
1 INTRODUCTION 
In the field of nonlinear system identification several 
methods have been proposed in the past (Kerschen 
et al. 2006; Bursi et al. 2012). In the field of on-line 
methods the most promising are probably those be-
longing to the family of Kalman Filter algorithms. 
Though the Kalman Filter (1960) has been originally 
proposed for linear applications, different extensions 
of the method to the nonlinear field have been pro-
posed. 

The first group descends from the Extended Kal-
man Filter (EKF) (Jazwinski, 1966). The EKF al-
lows applying the Kalman Filter to nonlinear opti-
mal filtering. It forms a Gaussian approximation to 
the joint distribution of state and measurements by 
resorting to a Taylor series based transformation. 
When working with nonlinear processes the optimal-
ity of the estimation is lost and, even worst, the es-
timate may diverge (Stengel 1994). The EKF has 
some flaws: (i) it is not an optimal estimator; (ii) it 
may diverge due to its linearization approach if the 
initial estimate of the state vector is wrong or the 
process is modelled incorrectly; (iii) its estimated 
covariance matrix tends to underestimate the true 
covariance matrix so that it risks becoming inconsis-
tent in the statistical sense without the addition of a 
“stabilising noise”. 

State-Dependent Riccati Equation Filter (SDRE) 
overcomes the EKF flaws, since it does not involve 
the Jacobian evaluations, but it entails direct 
parameterization (Beikzadeh & Taghirad 2009). 
Briefly, it fully captures the nonlinearities of the sys-
tem and brings the nonlinear system into a non-

unique linear structure having state-dependent coef-
ficients (SDCs). This nonuniqueness of the SDC 
form provides design flexibility which can be ex-
ploited to overcome serious difficulties such as sin-
gularities and loss of observability in traditional fil-
tering methods. 

Among the family of Particle Filters the most 
widely used and applied is the Unscented Kalman 
Filter (UKF). This technique has been recently pro-
posed by Julier and Uhlman (2000) having the ad-
vantage, with respect to the canonical filters, of be-
ing able to treat any type of nonlinearity. In detail, 
UKF does not require the computation of the Jaco-
bian of the nonlinear function; in fact it does not ap-
proximate the measurement equation of the system 
but it approximates the posterior probability density 
by a Gaussian density, by using a set of determinis-
tic points (the so-called Sigma points). This allows 
dealing with also non differentiable nonlinear sys-
tems. When the Sigma points are propagated 
through the nonlinear transform, they capture the 
true mean and covariance of the Gaussian random 
variables, and the posterior mean and covariance ac-
curately to the 3

rd
 order Taylor series expansion for 

any nonlinearity.  
In the last few years, the UKF has been success-

fully applied for the identification of nonlinear me-
chanical systems in several numerical case studies, 
e.g. (Wu & Smyth, 2008; Ceravolo et al. 2012). Due 
to the uncertainty in the dissipation laws of real dy-
namic systems (nonlinear damping, hysteresis, fric-
tion, etc.), very few experimental applications to real 
case studies are known. As a consequence, any ex-
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perimental applications should be previously vali-
dated through extensive numerical simulations. 

The capability of UKF to deal with the nonlinear 
identification of system parameters has been tested 
on a numerical model aimed to describe the dynamic 
behaviour of a new prototype of vibro-protective 
control device recently proposed by Matta et al 
(2009). The device consists of an innovative type of 
rolling-pendulum tuned vibration absorber which, 
relying on an optimal three-dimensional guiding re-
ceptacle, can simultaneously control the response of 
the supporting structure along two orthogonal hori-
zontal directions.  

Through preliminary numerical simulations, the 
effectiveness of the UKF in identifying the structural 
parameters of the new device is investigated for dif-
ferent alternative descriptions of the nonlinear dissi-
pation model introduced to simulate rolling friction 
at the interface between the ball bearing and the roll-
ing surface.  

2 THE NEW BIDIRECTIONAL PENDULUM 
VIBRATION ABSORBER 

In recent years, many vibration control strategies 
have been developed for enhancing serviceability 
and safety of Civil Engineering structures against 
natural and manmade hazards. Among them, tuned 
vibration absorbers have been extensively studied 
and widely applied because of their simplicity, effi-
ciency and low maintenance cost. 

In its basic configuration, a tuned vibration ab-
sorber merely consists of a viscously damped single-
degree-of-freedom (SDOF) auxiliary system at-
tached to the main structure. By properly tuning its 
natural frequency to that of the selected target mode 
of the main structure, part of the vibratory energy of 
that mode is transferred to the auxiliary system and 
dissipated through its damping (Warburton & 
Ayorinde, 1982). 

