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ABSTRACT 
 

Providing safe and high quality drinking water is essential for a high quality of life. 
However, the water resources in Europe are threatened by various sources of 
contamination. This has led to the development of concepts and technologies to create 
a basis for provision of safe and high quality drinking water, which had thus resulted 
in the formation of the Artificial Recharge Demonstration project (ARTDEMO). The 
overall aim of this thesis in relation to the ARTDEMO project was to develop a real-
time automated water monitoring system, capable of using data from various 
complementary sources to determine the amounts of inorganic and organic pollutants. 
 
The application of multivariate calibration to differential pulse anodic stripping 
voltammograms and fluorescence spectra (emission and excitation-emission matrix) is 
presented. The quantitative determination of cadmium, lead and copper acquired on 
carbon-ink screen-printed electrodes, arsenic and mercury acquired on gold-ink 
screen-printed electrodes, in addition to the quantitative determination of anthracene, 
phenanthrene and naphthalene have been realised. The statistically inspired 
modification of partial least squares (SIMPLS) algorithm has been shown to be the 
better modelling tool, in terms of the root mean square error of prediction (RMSEP), 
in conjunction with application of data pre-treatment techniques involving range-
scaling, filtering and weighting of variables. The % recoveries of cadmium, lead and 
copper in a certified reference material by graphite furnace atomic absorption 
spectrometry (GF-AAS) and multivariate calibration are in good agreement. 
 
The development of a prototype application on a personal digital assistant (PDA) 
device is described. At-line analysis at potential contamination sites in which an 
instant response is required is thus possible. This provides quantitative screening of 
target metal ions. The application imports the acquired voltammograms, standardises 
them against the laboratory-acquired voltammograms (using piecewise direct 
standardisation), and predicts the concentrations of the target metal ions using 
previously trained SIMPLS models. 
 
This work represents significant progress in the development of analytical techniques 
for water quality determination, in line with the ARTDEMO project's aim of 
maintaining a high quality of drinking water. 
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XRF X-ray Fluorescence 

 

As Arsenic Cu Copper AgCl Silver Chloride 
Ag Silver Hg Mercury HCl Hydrochloric Acid 
Bi Bismuth Pb Lead KCl Potassium Chloride 
Cd Cadmium Zn Zinc HNO3 Nitric Acid 
Cr Chromium Au Gold H2SO4 Sulphuric Acid 
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NOTATION 
 

The datasets described in this thesis are manipulated as matrices or vectors. A matrix 

is seen as a two-dimensional array, for example a 4 x 5 matrix will contain 4 rows and 

5 columns and a total of 20 elements. Conversely, a one-dimensional array is a vector, 

for example, if the dimensions are 1 x 7 then this is labelled as a row vector; if 7 x 1, 

then it is labelled as a column vector; both contain 7 elements. 

 

The terminology often employed is to assign letters to matrices, vectors and elements 

(also known as scalars), often the letter X. 

 

• A matrix with dimensions I × J, is denoted by a bold upper-case letter such as 

XI,J. 

• A row vector is denoted by a bold lower-case letter with indices such as xi,J, 

for example, x3,J is the entire third row of the matrix. 

• A column vector is denoted by a bold lower-case letter with an index as xI,j, 

for example, xI,4 is the entire fourth column of the matrix. 

• An element (or scalar) is denoted by an italicised lower-case letter with the 

appropriate indices such as xij, for example x5,2  gives the value of the element 

in the 5th row and 2nd column of the matrix. 

 

In general, X denotes independent variables such as stripping current at varying 

potentials (in anodic stripping voltammetry (Section 1.4.2.4)) and Y denotes 

dependent variables such as the concentration. Therefore each row (vector) in the 

dataset (matrix) is, for example a voltammogram, and where each element within the 

vector is a response (variable) at a specific potential. The corresponding row in the Y 

matrix is the concentration(s) of the particular constituent(s) generating the response 

in X.  
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CHAPTER 1: INTRODUCTION 

 

1.1 Overview 
 

This chapter gives a general introduction to the project, and the need for artificial 

recharging of ground water. The purpose of the ARTDEMO project is explained 

followed by a general discussion of three analytical techniques: electrochemical, 

fluorescence and atomic absorption. An in-depth discussion on the origins and 

application of chemometrics follows with the onus on multivariate calibration. 

Finally, the chapter concludes with the main aims and objectives of the thesis, 

finishing with an outline of the structure and format of the remainder of the thesis. 
 

1.2 General 
 

Water is a vital commodity for every living entity on the planet from humans to plants 

and animals.  Most of the rain falls on to the ground where it will either settle into 

stagnant pools and later evaporate back into the air, or seep down beneath the ground 

via processes such as leaching and elution, and over time settle into vast pockets of 

water sometimes deemed “underground lakes” (Stuyfzand, 2004). Rain will also fall 

on to higher ground, running-off into rivers which flow into large lakes or into 

estuaries and eventually out to sea. 

 

Water companies exploit the presence of these large lakes by extracting the water 

from them, purifying it, and distributing it to households and businesses in the 

immediate area. However, there are some countries that are unable to store huge 

amounts of water in lakes, whether man-made (reservoirs) or natural. Such reasons 

include the extreme temperatures that can be found in developing regions such as in 

Africa hence leading to lakes drying-out, or due to the natural terrain, such as 

mountainous regions. Such regions will rely on water that has seeped into the 

underground lakes, known as ground water.  

 

Coupled with the extensive growth of the world population, even lakes and reservoirs 

are succumbing to the extensive demands. Some water companies are turning to 
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ground water sites to keep up with demand. However, uptake of this water is much 

greater than replenishment resulting in these underground lakes being depleted. It is 

thus imperative that more efforts are made to capture and harvest the rainfall seeing as 

the process of natural recharging takes many years. With this in mind, it is necessary 

to speed up this recharging process, and thus the concept of artificial recharging has 

evolved. 

 

Artificial recharging is defined as the rapid replenishment of water sources such as 

underground lakes (ground water) where the natural process takes decades to 

complete. This can involve re-directing surface run-off and channelling rain water 

into aquifers which filter the water and complement the ground water already present. 

Figure 1.1 illustrates the two processes. 

 

 
Figure 1.1: The processes involved in natural and artificial recharging 

 

Such harvesting of the water can occur from ponds, ditches, farm lands, storm drains 

and even the reclamation of sewage water. Many water companies are looking to 

develop concepts and technologies which will create a basis for the provision of safe 

and high quality drinking water. 
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1.3 The ARTDEMO Project 
 

As the world population grows, so does the ever-increasing demands on the Earth’s 

natural resources. In addition to this, the generation of waste materials continues to 

greatly affect the environment in numerous ways, for example greenhouse emissions 

and river pollution. The effect on the latter applies more pressure on relevant water 

companies to maintain the quality of the drinking water from its source (surface or 

ground waters) to final distribution. Development of reliable, low-cost, and robust 

tools for the quantitative determination of target pollutants has therefore been one of 

the main aims of the ARTDEMO project. These tools range from portable hand-held 

devices to at-line or on-line sensors. 

 

The Artificial Recharge Demonstration Project (ARTDEMO) was a European 

Commission funded project established to research the management and maintenance 

of the quality of drinking water via the process of artificial recharging. The overall 

objective extracted from the “Description of Work” (final version, 14 August 2002) 

was to “demonstrate a management tool for artificial recharge (AR) plants, which use 

sophisticated monitoring systems linking automatic real-time data acquisition, 

available on-line/at-line sensor systems and fast field analysis kits with intelligent 

decision support software, which compile and communicate processed data to specific 

action protocols. The advanced technology will enhance the state-of-the-art in AR 

markedly and extend the capacity of existing plants and general applicability of the 

technology, thereby ensuring a stable and safe drinking water production”. 

 

There were six institutions involved in this project each contributing a level of 

expertise to the requirements, as detailed in Table 1.1, and undertaking a series of 

projects to achieve the desired goal. 
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Table 1.1: The ARTDEMO Project partners and their expertise 

No Partner Acronym Type Main expertise and role 
in ARTDEMO 

1 Danish Hydraulic Institute: 
Water & Environment, 
Denmark 

DHI R&D Project coordination, 
Modelling, Decision 
support systems, Fate and 
transport 

2 Consejo Superior de 
Investigaciones Cientificas 
(Spanish National Research 
Council), Barcelona, Spain 

CSIC R&D Contaminant chemistry, 
Sensor systems 

3 Cranfield University, UK CU R&D Sensors, mobile test kits 

4 The Gothenburg Region 
Association of Local 
Authorities, Sweden 

GR End 
User 

Provision of test sites 

5 Kiwa Water Research, 
Holland 

KIWA R&D, Bed regeneration, 
operation of AR-plants  

6 Copenhagen Energy, 
Denmark 

KE End 
User 

Provision of test sites 

 

The overall aim was to develop a management tool which would contain a suitable 

monitoring system that was able to detect both organic pollutants such as polynuclear 

aromatic hydrocarbons (PAHs), estrogens, progestogens, antibiotics and volatile 

organic compounds (VOCs), in addition to inorganic pollutants such as the heavy 

metals (arsenic, lead and cadmium). Ideally, automatic real time data acquisition 

would be integrated with intelligent decision software. On-line and at-line sensor 

systems coupled with fast field “hand-held” analysis kits in the form of personal 

digital assistants (PDAs) were also a requisite of the management tool. 

 

The main role of Cranfield University was to integrate the measurement test kits 

designed and developed in-house for on-line/at-line monitoring with advanced data 

handling software incorporating chemometric techniques (discussed in Section 1.5). 

The contribution of this thesis to the overall ARTDEMO project is the development 

and application of these techniques. This therefore leads to the qualitative detection 

and quantitative determination of a range of organic and inorganic pollutants, and thus 
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the overall quality of the water. Section 1.6 details the full aims and objectives of the 

work performed in this thesis. 

 

1.4 Analytical Techniques for the Detection of Heavy Metals and 

Hydrocarbons 
 

This section will briefly introduce typical contaminants common in the water industry 

such as heavy metals (Section 1.4.1.1) and hydrocarbons (Section 1.4.1.2). Three 

analytical techniques employed in this study will be presented: electrochemical 

methods (Section 1.4.2), fluorescence spectroscopy (Section 1.4.3), and atomic 

absorption spectrometry (Section 1.4.4). 

 

1.4.1 The Main Contaminants in the Water Industry 

 

1.4.1.1 Heavy Metals 

 

The heavy metals which are of great concern to environmental monitoring bodies are 

cadmium (Cd), lead (Pb), copper (Cu), zinc (Zn), mercury (Hg), arsenic (As), 

selenium (Se) and chromium (Cr) (Lambert, 1997). Due to their wide applications in 

industry, soil and water contamination is high thus presenting a threat to both the 

ecosystem and humans. Table 1.2 lists some of the analytical techniques employed to 

analyse them in addition to the advantages and disadvantages (Alloway, 1990; 

Thomas, 2003). 

 
Table 1.2: The main advantages and disadvantages of some of the analytical techniques employed 

for the detection of heavy metals 

Technique Metals Advantage Disadvantage 
Flame AAS Cd, Pb, Cu, 

Cr 
Wide analytical working 
range 

Different metals require 
different flames and sources 

HG-AAS As, Se Increased sensitivity 
compared to flame only 

Qualified personnel required 
and lab-based 

ICP-MS All Simultaneous qualitative 
and quantitative 
determination of all metals 

High consumption of argon 
and qualified personnel 
required 

Voltammetry All Can be employed in the 
field and is cheap 

Different instrumental 
parameters for different metal 

XRF All Direct analysis of solids in 
addition to field applications 

Poor resolution and low 
sensitivity 
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Table 1.2 indicates that ICP-MS is superior to the atomic absorption techniques due to 

the simultaneous analysis of the target metal ions. However, just like the absorption 

techniques, the cost of operation is high due to the consumption of argon for ICP-MS 

and acetylene for flame AAS. The voltammetric analytical technique offers a cheaper 

and more convenient approach to metals analysis in addition to field (at-site) 

applications. (Wang et al.,  1999). Voltammetry can also be expanded to measure 

hydrocarbons (Richards, 2003; Guiberteau et al.,  1995). 

 

Selenium and chromium were not analysed in this work. Further details of cadmium, 

lead and copper are given in Section 2.3.1 whilst arsenic and mercury are given in 

Section 3.3.1. Voltammetry is discussed further in Section 1.4.2. Atomic absorption 

spectroscopy is generally employed as a validation technique to support the findings 

of field-instruments (Cooper, 2004; Samek et al.,  2001). As this technique was 

employed in this work to do just that, a brief discussion on the basic theory is given in 

Section 1.4.4. 

 

1.4.1.2 Hydrocarbons 

 

In addition to heavy metals there is contamination by a whole host of hydrocarbons. 

In relation to the ARTDEMO project pesticides, estrogens, phenols and phthalates 

have been analysed in water, soil and sewage sludge samples by a range of 

laboratory-based instruments such as HPLC-MS, HPLC-MS-MS, and GC-MS (Borba 

da Cunha et al.,  2004; Diaz-Cruz et al.,  2003; Kuster et al.,  2004; Rodriguez-Mozaz 

et al.,  2004). The main advantages of these instruments are the selectivity, specificity, 

high resolution and simultaneous quantitative determination of the target compounds. 

The main disadvantages are the operational costs and the inapplicability to field (at-

line/on-line) measurements. 

 

Another important class of compounds is the polynuclear aromatic hydrocarbons 

(PAHs) of which 16 have been listed to be of great environmental concern (Section 

5.3.1). In addition to employment of the instruments in the above paragraph, the 

PAHs can be analysed with fluorescence spectroscopy (Skoog et al., 1996; Rouessac 

& Rouessac, 2000). The main advantages are its non-destructiveness to the sample, 
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minimal sample preparation and reagent consumption, rapid analysis and minimal 

operational costs. The main disadvantage is poor resolution of overlapping peaks. 

However these can be overcome by application of chemometric techniques (Section 

1.5 and 5.4). The basic theory of fluorescence spectroscopy is presented in Section 

1.4.3. 

 

1.4.2 Voltammetric Methods in Electrochemistry 

 

A brief description of electrochemistry followed by an explanation of the theory and 

some of the commonly used methods in voltammetry, for example differential pulse 

anodic stripping voltammetry (DPASV) will be presented.  

 

1.4.2.1 Electrochemistry 

 

Electrochemistry is a branch of chemistry that focuses on chemical reactions that 

occur at the surface of an electrode, namely in the reduction (gain of electrons) or 

oxidation (loss of electrons) of a given species when an electrical current is passed 

through a solution containing an electrolyte (Sharp, 1990). These reactions are 

deemed redox reactions. Two types of reactions are electrolytic and galvanic. The 

former involves the application of an external voltage to drive the reactions whilst the 

latter results in a spontaneous reaction dependent on the ions present in the reaction 

medium.  

 

In electrolytic systems, the electrode should be a highly conductive material ideally 

fabricated from inert materials such as graphite carbon, metallic gold, and platinum. 

When oxidation occurs at the surface, it is termed an anode; when reduction occurs, a 

cathode. In solution-based systems, the electrolyte is an ionic compound that partially 

or completely dissociates in solution permitting the electrical conduction between two 

or more electrodes. Common electrolytes employed are potassium chloride, sodium 

chloride and sulphuric acid (Atkins, 1992).  

 

The reactions that occur at an electrode are either irreversible or reversible. The 

former implies that the original reactants will not be re-generated under appropriate 

electrochemical conditions. The latter implies that the same reactants will always be 
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attained whether or not a potential is applied (Skoog et al., 1996). The electrode 

potential (E) arises when an electrode (eg Cu) is placed into a solution containing the 

same ions (Cu2+). The size of the potential is dependent upon the concentration of 

these ions (Sharp, 1990). The standard electrode potential (EO) is the same as the 

electrode potential but where the activities of the reactants and product are at unity, 

and is measured against a hydrogen electrode at 1M solution, 1 atm and 25°C. The 

activity is generally employed in place of concentration (for solutions) and pressure 

(for gases) when non-ideal situations arise as in the deviation from Raoult’s Law (the 

dissolution of a solute in a solvent results in the solvent’s vapour pressure being 

reduced in proportion to the mole fraction of the solute present (Atkins, 1992)). 

 

Table 1.3 shows the standard electrode potential for a number of selected electrodes 

and their respective half-cell reactions. 

 
Table 1.3: Standard electrode potentials (EO) of a number of selected electrodes 

Electrode Reaction (Reduction) EO (V) at 25OC 
Ag Ag+ + e-  Ag (s) +0.799 
Cu Cu2+ + 2e- Cu (s) +0.337 
Hg Hg2Cl2(s) + 2e-   2Hg (l) + 2Cl- +0.268 
H2 2H+ + 2e-  H2 0.000 
Pb PbSO4 (s) + 2e-  Pb (s) + SO4

2- -0.350 
Cd Cd2+ + 2e-  Cd (s) -0.403 
Zn Zn2+ + 2e-  Zn (s) -0.763 

 

In relation to the standard hydrogen electrode, positive values imply that the 

corresponding electrode is a better oxidant (acceptor of electrons) than hydrogen or 

any other electrode with a greater negative potential, in other words, copper is a better 

oxidant than lead. From Table 1.3 a positive standard potential indicates the reduction 

is spontaneous whilst negative values indicate that oxidation is spontaneous. 

 

Given an electrode reaction such as: 

 

RO CneC ↔+ −  1.1 

 

The electrode potential is related to the concentration of the corresponding ion via the 

Nernst Equation (Equation 1.2).  
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O

RO

C
C

nF
RTEE ln−=  1.2 

 

where E and EO are the electrode potential and standard electrode potential 

respectively, R is the universal gas constant (8.314 J K-1 mol-1), T is the temperature in 

Kelvin (K), n is the number of electrons involved in the half-reaction, F is the Faraday 

constant (96,485 C), ln is the natural logarithm, and CR and CO are the concentrations 

of the reduced and oxidised components containing the target ions respectively. 

 

Electrochemical measurements initially involved two electrodes: the working 

electrode, where the electrochemical reactions in the form of oxidation or reduction 

occurred, and a counter electrode which was large enough not to be polarised during 

the measurement (Skoog et al., 1996). The potential of the working electrode was thus 

calculated from the difference between the applied potential and the potential of the 

counter electrode. However, distorted voltammograms were obtained when the 

resistance of the electrolyte was high. A third electrode was thus introduced whose 

potential remained constant throughout the entire measurement. This was known as 

the reference electrode. Such electrodes used were the saturated calomel electrode 

(SCE) and the silver/silver chloride (Ag/AgCl) electrode. Figure 1.2 illustrates a 

schematic configuration of a voltammetric instrument. 
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Figure 1.2: A typical set up of an instrument to perform linear-scan voltammetric (LSV) 

measurements. 
 

In predominately aqueous systems, the supporting electrolyte is typically a Group I 

(alkali) metal salt added in excess to the solution containing the metal ions, an 

example being potassium chloride (KCl). This is known not to undergo chemical 

reaction with the commonly used working electrode at the potentials used for 

measurement.  The dimensions of the working electrodes are generally smaller when 

compared to the other electrodes to ensure polarisation. The potential at the working 

electrode is varied linearly with respect to time. The potential of the reference 

electrode remains constant. The counter electrode allows the flow of electric current 

from the power source to the working electrode. It acts to complete the 

electrochemical circuitry in addition to offering a counter reaction to the process 

occurring at the working electrode. 

 

The power source itself consists of a variable resistor, R, and the potential is selected 

by sliding the contact, C, along it. The actual resistance of the circuit is very high (> 

1011Ω) which implies that there is no current present, and thus all the current 

generated at the source is transferred from the counter electrode to the working 

electrode. The voltammogram is thus obtained by moving the contact, C, along R at a 
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constant rate (linear scan voltammetry). The current obtained is recorded as a function 

of the potential between the working electrode and the reference electrode. 

 

The working electrodes commonly employed are highly conductive and inert 

materials such as mercury (in the form of a dropping mercury electrode (DME)), 

carbon, gold and platinum, with which the potential is varied to induce a redox 

reaction (Skoog et al., 1996). Two types of carbon-based working electrodes 

commonly employed are solid-state glassy-carbon and carbon-inks as employed in 

screen-printed electrodes (Cooper, 2004). Section 2.2 discusses in greater detail 

carbon-based working electrodes, particularly in relation to the application of a 

mercury film on to the carbon surface.  Section 3.2 discusses gold working electrodes 

and introduces the novel application of gold-ink screen-printed electrodes. 

 

The relationship between current and concentration has led to the development of two 

important electro-analytical techniques: amperometry and voltammetry. The former 

involves measuring the change in current as a function of time when potentials are 

applied in order to reduce or oxidise target components at the surface of the electrode. 

The latter is explained in the next section. 

 

1.4.2.2 Voltammetry 

 

Voltammetry is defined as “a method based on the measurement of current as a 

function of the potential applied to an electrode” (Skoog et al., 1996). It originates 

from polarography which is a measure of current as a function of potential when the 

working electrode is comprised of a liquid conductor such as mercury implying that 

polarography is a reductive process. It was discovered by Jaroslav Heyrovsky in the 

1920s. Voltammetry has now become widely used in biological, physical and 

inorganic chemistry where such processes such as electron transfer, adsorption, 

oxidation and reduction are studied.  

 

During a voltammetric measurement, as the applied potential attains either a positive 

or negative value dependent on the electroactive species present in solution, 

electrolysis of the species occurs leading to the generation of a current which is 

deemed the faradaic current (Wang, 1994). This current varies as the potential 
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changes and is proportional to the concentration. In addition to the faradaic current 

there is the non-faradaic current which comprises of the background current inherent 

of the circuit and is caused by an “electrical double layer” on the surface of the 

working electrode (Wang, 1985). The size of the current affects the overall detection 

limit of the technique. 

 

From the late 1950s to the early 1960s, the advent of atomic spectroscopic methods 

saw the decline in utilisation of voltammetric techniques. This was coupled with the 

expensive equipment available at the time which relied on vacuum tubes (valves), for 

example a differential pulse polarographic instrument cost $25,000 USD in the early 

1960s (Osteryoung & Osteryoung, 1985). Revival of these techniques occurred from 

the mid-1960’s when the “classical” methods were modified, coupled with the 

availability of cheaper amplifiers, semi-conductors, and hence making these 

techniques more sensitive. Consequently, the same instrument cost $2,000 USD in the 

early 1970s mainly due to the advent of transistors. 

 

1.4.2.3 Stripping Voltammetry (SV) 

 

Stripping voltammetry involves a two-step process. The first step involves pre-

concentration in which the target analytes are deposited on to the surface of the 

working electrode via either reductive or oxidative means. This results in the 

concentration on the working electrode far exceeding that of the ions in the solution. 

The second step involves the consecutive removal of the target analytes from the 

surface of the working electrode dependent on the applied potential and the standard 

electrode potential of the target analytes. Three methods of stripping commonly 

utilised are: anodic, cathodic and adsorptive. The anodic method is normally 

employed for the detection of species with a positive charge such as positively 

charged metal species. The cathodic method is generally employed for the detection 

of negatively charged species, such as the halides. 

 

The adsorptive method does not rely on an electrical potential to deposit the 

analyte(s) on to the working electrode but rather is based on physical adsorption. 

Examples of analytes are organic molecules such as clinical and pharmaceutical 

compounds, such as riboflavin, and also for the determination of inorganic cations at 
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very low concentrations which have been associated to complexing agents such as 

dimethylglyoxime and catechol. An example is the determination of chromium and 

tungsten ions with carbon electrodes (Brainina, 1995).  

 

1.4.2.4 Anodic Stripping Voltammetry (ASV) 

 

ASV typically involves the application of mercury films to inert working electrodes 

instead of drops as used in polarography. The diffusion path length from the mercury 

film to the solution interface is much shorter compared to a drop, and thus analyte 

ions are “stripped” much quicker. This quicker stripping leads to better resolved 

peaks, and implies that solutions containing multiple target analytes can be studied. 

This makes ASV one of the most sensitive techniques in electrochemistry (Skoog et 

al., 1996). 

 

ASV is used to measure concentrations in the sub-parts per billion (sub-ppb) range 

(µg kg-1). ASV is typically a two-step process: 

1. Deposition: The working electrode behaves as a cathode whence the metal 

ions are reduced and deposited on to the electrode surface at a suitable fixed 

negative potential for a specific length of time. For example, cadmium is 

reduced on to the electrode as follows: Cd2+ + 2e-  Cd0 

2. Stripping: The working electrode now behaves as an anode as the metals are 

re-oxidised (“stripped”) from the electrode back into the solution as a function 

of increasing potential, eg -1.2 to -0.2V. The re-oxidation of cadmium from 

the electrode is as follows: Cd0  Cd2+ + 2e-. 

