound 

 

 

Chord Length (m) 

 

0.09 

 

0.2 

Depth (m) 0.1 0.3 

Sweep Angle (°) 0 45 

Max Camber (%) 
Max Camber Position (%) 
Thickness (%) 
Drag/Lift 

0 
10 
1 
0 

9.5 
90 
30 
∞ 

 
if Max Camber=0% then Max Camber Position=0% 
 



 

 

 

Table 5. Optimal Fin Geometry Characteristics 

Parameter Value 

 

Chord Length (m) 

 

0.182 

Depth (m) 0.274 

Sweep Angle (°) 20.288 

Max Camber (%) 

Max Camber Position (%) 

Thickness (%) 

Planform Area (m2) 

Section 

0.059 

85.178 

29.96 

0.0786 

Full 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 6. Results of each iteration 

 

Parameters 

Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5 Iter. 6 Iter. 7 Iter. 8 Iter. 9 

Base (mm) 199.993 137.85 199.932 172.56 185.62 185.942 182.685 182.431 182.475 

Depth (mm) 279.093 232.541 241.622 299.939 250.387 242.684 273.593 278.335 274.319 

Sweep Angle    
(°) 

0.02 0.018 0.003 0.119 5.695 2.062 16.135 20.421 20.288 

Max Camber 
(%) 

0.027 0.044 0.062 9.449 0.101 0.048 0.005 0.032 0.059 

Max Camber 
Position (%) 

89.97 89.99 89.967 54.61 89.973 89.87 89.151 86.255 85.178 

Thickness (%) 29.955 29.605 29.967 20.276 29.941 29.955 29.955 29.955 29.96 

Drag-per-lift 
Ratio (GA) 

0.0353 0.0574 0.0600 0.0701 0.0652 0.0634 0.0639 0.0643 0.0663 

Drag-per-lift 
Ratio (CFD) 

0.0715 0.0742 0.0747 0.0770 0.0723 0.0738 0.0712 0.0706 0.0698 

 

 