Tuned absorbers have found through the years a 
variety of technological implementations (Matta & 
De Stefano, 2009). Among them, the rocking pendu-
lum, the ball pendulum and the rolling pendulum 
share the same idea of using curved rolling surfaces 
to derive the necessary restoring force, which makes 
them more compact and durable than hanging pen-
dulums as well as more suitable to tuning to low-
period structures for seismic applications. Several 
variants of rolling pendulum vibration absorbers are 
described in the literature (Legeza, 2005; Pirner, 
2002), however arranged either in a planar configu-
ration (constrained to move in a vertical plane) or in 
an axial-symmetrical configuration (constrained on a 
spherical cavity).  

In order to simultaneously achieve bidirectional 
tuning to two distinct in-plan orthogonal structural 
modes, a new bidirectional pendulum vibration ab-

sorber was proposed by the first author in (Matta et 
al. 2009), based on an innovative non-axial-
symmetrical rolling guide. An analytical non-linear 
dynamic model was first derived using Appell’s 
non-holonomic mechanics, and then a laboratory 
scaled prototype was tested which eventually dem-
onstrated the bidirectional tuning capability and 
validated the mathematical model. Yet, the nonlinear 
dissipation law governing the rolling problem was 
outside the scope of the analytical model and there-
fore was only roughly identified from the experi-
ments.  

Aiming at more accurately characterizing the dis-
sipative term, the same prototype absorber is here 
reconsidered. This consists of two identical plexi-
glass plates having dimensions 400 x 300 x 25 mm

3
, 

each carved with five identical toroidal concavities 
(Fig. 1). The plates are deployed with their concavi-
ties symmetrically facing each other, with three out 
of the five pairs of concavities sandwiching a 
stainless steel ball of radius R = 10 mm. The mass of 
each plate is m = 3.42 kg. The “physical” concavi-
ties have radii of curvature Rxp = 29.9 mm and Ryp = 
54.7 mm, and are 9 mm deep. Correspondingly, be-
ing R = 10 mm, the “virtual” radii are Rx = 19.9 mm 
and Ry = 44.7 mm.  

 

 

 
Figure 1. The prototype: (left) the test assembly; (right) a 
scheme of the toroidal concavities. 



 
In (Matta et al. 2009), with four accelerometers 

attached to each plate along the lateral faces (two in 

the x direction and two in the y direction), two kinds 

of experimental tests were conducted: fixed-base 

free motion tests, through imparting an initial non-

zero relative displacement of the upper plate; and 

base shaking tests, through imparting a (non-

stationary) random bidirectional translational motion 

to the lower plate. In the present paper, as an inter-

mediate step towards using the UKF for the experi-

mental identification of the dissipative rolling 

mechanism from those tests, the latter are prelimi-

nary replaced with numerical simulations, for sim-

plicity circumscribed to unidirectional motions in 

the yz vertical plane only. 

3 THE NONLINEAR MODEL 

The thorough nonlinear model describing the three-
dimensional rolling-without-slipping motion of each 
ball with respect to both the lower and the upper 
plates, and therefore of the upper plate with respect 
to the lower plate, is given in (Matta et al. 2009). As 
long as ball bearings’ inertia is neglected and motion 
is restrained to the yz plane, that model reduces to 
the following nonlinear SDOF one (Matta & De 
Stefano, 2009): 
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where θ is the pendulum angular deflection,   is the 
absolute acceleration of the lower plate, R = 2Ry is 
the effective pendulum radius, g is the gravity con-
stant, c1 and c2 are the two parameters governing the 
dissipation mechanism, here assumed to be velocity-
dependent and someway intermediate between dry 
friction (c2 = 0) and linear viscous damping (c2 = 1), 
as suggested by experiments (Matta et al. 2009). No-
tice that, for the assigned value of Ry, the undamped 
linearized natural period, defined as T = 2π/ω = 
2π√(R/g), happens to be exactly equal to 0.60 s. 

4 UKF WITH BOUNDARIES 

The equations of a general dynamic system in dis-
crete form can be defined by resorting to the state-
space equation and its measurement equation as fol-
lows: 
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where X is the state vector in its augmented form, Y 
is the output vector, u is the input whilst q and r are 
the process and measurement noises, respectively. 

In this paper the UKF algorithm (see Table 1 or, 
for further information, (Julier et al. 2000)) is ap-
plied to the system described in Equation 1 using a 
modified version which allows for interval con-
straints on the state vector: 

L k U X X X  (3) 

Table 1. The UKF algorithm as proposed by Julier and 
Ulhmann (Julier et al. 2000). 
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5. Propagation of sigma points through measure equation 
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7. Measurement covariance matrix prediction 

 
2

, ,
0

ˆ ˆ
k

n Tc

YY i k i k k i k k
i

W  



      
   P Y Y RY Y 

 
8. Cross covariance matrix prediction 
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9. Kalman gain 
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10. State vector update 
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In (Kolas et al. 2009) several steps were identified in 
the original UKF algorithm where constrains can be 
introduced: on the sigma points (step 1 and 2), on 
the state vector prediction (step3), on the output 
Sigma points (step 5), on the output (step 6) or on 
the updated state vector (step 10).  