 

The most common voltammetric techniques employed in ASV are normal pulse 

(NPASV), differential pulse (DPASV) and square wave (SWASV).  

 

Normal Pulse and Differential Pulse Anodic Stripping Voltammetry (NPASV and 

DPASV) 

 

Figure 1.3 displays a linear-scan voltammetry (LSV), an NPASV and a DPASV 

voltammogram of a solution containing three metal ions: cadmium, lead and copper, 
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recorded by an Autolab PSTAT10 (Eco Chemie, Holland) using a carbon-ink screen-

printed electrode (C-SPE). 
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Figure 1.3: LSV (red), NPASV (blue) and DPASV (green) voltammograms recorded for 200 ppb 

of Cd, Pb and Cu in 200 ppm mercuric (II) nitrate, 1% nitric acid, 0.1M potassium chloride 

acquired on carbon-based screen-printed electrodes. Deposition potential: -1.1V (vs Ag/AgCl); 

Deposition time: 165s; Scan rate: 10mV/s. DP amplitude: 50mV; NP and DP pulse durations: 

50ms. The currents are range-scaled 
 

The LSV plot (red) clearly displays two plateaux for lead (Pb) and copper (Cu), the 

latter having a wider potential window due to the copper ions continually being 

reduced as the potential increases. The plateau for cadmium (Cd) is therefore shorter. 

The plateaux indicate that the reduced metal species are being oxidised back into the 

solution. The length of the plateau leads to quantitative determinations of the 

respective metal ions but at much greater concentrations (>10ppm). The NPASV plot 

(blue) clearly defines the presence of cadmium compared with LSV. 

 

With regards to DPASV (green), deposition has occurred at a potential of -1.1V 

versus the stable reference electrode potential (of silver/silver chloride) for a fixed 

length of time (165s). The potential is increased linearly at a rate of 10mV/s with a 

differential potential pulse of 50mV applied at the last 50ms of the period of 500ms. 

The cadmium peak (left) with a stripping potential of ~-0.9V, and lead peak (~-

0.65V) are both well-defined but as for copper (right) it is not so well resolved. Some 

reasons offered by (Eriksen et al.,  2001) are with regards to the poor solubility of 

copper in mercury, copper existing in more than one oxidation state, and the actual 
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stripping peak of copper occurring at the same potential where certain organic species 

may also be adsorbed on to the working electrode such as fulvic or humic acids which 

are both naturally occurring complexing agents in the environment (Bott, 1995). In 

this situation, multivariate calibration (discussed in Section 1.5.4) may be used to 

determine the true concentration of the copper and hence overcome these matrix 

effects. 

 

Linear-scan methods suffered from low scan rates, inconvenient apparatus and poor 

limits of detection (Skoog et al., 1996). As advances in electronics grew, signals 

could be better manipulated. NPASV and DPASV differ from LSV in that during the 

last 50ms of the waveform period, the current is recorded at the end of a potential 

pulse which grows with each pulse (for NPV), or the current is recorded both before a 

fixed 50mV pulse is applied and again at the end of the pulse duration (for DPV). The 

NPASV and DPASV waveforms are displayed in Figure 1.4. 

 

 

Figure 1.4: Normal pulse (A) and Differntial pulse (B) waveforms. Currents are recorded at ● 

 

The NPASV waveform (Figure 1.4A) leads to a smoother curve than LSV. This is a 

consequence of the faradaic current being highly stable and the non-faradaic current 

negligible (Rouessac & Rouessac, 2000). The DPASV waveform (Figure 1.4B) is 

combined with a pulse output from a staircase signal where Es is the height of the 

step. The difference in the currents between S1 and S2 (S2 – S1) is recorded as a 

function of the linearly increasing potential. This produces more highly resolved 

voltammograms with peaks similar to those obtained on a chromatogram where the 

height of the peak is directly proportional to the concentration of the analyte (Figure 
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1.3). Referring to Figure 1.4B, the scan rate is calculated by dividing the step potential 

(∆E) by the period (dT). One of the advantages of DPASV is that the number of 

maximum peaks generally corresponds to the number of target analytes, unless two or 

more analytes possess the same redox potential. However, the resolution is much 

improved with electrode potentials of 0.04 to 0.05V for DPASV compared to 0.2V for 

LSV. 

 

Square Wave Anodic Stripping Voltammetry (SWASV) 

 

This is a highly sensitive technique which acquires voltammograms rapidly compared 

to DPASV (Osteryoung & Osteryoung, 1985). It combines a staircase (step) 

waveform with a “pulse train” to produce the SW waveform illustrated in Figure 1.5. 

 

 
Figure 1.5: Waveforms contributing to a square-wave form (right): staircase (top-left) and a 

train pulse (bottom-left) 
 

The current recorded at each waveform period is calculated from the current at point 2 

subtracted from the current at point 1. Voltammograms can be recorded in under 

10ms.  
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Figure 1.6: SWASV voltammograms of 200 ppb Cd, Pb and Cu in 200 ppm mercuric (II) nitrate, 

1% nitric acid, 0.1M potassium chloride. Dep potential: -1.1V (vs Ag/AgCl), Dep time: 165s. Scan 

rate (DPASV (red)): 10mV/s. 

Key: SWASV1 (blue) = Amplitude: 200mV; Frequency: 25Hz; Scan rate: 124mV/s 

SWASV2 (purple) = Amplitude: 50mV; Frequency: 25Hz; Scan rate: 124mV/s 

SWASV3 (green) = Amplitude: 50mV; Frequency: 50Hz; Scan rate: 248mV/s 

The current was range-scaled. 
 

Typical parameters include waveform periods of 5ms, 10mV for Es and 50mV 

(2×25mV) for Esw. With a pulse frequency corresponding to 200Hz (1/0.005s), a 

voltammogram recorded over a 1V range will take 0.5s. Typical voltammograms are 

displayed in Figure 1.6 (above) and clearly resemble that of Figure 1.5 for DPASV. 

 

The quality of the voltammograms is maintained even with the increase in scan rate. 

Decreasing the amplitude from 200mV (SWASV1) to 50mV (SWASV2) leads to a 

slight positive potential shift and peak broadening. Increasing the frequency and thus 

the scan rate (SWASV2 to SWASV3) leads to further broadening of the peaks and 

loss of sensitivity, especially for cadmium and copper. SWASV1 resembles DPASV 

but is greatly affected by noise. 

 

Overall, the DPASV voltammogram is better resolved with narrower and sharper 

peaks. With regards to the SWASV voltammograms, SWASV2 offers the better 

voltammograms. It is reported that detection limits for SWV are in the region 10-7 to 

10-8 M for a range of inorganic analytes (Skoog et al., 1996). Further applications are 

reviewed in Section 2.2 and 3.2. 
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1.4.2.5 Potentiometric Stripping Analysis (PSA) 

 

PSA differs from ASV in that as soon as the metal ions have been pre-concentrated, 

potential changes are recorded against time at a constant (null) current. This gives the 

advantage that the signals obtained are independent of the surface of the electrode in 

which the size of the electrode is therefore not a factor (Estela et al.,  1995). Other 

advantages include “detection in the presence of some electroactive organic species, 

analysis in solutions with lower ionic strength (such as acetic acid and propanol at 10-

4M) and lower background contributions” (Hocevar et al.,  2002). Furthermore, a 

single potential at for example -1.25V vs SCE suffices to reduce all of the metals in 

solution and thus avoid hydrogen evolution in water-based systems. It is easier to 

measure time than micro-currents (DPASV). However, peak resolution and detection 

limits are improved for DPASV than with PSA (Estela et al.,  1995). Furthermore, 

acquisition times for PSA are greater than for DPASV because of the constant 

potential as the target analyte is stripped. This is more evident when varying 

concentrations of the other analytes are present in the same cell. This implies that as 

the target analyte is stripped the other analytes continue to be deposited. 

 

1.4.3 Fluorescence Spectroscopy 

 

1.4.3.1 The Phenomenon of Fluorescence 

 

When a compound is irradiated with a high-energy (low wavelength) beam of 

electromagnetic radiation, the molecules or atoms become excited due to the electrons 

lying in the ground state absorbing the energy and transferring to higher energy states 

(Atkins, 1992). On removal of the excitation beam, the excited electrons return to the 

ground state at a lower energy (higher wavelength) emitting light (fluorescence) in the 

process. This shift in wavelength is termed the Stokes shift and is due to a portion of 

the absorbed energy being dissipated to the surrounding medium in the form of heat 

as a result of the electrons undergoing vibrational relaxation (Skoog et al., 1996). 

Figure 1.7 illustrates the phenomena via the so-called Jablonski diagram. 
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Figure 1.7: Jablonski diagram illustrating the electronic transitions that result from the 

irradiation of a compound with high-energy beam of photons 
 

The term internal conversion (IC) describes the process by which electrons lose 

excess energy in the form of heat by transferring from the lowest sub-level of an 

excited state (S2) to a lower excited state (S1). Intersystem crossing (ISC) occurs when 

paired electrons from the excited singlet state (S1) transfer to the more energy-stable 

triplet state (T1) (Atkins, 1992). However, the electrons attain parallel spin which 

prevents them from rapidly returning to the ground state (S0) and thus do so via the 

longer-lived phenomenon of phosphorescence (Kemp, 1991).  

 

All compounds which absorb high-energy photons possess the ability to fluoresce. 

However many do not due to radiationless relaxation processes which occur at a faster 

rate than fluorescence (Skoog et al., 1996). This can be attributed to the structure of 

the compound. Aliphatic hydrocarbons containing double or triple bonds tend to 

fluoresce, but fluorescence is more common in non-substituted aromatic 

hydrocarbons. The quantity of fluorescence is described as the quantum yield, Qe 

(Equation 1.3): 
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where rf is the rate of relaxation via fluorescence and rr is the rate of relaxation via 

radiationless processes. If a compound possesses a Qe value close to unity, it will be 

highly fluorescent; the opposite is true if Qe is close to zero. With regards to un-

substituted aromatic rings, the Qe increases as the number of fused rings increases. 

The rigidity of a compound also affects the quantum yield in that the more rigid a 

compound, the greater is the yield. For example, fluorene possesses a Qe close to 1 

whilst biphenyl is ~ 0.2 (Figure 1.8). 

 

 
Figure 1.8: The molecular structures of fluorene and biphenyl illustrating the rigidity of the 

respective compounds 
 

Furthermore, any substitutions made on the rings can result in a shift of the 

fluorescence wavelength and subsequent lowering of Qe. 

 

The phenomenon of fluorescence is applicable in a wide number of areas such as the 

detection of leaks in water systems and markers for rescue operations performed at 

sea (both employing fluorescein). Another application is the addition of “brighteners” 

to detergents. Whilst fabrics are being washed, the brightening compounds adhere to 

them. When the fabrics are thus illuminated by sunlight (absorbing in the UV region) 

they fluoresce in the blue region and hence give the effect of “whiter than white” 

(Kemp, 1991). 

 

Fluorene Biphenyl
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1.4.3.2 Relating Concentration to Fluorescence 

 

Fluorescence intensity is proportional to the intensity of the excitation energy that has 

been absorbed by the target species. We thus have Equation 1.4. 

 

( )IIKI OF −= '  1.4 

 

where IF is the intensity of the fluorescence, K’ is a constant dependent on the 

quantum efficiency of the fluorescence occurring, IO is the intensity of the incident 

light, I is the intensity of the light after passing through a sample of path length l, and 

therefore the difference (IO – I) relates to the intensity of the light absorbed. The Beer-

Lambert Law relates the absorbance (A) to the concentration (c) of a given compound 

(Equation 1.5). 

 

clA ε=  1.5 

 

where ε is the molar extinction coefficient (or molar absorptivity) and l is the path 

length of the sample cell. The absorbance is obtained from the natural logarithmic 

ratio of the intensity of the incident light (IO) over the intensity of the light (I) after 

emergence from the cell (Equation 1.6). 







=

I
I

A Oln  1.6 

 

 

Combining Equations 1.5 and 1.6 and substituting into Equation 1.4 gives: 

 

( )cl
OF eIKI ε−−= 1'  1.7 

 

The intensity of fluorescence is proportional to the concentration. If the absorbance 

remains below 0.05, a linear calibration curve will be attained. However, on 

absorbance values greater than 0.05, linearity is lost due to the phenomenon of self-

quenching in which the molecules of the given analyte absorb the fluorescence 
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produced by other neighbouring analytes. The effect therefore increases as does the 

concentration of the given analyte (Skoog et al., 1996). 

 

1.4.3.3 2D Fluorescence 

 

A spectrum which contains the fluorescence intensity values of a given target 

compound over a specific wavelength range is classed as two-dimensional 

(fluorescence intensity versus excitation or emission wavelength). Three types of 

spectra are attainable: emission, excitation and synchronous.  

 

Emission Spectroscopy 

 

The emission spectrum of a target compound is obtained after the sample has been 

irradiated with a fixed wavelength excitation source. Figure 1.9 displays the main 

components of a 2D fluorimeter in the acquisition of an emission spectrum.  

 

 
Figure 1.9: The main components of a typical 2D fluorimeter leading to the acquisition of an 

emission spectrum 
 

The light source in this case is a Xenon arc lamp, which has a wavelength range of 

200 to 600nm. The light beam passes through an excitation grating or filter, which 

produces an excitation beam across a narrowly defined wavelength (i.e. a narrow 

bandwidth). This then passes through the sample. The fluorescence occurs in all 
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directions. However, common practice is to acquire it at right-angles to the excitation 

beam. If at other angles, the effect of scattering from the quartz cell walls and the 

sample solution itself can lead to large errors in the intensity values recorded. 

 

The emitted beam passes through the emission grating which can be focused to select 

one particular wavelength, or scanned over a range of wavelengths. These are 

collected at a detector (for example a photomultiplier). In many fluorimeters light 

from the source is also passed through a beam attenuator which reduces the beam 

intensity and is collected at another detector. The outputs from the two detectors are 

combined and processed by the difference amplifier followed by transference to a 

processor for further processing and displaying. This type of instrument is classed as 

double-beam due to the presence of the two detectors which serves to take into 

account power fluctuations in the source. This also serves in calibrating the 

instrument for day-to-day use. 

 

Figure 1.10 displays the emission spectrum of 400ppb anthracene in HPLC grade 

acetonitrile. 

 

0

200000

400000

600000

800000

1000000

1200000

200 250 300 350 400 450 500

Wavelength (nm)

In
te

ns
ity

 (c
ps

)

 
Figure 1.10: The fluorescence emission spectrum for 400 ppb anthracene in HPLC grade 

acetonitrile. Start: 200nm; End: 500nm; Excitation: 254nm; Increment: 1nm; Integration: 0.1s 
 

The peak at 254nm is due to the phenomenon of Rayleigh scattering. This is where 

the particle size of the given sample is smaller than the wavelength of the excitation 
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source (Atkins, 1992). This leads to elastically back-scattered light from the excitation 

source. The intensity is dependent on 1/λ4 and is more effective at shorter 

wavelengths. Four emission peaks are clearly visible at 380, 400, 420 and 450nm. 

This would lead to the deduction that there are four sub-levels in the excited state (S1). 

However if this was the case then four sharp lines would be observed at each of the 

above wavelengths. The reality is that there are a large number of sublevels which 

leads to the broad spectrum in Figure 1.10. 

 

Excitation Spectroscopy 

 

The excitation (absorption) spectrum of a compound is acquired by scanning the 

excitation grating at a constant emission wavelength. The excitation beam of varying 

wavelengths traverses the sample and is reflected by an arrangement of mirrors into 

the emission grating as illustrated in the simplified diagram shown in Figure 1.11. 

 

 
Figure 1.11: Typical instrument set up for acquisition of an excitation (absorbance) spectrum 

 

The emission grating is set at a high wavelength in order to reject the fluorescent light 

which accompanies the excitation light. These fluorescent beams are of lower energy, 
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and with wavelengths less than 500nm (in this instance). The rotating mirror can 

change position so that the instrument can be set to “emission” mode. In some 

systems, additional shutters in front of the mirrors can prevent any stray fluorescent 

light from affecting the measurement and thus preventing interference. 

 

Figure 1.12 displays both the excitation and emission spectra for 400 ppb anthracene 

in HPLC grade acetonitrile. 
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Figure 1.12: The excitation (absorption) spectrum (RED) and emission spectrum (BLUE) for 400 

ppb anthracene in HPLC grade acetonitrile. Emission parameters detailed in Figure 1.10. 

Excitation parameters: Start: 280nm; End: 385nm; Emission: 400nm; Increment: 1nm; Integral: 

0.1s 
 

The absorption spectrum is a “mirror image” of the emission spectrum (Figure 1.10). 

This illustrates the energy absorbed by the electron as it is promoted from the ground 

state (S0) to the higher energy excitation state (S1, S2, etc). Furthermore the difference 

in energy between the sublevels in both the ground and excited states are the same 

(Skoog et al., 1996). The peak at 375nm appears in both spectra and is a product of 

“resonance fluorescence”. This occurs when the emission wavelength is identical to 

the excitation wavelength that generated it. 
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Synchronous Spectroscopy 

 

Synchronous fluorescence spectroscopy (SFS) involves the simultaneous scanning of 

both the excitation and emission gratings at a constant scan rate (Patra & Mishra, 

2002). This involves scanning the excitation and emission gratings at the same 

constant rate to give a constant wavelength interval (∆λ). SFS can be better described 

in a Jablonksi diagram (Figure 1.13). 

 

 
Figure 1.13: Explaining the phenomenon of SFS at constant scan rate via a Jablonski diagram 

 

Normal emission spectroscopy would involve excitation at Ex4 (where in this instance 

the absorption would be at its maximum) and scanning the emission grating from Em1 

to Em7. With SFS, the wavelength interval is set constant so that ∆λ = Em4 – Ex4 = 

Em5 – Ex5 and so on. Additionally, no fluorescence is detected until the excitation and 

emission gratings reach Ex4 and Em4 respectively. Excitation then occurs at Ex5, Ex6, 

etc resulting in the respective fluorescence emissions at Em5, Em6, etc. The full 

spectrum is thus acquired in this manner. This therefore results in narrower spectral 

bands compared to normal emission spectra. Depending on the choice of ∆λ the peak 

intensities can be increased further due to the simultaneous scan of both the gratings.  

 

Figure 1.14 displays the synchronous spectrum of 400 ppb anthracene in HPLC grade 

acetonitrile. 
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Figure 1.14: Synchronous fluorescence spectra of 400 ppb anthracene in HPLC grade acetonitrile 

at varying synchronous wavelengths.  Start: 280nm; End: 400nm; Increment: 1nm; Integration: 

0.1s 
 

In this instance the application of a small synchronous wavelength difference (∆λ = 

20nm) has led to the acquisition of well resolved and narrower peaks, the quality and 

resolution decreasing as ∆λ increases. This can be related to the Jablonski diagram in 

Figure 1.13 in that fewer electron transitions occur from the excitation state (S1) down 

to the ground state (S0). This technique has therefore made the peaks much sharper 

and narrower compared to emission and excitation spectroscopy. It will thus allow for 

better deconvolution of samples containing a mixture of target analytes leading to the 

extraction of much useful data. 

 

1.4.3.4 3D Fluorescence 

 

A disadvantage of 2D fluorescence is the requirement to perform a number of 

measurement steps in order to determine the optimum excitation and emission 

wavelengths for a particular sample (Rouessac & Rouessac, 2000). These steps 

involve the following: 

 

• Acquiring a UV-VIS (absorption) spectrum via a spectrophotometer. The 

maximum intensity obtained determines the initial excitation wavelength 
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• The fluorescence (emission) spectrum is acquired at the above initial 

excitation wavelength. The maximum peak obtained determines the emission 

wavelength 

• The excitation spectrum is acquired at the above emission wavelength. This 

leads to the determination of the actual excitation wavelength to be employed 

for the particular sample or compound. 

• The emission spectrum is acquired again at the actual excitation wavelength 

 

These steps are cumbersome if they are to be followed for every sample containing 

one compound. However, if a sample contains a mixture of compounds with different 

fluorescent properties, the optimum excitation wavelength for one compound may not 

be so for another compound, and will lead to 2D spectra which are difficult to 

interpret. This issue may be addressed, at least in part, by 3D fluorescence. 
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Figure 1.15: EEM (3D) spectrum of 400 ppb anthracene in HPLC grade acetonitrile acquired on 

a CCD detector. Excitation (Z): Start: 73.9nm (1); End: 691.4nm (511); Resolution: 1.2 

Emission (X): Start: 227.7nm (1); End: 724.5nm (511): Resolution: 1.0; Exposure: 1s 
 

Figure 1.15 displays an excitation-emission matrix (EEM) which is a 3D plot with the 

emission wavelengths in the x-axis, the excitation wavelengths in the z-axis and the 

intensities in the y-axis. 3D fluorescence involves acquiring emission spectra ranging 

from specified wavelengths over the desired excitation wavelength range. 
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This arrangement permits the instantaneous acquisition of the spectrum and thus 

immediate interpretation of the data. With a sample containing a mixture of 

fluorescent compounds it will be easier to determine the excitation wavelengths to 

employ for a specific compound on the 2D fluorimeter. However, with the advent of 

powerful computers and advanced data handling software applications, the 3D data 

itself can be quantitatively processed (Chapter 6). The anti-Stokes emission shown in 

Figure 1.15 originates due to the collection of energy from already-excited sample 

molecules and thus emit at higher frequency (energy) (Atkins, 1992). Figure 1.16 

illustrates the instrumentation employed for the acquisition of an EEM. 

 

 
Figure 1.16: Instrumentation for 3D fluorescence spectroscopy 

 

The excitation spectrograph generates excitation energy over a specified wavelength 

range and dispenses it in a manner such that they strike the cuvette in a vertical plane. 

The emission spectrograph disperses the resultant emission fluorescence in a 

horizontal plane before projection on to the charge-coupled device (CCD) detector. 

The CCD employed to generate Figure 1.13 had a dimensionality of 511 rows each 

with 511 elements, implying a total of 261,121 elements (pixels) each of which can be 

seen as individual detectors (Skoog et al., 1996). Each pixel can have a surface area of 

20 - 30µm2 (Epperson & Denton, 1989). 
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When a CCD pixel is illuminated, a charge packet develops within the p-type semi-

conducting metal oxide beneath the insulating silica surface. Electrons are thus stored 

in the packet. The charge packets are then transferred along the row towards a low-

capacitance diode leading to the induction of a change in voltage which is 

proportional to the amount of charge. The charge from each pixel can also be 

combined (binning). Two types of binning are serial and parallel. The former 

involves combining a number of charge packets from a given number of pixels, whilst 

the latter involves combing rows of pixels into one row and combining a specified 

number of elements in this row. This leads to an increase in sensitivity, a decrease in 

readout noise, and a faster acquisition due to fewer ADC conversions performed. 

Shutters are also employed to reduce the exposure of the CCD to the light and thus 

reduce the risk of charge-overflow from one pixel into a neighbouring one. 

 

CCDs were invented in the early 1970s. They were primarily designed for imaging 

but later saw application with spectroscopic techniques. CCDs are highly sensitive 

due to factors such as a high quantum efficiency, charge integration for a few hours, 

negligible dark current due to cooling at low temperatures (-125°C), and the most 

important factor is the low read-out noise. CCDs are employed in astronomy, Raman 

spectroscopy, and capillary zone electrophoresis (CZE) coupled with laser-induced 

fluorescence (LIF) which led to the differentiation of fluorescent species by their 

emission spectra and rates of migration due mostly to the time-delayed integration 

(TDI) performed on the CCD output (Sweedler et al.,  1991). 

 

1.4.3.5 Applications 

 

2D fluorescence techniques, in this instance emission spectroscopy, are reported to be 

more sensitive than absorption techniques due to the ability to enhance the excitation 

beam in the former in addition to amplifying the signal from the detector (Skoog et 

al., 1996). Fluorescence spectroscopy offers a relatively inexpensive means of 

accumulating data compared to GC-MS and HPLC-MS. Important applications 

include the analysis of food products, clinical samples, pharmaceutical formulations 

and environmental pollutants, for example polynuclear aromatic hydrocarbons such as 

anthracene. 
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Over the last decade, 3D fluorescence techniques have seen a marked increase in 

application to environmental analysis coupled with multivariate analysis. Two 

examples are the analysis of humic substances ((Antunes & Esteves da Silva, 2005)) 

and determining triphenyltin in sea-water ((Saurina et al.,  2000)). Further 

applications include detecting and identifying plasticizers in polymer chemistry, and 

studying proteins that contain fluorescent groups either naturally in the form of 

aromatic amino acids or which have been added as labels (Kemp, 1991). Further 

applications are reviewed in Section 5.2. 

 

1.4.4 Atomic Absorption Spectroscopy 

 

The analytical technique of atomic absorption spectroscopy (AAS) is primarily 

employed for the quantitative determination of metals (Sharp, 1990). When a sample 

containing a specific target analyte is irradiated with an appropriate source, the atoms 

of the analyte absorb the energy and become excited (Rouessac & Rouessac, 2000). In 

each atom, the outer electrons in the ground state are “promoted” to higher excited 

energy states. The total loss of intensity recorded by the detector therefore 

corresponds to the total absorption of energy. 

 

The initial conception of the technique came as a result of a set of experiments 

performed by Kirchhoff (in the late 1800s) in which sodium chloride was sprinkled on 

to the flame from a Bunsen Burner which itself was situated between a source of 

white light and a slit which directed the light on to a prism which dispersed the light 

producing a continuous spectrum.  When this spectrum consisted of black lines on a 

white background, the phenomenon of atomic absorption was conceived. Omission of 

the light source led to white lines on a dark background, and thus the phenomenon of 

atomic emission was conceived. 

 

The absorption recorded by an instrument is dependent upon the number of atoms 

(currently in their ground-state) that are in the optical path. This in turn can be related 

to the concentration of a given element via a “Beer-Lambert Law-like” equation; 

“law-like” because the molar absorptivity (ε) is not calculated (Rouessac & Rouessac, 

2000). 
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CkA ⋅=  1.8 

 

where A is the absorbance and C is the concentration. The constant k is a unique value 

of a specific element at a specific wavelength. 

 

AAS instruments are purely laboratory-based because of the need for a constant gas 

supply (acetylene or nitrous oxide) as for flame AAS or in some cases water for 

constant cooling (as in graphite-furnace AAS). They can therefore be employed to 

validate field-based instruments such as voltammetric in conjunction with other 

laboratory techniques such as inductively coupled plasma mass spectrometry (ICP-

MS). A common disadvantage with AAS is the requirement to swap the lamps over 

whenever a new element is about to be studied. This can be deemed a cumbersome 

and time-consuming process. However, modern instruments can contain an array of 

lamps which can be automatically rotated into position.  

 

Three types of AAS techniques will be briefly discussed: flame AAS, flame-less AAS 

and hydride generation. The application and thus choice of these techniques is 

dependent upon the target analytes and the expected concentrations within a given 

sample. 

 

1.4.4.1 Flame AAS 

 

In brief, when the sample solution is aspired into the system, it is nebulised, ie. made 

into a fine aerosol, prior to being carried over to the atomiser where it is vaporised 

(Skoog et al., 1996). At this point, any compounds present will be broken down 

producing the free metallic atoms. When the light from the lamp hits these atoms, 

they are excited by absorbing the energy of the light, hence leading to the 

phenomenon of absorption. The photomultiplier detector detects the change in the 

intensity of the light at a specific wavelength (specific to the metallic element) 

corresponding to the energy absorbed, which is represented as absorbance. 

 

At an atomic level, an electron, which is orbiting a nucleus within a given orbital shell 

(for example 3s) can absorb energy and hence move to a higher orbital shell (for 

example 3p or 3d) leading to excitation (Skoog, 1985). If the electron attained enough 
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energy to break away from its orbit of the nucleus, the atom would be ionised.  An 

electron in a higher orbital shell therefore possesses more energy than an electron in a 

lower orbital shell. The transition of the electron from one orbital into another occurs 

at a specific wavelength. 

 

A commonly employed flame atomiser is the laminar flow burner (LFB). The sample 

is nebulised by the flow of the oxidant past a capillary tip. It is then mixed with fuel, 

which then flows past a series of baffles that remove the very fine droplets. A major 

drawback here is that most of the sample is wasted away. The remainder is taken up 

by the oxidant and fuel, and burnt in the flame, which is usually 5 to 10 cm long. 

There is a risk of an explosion in the mixing chamber if a flashback occurs. The 

sensitivity is very high but sample wastage is large (90 – 95%). The flame can be 

made up of a mixture of gases and the temperature of the flame varies depending on 

this mixture. For example, a combination of natural gas and air produces a flame with 

a temperature ranging from 1700 to 1900°C whereas a combination of acetylene and 

oxygen produces a flame with a temperature ranging from 3050 to 3150°C. Other 

combinations include hydrogen and air (2000 – 2100°C), acetylene and air (2100 – 

2400°C), and acetylene and nitrous oxide (2600 – 2800°C). 

 

The most commonly used light sources are the hollow cathode lamps (HCL). The 

cathode is constructed of the metal whose spectrum is to be measured. The inert gas is 

ionised when a potential of 300V is applied across the electrodes. The corresponding 

current is between 5 and 10mA. Gaseous cations are generated and have enough 

energy to knock metal atoms from the cathode forming a cloud. This phenomenon is 

known as sputtering. These atoms are in their excited states and when they fall to their 

ground states, they emit the necessary radiation at the specific wavelength to excite 

the atoms in the flame. The metal inside the lamp also gets re-deposited on the 

cathode or the glass. Modern designs ensure that re-deposition occurs on the cathode. 

 

The higher the potential, the greater the intensities but this in effect increases the 

Doppler broadening (DB) of emission lines. DB occurs due to the rapid motion of the 

atoms in the flame (Atkins, 1992). When the atoms move towards the detector, the 

wavelength of the emitted or absorbed radiation decreases. When the motion is away 

from the detector, the wavelength increases. If the flame temperature is increased, the 
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atoms move faster and thus the DB is heightened. When an increase in current occurs, 

more unexcited atoms are generated which will absorb some of the radiation from the 

excited atoms and hence reducing the intensity. This is known as self-absorbance 

(Skoog et al., 1996). The life of a hollow cathode lamp is related to the maximum 

current applied. Figure 1.17 shows the schematic instrumentation of flame AAS. 

 

 
Figure 1.17: Schematic of the instrumentation for Flame AAS 

 

Flame AAS tends to suffer from matrix effects (Skoog et al., 1996). Normally, when 

standards are prepared, they differ from the sample in that they do not contain any 

interfering species as do the samples. These interfering species can also be present in 

the flame absorbing or even emitting radiation thus increasing or decreasing the 

absorbance observed. 

 

Matrix effects can be eliminated by the use of internal standards or by performing 

standard additions (Kennedy, 1990). Instrumentally, these effects can also be 

eliminated. One such method involves a continuous source method in the form of a 

deuterium (D2) lamp (Figure 1.17). This covers the wavelength range of 190-425nm 

(Lajunen, 1992). A rotating chopper causes the two beams (one from the HCL, the 

other from the DL) to alternately pass through the flame containing the analyte atoms 

to the detector. The slit-width is kept large (~0.2-0.7nm) so that any absorption of the 

continuous radiation by the analyte is neglected. This implies that any attenuation in 

the intensity of the continuous source is due to the interfering species. As the detector 

records the intensities from the HCL and the DL it computes a ratio of IDL/IHCL. This 



PhD Thesis  Chapter 1 
 

 
Cranfield University  Michael Cauchi 35

leads to the background being corrected. In order to avoid errors, the two beams must 

be aligned exactly. Note that the more the intensity decreases, the greater the 

absorbance increases. 

 

The monochromator allows the passage of light of a sufficiently narrow wavelength 

range. Interference filters can be used but diffraction gratings are more common. The 

process of constructive or destructive interference occurs due to the angle of 

deflection of the light beam. Normally, the band pass of the monochromator is usually 

greater than the line-width of the source. The photomultiplier tube detector is located 

after the monochromator. The internal construction consists of well-focussed 

dynodes, which are connected to each other via a resistor. The dynodes closer to the 

anode have a more positive potential than do the other dynodes nearer the cathode. 

When the light hits the cathode, the emitted electrons get attracted to the first dynode 

since it is more positive. This leads to the emission of a number of secondary 

electrons for every primary electron striking the dynode. The whole process is 

repeated until it reaches the anode. The signal at the anode gets amplified and the 

built-in computer represents the information as absorbance or as concentration (e.g. in 

ppm). 

 

1.4.4.2 Flameless AAS 

 

Electrothermal atomisation is a “flameless” technique (Skoog et al., 1996; Lajunen, 

1992). It has an advantage over the flame methods since it does not waste the sample 

as in LFB or suffer from incomplete atomisation (TFB). Sensitivity is improved for 

the sample is atomised in a short period. Furthermore, only a minimum amount of 

solvent is required. The sample is first heated until it is dried before subjection to 

ashing. The current is increased in order to atomise the sample. The absorbance of 

light is measured at this point. 

 

A major disadvantage tends to be the reduction in precision due to the matrix effects 

being more severe. Another disadvantage is that the sample can be contaminated by 

the graphite tube due to some of the previous sample “slipping” into the pores. This is 

avoided by coating the graphite tube with a thin layer of pyrolytic carbon which seals 

the pores in the tube. Use of a L’vov platform controls the atomisation by delaying the 
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heating of the sample until the walls and vapour have reached a steady state 

temperature. 

 

1.4.4.3 Hydride Generation AAS (HG-AAS) 

 

This method is useful for those elements whose atoms are not well excited in a flame - 

even a nitrous oxide/acetylene flame - due to poor sensitivity (Lajunen, 1992). 

Instead, the hydride of the element is formed; the hydride tends to be volatile so the 

atoms will be easily excited - sensitivity is in fact improved greatly (at least 2-3 orders 

of magnitude higher). 

 

The acidified solution is passed through a 1% solution of sodium borohydride; the 

hydride of the element is thus formed and as it passes through the heated quartz tube 

(~750°C) it is vaporised; the vapour then gets carried into the light path by an inert 

gas. As matrix effects are completely eliminated, this technique can be employed for 

the determination of elements such as tin (Sn), silicon (Si), and arsenic (As). 

 

1.4.5 The Acquisition of Multivariate Data 

 

The techniques described in Sections 1.4.2 and 1.4.3 leads to the generation of vast 

quantities of data. Whereas the absorbance in AAS is acquired at one specific 

wavelength (univariate), a fluorescence emission spectrum consists of intensity values 

covering a specified wavelength range (multivariate). This implies that specialised 

data analytical tools are required to process and interpret the data. Such tools are 

employed in the field of chemometrics which is discussed in the next section. 
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1.5 Chemometrics 
 

Chemometrics has fast become an important tool in the field of analytical chemistry 

spanning areas such as NIR spectroscopy, Raman, NMR, UV-VIS spectrophotometry, 

fluorescence spectroscopy, liquid and gas chromatography (LC and GC respectively) 

and electrochemistry. The growth in the latter has become substantial over the last 

two decades, which has seen the development of highly sensitive techniques, like 

square-wave anodic stripping voltammetry (SWASV) offering a faster acquisition 

time coupled with the generation of larger datasets. As laboratory instruments have 

become more complex and sophisticated in acquiring data, it is important to have the 

means to be able to interpret the data and hence to extract the most relevant 

characteristics of the data, which will thus lead to the production of comprehensible 

and reliable results. 

 

Chemometrics is employed in many fields such as biology, organic and inorganic 

chemistry, pharmaceuticals, food, and industrial processes (Brereton, 2003). It is not 

restricted merely to the natural sciences; application to sociology, management, 

marketing and business are now commonplace. In 1972, Svante Wold from Sweden 

and Bruce R. Kowalski from the United States first introduced the term Chemometrics 

(Otto, 1999b). It is a way of obtaining useful information from raw data such as 

chromatograms, spectra, and voltammograms. Due to the complex calculations 

performed, subject areas such as mathematics, statistics, and information technology 

play a major integral part of chemometrics. 

 

Chemometrics can be split into four distinct fields: pattern recognition, experimental 

design, signal processing, and multivariate calibration (or modelling). A brief 

description of the first three groups will be given followed by an in-depth discussion 

on the latter. 
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1.5.1 Pattern Recognition 

 

Pattern recognition originated in the biological and psychiatric disciplines (Brereton, 

2003). In brief, it can be split into two sections: exploratory data analysis (EDA) and 

classification.  

 

1.5.1.1 Exploratory Data Analysis (EDA) 

 

EDA is used to “make sense” of a large complex dataset by extracting the major 

characteristics of the elements within the dataset and combining them into a smaller 

and simplified dataset in which the inherent relationships between the samples can be 

observed visually. EDA assists in the following: 

 

• The identification of groups of samples providing there are significant 

differences between these groups 

• The variability within the individual groups of samples 

• The correct labelling of the individual samples 

• Any samples which do not pertain to any of the groups (outliers) 

 

Principal Component Analysis (PCA) 

 

PCA “reduces the number of variables in the original dataset into fewer factors (or 

principal components) without loss in the total variance of the data” (Lam et al.,  

1997). The matrix comprising the original dataset is reduced to a smaller matrix with 

fewer variables than the original number of variables. These new variables are called 

principal components (PC) and are generated from linear projections of the 

decomposed original matrix. The first PC results from the largest variance observed in 

the original data. The next PC is orthogonal to the first and captures the next set of 

variance. Each consecutive PC is orthogonal to the previous PC which results in fewer 

PCs than the original number of variables due to all the variance of the data captured 

in conjunction with redundant and/or correlated data variables within the original data 

matrix. 
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A full spectral decomposition is thus carried out on the original dataset (X). This leads 

to two matrices: Scores (T) and Loadings (P) where T relates the rows of X, that is the 

measurement or experiment number, and P relates the columns of X that is the 

wavelengths or potentials. (Brereton, 2003; Otto, 1999b; Wise & Gallagher, 1998b; 

Otto, 1999a; Wise & Gallagher, 1998a). Figure 1.18 illustrates the decomposition of 

the original dataset. 

 

 
Figure 1.18: Graphical representation of PCA on X. 

 

The number of rows in T is equal to the number of measurements (rows in X). The 

number of columns in T is the number of PCs. The number of rows in P is equal to 

the number of potential measurements (columns in X). The number of columns in P is 

the number of PCs. We thus have Equation 1.9. 

 

X = TPT + E 1.9 

 

The residual matrix E possesses the same dimensionality as X. It follows that the total 

variance is generally captured in the first three PCs. This results in uncorrelated data 

in the form of noise captured in the later PCs. Plotting columns from the scores matrix 

(T) against one another yields scatter plots as shown in Figure 1.19. This allows the 

observation of the relationships between the samples. 
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Figure 1.19: PCA score plot of the second principal component (PC2) against the first (PC1) of a 

randomised dataset comprising of 4 species of pathogenic fungi (E, I, R and M) and 1 blank (B) 

control. Dataset supplied by Sahgal & Magan, Cranfield University, UK (2005). 
 

On close inspection of Figure 1.19 it is observed that the variability within the M and 

B groups is small, whereas within the others it is large, which is why they are widely 

distributed within the plot. Furthermore, E5 is more similar to B3 than to the other E 

samples. Concurrently, I5 is more similar to the R group, particularly R1 and R2, than 

any other I sample. This could imply mislabelling of the particular sample, and thus 

lead to the identification of human error. Finally, there appears to be a linear 

relationship between the two components with regards to the E samples which could 

be attributed to instrumental drift. 

 

Cluster Analysis 

 

Cluster analysis is another form of exploratory data analysis which detects similarities 

between groups such as features in organisms which can be body length, age and sex. 

It involves the creation of a “tree-diagram” which links the similar groups together. 

This “tree-diagram” is called a dendrogram in which the branch length pertaining to a 

particular sample depicts its similarity with the other samples. The branch lengths are 

obtained by the calculation of the relative distances between each sample. The 

distance is generally calculated via the Euclidean method although other methods are 

employed (Otto, 1999b). Figure 1.20 displays a dendrogram for the same dataset 

employed in Figure 1.19. 
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Figure 1.20: A dendrogram obtained after hierarchal cluster analysis of a randomised dataset 

comprising of 4 species of pathogenic fungi (E, I, R and M) and 1 blank (B) control. Dataset 

supplied by Sahgal & Magan, Cranfield University, UK (2005) 
 

On closer inspection of the dendrogram, five groups (or classes) are observed. Again, 

it is observed that E5 is more similar to B3 than any other E samples, as is I5 to the R 

samples. PCA can also be employed prior to cluster analysis if the original dataset 

contains highly correlated variables. The resulting dendrogram is thus constructed 

from the samples contained in the first PC (first column if the scores matrix). 

 

1.5.1.2 Classification 

 

This involves the use of “training sets” where the outcomes are already known so that 

unknown samples can then be “classed” into groups by regression on to the 

appropriate localised models (Otto, 1999b). A commonly employed method is 

SIMCA (soft-independent modelling of class analogies). This creates individual 

models (classes) for the groups observed in PC plots (for example in Figure 1.17). An 

unknown sample is then classed by regression on to each model until the better model 

is found. Another method is PLS-DA (partial least squares discriminant analysis). 

These are employed only if a qualitative determination is required, for example 

whether the sample is classed as polluted; quantitative determination of the individual 

components is thus achieved via multivariate calibration (discussed in Section 1.5.4). 

 

Another classification method is support vector machines (SVM). These function by 

locating a hyperplane within the space of sample inputs. The hyperplane splits the 

positive samples from the negative samples. The size of the split is dependent on the 
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greatest distance between the hyperplane and nearest of the positive and negative 

samples. When classification occurs, the closeness of the test sample to the training 

samples is computed. SVMs were recently employed to classify meat and bone meal 

in animal feeds via NIR imaging spectroscopy (Fernandez Pierna et al.,  2004). 

 

1.5.2 Experimental Design 

 

Experimental design (also known as design of experiment (DoE)) is very important in 

chemometrics especially when training data is required. It ensures that the 

relationship between the instrument and the target analytes is sufficiently described in 

addition to any interfering phenomena originating from the instrument and the 

samples (Martens & Naes, 2001). Furthermore, it is costly to perform numerous 

experiments to simply obtain a dataset that will consist of the maximum combination 

of parameters, such as the concentration of four metal ions in different ratios. 

Experimental design assists in designing a procedure in which the overall number of 

measurements is reduced. 

 

1.5.3 Signal Processing 

 

The application of chemometrics to the acquired data with respect to signal processing 

involves background (blank) subtraction, scaling, derivatisation, filtration 

(smoothing), or a combination of the above (and more). Background subtraction can 

lead to a more linear baseline, and thus enhance the signals attained (Otto, 1999b). 

Scaling of the data generally involves resizing the axes of the variables to the same 

length. Three examples of scaling techniques are mean-centring, auto-scaling and 

range-scaling which are displayed in Equations 1.10, 1.11 and 1.12 respectively.  
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Equation 1.10 calculates the mean of each column in a matrix (X) and subtracts it 

from every element in the respective column vector. Equation 1.11 performs Equation 

1.10 followed by division of the standard deviation of each column in the matrix. 

Equation 1.12 forces all of the elements in the respective column vectors to be in the 

range of 0 for the minimum value and 1 for the maximum value. 

 

Filtration improves the signal-to-noise ratio (S/N). A number of different algorithms 

can be employed from moving average (MA), Savitzky-Golay (S-G), or Fourier 

Transform (FT) of which the S-G function is discussed further. The S-G function can 

be employed to smooth spectra that suffer from systematic variations in the baseline 

using a second-order polynomial and a 13-point window (Galvao et al.,  2004). The 

S-G function is superior to MA due to information lost in the latter, for example, on 

going through a sharp peak, the end of the peak is degraded by the function (Savitzky 

& Golay, 1964). The S-G filter function is also known as a least squares smoothing 

filter (Wise & Gallagher, 1998b). It is applied to frequency data and spectroscopic 

peak data. In the latter it is very efficient at preserving such properties as the line 

width of a peak. However, it can be less effective at removing noise than MA. 

Furthermore, the S-G filter function requires uniform spacing of the predictor data. 

 

Differentiation (first or second order) usually assists in the resolution of overlapping 

peaks, but tends to decrease the S/N ratio, leading to differences of opinion as to 

whether it should be applied; convolution involves the combination of two or more 

functions leading to a “smoother” function. PCA can also be utilised to process 

signals by removing the “undesirable systematic variation in the data” which 

illustrates the inter-dependency of the groups (Wold et al.,  1998). 

 

Orthogonal Signal Correction (OSC) is an alternative approach as a pre-treatment 

tool (Wold et al.,  1998). It was initially developed to find an alternative to pre-

processing NIR spectra where much key information is not uncovered. OSC simply 

removes elements of the X matrix that are completely unrelated (orthogonal) to the Y 

matrix. The conception, development and application of OSC in conjunction with 

PLS to NIR data led to improved predictions compared to PLS only (Fearn, 2000). 
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In general, a combination of data pre-treatment techniques is applied to the data prior 

to multivariate calibration (Section 1.5.4). However, whatever the dataset is 

comprised of, a form of pre-treatment may be required (Richards et al.,  2002). The 

main objective of data pre-treatment is to reduce the contribution of noise present in a 

dataset to a minimum. An increase in the signal-to-noise (S/N) ratio is desired and is 

expressed as “the height of the most intense peak divided by the root mean square of 

noise where there is no signal”. The greater the S/N ratio, the better is the signal 

(Brereton, 2003). 

 

The term noise originates from audio and electronic engineering. It is the unwanted 

fluctuations observed in signals that appear as static (“hiss”) (Skoog et al., 1996). 

These fluctuations are always present in the output of an analytical instrument. They 

are a combination of a large number of uncontrolled random and systematic variables, 

not only in the instrument, but also within the chemical system under analysis. They 

also lead to a reduction in sensitivity of the instrument.  

 

The majority of modern instruments can increase the S/N ratio by applying analogue 

filters, amplification, smoothing and Fourier transforms (Skoog et al., 1996). 

 

1.5.4 Multivariate Calibration 

 

Multivariate Calibration (or Modelling) is a major part of chemometrics. In short, this 

involves relating a dataset containing, for example, concentration values for a series 

of analyte solutions to a larger, analytical dataset comprising, for example, the 

respective spectra, chromatograms or voltammograms. This relation can be applied to, 

for example, the spectrum of an unknown sample to predict the concentration of the 

analytes within that sample. Large datasets can be comprised of few rows but 

numerous columns. Such datasets can be found in NIR spectra, optical such as 

emission or fluorescence spectroscopy (Skoog et al., 1996), GC chromatograms and 

voltammograms where each row (vector) in the dataset (matrix) is, for example a 

voltammogram, and where each element within the vector is a response (variable) at a 

specific wavelength, time or potential. 
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Numerous multivariate calibration modelling tools are available such as classical least 

squares (CLS), principal component regression (PCR), partial least squares (PLS) and 

artificial neural networks (ANNs). They are applied to spectra, chromatograms and 

voltammograms. The methods, advantages and disadvantages of these tools will be 

briefly discussed in the following sections. 

 

1.5.4.1 Classical Least Squares (CLS) 

 

This originates from the univariate approach where the response of a detector, for 

example, the absorbance, is directly proportional to the concentration of one analyte 

at a given wavelength (Erickson et al.,  1992). Equation 1.5 related the absorbance of 

an analyte with its concentration (Beer-Lambert Law): 

 

clA ε=  1.5 
 

where A is the absorbance, ε is the molar extinction coefficient (or molar 

absorptivity), c is the concentration and l is the path length of the cell containing the 

sample. The absorbance is obtained from the natural logarithmic ratio of the intensity 

of the incident light (IO) over the intensity of the light (I) after emergence from the 

cell (Equation 1.6). 
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Equations 1.5 and 1.6 are combined into Equation 1.13 leading to a linear relationship 

between the intensity of the light emerging from the sample and the concentration. 
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This relates to the equation of a straight line as denoted in Equation 1.14: 

 

xbby ×+= 10  1.14 
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where y relates is the detector response (ln (I)), x is the reciprocal concentration (1/c), 

b0 is the intercept through the Y-axis (ln (IO)) and b1 is the slope of the line (1/εl). For 

a solution that contains multiple components, Equation 1.17 can be rewritten in matrix 

form as shown in Equation 1.15: 

 

Y = B×X 1.15 

 

where Y is the response matrix containing the absorbance values for the individual 

components, X is the concentration matrix and B is a matrix containing the response 

factors for every component in the solution. 