The bounds used in this paper have been applied 
according to the methods proposed in (Teixera et al. 
2010) and in (Vachani et al. 2006). It has been cho-



sen to deal with this problem by using both con-
straints on the unscented transform, on the predicted 
and updated state vector. In order to generate Sigma 
points satisfying Equation 3 one can use the follow-
ing equations: 
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where n is the length of the state vector and θ is de-

fined as follows: 
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Weights applied to the Sigma points are given by 
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with ka  and kb  determined using the equation pro-
posed by Teixera (2010). Furthermore, in order to 
apply the constraints on step 3 and 10, a simple clip-
ping procedure on the vector kX  is performed. It is 
worth noticing that the clipping procedure, even if it 
is rough, is the optimal solution in most of the usual 
problems (see (Vachani et al. 2006)) and without 
doubt the most computationally efficient.   

5 NUMERICAL EXAMPLES 

The UKF is here applied to estimate the two states 
and the two dissipation coefficients c1 and c2 of the 
nonlinear model defined by Equation 1, i.e. to iden-
tify the following joint state vector: 

   1 2 3 4 1 2, , , , , ,x x x x x x c c X  (9) 

while the two remaining parameters, g and R, are as-
sumed to be exactly known. For the sake of valida-
tion, the identification is repeated for a number of 
simulated scenarios, chosen to roughly reproduce the 
two experimental test cases, i.e. the free decay oscil-
lation and the random base shaking. Namely, three 
distinct models are simulated, each described by a 
different pair [c1, c2] of the model parameters, and 
each responding to the experimental inputs in nearly 
the same way as the real device, as can be appreci-
ated from Figure 2. For each model, the UKF identi-
fication is then repeatedly run for different additive 
measurement noise levels and different initial esti-
mation errors. 

 

  

  
(a) (b) 

  

  
(c) (d) 
Figure 2. The free decay (above) and random shaking (bottom) 
responses of: (a) the real test device; (b) the model with c1 = 
0.2 and c2 = 0.0; (c) the model with c1 = 0.2 and c2 = 0.3; (d) 
the model with c1 = 0.25 and c2 = 1.0. 

 
Some of the results obtained for the free decay input 
scenario are exemplified in Figure 3. 
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(a) 

 

(b) 

 

(c) 

Figure 3. UKF matching of the free decay response for: (a) c1 = 
0.2 and c2 = 0.0; (b) c1 = 0.2 and c2 = 0.3; (c) c1 = 0.25 and c2 = 
1.0 – Simulated model (thick grey line) vs. estimated model 
(thin blue line).  

 

  

  

  
Figure 4. UKF esteems from the free decay response for: 
(above) c1 = 0.2 and c2 = 0.0; (middle) c1 = 0.2 and c2 = 0.3; 

(bottom) c1 = 0.25 and c2 = 1.0 – Simulated model (thick grey 
line) vs. estimated model (thin blue line). 

 
One example of the results obtained for the random 
shaking input scenario is reported in Figure 4.  
 

 

(a) 

 

(b) 

 

(c) 

Figure 5. UKF applied to the random shaking response for c1 = 
0.2 and c2 = 0.3 – Simulated model (thick grey line) vs. esti-
mated model (thin blue line).  

 
For both the free decay and the random shaking sce-
narios, a satisfactory performance of the UKF esti-
mation can be generally appreciated. The simulated 
response can be tracked with good accuracy and the 
estimated parameters tend to rapidly converge to the 
assumed numerical values in nearly all cases. This is 
a promising result in view of the application to the 
real experimental data, which is left for future work. 

6 CONCLUSIONS 

In the present work, a preliminary numerical inves-
tigation is reported in order to assess the viability of 
UKF for the nonlinear identification of a new proto-
type of vibro-protective control device. The device 
consists of an innovative type of rolling-pendulum 
tuned vibration absorber which, relying on an opti-
mal three-dimensional guiding receptacle, can si-
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multaneously control the response of the supporting 
structure along two orthogonal horizontal directions.  

Through preliminary numerical simulations, the 
effectiveness of the UKF in identifying the structural 
parameters of the new device is investigated for dif-
ferent alternative descriptions of the nonlinear dissi-
pation model introduced to simulate rolling friction 
at the interface between the ball bearing and the roll-
ing surface. The experimental characterization of the 
real test prototype is left for future work. 
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