 

1.5.4.2 Multiple Linear Regression (MLR) 

 

Also known as inverse least squares (ILS), MLR relates the concentrations of a 

specific component (y) to a series of recorded spectra or voltammograms (x) via a 

regression vector (b) (Wise & Gallagher, 1998b; Otto, 1999b; Otto, 1999a). Observe 

now that the Y and X have swapped definitions in comparison to CLS, and from now 

on, Y will refer to concentration or some other property, and X will refer to spectra, 

chromatograms or voltammograms. Each row of X will contain a response as a 

function of wavelength (in the case of spectra) or potential (in the case of a 

voltammogram), which itself will be related to the same row in Y. Therefore: 

 

y = Xb + E 1.16 

 

where E is a “residual” matrix with the same dimensions as X. If there is more than 

one component, Equation 1.16 becomes: 

 

Y = XB + E 1.17 

 

Figure 1.21 illustrates a situation where three analytes are present in the same solution 

at different concentrations. Each row of X corresponds to a voltammogram as 

illustrated in Figure 1.3. Each row of Y corresponds to the concentrations of each 

analyte in the solution at different ratios. Each column of B is the response factor to 

the corresponding column in Y. It is calculated as shown in Equation 1.18: 
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B = (XTX)-1XTY 1.18 

 

where XT is the transposed matrix of X, that is to say the rows in X have become the 

columns and vice versa; a rotation about the main diagonal (left to right). The “-1” 

term indicates that the terms within the brackets have been inversed (Hirst, 1991). 

 

 
Figure 1.21: Graphical representation of Equation 1.17 

 

Prediction of the concentration of analytes from a new dataset simply involves 

multiplying the new dataset, Xunk by B (Equation 1.19): 

 

Ypred = XunkB 1.19 

 

An advantage of MLR (or ILS) over CLS is that it “minimises the squared errors in 

concentration” (Torralba et al.,  1994). Another advantage is that the number of 

analytes does not directly affect the analysis. A disadvantage of the technique is that 

only a small number of wavelengths can be simultaneously looked at (Ni & Gong, 

1997). If a large number, the problems of Collinearity come into play. This is when 

some of the columns in X are linear combinations of other columns, that is, there is a 

“linear dependence among the variables” (Otto, 1999b). 

 

1.5.4.3 Principal Component Regression (PCR) 

 

PCR differs from MLR in that principal components analysis (PCA) is first performed 

on the X matrix before being regressed to the Y matrix. PCA extracts the “dominant 
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patterns” in the X matrix (Wold et al.,  1987). The regression of T and P to Y is 

executed via Equation 1.20: 

 

B = P((TTT)-1TTY) 1.20 

 

Prediction of unknown concentrations occurs as for Equation 1.19. However, if all of 

the PCs are included, then the same result as for MLR will be obtained (Richards et 

al.,  2002). 

 

1.5.4.4 Partial Least Squares (PLS) Regression 

 

A drawback associated with both MLR and PCR is that they both assume that there 

are no errors associated with the concentration values, in other words, the Y matrix is 

not taken into account. PLS, developed by H. Wold, does take this information into 

account. Both the X and Y matrices are decomposed at the same time so that the 

covariance between them is maximised. 

 

 
Figure 1.22: Graphical representation of PLS. 

 

U, Q, and F are analogous to T, P, and E respectively where F has the dimensions of 

Y. In this way, any important information that is obtained from the X matrix is 
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directly associated with the appropriate portion of the Y matrix. The regression 

matrix, B, also known as the “inner relationship” is calculated in Equation 1.21: 

 

B = W(PTW)-1QT 1.21 

 

where W is the PLS Weights which “re-orientates” the X matrix “with respect to” the 

Y matrix. The dimensions of W are the number of columns of X by the number of 

columns of Y. Prediction at the appropriate latent variable (LV) is illustrated in Figure 

1.23 where an LV is analogous to a PC but incorporates information from the Y 

matrix. 

 

 
Figure 1.23: Prediction of unknown concentrations at the 3rd latent variable (LV) as denoted by 

rows 7 to 9 of the regression matrix, B. 

 

In this instance, each row in Xunk produces an equivalent row in Ypred from the third 

latent variable in the B matrix. 

 

There are many variants of PLS such as non-linear iterative PLS (NIPALS), 

statistically inspired modification of PLS (SIMPLS), and a number of variants 

including non-linear PLS algorithms. These are described below. 
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Non-linear Iterative Partial Least Squares (NIPALS) 

 

NIPALS was originally introduced by Wold in 1966. It consists of two methods: 

PLS1 and PLS2 (Brereton, 2003). The difference is that PLS1 only performs 

regression on all of the X-data with ONE Y-column (analyte at varying 

concentrations) whilst PLS2 performs regression on all of the X-data with the entire 

Y-matrix (ALL of the analytes at varying concentrations). It is quite common to find 

that predictions via the PLS1 algorithm are better than for PLS2 since independent 

models are obtained for each analyte under investigation. However, PLS2 is easier to 

compute when all of the variables corresponding to the analytes within the 

concentration matrix are modelled. 

 

The NIPALS algorithm is listed in Appendix A1. 

 

Statistically Inspired Modification of PLS (SIMPLS) 

 

This was introduced by Simjen de Jong in 1993 (de Jong, 1993). It differs from 

NIPALS in a number of ways. Firstly, “deflated data matrices” are not built. A 

deflated matrix is the residual matrix that is calculated from the subtraction of the 

regressed variables on the score vector from the original matrix during a single 

iteration. Equation 1.22 illustrates the calculation of a deflated matrix for the first 

iteration which occurs in NIPALS. 

 

X1 = X0 – [t1(t1
TX0)/(t1

Tt1)] 1.22 

 

X1 is the deflated matrix; X0 is the original matrix; t1 is the score vector. 

 

Secondly, the PLS factors (latent variables) are calculated as direct linear 

combinations of the original variables. This is in fact analogous to PCA. Thirdly, the 

SIMPLS algorithm is computationally faster than NIPALS. However, if only one Y 

variable is present, then SIMPLS will be equivalent to PLS1. A difference is however 

observed when more Y variables are present, and thus SIMPLS will differ from PLS2. 

Compared to NIPALS, the covariance criterion in SIMPLS is fully maximised. 
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The proposed modification was to by-pass the calculation of the PLS-weights, W, as 

used in Equation 1.21, and instead to calculate a different set of weights, R, which 

have not been subjected to any inverse calculations. Furthermore, whether X is 

centred or not, the resulting score matrix (T) is automatically centred. The 

corresponding score matrix for the Y matrix (U) can also be centred but it is not a 

requisite.  

 

The SIMPLS algorithm is listed in Appendix A2. 

 

Other PLS Methods 

 

PLS is a powerful tool and is widely used in many fields (Otto, 1999b). There have 

been a number of PLS variants which have been developed and applied over the 

years. One example is the Kernel PLS method for application to matrices with more 

rows (>1000) than columns (Lindgren et al.,  1993). The dimensions are reduced by 

multiplying the transpose of the matrix by the original matrix (for example, XTX) and 

this new square matrix is the kernel. NIPALS is then performed on the kernel matrix. 

However, in comparing the Kernel PLS with SIMPLS, the latter was still found to be 

computationally faster (de Jong, 1993). Other modifications have included 

compressing a model with A components into a model with only 2 components 

leading to easier interpretation of the data (Ergon, 2003). 

 

CLS, MLR, PCR, NIPALS, and SIMPLS work well for linear datasets but PLS has 

the added advantage of being applied to non-linear datasets. PCR can also be applied 

to non-linear data sets (in the form of polynomial PCR) however this is limited by the 

assumption that the relationship between the response modelled and the components 

is a simple one. It does not take into account that “some components may be linear 

combinations of the original variables” (Despagne & Massart, 1998). 

 

Other non-linear regression methods exist such as non-linear PLS (NLPLS), smooth 

multiple additive regression technique (SMART) and spline partial least squares 

(SPL-PLS) (Frank, 1995). These methods are able to perform well on non-linear data 

but are more computationally demanding and highly complex than the linear methods. 
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They also have a tendency to “overfit” if not carefully trained which is a limitation 

also shared by neural networks (Section 1.5.4.6). 

 

1.5.4.5 Iterative Target Transformation Factor Analysis (ITTFA) 

 

ITTFA can be utilised to process data obtained from “second-order bilinear 

instruments” such as HPLC-UV and GC-MS, as well as to calculate missing data 

points (Ni & Gong, 1997). It involves two steps. The first performs singular value 

decomposition (SVD) on the X matrix to form three new matrices: U, S and V where 

V is related to the loadings, P and the product US is related to the scores, T. S is in 

fact a diagonal matrix which contains singular values that are placed in descending 

order, that is S11 > S22 > S33, etc (Martens & Naes, 2001; Wise & Gallagher, 1998b; 

Wise & Gallagher, 1998a). The last row in X contains the voltammogram of a sample 

containing the target analytes of unknown concentration. The last row in the 

concentration matrix (Y) initially contains a vector of ones. The second step involves 

calculating the pseudo-inverse of X as shown in Equation 1.23. 

 

X+ = V[diag(1/Sij)]UT 1.23 

 

X+ has a reduced dimensionality as determined by the principal components retained 

implying the removal of noise. This leads to the calculation of a projection matrix, 

PM (Equation 1.24). 

 

PM  =  X+X 1.24 

 

The original concentration matrix (Y) is then subjected to PM to create a projected 

concentration matrix (Yproj). This new matrix replaces Y for the next iteration, which 

ceases once convergence is achieved. The concentrations of the target species in the 

unknown sample is obtained from the last row of the projected Y matrix. 

 

1.5.4.6 Artifical Neural Networks (ANN) 

 

A brief overview of ANNs as applied to chemometrics is given by the following 

references (Richards et al.,  2002; Cabanillas et al.,  2000b) (Cabanillas et al.,  2000a) 
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but a concise and detailed overview is in this article (Despagne & Massart, 1998). 

Neural networks (NNs) originated from the field of artificial intelligence (AI). They 

were initially created to mimic the workings of the human brain, mainly its ability to 

learn. Although the biological neuron has a firing frequency of ~1KHz, millions of 

these neurons utilised in unison created a highly efficient process. Fewer neurons are 

required in a computer for each one has a firing frequency >100MHz (Otto, 1999b). 

 

These days, biological and artificial neurons are no longer analogous (Despagne & 

Massart, 1998). A computer executing a NN algorithm will not be an intelligent 

machine. The computer must still be told what to do. NNs are employed to relate a set 

of independent input variables (descriptors) with one or more dependent output 

variables. Figure 1.24 (below) illustrates the structure of an NN. 

 

The nodes (or neurons) are connected together by weights:  w’ij for connecting nodes 

in the input layer to nodes in the hidden layer, and w’’ij for connecting the nodes in 

the hidden layer to the nodes in the output layer. The nodes in the hidden and output 

layers each perform two actions. The first is to sum the weighted input signals 

received from the input layer. The second is to take this sum and project it through a 

transfer function to produce an “activation”. This transfer function can be of several 

forms such as a linear, sigmoid or a hyperbolic tangent function (Otto, 1999b). 
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Figure 1.24: Structure of an artificial neural network (ANN) 

 

Equation 1.25 relates the output response ypred (the predicted response) with the input 

variables xi. 
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The transfer functions for the output and hidden nodes are denoted by fo and fh 

respectively; θ'’ and θ' are biases which act as offset terms and are calculated during 

the training (learning) of the network.  The weights and the biases are adjustable, and 

thus are assigned random values on the first iteration. Each iteration consists of two 

steps. The first, known as forward pass, is to employ training sets and predict the 

dependent variable which is then compared to the true value. The error between the 

two is used in the second step to adjust the weights, known as error backpropagation. 

The iterations are repeated until the error has reached a very low pre-specified level; 

this is known as convergence. 
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The advantage of this powerful tool is that it can model both linear and non-linear 

systems (Despagne & Massart, 1998). For linear systems, ANNs perform to the same 

extent as PCR or PLS, but out-performs PCR and PLS for non-linear systems. It can 

create an infinite number of different models due to the initial random generation of 

weights and biases. This can be disadvantageous in terms of optimisation partly due to 

the varying number of nodes that can be assigned to the hidden layer (or layers), 

which therefore leads to a more time-consuming procedure. 

 

It is recommended that ANNs are only used when one is certain that the dataset is 

non-linear. MLR, PCR or PLS can be performed to test for non-linearity. On 

examination of the residuals, if a curvature or trend is observed then this is likely to 

indicate non-linearity. Sources of non-linearity are when signals overlap, the sample 

is non-homogenous, particle sizes are not constant, and stray light (when dealing with 

optical spectroscopy). A major advantage of ANNs over PCR and PLS is the ability to 

build robust non-linear models from fewer input variables in the presence of random 

noise (Bessant & Saini, 2000). 

 

1.5.5 Validation of Calibration Models 

 

Before a model can be employed to predict variables such as concentration values, it 

must be validated. This is to ensure that the model is sufficient to be able to make 

sensible predictions (Brereton, 2003). When the predictor variables are modelled, the 

most significant data will be captured within the first few PCs or LVs with noise 

being modelled in the latter PCs or LVs. Validating the model will thus assist in 

determining the maximum number of PCs or LVs required to build the final model 

(and thus omitting the contributions of noise) and then to employ it to make 

predictions. In short, the aims of these techniques are to optimise the validation model 

and measure the performance of the final model. Three methods of validation 

employed are: auto-prediction, cross validation and test-set validation. 
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1.5.5.1 Auto-Prediction 

 

This is also known as the root mean square error of calibration (RMSEC). It is 

calculated on the training set. As the number of components increases, the RMSEC 

decreases. Figure 1.25 shows a plot of RMSEC against the number of components. 

This means that if there are ten components on the x-axis, then a model was built ten 

times, the first only having 1 component, and the last having ten. 

 

 
Figure 1.25: RMSEC plots. 

 

A cut-off is normally set. The number of components chosen to build the final model 

is selected from when the RMSEC value reaches the cut-off (or at the component 

number before the cut-off). The RMSEC is calculated as: 
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The above terms are defined as: ci the true concentration for row i, ci
pred the predicted 

concentration for row i, I the total number of rows in the training set, a the number of 

components in the model. The ‘-1’ term indicates the loss of a degree of freedom due 

to the data having been mean-centred. This method is not normally preferred due to 

the data being fitted perfectly just by increasing the number of components. However, 
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as shown by the red curve in Figure 1.24 (above), it does assist in determining 

whether an error exists within the dataset due to the rise in the RMSEC value. 

 

1.5.5.2 Cross-Validation (CV) 

 

This is classed as an important chemometric tool (Brereton, 2003). Like auto-

prediction, it too is performed on the training set, but differs from it depending on the 

CV method chosen, of which there are a number to select. The most common method 

employed is Leave-One-Out (LOO). Figure 1.26 graphically illustrates the method. 

 

 
Figure 1.26: Illustration of leave-one-out cross validation (LOO-CV). 

 

This extracts one sample (row) from both the X (voltammograms) and Y 

(concentration) matrices, builds a model (with a number of components) with the 

remaining samples, then uses the model (with a components) to predict the Y-data 

from the X-data originally extracted. A predicted residual error sum of squares 

(PRESS) value is calculated as follows: 

 
2)( pred

iia yyPRESS −=  1.27  

 

The PRESSa is simply calculated from the squared difference between the observed 

(true) concentration value y and the predicted concentration value ypred of the 
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particular row extracted (i) at component a.  This process is repeated with all of the 

samples (I) so that each row will have been left out and predicted once. All the 

PRESSa values are summed to form the cumulative PRESS (CUMPRESS) at 

component a as shown in Equation 1.28. 
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The root mean square error of cross validation (RMSECV) is obtained via Equation 

1.29 where I is the total number of rows in the training set. 

 

I
CUMPRESS

RMSECV a
a =  1.29 

 

This is repeated for every a component. It is important to stress that the dimensions of 

the above terms vary depending on the number of columns in the concentration matrix 

corresponding to the number of target analytes. As an example, if the Y matrix 

contained 50 concentration values for two analytes such as cadmium and lead, there 

would be a 50 × 2 matrix. If the 50 respective voltammograms were stored in X with 

dimensions of 50 × 100 and LOO cross-validation was employed in conjunction with 

the SIMPLS algorithm and 20 latent variables, the following dimensions for PRESS, 

CUMPRESS and RMSECV would vary depending on the number of analytes 

(columns) in the concentration matrix as illustrated in Table 1.4. 

 

Table 1.4: Relating the dimensions of the input matrices X and Y with PRESS, CUMPRESS and 
RMSECV 

X Y PRESS CUMPRESS RMSECV 
50 × 100 50 × 1 50 × 20 1 × 20 1 × 20 
50 × 100 50 × 2 100 × 20 2 × 20 2 × 20 
50 × 100 50 × 3 150 × 20 3 × 20 3 × 20 

 

The RMSECV is plotted as a function of the number of components. The minimum in 

the curve generally determines the optimum number of components (or latent 

variables) to utilise to build the final model. In certain situations when working with 

either NIPALS or SIMPLS, it has been necessary not to choose the optimum latent 
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variable as denoted by the minimum in the plot but to choose the previous latent 

variable based on the criterion “that if the difference in RMSECV value is not at least 

2% for adding an extra factor” (Wise & Gallagher, 1998b). The statistical F-test can 

also be employed by application to the PRESS values (Haaland & Thomas, 1988a; 

Haaland & Thomas, 1988b). Instead of looking at the minimum PRESS value to 

determine the optimum latent variable with which to build the respective models, the 

F-ratio between the impending PRESS values and the minimum PRESS value can be 

determined. The first PRESS value to give an F-ratio less than 0.75 (as determined by 

Haaland & Thomas would thus determine the optimum latent variable. This method 

of choosing the optimum latent variables for the respective components is employed 

considerably throughout the literature (Section 5.2.1). 

 

In practice, the model can be built with all of the components with predictions made 

at the optimum number of components. Figure 1.27 illustrates the plot. 

 

 

 
Figure 1.27: RMSECV plots. 

 

From the above plot, the dimensions of the RMSECV matrix are 2 × 10. M1 

corresponds to the first row in RMSECV and thus the first column in the 

concentration matrix. Predictions for both analytes would be performed at PC5 for 

M1 and PC7 for M2 respectively as they had attained the lowest RMSECV. 
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1.5.5.3 Independent Test Set Validation (ITSV) 

 

A notable problem with CV is that it relies completely on the original dataset 

(Brereton, 2003). If two analytes are correlated, in that an increase in the 

concentration of one analyte results in the increase in the other, any model built with a 

components will not be able to predict successfully an unknown sample with a high 

concentration of one analyte but a lower concentration of the other. This implies a 

poorly built model. Although CV is able to remove the influence of internal factors 

such as dilution errors and instrument noise, it will not be able to account for the 

correlation of the analytes, which can be common in environmental samples extracted 

from the same source. 

 

The models must be successful in predicting samples from unknown sources. To 

achieve this, two datasets are employed. The first is known as the training (or 

calibration) set and the second is the test (or validation) set. Models, as before are 

built with a components, using the training set and then validation carried out with the 

test set. The root mean square error of prediction (RMSEP) is calculated in Equation 

1.30. 
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L is the number of samples (rows) in the test set matrix. The RMSEP is plotted 

against the number of components (as in Figure 1.27). Whereas CV can give mis-

leading and over-optimistic results, test set validation is more precise although it is 

normal to observe that test set RMSEP values are greater than CV RMSECV values. 

The RMSEP is also calculated after the predictions of target analytes for example in a 

certified reference material (CRM), to determine how well the calibration models 

have performed. 

 

In industry such as in the pharmaceutical sector, test sets assist in determining if new 

models predict sufficiently. If not then the test set values are incorporated into the 

current training set forming a new training set and hence leading to the construction of 
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a new model which must be validated with a new independent test set. This may 

involve more time and money but is more economically viable than to use the current 

model and obtain erroneous results which could be extremely costly. 

 

1.6 Aims and Objectives 
 

The overall aim of this part of the ARTDEMO project described in this thesis was to 

develop a “real-time” automated water monitoring system, capable of using data from 

various complementary sources to determine the amounts of inorganic and organic 

pollutants. This resulted in the development of a range of multivariate calibration 

models for an electrochemical system already developed in the laboratory for the 

analysis of heavy metals, in particular, cadmium, lead and copper on carbon-ink 

screen-printed electrodes, and a novel application for the quantitative determination of 

arsenic and mercury on gold-ink screen-printed electrodes. Multivariate calibration 

models were also developed for fluorescence spectroscopy for organic compounds in 

particular, anthracene, phenanthrene and naphthalene. 

 

The overall objective was to design an analytical protocol which will lead to the 

successful prediction of the amounts of pollutant compounds present, and hence the 

determinations of the quality of the water at the respective artificial recharge (AR) 

sites. Equally important is the development of software applications to accompany 

these tools, and to process the data that is generated from them to yield quantitative 

results which can be acted upon. Such applications will incorporate multivariate 

calibration models which will also assist in predicting, with a high degree of certainty, 

the respective amounts of target pollutants in the vicinity. 

 

The main objectives of this thesis were thus: 

 

• The determination of the overall chemometric approach (data pre-treatment, 

modelling, validation and prediction) leading to the successful determination 

of the individual concentrations of the target analytes within a given sample 

originating from: 
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o DPASV voltammograms acquired on carbon-ink screen-printed 

electrodes (C-SPE) 

o DPASV voltammograms acquired on novel gold-ink screen-printed 

electrodes (Au-SPE) 

o 2D and 3D fluorescence spectra 

• Data acquisition and processing on a personal digital assistant (PDA) 

• A proposed automated delivery system for screen-printed electrodes 

 

Chapters 2, 3 and 5 will discuss the chemometric approaches applied to the C-SPE 

voltammograms, Au-SPE voltammograms, and fluorescence spectra respectively. 

Chapter 4 will discuss the findings with regard to data acquired and processed on a 

PDA in addition to the proposed delivery system for the screen-printed electrodes. 

Finally, Chapter 6 will give a general discussion to the findings along with overall 

conclusions and suggestions for future work. 
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CHAPTER 2: 

QUANTITATIVE DETERMINATION OF CADMIUM, LEAD AND 

COPPER ON CARBON-INK SCREEN-PRINTED ELECTRODES 
 

2.1 Overview 
 

This chapter focuses on the application of multivariate calibration to DPASV 

voltammograms acquired on carbon-ink screen-printed electrodes for the quantitative 

determination of cadmium, lead and copper. A general introduction will discuss the 

application of multivariate calibration to a number of different electrochemical 

techniques. The discussion will move on to the different types of electrodes employed 

in this study before focusing on the utilisation of the calibration models with screen-

printed electrodes. The materials and methods employed will be detailed followed by 

an in-depth discussion of the results obtained which include the development of a 

custom-built data analysis package, development of the calibration models, and 

application to a real soil sample. Finally, an overall conclusion is drawn. 

 

2.2 Introduction 
 

Differential pulse anodic stripping voltammetry (DPASV) has been described as a 

highly sensitive technique (Section 1.4.2.4). The voltammograms generated closely 

resemble chromatograms in that one or more distinct peaks are obtained in the 

presence of a detectable analyte. However, there are instances in DPASV in which 

overlapping peaks may arise, for example due to two or more analytes exhibiting 

similar electrochemical properties. Therefore, the simple calculation of peak areas 

will not be sufficient in building a basic regression model. Examples of voltammetric 

peak overlap provided in the next Section are cadmium with indium, and lead with 

thallium. These types of issue necessitate the use of multivariate calibration 

techniques to account for the overlapping peaks and thus confidently predict the 

concentrations of a mixture of target metal ions. 
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2.2.1 Multivariate Calibration Applications 

 

PLS regression has been successfully applied for the determination of thallium and 

lead by DPASV (Herrero & Ortiz, 1998). It had been observed that although an 

increase in the signal-to-background ratio is obtained, and that a discrimination 

against the non-Faradaic charging current ensues, the differential pulse did not correct 

the range of Faradaic components present in the background current. An attempt to 

overcome this was to subtract the background current from the recorded current. 

However, the background current cannot be fully compensated due to the make-up 

and surface area of one electrode being different from another. This is particularly 

apparent when working with disposable screen printed electrodes (SPEs) due to the 

nature of the screen-printing process, coupled to the fact that each electrode represents 

a unique electrode element. 

 

The importance of being able to resolve overlapping voltammetric peaks was 

illustrated by Lukaszewski (Lukaszewski et al.,  1980). Under most electrochemical 

conditions, two metals can have similar oxidising potentials if their atomic structures 

are very similar. The authors applied a chemical approach to suppress the cadmium 

peak when determining the amount of thallium and lead in the presence of cadmium 

salts. In the case of thallium, 0.01% (w/v) of polyethylene glycol reduces the 

electrochemical activity of cadmium, allowing electrolysis to be performed at -0.74V 

(vs SCE) in 0.1M ethylenediaminetetraacetic acid (EDTA) solution, whilst the lead 

(and also copper) was determined in 0.1M acetic acid containing 0.1% (w/v) 

cetyltrimethylammonium bromide (CTAB), which shifts the cadmium peak to a much 

more negative value, provided that the deposition potential was in the range of -0.50 

to -0.56V. The authors go on to state that “lead can be determined in the presence of 

ten times as much thallium”. PLS was also applied for the quantitative determination 

of copper in the presence of iron via DPASV (Herrero & Cruz Ortiz, 1999). 

 

To eliminate peak-shifts, the raw ASV data can be pre-treated by the addition of noise 

“at 10% of the maximum signal” (Donachie et al.,  1999). The authors showed that 

this approach allowed the determination of trace metals such as lead, zinc, copper and 

cadmium in water matrices. The data was also mean-centred. Poor results had 

previously been obtained when the multivariate calibration techniques were applied 
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directly to the raw data. The techniques compared were MLR, PCR and PLS, and the 

authors concluded that the PLS method gave the most accurate predictions. Results 

were also validated by performing measurements on ICP-MS. 

 

A number of multivariate calibration approaches can be applied to the simultaneous 

determination of cadmium, copper, lead, nickel and vanadium by differential pulse 

polarography (DPP) (Ni & Jin, 1999). The approaches involved CLS, PCR, PLS and 

ITTFA. Differentiation of raw data was also investigated. The objective was to 

eliminate the residual current and the background. It was stated that the “first 

derivative polarograms were obtained with a ∆E = 4mV”. Although good results had 

been obtained when PLS and CLS were applied to first-derivative data, with relative 

prediction error values ranging from 0.5 to 1.7, there was no overall improvement in 

the predictive abilities of the respective models except with ITTFA (Ni & Gong, 

1997; Espinosa-Mansilla et al.,  1992b) (Espinosa-Mansilla et al.,  1992a). 

 

On performing multivariate analysis on mixtures containing cadmium, lead, indium 

and thallium using square wave anodic stripping voltammetry (SWASV) in an 

acetate-bromide electrolyte, it has been shown that the peaks produced with SWASV 

were narrower than with direct current ASV (DC-ASV) (Hassan et al.,  1998). 

However, overlap still occurs to a certain extent, especially between cadmium and 

indium, and between lead and thallium. In this case, inverse least squares (ILS) was 

sufficient to give the better separation compared with classical least squares (CLS). 

 

Artificial neural networks (ANNs) can be employed to simultaneously determine the 

concentrations of cadmium and lead in a mixture (Alpizar et al.,  1997). Differential 

pulse voltammetry (DPV) coupled with a flow injection (FI) method which itself 

comprised of a static mercury-drop working electrode contained within the flow-

through cell, had been employed. Under these experimental conditions, the 

voltammetric peaks pertaining to the two metals were known to interfere with each 

other. Two sequential pulses were applied to the three-electrode assembly. The 

authors explained that a hanging mercury-drop electrode inside a flow-cell will be 

prone to vibrations due to the “pulsating flow conditions” implying that the “geometry 

of the electrode” will vary and hence irreproducible results would be obtained. Their 

results showed that increasing the surface area of the electrode led to “poorer results” 
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mainly due to the “increased physical instability of the mercury drop on increasing its 

size under flow conditions”. Since ANNs are able to model non-linear and interactive 

effects, this chemometric technique was employed giving better results with 

recoveries ranging from 78-104% for lead compared to the standard calibration 

methods (univariate approach) with a recovery ranging from 142-191%. 

 

ANNs can also be used to solve the interferences caused by the formation of inter-

metallic compounds such as interactions of copper and zinc when measured by ASV 

on a hanging mercury drop electrode (Lastres et al.,  1997). The authors would take 

each solution, make five measurements, average out the voltammograms, apply the 

Savitsky-Golay algorithm (2nd order polynomial, 5-point window).  They concluded 

that ANNs can be applied to other inter-metallic compounds, and that faster 

convergence occurs when the least number of units are in the input layer. However, 

they do warn that when simplifying the “architecture” of the network, great 

consideration is required when selecting the amount of information needed to input 

into the network along with the actual signal points. This can result in a reduction of 

prediction errors. 

 

A vast range of chemometric tools have been successfully applied to the 

determination of trace heavy metals, and demonstrated to be of considerable use, 

especially in environmental assays. PLS regression is the more powerful and thus 

employed to a greater extent than other multivariate regression techniques like PCR 

and CLS due to reasons given in Section 1.5.4. 

 

2.2.2 Working Electrodes 

 

Commonly employed electrodes are presented (Section 2.2.2.1) followed by a brief 

discussion on the miniaturisation of working electrodes (Section 2.2.2.2). 

 

2.2.2.1 Commonly Employed Electrodes 

 

Historically, the most common working electrode has been the Hanging Drop 

Mercury Electrode (HDME) (Skoog et al., 1996). The drop is formed by action of a 

piston on the mercury reservoir forcing it through a very fine capillary tube. The 
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piston is driven by a micrometer screw. An example of such an electrode is illustrated 

in Figure 2.1. 

 

 
Figure 2.1: A hanging drop mercury electrode (HDME) 

 

The HMDE has the advantage that laborious cleaning of fouling species on the 

working electrode in between measurements is not required, since a new mercury 

drop will contain a clean surface (Prado et al.,  2002). Although the volume of 

mercury employed is small in relation to the bulk solution, recent years have seen 

researchers undertaking the challenge to eliminate the use of mercury due to its 

hazardous nature to both the environment and the health of the personnel exposed to 

it. 

 

An alternative to employing ANNs to calculate the concentration of inter-metallic 

compound mixtures was proposed. A solid electrode such as a Boron-Doped Diamond 

(BDD) solid electrode in a “mercury free” environment can be employed to determine 

the concentrations of lead and copper (Prado et al.,  2002). The BDD is quoted by the 

authors as being “structurally and chemically robust”. It can be operated over “a wide 

potential window” of 3.5V in aqueous media as a result of the very low background 

interference. The authors reported that hydrogen evolved during SWV stripping of the 

lead due to the freshly exposed copper sites on the working electrode. However, the 

BDD electrode is not prone to surface reduction or oxidation, as are glassy carbon 
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electrodes and some noble metals. The BDD can be used in ASV to detect for lead, 

manganese, cadmium, copper and silver over a potential range of -1.0 to +1.75V (vs a 

SCE). 

 

The authors also analysed the surface of the BDD electrode with atomic force 

microscopy (AFM) after firstly having measured a solution containing copper ions 

(A) at a deposition potential of -1.0V (vs a saturated calomel electrode (SCE)), and 

then a solution containing both lead and copper ions (B) at the same deposition 

potential. Well-defined deposits 75nm high were observed in (A) compared to 

numerous and smaller deposits in (B). This was due to the lead ions more readily 

depositing on to the copper nuclei instead of the BDD active surface, and thus the 

copper deposits are unable to grow as in (A). This further leads to an actual “decrease 

in the amount of copper detected”. 

 

The analyses of lead, cadmium and copper with PSA on a (mercury-free) graphite-

epoxy composite electrode (G-ECE) have been reported (Serradell et al.,  2002). A 

limit of detection (LoD) for lead of 200ppb was attained at 60s deposition time, but on 

increasing the deposition time, a lower LoD was attained. Concurrently, a greater 

sensitivity was observed with the G-ECE compared with the normal glassy carbon 

electrodes as better defined PSA curves were obtained. The initial concept of utilising 

carbon-polymer composites was looked at earlier (Wang & Varughese, 1990). These 

materials were cheaper to attain and easier to work with than the conventional 

electrodes (gold, platinum and graphite). The authors here performed PSA without 

having to modify the surface of the composite electrode (Serradell et al.,  2002). They 

also observed that the G-ECE was more sensitive for copper (50 times that of Cd; 20 

times that of Pb). The peaks for cadmium and lead were highly resolved, and thus 

implied that G-ECEs could be used to accurately measure the presence of both metals 

in the same solution. This contrasts to gold-coated SPEs where overlap was observed 

(Wang & Tian, 1993a). 

 

The authors also looked at the surface of the G-ECE with Scanning Electron 

Microscopy (SEM) (Serradell et al.,  2002). Comparing to a glassy carbon electrode 

(GCE), clusters were observed on the G-ECE which implied that the surface-area of 

the electrode was increased, and this agreed with the increased adsorption of lead and 
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hence the greater sensitivity for the metal. The authors conclude that due to the ease 

of preparation of the G-ECEs, SPE technology can also be applied leading to the 

formation of disposable electrodes. 

 

2.2.2.2 Miniaturisation of Electrodes 

 

The utilisation of micro-electrodes in voltammetric systems can be dated as far back 

as the mid-1980s. An example is the construction of a micro-HPLC system coupled to 

a micro-flow-cell containing a silver/silver chloride reference electrode, a platinum 

wire counter electrode and a carbon-fibre working electrode for the determination of 

catecholamines such as adrenaline and dopamine (Goto & Shimada, 1986). They 

were able to construct three-dimensional voltammo-chromatograms clearly 

illustrating the separation of the compounds (not shown). The rapid potentiometric 

technique served as an aid to identifying each chromatographic peak.  

 

Efforts have been made to miniaturise solid-state reference electrodes (Desmond et 

al.,  1997). This has been seen as an important step if miniature systems were to be 

designed seeing as the use of internal liquid electrolytes were impractical. They 

compared a normal screen-printed silver/silver chloride reference electrode, which 

they termed “Type I” with a modified silver/silver chloride electrode covered with a 

chloride-doped vinyl ester resin (termed “Type II”), the idea being to see if the 

concentration of chloride ions in the analyte solution could be reduced. However, the 

authors found that the “Type I” electrode gave more stable and consistent results 

compared to the “Type II” electrode. The addition of non-polar polystyrene or 

divinylbenzene particles to “enhance the adsorption properties of the surface” of the 

working electrode had been attempted when analysing for nifuroxazide with AdSV, 

but without success, warranted by an increase in background noise (Buchberger et al.,  

1998). 
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2.2.3 Screen-Printed Electrodes (SPEs) 

 

The conception, physical attributes and application of screen-printed electrodes is 

described (Section 2.2.3.1) followed by further enhancement by modification of the 

working electrode (Section 2.2.3.2). 

 

2.2.3.1 Conception 

 

A great advance which has been seen in recent years is the advent and application of 

disposable screen-printed electrodes. The advent of these electrodes coupled with 

their use in voltammetric techniques, such as DPASV is seen as revolutionary 

(Palchetti et al.,  1999). The convention to move away from the use of bulky 

electrodes and the need to de-aerate solutions was of paramount importance if 

portable devices were to be designed for on-site analysis. The great advantage of these 

electrodes is that they are easy to employ, cheap to mass-manufacture and hence can 

be disposed of after a single measurement implying that the laborious cleaning step 

akin to common solid electrodes is eliminated. This further implies that there is no 

risk of electrode-fouling by impurities coupled with “the memory effect” not affecting 

the next measurement. Memory effects are caused by the residual presence of one or 

more target analyte samples on the working electrode. Furthermore, as small analyte 

volumes (~100 µl) are measured, the need for de-aeration (removal of dissolved 

oxygen) is eliminated due to the size of the working electrode being much smaller 

than conventional solid state carbon electrodes, coupled with the reduction of 

capacitive charging currents and increase in the mass transport of analyte ions to and 

from the electrode (Skoog et al., 1996). 

 

As far back as 1988, SPEs have been employed in the environment and clinical 

sectors with over 50% in the “field of electrochemical sensors” (Palchetti et al.,  

2001). They originated from the desire to miniaturise apparatus coupled to the need to 

design integrated circuits where the entire measurement system could be fabricated on 

a microchip. This could be achieved by screen-printing (Desmond et al.,  1996). An 

important application has been in the detection of glucose levels in blood (Wang & 

Chen, 1994). Figure 2.2 below shows the basic construction of an SPE. 
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Figure 2.2: Construction of a screen-printed electrode 

 

The graphite-carbon inks are deposited on to a polyester, polycarbonate, or an acetate 

substrate sheet. As shown in Figure 2.2, a silver/silver chloride ink is coated on to one 

of the electrodes. An insulating layer is deposited with an opening (the working area) 

that exposes the three terminals for contact with the analytical solution. The exposed 

carbon strips at the other end are inserted into an appropriately designed connector 

which itself is connected to the voltammetric instrument. The planar working surface 

area of the working electrode is 0.14cm2 (0.7 × 0.2 cm) (Cooper, 2004). 

 

It is important to stress that the silver-silver chloride (Ag/AgCl) reference electrode 

contains no internal electrolyte and thus the analyte solution should contain chloride 

ions, hence stipulating the need for a supporting electrolyte such as KCl (Palchetti et 

al.,  2001). It has been found that on analysis of the variation of potential of a silver-

silver chloride electrode at different chloride concentrations, the potentials that had 

been obtained (vs SCE) were as high as 206.9mV for the lowest concentration (1 × 

10-7 M) and -9.8mV for the highest concentration (1M) studied (Desmond et al.,  

1997). This stipulates the need to work at a fixed chloride ion concentration in order 

for a steady reference potential to be generated. 

 

Although accurate and repeatable results can be attained with SPEs incorporating 

mercury plating of the working electrode during the pre-concentration step, research 
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has been carried out to replace mercury due to its toxicity (Palchetti et al.,  2001). 

Working electrodes have been fabricated from gold inks which have thus led to the 

analysis of mercury itself in the environment by PSA (Wang & Tian, 1993b). The 

surface of the working electrode can further be modified with ion-exchangers and 

ligands. For example, dithizone mixed with carbon ink can be used to analyse for 

trace levels of lead in the absence of mercury (Palchetti et al.,  2001). Section 3.2 

discusses further applications employed for the determination of target metal ions in 

the absence of mercury. 

 

The overall performance of the SPE will be affected by the actual formation of the 

mercury film, the surface characteristics of the carbon working electrode, and of 

course the composition of the ink. The latter information can be difficult to acquire 

due to proprietary issues. For example, information such as the type of graphite used 

to manufacture the ink, the extent of any metal contaminants present in the graphite, 

size and porosity of the particles would be of great use (Kroger & Turner, 1997). 

 

2.2.3.2 Modified Screen-Printed Electrodes 

 

Screen-printed carbon electrodes (SPCEs) have also been modified with a calixarene 

in order to determine the trace concentration of lead in water (Honeychurch et al.,  

2001). Due to the “cavity-shaped architecture” of calixarenes, they are deemed 

ionophores. The varying size of the cavity makes the calixarene selective for certain 

metallic ions. They are easily synthesised from the condensation of para-alkylphenol 

and formaldehyde under alkaline conditions (Gutsche & Muthukrishnan, 1978). The 

working electrode was modified with a range of calixarenes by simply drop coating a 

solution of calixarene in dichloromethane solution on to the surface of the SPCE and 

left to evaporate at room temperature. The thio-substituted calixarene performed 

much better. The authors were able to obtain a mean recovery of lead ions at 95.9% 

with a coefficient of variance of 8.4% (n = 5).  With these encouraging results, the 

authors were keen to investigate the use of other calixarenes for the analyses of other 

metal ions. 
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2.3 Materials and Methods 
 

Background information on cadmium, lead and copper is given prior to the details of 

the materials and methods employed. Preparation of standards in the range of 0 to 200 

ppb in increments of 50 ppb as employed by Cooper is described (Cooper, 2004). 

Details of the acquisition of the three target analytes on carbon-ink screen-printed 

electrodes are given. A full factorial design was selected to ensure every combination 

was measured. Full details are given in Section 2.3.2. Finally, the development of a 

custom-built data analysis package for the multivariate calibration of the acquired 

differential pulse anodic stripping voltammograms is described. 

 

2.3.1 The Target Metal Analytes 

 

The physical attributes of cadmium, lead and copper are presented in Sections 2.3.1.1, 

2.3.1.2 and 2.3.1.3 respectively. 

 

2.3.1.1 Cadmium, Cd 

 

Discovered in 1817 by F. Stronmeyer when he noticed that a sample of cadmia (now 

known as calamine) which was used in a neighbouring smelting works was yellow 

(CdS) instead of white (Greenwood & Earnshaw, 1990). It was shown that iron was 

absent thus a new element had been discovered. It has an average concentration of 

0.16ppm in the Earth’s crust, which is relatively low compared to zinc (76 ppm) and 

rubidium (78 ppm). A major use is in batteries such as rechargeable nickel-cadmium 

batteries. Cadmium has no positive biological role and can displace zinc in enzymes 

leading to storage in the bones, kidneys and liver leading to failure after around 30 

years (O'Neil, 1993). 

 

Cadmium is more readily adsorbed in to the body via the lungs than the 

gastrointestinal tract (Nordberg et al., 1985). It can bind to sulphydryl groups on 

proteins and non-proteins, in addition to macromolecules such as albumin and 

metallothionein (Goyer, 1991; ATSDR (Agency for Toxic Substances and Disease 

Registry), 1989). This leads to wide distribution throughout the body via the red blood 
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cells leading to other heavy metals being more easily transferred into the cells via 

displacement. Cadmium tends to be excreted from the body via urine. 

 

Cadmium also has a low boiling point so there are problems with atmospheric 

emissions. It is very mobile in the environment as it occurs in free hydrated ions thus 

labile in soils and sediments hence can be taken up by plants and enters the food 

chain. Normal intake of cadmium via food is ~0.21-0.42mg/wk. Doses of 20-30mg/kg 

can be fatal to humans (ATSDR (Agency for Toxic Substances and Disease Registry), 

1989). Cadmium also enters the environment via pesticides and the production of 

super-phosphate fertilizers. 

 

2.3.1.2 Lead, Pb 

 

Lead has an average concentration of 13 ppm in the crust (Greenwood & Earnshaw, 

1990). It is mostly present in rocks as silicate structures (O'Neil, 1993). It is not as 

toxic as mercury or cadmium but is more widespread. The two major uses are in lead-

acid batteries and petrol additives thus leading to emission into the atmosphere. Lead 

has been utilised for over two thousand years. The ancient Romans used it to line their 

aqueducts and drinking vessels; they also added lead salts to their wine to make them 

taste sweeter. High levels of lead had been found in skeletons which were 100 times 

higher than in modern man. This is believed to be the cause of madness in emperors. 

 

The maximum intake of lead should not exceed 430µg/day (Ferguson, 1990). The 

average is 150µg/day which originates from food and water. The World Health 

Organisation (WHO) standard is 50ppb. Lead also gets into the body by direct 

inhalation of air into the lungs where 40% of the lead is actually absorbed. Pb2+ ions 

in water from old lead pipes is a problem especially in soft water areas for the water is 

slightly acidic and since there are no Ca2+ ions there is thus a greater amount of Pb2+ 

ions in the water. 

 

Lead is not very mobile in soils for it is held strongly by organic matter, and thus 

uptake by crops is low (Greenwood & Earnshaw, 1990). However, if fertilisers 

containing sewage sludge have been employed, this will lead to an increase in the 

lead-content of the soil. Lead has been found to be highly concentrated in the upper 
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layers of the soil due to the decomposition of vegetation in the humus layer coupled 

with the presence of lead in the atmosphere. 95% of the lead transferred to the oceans 

has arisen from suspended sedimentation in the rivers. 

 

Lead has no positive biological role. Biomethylation does not occur extensively as for 

mercury therefore lead remains predominantly inorganic. It is still a neurotoxin 

leading to brain damage. The intelligence of lead workers had been found to be 

substantially decreased due to blood levels in excess of 80µg/dL (Stollery et al.,  

1991). Lead can replace calcium in bones. High levels of lead have been found in 

children by analysis of their teeth due to them playing by roadsides. It can bind to 

haemoglobin and enzymes in the body (Bowen, 1979). It can therefore affect the 

gastrointestinal tract, immune, cardiovascular and central nervous systems (ATSDR 

(Agency for Toxic Substances and Disease Registry), 1993). Lead also enters the 

body via tap water pumped through lead pipes. However, this is not so apparent since 

these have now been replaced by copper pipes. 

 

2.3.1.3 Copper, Cu 

 

Copper has been used as a commodity since 5000BC. In the Middle East, ~3500BC, it 

was obtained by charcoal reduction of its ores then around 3000BC, tin was added to 

form bronze (Greenwood & Earnshaw, 1990). The average concentration is 68 ppm in 

the Earth’s crust. It is found mainly as sulphides, oxides, and carbonates, the major 

ore being copper pyrite (chalcopyrite, CuFeS2). It is used in pipes and electrical 

wiring due to its high electrical conductivity. The compounds are used in industrial 

chemicals, pigments, herbicides, and fungicides, due to it having anti-bacterial 

activity. 

 

If exposed to high levels of inorganic copper, irritation to the eyes and skin results and 

if ingested, cramps, coma, and even death results. Human adults contain on average 

100mg of Cu which is below the iron and zinc amounts. Daily intakes are around 3-

5mg. Copper deficiency results in anaemia. However, the inability to excrete copper 

results in Wilson’s disease which further leads to cirrhosis of the liver, neurological 

problems and cataracts (Goyer, 1991). Liver toxicity had also been reported as a result 

from long-term exposure to drinking water containing a copper concentration up to 
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7.8 mg/L (Mueller-Hoecker et al.,  1988). Copper is also found in the upper layers of 

soils and is believed to be due to the large amount of organic matter such as humates 

which bind tightly to heavy metals (Bowen, 1979). 

 

2.3.2 Materials 

 

Reagents 

Double-distilled water purified by reverse osmosis (RO) was employed throughout. 

Stock standard solutions were prepared in the following manner: 

 

• 10 ppm stock standard solutions of the heavy metals (Cd, Pb and Cu) were 

prepared by dilution of the respective 1000 ppm commercial stock standard 

solutions (BDH, UK) with the RO distilled water. A final volume of 10ml was 

attained, which also included the addition of 0.1ml of 65% nitric acid (Fluka, 

UK). 

• A 4% w/v solution of mercuric (II) nitrate was prepared by dissolving 2g of 

the salt (Fluka, UK) in RO distilled water. 0.1ml of 65% nitric acid was added, 

and then diluted to 50ml with the RO water. This solution was further diluted 

to a 1% v/v solution in a final volume of 10ml. 

• A 2.5M solution of potassium chloride (KCl) was prepared by dissolving 

9.36g of the salt (BDH, UK) in RO distilled water to a final volume of 50ml. 

• Samples were prepared in different concentrations of cadmium, lead and 

copper (0, 50, 100, 150 and 200 ppb) in 200 ppm mercuric (II) nitrate, 1% 

nitric acid, and 0.1M KCl via the aid of a full factorial experimental design 

generated by an in-house program developed in LabVIEW (National 

Instruments, USA). The final volume of each sample was 5ml. Figure 2.3 

displays the design. The design was also randomised. 
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Figure 2.3: Overall experimental design: Training set (coloured with respect to Cd 

concentration) consists of five levels and three factors resulting in the preparation of 125 samples 

containing cadmium (Cd), lead (Pb) and copper (Cu) at concentrations ranging from 0, 50, 100, 

150 and 200 ppb; Validation set (●) consists of three levels and three factors resulting in the 

preparation of 27 samples containing Cd, Pb and Cu at concentrations ranging from 90, 130 and 

180 ppb 
 

In addition to the above, a set of “unknown” samples were prepared.  These were 

excluded from any training and validation procedures and were employed to 

determine the robustness of the models generated. Table 2.1 displays the 

concentrations of the three target metal in each of the three samples. 

 
Table 2.1: Concentration values for the three “unknown” samples 

Sample Cd Pb Cu 
UNK1 200 80 160 
UNK2 100 20 0 
UNK3 0 140 180 

 

Screen-Printed Electrodes (SPE) 

The carbon SPEs were printed in-house over a period of four days. The first day 

involves printing the carbon tracks. The second involves adding silver/silver chloride 

tracks. The third involves printing of the insulation layer and the last involves curing 

the electrodes in an oven for two hours at 120°C. The carbon-based ink (Electrodag 

423 SS ) was supplied by Acheson Colloids, Plymouth, UK. The silver-silver chloride 

ink (15% (w/w) AgCl was supplied by MCA Services (Cambridge, UK). The 
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insulating ink (in blue) was an epoxy-based polymer in the form of a resin (242-SB) 

supplied by Agmet (ESL, Reading, UK). The clear polyester sheets were supplied by 

Cadillac Plastics Ltd., Swindon, UK (ST725) with a thickness of 250 microns. An 

automated DEK 248 screen-printing machine (DEK Ltd., Weymouth, UK) was 

employed to generate the SPEs. 

 

2.3.3 Methods 

 

Electrochemical Measurements 

For each randomised sample, measurements were made on three different carbon-ink 

screen-printed electrodes utilising an Autolab PSTAT10 potentiostat (Eco Chemie, 

Holland). The instrumental conditions employed which were optimised by Cooper 

((Cooper, 2004)) are detailed in Table 2.2.  

 
Table 2.2: The experimental parameters employed as determined by Cooper. 

Parameter Value 
Electrochemical method DPASV 
Deposition potential (V) -1.1 

Deposition time (s) 165 
Initial potential (V) -1.1 
Final potential (V) -0.2 
Step potential (V) 0.00488 

Modulation amplitude (V) 0.05 
Modulation time (s) 0.05 

Interval time (s) 0.5 
Scan rate (mV/s) 10 

 

Measurements were performed at ambient temperature (20 – 25°C). For each 

measurement, 100µl of test solution was placed on to a fresh carbon screen-printed 

electrode (C-SPE) in succession, and ensuring that the electrodes were completely 

covered by the drop (as illustrated in Figure 2.4). The electrode was disposed of after 

each measurement as would be the case in a real analytical scenario. 

 

Unless otherwise stated, measurements were performed in triplicate (n = 3) 

throughout. All quoted potentials are relative to Ag/AgCl reference electrodes 

(+0.197V vs SHE) unless otherwise stated. 
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Figure 2.4: Experimental setup employing a carbon-ink screen-printed electrode 

 

Software Applications for Data Analysis 

The differential pulse anodic stripping voltammograms were acquired by the General 

Purpose Electrochemical Software (GPES) program (version 4.9, Eco Chemie, 

Holland). The program is also able to process the data such as to calculate the 

voltammetric peak areas and heights. It can also perform smoothing operations but 

only to the currently displayed voltammogram. 

 

Commercial packages such as SIMCA (Umetrics, Sweden) and The Unscrambler 

(Camo, Norway) are dedicated data analysis packages incorporating a plethora of 

chemometric tools including PCA, cluster analysis, PCR and PLS. However they are 

limited in operation and application of specific tasks leaving the analyst with the 

choice of purchasing a specific plug-in or new commercial package. With the advent 

of programming applications such as R, Matlab and LabVIEW, the analyst is able to 

develop tailor-made packages to suit his/her requirements. This is particularly true for 

LabVIEW which permits the development of custom-built applications for personal 

digital assistants (PDAs) leading to data acquisition in the field (Section 4.4). 

 

A custom-built data analysis package was constructed in both Matlab (version 6.5, 

Mathworks Inc., USA) and LabVIEW (version 6.1, National Instruments, Austin, TX, 

USA) on an Athlon 1600+ XP (AMD, USA) personal computer with 512MB RAM 

running Windows XP SP2 (Microsoft, USA). The package was designed to import the 
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acquired voltammograms, apply a number of pre-treatment techniques discussed in 

Section 1.5.3 such as mean-centring, range-scaling and filtering. A range of 

multivariate calibration regression modelling algorithms was incorporated including 

principal component regression (PCR), non-linear iterative partial least squares 

(NIPALS), statistically inspired modification of PLS (SIMPLS) and artificial neural 

networks (ANN). Leave-one-out cross-validation (LOO-CV) was also implemented in 

addition to independent test set validation (ITSV). Any generated models were saved 

to dedicated files including any pre-treatment parameters. This gave the added option 

of importing previously created models prior to predicting the concentrations of the 

target species. Results files were exported in text format for easy importation into 

dedicated spreadsheet packages such as Microsoft Excel. 

 

The operations of both main programs including some of the main sub-programs are 

detailed in the form of flow charts in Appendix A3. 

 

The Laboratory Virtual Instrument Engineering Workbench (LabVIEW) application 

is a graphical user interface that permits the user to construct user-defined programs. 

It consists of a Front Panel and a corresponding Block Diagram window. Digital 

displays, switches, buttons, and graphs are placed on the Front Panel, whilst 

connections between the corresponding nodes within the Block Diagram are 

established, either directly, or via a number of mathematical and logical functions. 

Matlab is a powerful application containing numerous toolboxes including statistics, 

fuzzy logic and image processing (Mathworks, 2002). Many user-defined functions 

have been created during the course of this project and stored in a dedicated toolbox. 

Additional functions were supplied by the PLS_Toolbox 2.0 (Eigenvector Research 

Inc., USA). Further calculations and plots were performed on Excel for Office XP 

(Microsoft, USA). 

 

2.3.4 Soil Sample 

 

The soil sample employed originated from a certified reference material (CRM) 

supplied by RTC (Laramie, USA). Table 2.3 lists the amounts of the target ions 

present in the CRM. 
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Table 2.3: Amounts of target metal ions in the CRM (CRM026-050: LO# LG026, RTC, Laramie, 

US) 

Target Metal Ion Amount (mg/kg) 
Cadmium (Cd) 11.7 
Copper (Cu) 18.8 

Lead (Pb) 25.6 
 

The extraction procedure detailed below was modified from that employed by Cooper 

in which sonication was applied for a total of 3 minutes (Cooper, 2004). Prior to the 

extraction, two separate 1M solutions of nitric acid and hydrochloric acid (both of 

analytical grade) were prepared in HPLC water. 

 

Extraction 

• 0.93g of CRM weighed into a plastic centrifuge tube (50ml) 

• 2ml of 1M nitric acid (HNO3) added 

• Sonication for 1 minute 

• 6ml of 1M hydrochloric acid (HCl) added 

• Sonication for 10 minutes 

• Filtration through Whatman Paper No 42 into a clean centrifuge tube (50ml) 

• Made up to 10 ml with RO water 

 

Standard Preparation 

For the detection of cadmium, lead and copper, 1ml of the solution was transferred 

into a 15ml plastic centrifuge tube: 

• 100µl of HNO3 added 

• 100µl of 1% mercuric (II) nitrate added 

• 200µl of 2.5M potassium chloride added  

• Made up to 5ml with RO water so that the solution would  contain 

o 1% (v/v) HNO3 

o 200 ppm mercuric (II) nitrate 

o 0.1M potassium chloride (KCl) 

• Another three samples were prepared in the same manner but with equal 

amounts of Cd, Pb and Cu added so that the final concentrations added were 

100, 150 and 200ppb 



PhD Thesis  Chapter 2 
 

 
Cranfield University  Michael Cauchi 82

 

Data Acquisition 

Measurements were performed in triplicate on the Autolab PSTAT10 (Eco Chemie, 

Holland) employing the instrumental parameters listed in Table 2.2. The respective 

voltammograms were processed with in-house custom-built programs in LabVIEW 

and Matlab. 

 

In order to validate the findings via DPASV and multivariate calibration regression, 

additional measurements were also made in triplicate on a Hitachi Z8100 Zeeman 

AAS with background correction employing both flame and flameless techniques 

(specific details given in Section 2.4.2) 

 

Calculation of % Recovery 

The method employed to calculate % recovery of the respective metals is to calculate 

the amount of metal in mg/kg from the predicted concentrations taking into account 

the dilution factors and then to divide by the true amount as stated on the information 

sheet supplied with the CRM sample. 
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2.4 Results and Discussion 
 

Section 2.4.1 discusses the application of the data analysis package described in 

Section 2.3.3 for the quantitative determination of cadmium, lead and copper on 

carbon-ink screen-printed electrodes. Section 2.4.2 discusses the application of the 

package to real soil samples in the form of a certified reference material (CRM). 

 

2.4.1 Simultaneous Quantitative Determination of Cadmium, Lead and Copper 

from DPASV Voltammograms Acquired on Carbon-Ink Screen-Printed 

Electrodes 

 

Two batches of carbon-ink screen-printed electrodes were compared. The first batch 

consisted of the same electrodes as fabricated and employed by Cooper (Cooper, 

2004). The second batch was fabricated in April 2004 by the author. The first batch 

will thus be designated C-SPE-O and the second batch C-SPE-N. 

 

2.4.1.1 Univariate Calibration 

 

After acquisition of the voltammograms on both batches as described in Section 2.3.3, 

voltammograms containing equal concentrations of cadmium, lead and copper were 

extracted from the respective datasets. Figure 2.5 displays the overlaid raw 

voltammograms for the three metal ions acquired on batch C-SPE-O (A to E) and the 

average voltammograms (F). The third measurement for 150 ppb Cd, Pb and Cu is not 

included due to the insufficient contact between the terminals of the screen-printed 

electrode employed and the connector. As can be seen, the magnitudes of the peak 

areas increase with increasing concentration. However, the peak areas for 150 ppb 

may be cause for concern due to their similarity with the peaks corresponding to 100 

ppb (Figure 2.5F). With reference to Figure 2.5D, there is a clear difference between 

the two voltammograms recorded at 150ppb, especially for cadmium. This will 

therefore affect the calibration curve significantly. Overall, Figure 2.5 illustrates that 

there is significant variability between the response of the carbon-ink screen-printed 

electrodes. 

 



PhD Thesis  Chapter 2 
 

 
Cranfield University  Michael Cauchi 84

 

0.00E+00

5.00E-07

1.00E-06

1.50E-06

2.00E-06

2.50E-06

-1.1 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2

Potential (V)

C
ur

re
nt

 (A
)

0 ppb (1)
0 ppb (2)
0 ppb (3)

 
(A) 0 ppb 

0.00E+00

5.00E-07

1.00E-06

1.50E-06

2.00E-06

2.50E-06

3.00E-06

-1.1 -0.9 -0.7 -0.5 -0.3

Potential (V)

C
ur

re
nt

 (A
)

50 ppb (1)
50 ppb (2)
50 ppb (3)

Cd

Pb Cu

 
(B) 50 ppb 

0.00E+00

5.00E-07

1.00E-06

1.50E-06

2.00E-06

2.50E-06

3.00E-06

3.50E-06

-1.1 -0.9 -0.7 -0.5 -0.3

Potential (V)

C
ur

re
nt

 (A
)

100 ppb (1)

100 ppb (2)

100 ppb (3)

Cd
Pb

Cu

 
(C) 100 ppb 

0.00E+00

5.00E-07

1.00E-06

1.50E-06

2.00E-06

2.50E-06

3.00E-06

3.50E-06

-1.1 -0.9 -0.7 -0.5 -0.3

Potential (V)

C
ur

re
nt

 (A
)

150 ppb (1)

150 ppb (2)

Cd
Pb

Cu

 
(D) 150 ppb 

0.00E+00

5.00E-07

1.00E-06

1.50E-06

2.00E-06

2.50E-06

3.00E-06

3.50E-06

4.00E-06

4.50E-06

-1.1 -0.9 -0.7 -0.5 -0.3

Potential (V)

C
ur

re
nt

 (A
)

200 ppb (1)
200 ppb (2)
200 ppb (3)

Cd Pb

Cu

 
(E) 200 ppb 

0.00E+00

5.00E-07

1.00E-06

1.50E-06

2.00E-06

2.50E-06

3.00E-06

3.50E-06

4.00E-06

-1.1 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2

Potential (V)

C
ur

re
nt

 (A
) 0 ppb

50 ppb
100 ppb
150 ppb
200 ppb

Cd Pb

Cu

 
(F) Average 

 
Figure 2.5: Overlaid raw voltammograms for Cd, Pb and Cu in 200 ppm mercuric (II) nitrate, 

1% nitric acid, and 0.1M KCl acquired on batch C-SPE-O (A to E) and the overlaid average of 

the voltammograms (F). Experimental conditions as in Table 2.2. 

 

Figure 2.6 (below) displays the calibration curves for the three metals. Large error 

bars have been attained for the 150 ppb samples. Lead has given the best coefficient 

of determination (R2) resulting in a correlation coefficient of 0.9828. Copper and 

cadmium have respectively attained correlation coefficients of 0.9782 and 0.9708. 

The error bars also indicate that each disposable electrode has different 

characteristics.  
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Figure 2.6: Calibration curves for cadmium (Cd), lead (Pb) and copper (Cu) for batch C-SPE-O 

(n=3). Reagent and experimental conditions as in Figure 2.14 and Table 2.2 respectively 
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Table 2.4 shows the average predicted concentrations for each metal ion in the three 

“unknown” samples (Table 2.1) along with the root mean square (RMS) errors 

calculated. The three samples were also recorded in triplicate. 

 
Table 2.4: Average predicted concentrations of the respective metal ions (in ppb) and 

corresponding RMS error values for the samples recorded in triplicate on batch C-SPE-O. 

Cd Pb Cu  
Sample Pred Act RMS Pred Act RMS Pred Act RMS 
UNK1 137 200 66.43 88 80 9.05 144 160 26.53 
UNK2 100 100 6.74 18 20 3.13 21 0 22.79 
UNK3 -22 0 22.44 134 140 7.51 138 180 42.06 
 

Lead has given the best and more precise predictions compared to the other two metal 

ions. The main reason is that the lead peak is in the centre of the potential window 

where there is more of a linear baseline. Both cadmium and copper are more affected 

by the possible presence of other species, such as hydrogen in the case of cadmium, 

and mercury in the case of copper. This infers that chemometrics in the form of 

multivariate calibration is required to reduce the RMS error values. 

 

The calibration curves and average predictions for the three target metal ions for the 

C-SPE-N batch are displayed in Table 2.5 and Figure 2.7 respectively. 

 
Table 2.5: Average predicted concentrations of the respective metal ions (in ppb) and 

corresponding RMS error values for the samples recorded in triplicate on batch C-SPE-N 

Cd Pb Cu  
Sample Pred Act RMS Pred Act RMS Pred Act RMS 
UNK1 232 200 71.92 84 80 11.67 50 160 123.39
UNK2 68 100 36.80 15 20 10.67 43 0 102.33
UNK3 -6 0 6.79 113 140 33.03 123 180 64.84 
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Figure 2.7: Calibration curves obtained for Cd, Pb and Cu on batch C-SPE-N (n=3). Reagent and 

experimental conditions as in Figure 2.5 and Table 2.2 respectively 
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As expected, lead (Pb) has given the better calibration curve with a correlation 

coefficient of 0.9956. In comparing with the C-SPE-O batch of electrodes, the 

correlation coefficient of lead is better for the C-SPE-N batch of electrodes whilst the 

opposite can be said for copper and cadmium with correlation coefficients of 0.9696 

and 0.9227 respectively. The error bars for batch C-SPE-N are more pronounced than 

on the C-SPE-O batch. Furthermore, the slopes for cadmium and copper for the C-

SPE-N batch are less steep than the C-SPE-O batch indicating a reduction in 

sensitivity of the new batch for the two metals. 

 

Lead has attained good RMS values in comparison to the other two metals. The RMS 

values for copper are particularly poor as can be seen in the average predicted 

concentration values of 50, 43 and 123 ppb for UNK1 (160 ppb), UNK2 (0 ppb) and 

UNK3 (180 ppb) respectively. The poorer performance of the C-SPE-N batch can be 

attributed to the physical characteristics of the carbon-ink working electrode (see 

below). Figure 2.8 (below) displays the overlaid raw voltammograms for the three 

metals on the C-SPE-N batch (A to E) and the averaged voltammograms (F) which 

also displays a voltammogram acquired on one electrode from batch C-SPE-O for the 

same 200 ppb sample for comparison. 

 

There is thus a significant difference in the quality of the voltammograms (Figure 2.5 

and Figure 2.8). It is unclear as to why this phenomenon has occurred with the C-

SPE-N batch. In particular, the cadmium peak is difficult to interpret due to the high 

baseline at 50 ppb (Figure 2.8B). It was however, observed that minute bubbles had 

formed on both the working and counter electrodes. The cause of these bubbles is 

currently unknown however it is not due to oxygen evolution for this would occur in 

excess of 1V in aqueous solutions with carbon screen-printed electrodes and a 

silver/silver chloride reference electrode. This thus led to the voltammograms 

appearing very noisy. This could imply that the carbon-ink employed is more active 

than that employed in the C-SPE-O batch of electrodes. 
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Figure 2.8: Overlaid raw voltammograms for Cd, Pb and Cu acquired on batch C-SPE-N (A to 

E) and overlaid average of the voltammograms (F). Reagent and experimental conditions as in 

Figure 2.5 and Table 2.2 respectively. 
 

Another observation was that it was proved difficult to maintain the drop directly over 

the working area of the C-SPE-N electrode batches suggesting batch-to-batch 

variability with respect to the physico-chemical properties of the insulation layer ink 

when compared with the C-SPE-O batch of electrodes. Finally, the blue insulation ink 

appeared to have a much glossier finish than on the older electrodes and could be as a 

result of the curing regime employed. 
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The effect of increasing the deposition time was investigated by the acquisition of 

three voltammograms at concentrations ranging from 0, 100 and 200 ppb for all three 

metal ions on the C-SPE-N batch (Figure 2.9). 
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Figure 2.9: Overlaid voltammograms for Cd, Pb and Cu recorded on batch C-SPE-N. Reagent 

and experimental conditions as in Figure 2.5 and Table 2.2 respectively except for a deposition 

time of 6 minutes. 
 

An improvement can be seen in the voltammetric peaks, especially for cadmium and 

lead. However, the voltammogram pertaining to the blank (0 ppb) gives rise to a high 

baseline, particularly in the region -1.05 to -0.9V. This indicates that there could be an 

issue with the supporting electrolyte solution interacting with the inks; fouling or 

degradation of the C-SPE-N batch of electrodes could affect the shelf-life making it 

considerably less than the C-SPE-O batch of electrodes, which could imply different 

carbon inks having been employed. A three-point calibration curve (not shown) gave 

a correlation coefficient of 0.9843, 0.9997, and 0.5467 for cadmium, lead and copper 

respectively. The poor correlation coefficient for copper can be attributed to the 

mercury film interfering more prohibitively with the copper due to the longer 

deposition time. Cooper reported detection limits of 9.1, 1.4 and 32.6 ppb for 

cadmium, lead and copper respectively (Cooper, 2004). 

 

Finally, the effect of the deposition current on the calculated peak areas of the C-SPE-

N batch was investigated. It had been observed that during the acquisition of certain 

voltammograms, the currents displayed during the deposition step determined the 
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nature of the acquired voltammogram. For example, if the current exhibited a high 

negative value, the cadmium peak was more affected by the increase in the baseline, 

which may be possibly due to the evolution of hydrogen at the negative depositioning 

potential employed. Table 2.6 displays the peak areas calculated for 200 ppb cadmium 

on the four C-SPEs whilst Table 2.7 displays the same for 50 ppb lead and 150 ppb 

cadmium and copper. 

 
Table 2.6: Effect of magnitude of deposition current on peak area on 200 ppb Cd. Reagent and 

experimental conditions as in Figure 2.5 and Table 2.2 respectively. 

C-SPE-N 1 2 3 4 
Order (1 = highest 

magnitude) 
3 2 4 1 

Cd Peak Area 1.44 × 10-7 1.41 × 10-7 1.63 × 10-7 1.32 × 10-7 
 
Table 2.7: Effect of magnitude of deposition current on peak areas of 50 ppb Pb, and 150 ppb Cd 

and Cu. Reagent and experimental conditions as in Figure 2.5 and Table 2.2 respectively. 

C-SPE-N 1 2 3 4 
Order (1 = highest 

magnitude) 
1 4 3 2 

Cd Peak Area 1.39 × 10-7 1.62 × 10-7 1.53 × 10-7 1.42 × 10-7 
Pb Peak Area 4.21 × 10-7 4.91 × 10-7 4.76 × 10-7 4.72 × 10-7 
Cu Peak Area 1.93 × 10-7 1.57 × 10-7 1.58 × 10-7 1.26 × 10-7 

 

As can be seen in Tables 2.6 and 2.7, the greater the magnitude of the deposition 

current, the lower the calculated peak areas, with the exception of copper, which can 

be attributed to the interference of the mercury ions. An additional observation is that 

on acquiring the validation dataset, the standard containing 180 ppb Cd, Pb and Cu 

was also recorded on four C-SPE-O batches. It was observed that the magnitude of 

the deposition current was much lower than that observed for the C-SPE-N batch. For 

example, the current averaged 17 µA for all four C-SPE-O electrodes, whilst the 

average observed for the C-SPE-N batch was 50 µA, which thus explains why the 

voltammetric peaks appear more intense and well-defined with the C-SPE-O batch 

than the C-SPE-N batch, coupled with the lower baseline in the cadmium region. 

 

An important point to note is that screen-printed electrode manufacturers such as in 

the blood glucose biosensor industry are aware of this problem and circumvent it by 

calibrating each batch of electrodes that is produced. The end-user is then supplied 
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with a calibration chip that loads compensation data into their meter (DiabeteSuffolk, 

2006). This therefore implies that the problem is universal. Appendix A4 shows a 

table comparing a number of blood glucose meters listing operational parameters, 

physical construct and calibration methods. 

 

Overall, univariate calibrations are not adequate for the datasets acquired on both the 

C-SPE-O and C-SPE-N batches. In both cases, predictions are poor. RMS error values 

indicate that batch C-SPE-O is more reliable than batch C-SPE-N. 

 

2.4.1.2 Comparison of Multivariate Calibration Regression Algorithms 

 

Multivariate calibration was applied via the custom-built data analysis package to the 

datasets containing voltammograms acquired on the C-SPE-O batch with the PCR, 

NIPALS, SIMPLS and ANN modelling algorithms in order to determine the most 

efficient when combined with pre-treatment techniques (Ni & Jin, 1999; Donachie et 

al.,  1999; Bessant & Saini, 2000). To reduce computational time a subset was 

extracted from the training dataset with a three-level three factorial design. Figure 

2.10 compares the root mean square (RMS) error values for the prediction of replicate 

samples of 100 ppb of the target metal ions. 

 

Mean-centring combined with blank subtraction in conjunction with the SIMPLS 

algorithm led to the most successful predictions. It is clear to see that no pre-treatment 

resulted in larger RMS error values. However it is recommended that voltammograms 

pertaining to the blank samples not be subtracted and should thus be included in the 

model (Herrero & Ortiz, 1998). Furthermore, mean-centring can result in weighting of 

spectral regions if the peak magnitudes differ substantially that will lead to erroneous 

modelling (Thissen et al.,  2004). As a result, range-scaling was adopted in 

conjunction with the Savitzky-Golay smoothing function, details of which including 

advantages have been given in Section 1.5.3 (Savitzky & Golay, 1964). 
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Figure 2.10: RMS Error values for the predictions of replicate samples at 100ppb (n=5) with 

varying pre-treatment techniques and modelling algorithms.  

Key: A denotes auto-scaling; M denotes mean-centring; B denotes blank subtraction. 

 Experimental design: 3-level (0, 100, 200 ppb), 3-factorial 
 

The literature reports that artificial neural networks (ANNs) are gaining in popularity 

as an advanced tool when being applied to voltammetric data (Richards et al.,  2002). 

Research has shown that ANNs perform better than PLS with respect to modelling 

and prediction due to the ability of ANNs to model both linear and non-linear data. 

Figure 2.11 compares the RMSEP values obtained for SIMPLS and ANNs. 
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Figure 2.11: RMSEP values for Cd, Pb and Cu recorded on a carbon-ink SPE. Dataset range-

scaled and smoothed with Savitzky-Golay function (cubic polynomial and window size of 41). 

SIMPLS and ANN are the modelling algorithms; PCA denotes data reduction prior to ANN; PCs 

denotes the number of PCs retained. N/A denotes not applicable 
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PCA can be performed on data prior to performing ANN (de Carvalho et al.,  2000). 

The scores matrix from the PCA process replaces the original X-data as input 

matrices for the ANN. The architecture of the neural network (Hagan et al., 1996) 

was dependent upon the potential scan range, for example, -1.1 to -0.2V, and the 

number of metal ions that are present (184-17-3). The number of inputs corresponded 

to the number of variables in each voltammogram. There were 17 neurons in the 

hidden layer incorporating a sigmoidal transfer function. Three neurons 

(corresponding to the number of metals) are present in the output layer and a linear 

transfer function outputs the concentration values of the respective metal ions. The 

number of neurons was determined by the NNPLS1 algorithm contained with the PLS 

toolbox (Wise & Gallagher, 1998b). The network was optimised via a back 

propagation algorithm which reduces the error between the predicted and required 

outputs (Ypred and Yact respectively) by altering the weights of the links between the 

neurons within the network (Hagan et al., 1996). As can be observed in Figure 2.11, 

application of the SIMPLS algorithm resulted in better predictions. Application of 

OSC (Fearn, 2000) prior to modelling led to an increase in the RMSEP values by an 

average of 10 ppb. 

 

SIMPLS has thus been shown to be the better multivariate calibration tool for 

modelling and predicting and was employed for the remainder of the work. 

Furthermore, as neural networks are time-consuming to train, it is not guaranteed that 

the above networks were in fact optimised (Richards et al.,  2002; Bessant & Saini, 

1999; Bessant & Saini, 2000). 

 

2.4.1.3 Multivariate Calibration on Batch C-SPE-O 

 

All predictions were performed after the incorporation of the validation dataset into 

the model (Martin et al.,  2005). In all cases, predictions were performed at the 20th 

latent variable for all components (Thennadil & Martin, 2005). The leave-one-out 

cross-validation plot for the training set is shown in Figure 2.12. 
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Figure 2.12: LOO CV plot for the training set acquired on the C-SPE-O batch. No data pre-

treatment performed. Reagent and instrument conditions as in Figure 2.5 and Table 2.2 
 

The LOO CV plots displayed in Figure 2.12 are far from ideal. The perturbations 

observed in each plot from the third latent variable to the tenth imply that problems 

have been encountered within the dataset. The total variance captured by the X- and 

Y-data set had not reached 100% at the 20th latent variable (99.9414 and 94.5893 

respectively). A closer inspection of the training dataset revealed voltammograms in 

which clear shifts in peak maxima potentials were evident (Figure 2.13). 
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Figure 2.13: Overlaid voltammograms for a number of samples from the training set acquired on 

batch C-SPE-O. Reagent and experimental conditions as in Figure 2.5 and Table 2.2 respectively. 

Key: CPC225 implies 200 ppb Cd and Pb; 50 ppb Cu 
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The shifted voltammograms pose a serious problem for the modelling algorithm. One 

hypothesis as to the cause of this shifting is degradation of the reference electrode. In 

order to assist in resolving this problem, a program was constructed in the LabVIEW 

environment. Its role was to import the appropriate dataset, and to re-align the 

voltammograms to the more positive region of the voltammogram. This was based on 

the differences between the index values (potential) corresponding to the three 

maximum peak currents (corresponding in this case to Cd, Pb and Cu) of a chosen 

voltammogram deemed to be “normal”, and the shifted voltammograms. After the re-

alignment, the voltammograms would be cropped at both ends thus reducing the 

dimensionality to fit a potential window which itself is dependent on the maximum 

value of the potential shift. Elimination of peak-shifting was described in Section 

2.2.1 but the above process is a simplified form akin to the peak alignment of NMR 

and GCMS data (Forshed et al.,  2005; Christensen et al.,  2005). 

 

Tables 2.8 to 2.11 display the means, standard deviations and percentage coefficients 

of variation for the predictions of the concentrations of the synthetic samples as 

shown in Table 2.1, which is re-produced below for convenience. 

 
Table 2.1: Concentration values for the three “unknown” samples 

Sample Cd Pb Cu 
UNK1 200 80 160 
UNK2 100 20 0 
UNK3 0 140 180 

 
Table 2.8: The predicted concentrations of the unknown “real” samples with no data pre-

treatment followed by modelling with SIMPLS.  
 MEANS STD DEV % CV 

Sample Cd Pb Cu Cd Pb Cu Cd Pb Cu 
UNK1 163.1 90.7 118.4 15.72 4.46 6.49 9.6 4.9 5.5 
UNK2 121.5 23.0 18.6 8.26 6.55 16.30 6.8 28.4 87.8 
UNK3 0.0 135.6 154.0 0.00 4.21 8.01 NaN 3.1 5.2 
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Table 2.9: The predicted concentrations of the unknown “real” samples with range-scaling, SG 

filtering (polynomial: 3; window: 41), followed by modelling with SIMPLS 
 MEANS STD DEV % CV 

Sample Cd Pb Cu Cd Pb Cu Cd Pb Cu 
UNK1 160.5 91.2 131.1 22.34 1.54 3.35 13.9 1.7 2.6 
UNK2 129.7 28.0 9.6 8.59 6.20 8.66 6.6 22.1 90.0 
UNK3 0.0 138.6 160.7 0.00 1.81 12.58 NaN 1.3 7.8 

 
Table 2.10: The predicted concentrations of the unknown “real” samples with the 

voltammograms shifted, and no data pre-treatment followed by modelling with SIMPLS 
 MEANS STD DEV % CV 

Sample Cd Pb Cu Cd Pb Cu Cd Pb Cu 
UNK1 180.6 101.4 138.6 27.31 3.09 8.55 15.1 3.1 6.2 
UNK2 123.6 22.0 35.3 4.79 6.02 31.96 3.9 27.3 90.6 
UNK3 0.0 148.9 155.0 0.00 8.10 13.81 NaN 5.4 8.9 

 
Table 2.11: The predicted concentrations of the unknown “real” samples with the 

voltammograms shifted, with range-scaling, SG filtering (polynomial: 3; window: 41), followed 

by modelling with SIMPLS 

 MEANS STD DEV % CV 
Sample Cd Pb Cu Cd Pb Cu Cd Pb Cu 
UNK1 177.1 101.9 150.5 23.60 2.21 6.17 13.3 2.2 4.1 
UNK2 126.5 22.4 34.1 14.67 10.66 30.52 11.6 47.6 89.5 
UNK3 0.0 146.7 155.2 0.00 8.55 17.66 NaN 5.8 11.4 

 

It is apparent to see that the models generated have failed to predict the concentration 

of copper in the UNK2 sample (0 ppb). The closest model being that associated with 

Table 2.9 at 9.6 ppb. However its precision is still very poor as can be seen by the 

high %CV value. The predictive capabilities of the models have thus been 

compromised by the issue of peak shift in the voltammograms, and it may be the case 

that the virtual instrument (VI) built to shift the voltammograms will need further 

revising. 

 

The data analysis package permits the application of weights to specific regions of the 

voltammogram. This results in enhancement of the respective voltammetric peaks 

pertaining to the target analytes and reduces the noise in the remainder of the 

voltammograms (Martens & Naes, 2001; Forina et al.,  2003). The selection of the 

appropriate weighting parameters is dependent on the quality of the voltammograms 
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acquired. For example, if a voltammogram contains a low signal-to-noise ratio, the 

high and low weights are established in which the ratio is increased substantially. 

 

Prior to application of the weights, a condition is first established in which the 

corresponding sample in the concentration matrix (Y) is scanned, and if the 

concentration of a particular metal is 0 ppb, then a pre-defined low weight is applied 

else a pre-defined high weight is applied. Furthermore, the weighted voltammograms 

are smoothed with the Savitsky-Golay function at a polynomial of 3 (cubic) and a 

window of 41. To the author’s knowledge, no such function has been described in the 

literature. Table 2.12 details the index ranges in which the high weights are applied to 

the voltammograms. Figure 2.14 illustrates the effects of weighting. 

 
Table 2.12: The ranges in which the high weight is applied to the respective metal ion. 

Metal (C-SPE) Range: Index (potential) 
Cd 21 (-1.005V)  45 (-0.888V) 
Pb 60 (-0.8143V)  96 (-0.638V) 
Cu 140 (-0.424V)  175 (-0.253V) 

 

 
(A) 

 
(B) 

Figure 2.14: Voltammogram corresponding to 100ppb Cd, 100ppb Pb and 200ppb Cu: Raw (A) 

and weighted (B). High Weight = 2; Low Weight = 0.1 
 

A number of weights were applied in order to improve the overall RMSEP values. 

The best of the weighted predictions are displayed in Tables 2.13 and 2.14. 

 



PhD Thesis  Chapter 2 
 

 
Cranfield University  Michael Cauchi 99

Table 2.13: The predicted concentrations of the unknown “real” samples with the 

voltammograms shifted, weights applied (5.0:0.1; SGp = 3; SGw = 41), and no data pre-treatment 

followed by modelling with SIMPLS 

 MEANS STD DEV % CV 
Sample Cd Pb Cu Cd Pb Cu Cd Pb Cu 
UNK1 153.1 123.5 151.9 16.23 3.93 19.39 10.6 3.2 12.8 
UNK2 119.9 61.3 43.2 17.32 11.87 55.04 14.4 19.4 127.5
UNK3 2.8 151.1 143.7 3.80 9.50 5.68 137.6 6.3 3.9 

 
Table 2.14: The predicted concentrations of the unknown “real” samples with the 

voltammograms shifted, weights applied (5.0:0.1; SGp = 3; SGw = 41), with range-scaling, SG 

filtering (polynomial: 3; window: 41), followed by modelling with SIMPLS 
 MEANS STD DEV % CV 

Sample Cd Pb Cu Cd Pb Cu Cd Pb Cu 
UNK1 155.0 121.0 144.6 14.82 4.51 12.73 9.6 3.7 8.8 
UNK2 123.7 65.0 45.7 13.60 11.55 54.68 11.0 17.8 119.8
UNK3 0.0 147.6 140.3 0.00 6.92 6.20 NaN 4.7 4.4 

 

Table 2.15 shows the overall RMSEP values for Tables 2.8 to 2.11, 2.13 and 2.14. It 

is thus clear to see that application of re-aligning the potential peaks in the 

voltammetric response profiles has improved the overall predictions. 

 
Table 2.15: Overall RMSEP values (in ppb) calculated for Tables 2.15 to 2.20 

Table 2.8 2.9 2.10 2.11 2.13 2.14 
RMSEP 22.90 20.91 20.56 20.07 32.62 33.75 

 

The calculated overall RMSEP value for the univariate approach (Table 2.4) was 

27.98 ppb. Comparing this value to the values in Table 2.15 shows that the 

multivariate approach has assisted in the calibration of the voltammetric peaks, the 

most effective being for the range-scaled re-aligned voltammograms (Table 2.11). 

 

Although a separate validation dataset was acquired in order to perform independent 

test set validations, the data analysis package contains an additional option to split the 

training set into a separate calibration set and test set. In this instance, the last ten 

voltammograms in the original training set were set aside as the test set. The SIMPLS 

model was thus constructed with the calibration set and predictions of the test set were 

performed. Table 2.16 shows the calculated correlation coefficients for the predicted 

concentrations and the actual concentrations at varying data pre-treatments. 
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Table 2.16: Correlation coefficients calculated for the predicted concentrations plotted against 

actual concentrations.  Note: S-G implies Savitzky-Golay smoothing at polynomial 3, window 41 

Pre-treatment Cd Pb Cu 
Un-treated dataset  0.7500 0.9674 0.7930 

Range-scaled and S-G dataset 0.7639 0.9744 0.8634 
Dataset with re-aligned voltammograms 0.7769 0.9640 0.8930 
Range-scaled and S-G  re-aligned dataset 0.7673 0.9698 0.8487 

Re-aligned and weighted dataset 0.8335 0.9526 0.7986 
Range-scaled and S-G after re-aligned and 

weighted dataset 
0.7782 0.9425 0.7747 

 

In all cases, the concentration of lead was predicted more accurately than the other 

two metal species. The correlation coefficient for copper is greatly improved after the 

voltammograms have been re-aligned. Figure 2.15 displays the plot of the predicted 

concentrations against the actual concentrations for the three metal ions of the dataset 

comprising the corresponding re-aligned voltammograms. 
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Figure 2.15: Plots of predicted concentration against actual for the three target metal ions from 

the shifted voltammograms. Reagent and instrumental parameters as in Figure 2.5 and Table 2.2 

respectively 
 

The plots in Figure 2.15 show that with the omission of the last ten samples from the 

original training set, the SIMPLS model generated contains sufficient information to 

successfully predict samples that were not included in the calibration set. Overall, the 

application of multivariate calibration with the C-SPE-O batch has led to improved 
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RMSEP values compared with the univariate approach. The application to the C-SPE-

N batch is discussed next. 

 

2.4.1.4 Multivariate Calibration on Batch C-SPE-N 

 

The same experimental design was employed as for batch C-SPE-O except that each 

sample was measured on four separate occasions on individual electrodes as defined 

by the randomised design (Section 2.3.3). This leads to a training dataset containing 

500 experiments. During the modelling process, two outliers were detected. Figure 

2.16 displays the PLS score plot for the first outlier detected.  

 

 
Figure 2.16: The PLS Y-Score (U) plot of LV2 vs LV1 clearly showing the presence of an outlier 

identified as CPC526-3 (3rd measurement of 50 ppb Cd, 200 ppb Pb, 150 ppb Cu). Reagent and 

instrumental parameters as in Figure 2.5 and Table 2.2 respectively 
 

Possible causes of the voltammogram of the outlier are a defective electrode or the 

improper insertion into the connector. The sample was thus omitted from the training 

dataset. The second sample that was omitted was CPC652.OEW-3 (150 ppb Cd; 50 

ppb Pb; 200 ppb Cu; 200 ppm Hg(NO3)2; 1% HNO3; 0.1M KCl). This occurred after 

the application of the weights detailed in Table 2.17 (PCA scores plot not shown). 
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Table 2.17: The weighting parameters applied to the dataset after omission of the first outlier 

detailed in Figures 2.14 and 2.15. 

Parameters Value 
High Weight 5.0 
Low Weight 0.1 

Indices (Matlab) Cd (17, 45); Pb (65, 95); Cu (111, 163) 
Indices (LabVIEW) Cd (16, 44); Pb (64, 94); Cu (110, 162) 

Savitzky-Golay Filter: Polynomial 3.0 
Savitzky-Golay Filter: Window 41.0 

 

Tables 2.18 to 2.23 show the means, standard deviations and percentage coefficient of 

variations for the prediction of the concentrations of the “real” samples. All 

predictions were performed after the incorporation of the validation dataset into the 

model. In all cases, predictions were performed at the 20th latent variable for all 

components as detailed in Section 2.4.1.2. Table 2.1 is displayed for convenience. 

 
Table 2.1: Concentration values for the three “unknown” samples 

Sample Cd Pb Cu 
UNK1 200 80 160 
UNK2 100 20 0 
UNK3 0 140 180 

 
Table 2.18: The predicted concentrations of the unknown “real” samples with no data pre-

treatment followed by modelling with SIMPLS 

 MEANS STD DEV % CV 
Sample Cd Pb Cu Cd Pb Cu Cd Pb Cu 
UNK1 240.5 85.6 166.6 49.76 29.84 33.14 20.7 34.9 19.9 
UNK2 148.0 22.1 25.0 9.39 4.93 5.74 6.3 22.3 22.9 
UNK3 0.0 146.5 197.6 0.00 8.04 16.53 NaN 5.5 8.4 

 
Table 2.19: The predicted concentrations of the unknown “real” samples with range-scaling, SG 

filtering (polynomial: 3; window: 41), followed by modelling with SIMPLS 

 MEANS STD DEV % CV 
Sample Cd Pb Cu Cd Pb Cu Cd Pb Cu 
UNK1 238.3 91.6 173.7 57.62 40.81 32.45 24.2 44.5 18.7 
UNK2 144.6 18.2 25.1 15.51 4.38 4.58 10.7 24.0 18.2 
UNK3 0.0 144.8 193.5 0.00 11.83 17.52 NaN 8.2 9.1 
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Table 2.20: The predicted concentrations of the unknown “real” samples after omission of 

sample CPC526.OEW-3, and no data pre-treatment followed by modelling with SIMPLS 

 MEANS STD DEV % CV 
Sample Cd Pb Cu Cd Pb Cu Cd Pb Cu 
UNK1 236.1 86.3 163.8 43.56 27.99 28.80 18.5 32.4 17.6 
UNK2 144.4 18.5 27.0 6.91 3.22 5.92 4.8 17.4 22.0 
UNK3 0.0 147.5 196.0 0.00 8.76 15.37 NaN 5.9 7.8 

 
Table 2.21: The predicted concentrations of the unknown “real” samples after omission of 

sample CPC526.OEW-3, with range-scaling, SG filtering (polynomial: 3; window: 41), followed 

by modelling with SIMPLS 

 MEANS STD DEV % CV 
Sample Cd Pb Cu Cd Pb Cu Cd Pb Cu 
UNK1 233.9 85.7 170.0 55.43 36.72 20.41 23.7 42.9 12.0 
UNK2 145.6 19.0 26.6 9.00 1.52 4.59 6.2 8.0 17.2 
UNK3 0.0 143.0 192.1 0.00 9.78 16.01 NaN 6.8 8.3 

 
Table 2.22: The predicted concentrations of the unknown “real” samples after omission of 

sample CPC526.OEW-3, followed by weighting (Table 2.17) with no data pre-treatment followed 

by modelling with SIMPLS 

 MEANS STD DEV % CV 
Sample Cd Pb Cu Cd Pb Cu Cd Pb Cu 
UNK1 224.5 82.9 167.3 33.45 18.40 15.56 14.9 22.2 9.3 
UNK2 134.8 29.7 37.1 5.29 4.71 42.80 3.9 15.9 115.5
UNK3 0.0 140.9 192.8 0.00 6.17 15.42 NaN 4.4 8.0 

 
Table 2.23: The predicted concentrations of the unknown “real” samples after omission of 

sample CPC526.OEW-3, followed by weighting (Table 2.17), with range-scaling, SG filtering 

(polynomial: 3; window: 41) followed by modelling with SIMPLS 

 MEANS STD DEV % CV 
Sample Cd Pb Cu Cd Pb Cu Cd Pb Cu 
UNK1 215.1 76.4 161.3 13.98 8.97 11.61 6.5 11.7 7.2 
UNK2 150.7 37.3 39.2 7.84 1.28 41.69 5.2 3.4 106.3
UNK3 1.3 142.1 187.4 2.61 8.28 19.54 200.0 5.8 10.4 

 

By comparing the predicted means of the concentrations in Tables 2.18 to 2.23 

against Table 2.5, it can be observed that some protocols have performed better for 

certain metal ions than others. For example, all except Table 2.23 have successfully 

predicted the cadmium concentration in UNK3 at 0 ppb. The relatively high %CV of 

200 for the same sample (for Cd) in Table 2.23 can be considered not to be of great 

concern due to the actual concentration value being very low (close to zero). If 
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compared with the lead (Pb) concentration in the same sample (UNK3) the standard 

deviation (8.28 ppb) is greater but yields a lower %CV (5.8%) due to the relatively 

greater mean concentration (142.1). 

 

All protocols have failed to predict the real concentration of copper in sample UNK2 

at 0 ppb. This can be attributed to the effect of the mercury ions which implies that 

further pre-treatments are required. Ironically, the closest prediction is seen in Table 

2.18 at 25.0 ppb which is prior to the removal of the first outlier. Table 2.24 displays 

the overall RMSEP values for the respective models created for Tables 2.18 to 2.23. 

 
Table 2.24: Overall RMSEP values (in ppb) calculated for Tables 2.18 to 2.23 

Table 2.18 2.19 2.20 2.21 2.22 2.23 
RMSEP 23.57 22.65 22.04 21.67 19.74 22.88 

 

The calculated overall RMSEP value for the univariate approach (Table 2.5) was 

47.14 ppb. The omission of the first outlier has led to an improvement in the 

predictions of the respective generated models. Further, it is encouraging to observe 

the fact that the predictions improved on application of the weights (shown in Table 

2.17) to the datasets (in conjunction with omission of the second outlier), which is in 

contrast to what was observed in Section 2.4.1.3 in which application of weights 

worsened the predictions. 

 

As had been performed in Section 2.4.1.3, the original training set was divided into a 

calibration set and a test set which comprised the last ten samples from the training 

set. Table 2.25 shows the correlation coefficients calculated for the respective models. 

 
Table 2.25: Correlation coefficients calculated for the predicted concentrations plotted against 

actual concentrations. Note: RS implies range-scaling and Savitzky-Golay smoothing 

Pre-treatment Cd Pb Cu 
Omission of the first outlier only 0.9752 0.8983 0.9534 

Omission of outlier and RS 0.9608 0.9238 0.9546 
Omission of outliers and weights applied 0.9599 0.9155 0.9636 
Outliers omitted, weights applied, and RS 0.9560 0.9119 0.9538 

 

As can be seen by the correlation coefficients in Table 2.25 the prediction of lead has 

been the poorest by the four respective models generated. This is in contrast to what 
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was observed in Section 2.4.1.3 (Table 2.16). The correlation coefficients for 

cadmium and copper obtained with the C-SPE-N batch of screen-printed electrodes 

are much improved compared with the C-SPE-O batch (0.7782 and 0.7747 for 

cadmium and copper respectively after weighting, range-scaling and Savitzky-Golay 

smoothing). This is most likely as a consequence of the observed voltammetric shifts 

encountered with the C-SPE-O batch. However, it must be stressed that the calibration 

set employed for the C-SPE-N batch (500) was considerably larger than the one 

employed for the C-SPE-O batch (375). Further, due to the randomisation of the 

training datasets, the last ten samples in the respective test sets will be different. 

 

Figure 2.17 compares four voltammograms originating from two different batches of 

electrodes (C-SPE-O and C-SPE-N) of two samples; one containing 150 ppb 

cadmium, lead and copper, and the second containing 150 ppb cadmium, 200 ppb lead 

and 50 ppb copper.  
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Figure 2.17: Four voltammograms recorded on the two batches: O-625 denotes sample CPC625 

(150 ppb Cd; 200 ppb Pb; 50 ppb Cu) recorded on the C-SPE-O batch; N-625 denotes the same 

as O-625 but for the C-SPE-N batch; O-666 denotes sample CPC666 (150 ppb Cd, Pb and Cu) 

recorded on the C-SPE-O batch; N-666 denotes the same as O-666 but for the C-SPE-N batch. 

Reagent and instrumental conditions as in Figure 2.14 and Table 2.3 respectively 
 

As has been previously observed (Figure 2.8), the high background current on the C-

SPE-N batch has resulted in the masking of the cadmium (Cd) peak. This 

phenomenon was observed in many of the plots. Furthermore, it must be stressed that 
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the samples prepared in the laboratory were employed on both batches of SPEs which 

thus eliminates human error factors between batches, such that were any errors 

generated during the preparation of the samples, the effects would be seen on both 

batches. 

 

The custom-built applications include an option to incorporate the validation set into 

the model should the RMSEP values be unsatisfactory. Incorporation of the validation 

set into the model increases the robustness of the model which should lead to the 

improvement of the efficiency of prediction of the respective model (Martin et al.,  

2005). This was observed with the C-SPE-O batch. The same cannot be said for the 

C-SPE-N batch (Figure 2.18). 
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Figure 2.18: Overall RMS error values for the prediction of the samples with unknown 

concentrations on the C-SPE-N batch. O implies omission of the first outlier; OC implies O in 

addition to range-scaling and Savitsky-Golay smoothing; NV denotes the validation set was NOT 

incorporated into the model 
 

The increase in RMSEP values after incorporation of the validation set into the model 

can be attributed to the high variability in the voltammograms recorded with regards 

to the high baseline observed from -1.1 to -0.8V. A second hypothesis could be that 

when the validation set is actually incorporated into the model, the set is merely 

appended to the end of the training set instead of the combined datasets being 

randomised. This issue could be addressed in future versions of the data analysis 
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package. However, this is most unlikely due to better predictions observed after 

incorporation of the validation set with the C-SPE-O batch. 

 

Overall, the application of weights has improved the predictive ability of the 

respective model with a calculated RMSEP value of <20 ppb which is an 

improvement from the optimum value for the C-SPE-O batch at 20.07 ppb. 

 

2.4.2 Application to Real Samples 

 

In order to test the robustness of the multivariate calibration regression models, 

application to the quantitative determination of target species in real samples is 

warranted. This also involves validating the findings against a well-established 

analytical technique such as ICP-MS or AAS. This Section describes such an 

application (Samek et al.,  2001). It is split into several sub-sections. Section 2.4.2.1 

will discuss the findings attained for the flame AAS whilst Section 2.4.2.2 for the 

graphite furnace AAS. Section 2.4.2.3 will discuss the findings via standard addition 

of the DPASV voltammograms whilst Section 2.4.2.4 will discuss the findings via the 

multivariate calibration regression models developed in Section 2.4.1. Finally Section 

2.4.2.5 will compare all the results with appropriate conclusions drawn. 

 

2.4.2.1 Flame AAS (F-AAS) 

 

Table 2.26 details the hardware parameters and conditions employed for the F-AAS 

(Section 1.4.4.1) and Table 2.27 lists the parameters employed for the target analytes. 

 
Table 2.26: Hardware and computational parameters for the F-AAS instrument 

Atomiser Standard Burner Delay Time (s) 15 
Measurement 

Mode 
Working Curve Signal Record Direct 

Flame Acetylene-Air 
(2125 -  2400°C 

Signal Mode Background 
Correct 

Oxidant Pressure 
(KPa) 

160 Replicates Std = 3  
Sample = 3 

Oxidant Flow 
(L/min) 

15 Calculation Integration 

Calculation Time 
(s) 

5 Slicing Height 10% (P. W. Only) 
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Table 2.27: Specific instrumental parameters for the target elements 

Element Current 
(mA) 

Wavelength 
(nm) 

Slit (nm) Fuel Flow 
(L/min) 

Burner 
Height 
(mm) 

Cd 7.5 228.8 1.3 1.5 5.0 
Pb 7.5 283.3 1.3 1.7 7.5 
Cu 7.5 324.8 1.3 1.7 7.5 

 

The mode of operation for the F-AAS was to warm up the lamp; position it for the 

optimum intensity through the flame; self-calibration; samples measured with a 

cleaning step in between via the auto-sampler. 

 

Calibration standards were prepared by diluting a 1000 ppm commercial stock 

standard (Fisher Scientific, Leicester, UK) to 1 ppm by taking 1 ml of the 1000 ppm 

and adding 999ml of RO water. The individual standards were then prepared by 

diluting 0, 1, 2, 3, 4 and 5ml of the 1ppm standard to 25 ml hence preparing standards 

with the following respective concentrations of 0, 40, 80, 120, 160 and 200 ppb. 

Furthermore, 1ml of the filtered CRM extract (prepared as detailed in Section 2.3.4) 

was diluted 25-fold prior to analysis. However, this dilution was too great yielding % 

recoveries in excess of 150% for the majority of the target analytes. Standards were 

thus prepared again for the three metal ions in addition to employing a five-fold 

dilution of the filtered CRM extract. Figures 2.19, 2.20 and 2.21 display the 

calibration curves for cadmium, lead and copper respectively. 
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Figure 2.19: Calibration curve for cadmium performed via F-AAS.  

Cd concentrations: 0, 40, 80, 120, 160 and 200 ppb 
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Figure 2.20: Calibration curve for lead performed via F-AAS.  

Pb concentrations: 0, 400, 800, 1200, 1600, 2000 ppb. 
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Figure 2.21: Calibration curve for copper performed via F-AAS.  

Cu concentrations: 0, 200, 400, 600, 800, 1000 ppb 
 

By employing a smaller dilution factor coupled with a wider concentration range, the 

absorbance values obtained were 5- to 10-fold more distinct from the noise leading to 

more reliable concentrations calculated resulting in greater confidence in the 

calculation of % recovery. Table 2.28 lists the % recovery for all three target elements 

for the CRM extract. 
 

Table 2.28: Calculated % recovery for Cd, Pb and Cu via F-AAS of the filtered CRM extract 

after application of a dilution factor of 5. 

Element % Recovery from CRM 
Cd 31.73% 
Pb 9.71% 
Cu 27.83% 
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2.4.2.2 Graphite Furnace AAS (GF-AAS) 

 

The GF-AAS technique is generally more sensitive than the flame technique due to 

the smaller sample volumes employed coupled with elevated temperatures (Rouessac 

& Rouessac, 2000). Table 2.29 lists the hardware parameters and conditions 

employed for the GF-AAS and Table 2.30 lists the parameters for the specific target 

elements. 
 

Table 2.29: Hardware and computational parameters for the GF-AAS 

Cuvette Pyro 
(electrothermal) 

Signal Mode Background 
Correct 

Measurement 
Mode 

Working Curve Replicates Std = 3  
Sample = 3 

Temperature 
Control 

Optimum Calculation Peak Height 

Signal Record Direct Slicing Height 10% (P. W. Only) 
 
Table 2.30: Specific instrumental parameters for the target elements 

Element Current 
(mA) 

Wavelength 
(nm) 

Slit 
(nm)

Ashing 
and 

duration 
°C (s) 

Atomising 
and 

duration 
°C (s) 

Cleaning 
and 

duration 
°C (s) 

Sample 
Volume 

(µl) 

Cd 7.5 228.8 1.3 300 (30) 1500 (10) 1800 (4) 20 
Pb 7.5 283.3 1.3 400 (30) 2000 (10) 2400 (4) 20 
Cu 7.5 324.8 1.3 600 (30) 2700 (10) 2800 (4) 20 

 

The acquisition time is longer than with the flame due to gradual increases in 

temperature between the stages listed in Table 2.30 in the following order: ashing, 

atomising and cleaning. Prior to the ashing is a drying stage which for all three target 

elements ranges between 80 to 120°C for over 30 seconds. Figures 2.22, 2.23 and 

2.24 display the calibration curves for cadmium, lead and copper acquired on the GF-

AAS respectively. 
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Figure 2.22: Calibration curve for cadmium performed via GF-AAS. 

Cd concentrations: 0, 4, 8, 12, 16 and 20 ppb 
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Figure 2.23: Calibration curve for lead performed via GF-AAS. 

Pb concentrations: 0, 80, 160, 240, 320, and 400 ppb 
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Figure 2.24: Calibration curve for copper performed via GF-AAS. 

Cu concentrations: 0, 8, 16, 24, 32 and 40 ppb 
 

The calibration curve for cadmium (Figure 2.22) is non-linear and closely follows the 

quadratic equation as shown in red. The correlation coefficients for lead and copper 
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are better. The error bar for the 160 ppb lead standard indicates that there was 

considerable variation when that standard was measured. The curve also possesses 

non-linear tendencies. 

 

In order to ensure that the filtered CRM extract was sufficient, four dilution factors 

were employed: 5, 10, 25 and 50. Table 2.31 shows the % recoveries for each target 

element at each dilution factor. 

 
Table 2.31: Calculated % recovery for Cd, Pb and Cu via GF-AAS of the filtered CRM extract 

after application of the specified dilution factors 

Dilution Factor Element 
5 10 25 50 

Cd 6.29% 10.20% 13.00% 15.86% 
Pb 1.38% 0.76% 0.27% 29.53% 
Cu 14.42%* 20.62% 42.37% 71.89% 

 

Note that the cadmium calculation was via the straight line regression (R2 = 0.8864). 

The % recovery for copper at a dilution factor of 5 (denoted by *) must be omitted 

due to the absorbance values exceeding the calibration range. Overall, one would have 

expected to observe the % recovery to be similar taking the dilution factors into 

account. The dilution factor of 50 was made from a 1:2 dilution of the 25 factor. The 

% recovery selected was based on the respective absorbance values being in the 

centre of the absorbance values related to the respective concentration ranges. In this 

instance, the % recovery for cadmium is thus 15.86 (50); lead is thus 29.53 (50); 

copper is thus 20.62 (10). 

 

2.4.2.3 Standard Addition 

 

Figure 2.25 displays the overlaid voltammograms acquired on the Autolab pertaining 

to the prepared CRM samples with increasing concentrations (100, 150 and 200 ppb) 

of cadmium, lead and copper. 
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Figure 2.25: Overlaid voltammograms of Cd, Pb and Cu in the filtered CRM extract.  

Instrumental conditions: Autolab PSTAT10; deposition time: 165s; deposition potential: -1.1V; 

scan rate: 10mV/s) 
 

It is evident to see that the extraction procedure employed has been successful in 

extracting the target metal ions. Figure 2.26 displays the standard addition curves for 

the three target elements which were recorded in triplicate. 
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Figure 2.26: Standard addition performed after calculation of the peak areas obtained in Figure 

2.25. 
 

As is clear to see in Figure 2.26, the correlations coefficients are very good with 

values of 0.9851, 0.9843 and 0.9989 for cadmium, lead and copper respectively. The 

error bars gradually increase as the concentrations do, particularly for copper which is 

to be expected due to its proximity to mercury as reflected in the increase in %CV 

from 5.22 to 12.18%. By comparison of the coefficients of determination (R2), one 

can deduce that addition of copper is more linear than the other two elements. This 
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implies that a determination of the actual amount of each metal analyte in the CRM 

sample is possible. Table 2.32 shows the % recovery calculated from the amounts in 

the CRM. 

 
Table 2.32: % recovery calculated for Cd, Pb and Cu via standard addition of the filtered CRM 

extract after application of a dilution factor of 5 

Element % Recovery from CRM 
Cd 22.40% 
Pb 21.51% 
Cu 74.67% 

 

It can be observed that the % recovery calculated for copper in Table 2.32 conforms 

to that calculated for copper at a 50-fold dilution (Table 2.31). Prior to any further 

comparisons and inferences, Section 2.4.2.4 discusses the application of SIMPLS 

models developed in Section 2.4.1. 

 

2.4.2.4 Multivariate Calibration Models 

 

Tables 2.33 to 2.38 show the calculated % recoveries taking into account the 

appropriate dilution factors via the respective SIMPLS models for the latent variables 

suggested by the minimum RMSEP values and the F-test, in addition to the 

predictions of all three target metal ions via the 20th latent variable (LV20). 

 
Table 2.33: Determination of the % recovery of Cd, Pb and Cu present in the CRM via the 

SIMPLS model constructed from range-scaled voltammograms (C-SPE-O) 

Target Ion Min RMSEP F-test LV20 
Cd 22.63% 27.58% 21.40% 
Pb 19.88% 22.45% 19.09% 
Cu 11.87% 17.56% 9.66% 

 
Table 2.34: Determination of the % recovery of Cd, Pb and Cu present in the CRM via the 

SIMPLS model constructed from shifted and range-scaled voltammograms (C-SPE-O) 

Target Ion Min RMSEP F-test LV20 
Cd 23.12% 28.51% 20.14% 
Pb 18.04% 21.54% 18.04% 
Cu 13.10% 15.67% 10.79% 

 



PhD Thesis  Chapter 2 
 

 
Cranfield University  Michael Cauchi 115

Table 2.35: Determination of the % recovery of Cd, Pb and Cu present in the CRM via the 

SIMPLS model constructed from shifted and mean-centred voltammograms (C-SPE-O) 

Target Ion Min RMSEP F-test LV20 
Cd 15.58% 23.88% 17.67% 
Pb 15.76% 18.19% 16.31% 
Cu 9.82% 8.69% 10.35% 

 
Table 2.36: Determination of the % recovery of Cd, Pb and Cu present in the CRM via the 

SIMPLS model constructed from shifted and weighted voltammograms (C-SPE-O) 

Target Ion Min RMSEP F-test LV20 
Cd 25.21% 30.26% 25.21% 
Pb 14.69% 17.05% 15.28% 
Cu 14.09% 17.66% 14.77% 

 
Table 2.37: Determination of the % recovery of Cd, Pb and Cu present in the CRM via the 

SIMPLS model constructed from weighted voltammograms after omission of an outlier (C-SPE-

N) 

Target Ion Min RMSEP F-test LV20 
Cd 44.10% 7.10% 44.10% 
Pb 14.06% 7.98% 15.34% 
Cu 17.84% 22.52% 17.84% 

 
Table 2.38: Determination of the % recovery of Cd, Pb and Cu present in the CRM via the 

SIMPLS model constructed from weighted and range-scaled voltammograms after omission of 

an outlier (C-SPE-N) 

Target Ion Min RMSEP F-test LV20 
Cd 32.71% 3.04% 32.71% 
Pb 20.76% 14.09% 18.10% 
Cu 21.99% 19.95% 21.99% 

 

Tables 2.33 to 2.38 have shown varying amounts in the calculated % recovery via the 

respective SIMPLS regression models with the majority ranging between 15 and 35%. 

None of the models have predicted a copper extraction of ~70 – 75% as seen in 

Tables 2.31 and 2.32. This implies that the models have accounted for the presence of 

mercury in the solution compared to the standard addition method. The next Section 

will compare the entire calculated % recovery for the target analytes. 
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2.4.2.5 Comparison of Calculated % Recovery via AAS, Standard Addition and 

Multivariate Calibration Models 

 

Table 2.39 compares the “best” calculated % recovery from the above sections 

leading to the actual determined % recovery for each respective element. 

 
Table 2.39: The best agreements deduced from the comparisons of the above sections.  

Key: (1) SIMPLS model constructed from re-aligned and mean-centred voltammograms (C-SPE-

O); (2) SIMPLS model constructed from re-aligned and range-scaled voltammograms (C-SPE-

O);  

(3) SIMPLS model constructed from weighted and range-scaled voltammograms after omission 

of an outlier (C-SPE-N) 

Element GF-AAS Standard Addition Chemometrics 
Cd 15.86% 22.54% 15.58%(1) 
Pb 29.53% 21.51% 21.54% (2) 
Cu 20.62% 74.67%* 19.95% (3) 

 

It is encouraging to observe that the calculated values for the multivariate calibration 

models agree with the values for the GF-AAS, especially for cadmium and copper. 

The high value for the calculated % recovery for copper can be attributed to the 

presence of the mercury in addition to any other impurities (organic) that are present 

in the soil and was not removed during the digestion procedure. Furthermore, the 

effect of the background current in relation to the decrease and increase in baseline for 

cadmium and copper respectively contribute to their respective poor recoveries via 

chemometrics. 
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2.5 Conclusions 
 

The custom-built data analysis package constructed in both the Matlab and LabVIEW 

environments have been successfully applied to the quantitative determination of 

cadmium, lead and copper. The package imports the voltammograms, processes them 

and exports the results for future processing on other dedicated analysis packages. 

However, a future task will be to store the data and results generated into one large 

compressed file or a database, instead of the multitude of text files that are currently 

generated. The database would hold such information as the predicted data, 

information on the captured variance generated from the construction of the 

calibration models, and the RMS error values. 

 

The data analysis package developed can construct a range of multivariate calibration 

regression models such as PCR, NIPALS, SIMPLS and ANNs (only in Matlab) in 

addition to performing a wide range of data pre-treatment techniques such as range-

scaling, mean-centring, weighting and smoothing. Outliers can be omitted via 

preliminary analysis with PCA. In this study, the better algorithm to employ is 

SIMPLS as illustrated by the RMSEP value of 4.25 ppb when compared against 

NIPALS and PCR (Figure 2.10), and 21 – 38 ppb when compared against ANNs at 46 

to 67 ppb (Figure 2.11). Although ANNs is a more powerful algorithm, it is most 

beneficial for very large and non-linear data sets (Richards et al.,  2002). The datasets 

employed here are linear at the current concentration range. The combination of 

outlier omission, weighting, range-scaling and Savitzky-Golay smoothing has seen a 

vast improvement in the root mean square error of prediction (RMSEP) values for the 

target metal ions (for example 19.74 ppb for sample omission and weighting of the 

voltammograms on the C-SPE-N batch) compared to the univariate approach (47.14 

ppb). 

 

It had been reported that the C-SPE-O batch of carbon-ink screen-printed electrodes 

perform much better than the C-SPE-N batch, even though some voltammograms 

acquired with the older batch were subjected to a shift in the negative potential, as 

much as -0.15V in some instances. However, the SIMPLS algorithm was still able to 

model the voltammograms after pre-treatment with a custom-built re-alignment 
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module. It was also observed that the deposition currents on the C-SPE-O batch are 

lower in magnitude than the C-SPE-N batch. This implies that the carbon inks 

employed in the manufacture of both batches are likely to possess different 

characteristics. 

 

Graphically, one can clearly see the potential peak maxima obtained on the C-SPE-O 

batch are greater than those of the C-SPE-N batch. Attempts were made to improve 

the responsiveness of the C-SPE-N electrode batch by increasing the deposition time, 

applying a conditioning potential and high temperature electrode treatment, as 

suggested by the ink manufacturer. Although improvements were observed in peak 

height and area with cadmium and copper, the opposite was seen for lead. 

 

The % recovery as determined by GF-AAS for cadmium, lead and copper is 15.86%, 

29.53% and 20.62% respectively. Very good agreements are observed with the 

multivariate calibration models with 15.85%, 21.54% and 19.95% respectively. The 

% recovery calculated via the standard addition of lead is 21.51%. This is likely to be 

attributed to the lead peak coinciding with a plateau in the baseline whereas for 

cadmium and copper, the baselines were steep leading to complications with respect 

to peak area and height determination which leads to the increase in the % recovery. 

Furthermore, a wider concentration range could have been employed in order to 

determine more accurately the % recovery of the respective target metal analytes. The 

% recovery as determined by F-AAS was deemed unreliable due to the absorbance 

values being close to the noise. 

 

During and after the development of the custom-built data analysis package, 

application of data pre-treatment techniques, modelling, validation and prediction to 

voltammograms acquired on gold-ink screen-printed electrodes for the quantitative 

determination of arsenic, mercury and copper was performed. The outcome is thus 

discussed in Chapter 3. 
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CHAPTER 3: 

QUANTITATIVE DETERMINATION OF ARSENIC, MERCURY 

AND COPPER ON GOLD-INK SCREEN-PRINTED 

ELECTRODES 
 

3.1 Overview 
 

This chapter focuses on the application of multivariate calibration to DPASV 

voltammograms acquired on novel gold-ink screen-printed electrodes. A general 

introduction will discuss and compare mercury and gold working electrodes in 

relation to the quantitative analysis of arsenic. References to the application of 

multivariate calibration techniques to the acquired voltammograms will also be made. 

The materials and methods employed will be detailed followed by an in-depth 

discussion of the results obtained which include the qualitative comparison of a 

number of batches of disposable gold-ink screen-printed electrodes, application of the 

custom-built data analysis package described in Chapter 2 to account for the 

overlapping peaks attained in the respective voltammograms, and application to a real 

soil sample. Finally, an overall conclusion is drawn. 

 

3.2 Introduction 
 

Chapter 2 discussed the successful application of multivariate calibration to 

voltammograms acquired on carbon-ink screen-printed electrodes for the 

determination of cadmium, lead and copper. The main advantages of these electrodes 

are the relatively low cost in fabrication, their disposability leading to the omission of 

laborious cleaning steps, and the application of small sample volumes which therefore 

minimises reagent wastes. The major disadvantage with regards to the carbon-ink 

screen-printed electrodes is the use of a mercury salt in the form of mercuric (II) 

nitrate at a relatively high concentration compared to the target metal analytes which 

co-deposit on to the working electrode by amalgamating with the reduced mercury 

film. 
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3.2.1 Mercury Working Electrodes 

 

In recent years, environmental agencies have grown particularly concerned with the 

increasing amounts of arsenic and mercury in the environment (Cooper, 2004). 

Legislation has thus been established in which these elements must be quantitatively 

determined preferably in the sub-ppb range. Arsenic and mercury are quantitatively 

determined by hydride generation AAS and cold-vapour AAS respectively (Rouessac 

& Rouessac, 2000). However, growing interest in field-based methods makes these 

analytical techniques impractical in terms of portability. 

 

The acquisition of arsenic and mercury on carbon-ink screen-printed electrodes is not 

feasible. Mercury cannot be determined because of the use of the mercury salt as 

mentioned above to form a thin mercury film on the carbon working electrode. 

Further, the oxidation potential of arsenic is more positive than that of mercury 

implying that an amalgam will not be formed. However, this does not imply that 

arsenic cannot be determined with mercury electrodes. In the presence of copper and 

employing differential pulse cathodic stripping voltammetry (DPCSV), arsenic can in 

fact be quantitatively determined on a mercury electrode (Sadana, 1983; Zima & van 

den Berg, 1994; Li & Smart, 1996).  

 

DPASV cannot be employed in conjunction with mercury working electrodes for 

arsenic determination because of reasons given in the previous paragraph. However, it 

can be employed in conjunction with gold working electrodes because the surface 

nature of the gold metal allows direct depositioning of the metals such as arsenic and 

copper (Matsumoto et al.,  1994). In turn, due to the inter-metallic compounds formed 

between copper and arsenic, the electrochemical method of cathodic stripping 

voltammetry (CSV) can instead be employed (Sadana, 1983). Employing mercury 

working electrodes as with a hanging mercury drop electrode (HMDE) meant that 

rigorous and laborious cleaning processes could be omitted since a non-fouled 

mercury electrode surface is recreated with each successive droplet formation. Gold 

electrodes were prone to extreme fouling mostly due to the formation of an oxide 

layer which was difficult to remove. Furthermore, they suffer from poor precision, a 

limited sensitivity and serious “memory” effects (Zima & van den Berg, 1994; Li & 

Smart, 1996). However, with the advent of novel gold-ink screen-printed electrodes 
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initially employed by Cooper (Cooper, 2004) and discussed further in Section 3.4 

these effects have been overcome. 

 

The presence of copper in samples can lead to the formation of inter-metallic 

compounds in the presence of arsenic on mercury working electrodes (Sadana, 1983). 

Although it was admitted by the authors that the role of the copper was not fully 

understood, the following reaction was proposed: 

 

Cu3As2 + 12H+ + 3Hg + 12e-  2AsH3 + 3H2 + 3Hg(Cu) 

 

The formation of copper arsenide was postulated to occur during the depositioning 

step: 

 

2As3+ + 3Hg(Cu) + 6e-  Cu3As2 + 3Hg 

 

It was further postulated that the copper that is released from the inter-metallic 

compound with arsenic dissolves in to the mercury which leads to the formation of a 

voltammetric peak thus rendering arsenic quantification problematic. It was however 

observed that there are many stoichiometric forms of the inter-metallic compound 

some of which are actually unknown. This was postulated from the voltammetric 

profiles attained. Furthermore, hydrogen is also released. A copper (II) concentration 

of 5 ± 1µg/ml gave well-defined voltammetric peaks relating to the presence of 

arsenic. It was therefore advised that this amount be added to a given ground water 

sample provided that the natural copper concentration did not exceed 6µg/ml. If so 

then a simple dilution to 5µg/ml would suffice. In this way, the arsenic could be 

determined via standard addition in which arsenic would be added without the need to 

add more copper. 

 

This method of arsenic determination with DPCSV with mercury electrodes has been 

employed for many years. A common application is the determination of arsenic (III) 

in sea water (Zima & van den Berg, 1994). The authors reported that pre-

concentrating in the presence of copper led to a non-linear response. They proposed 

complexing arsenic (III) with pyrrolidine dithiocarbamate (PDC) due to the complex 

being stable in acidic media. The optimum depositioning potential was determined at 



PhD Thesis  Chapter 3 
 

 
Cranfield University  Michael Cauchi 122

-0.3V (vs Ag/AgCl) with varying times depending on the concentration of the arsenic 

(III); one minute if greater than 100mM or three minutes if less. The stripping peak 

was thus observed at -0.2V. Copper was found to interfere with the determination of 

the arsenic but not cadmium or lead. 

 

3.2.2 Gold Working Electrodes 

 

With the onus on performing faster, more reliable determinations with minimal 

impact on the environment by reducing waste solvent production, alternative 

electrochemical procedures have been evaluated. Alternative working electrodes are 

thus required. Gold electrodes have been employed for many years alongside glassy 

carbon, mercury film and platinum electrodes (Rouessac & Rouessac, 2000). These 

electrodes also possess varying potential ranges in aqueous solutions as shown in 

Table 3.1. 

 
Table 3.1: The potential windows, in aqueous solutions, of four types of working electrodes in 1M 

H2SO4 electrolyte 

Type Potential window (vs Ag/AgCl) 
Glassy carbon -0.6V  +1.3V 

Gold -0.3V  +1.0V 
Mercury -1.3V  +0.3V 
Platinum 0.0V  +1.2V 

 

The potential ranges are also dependent on the solvent composition, electrolyte and 

the reference electrode used (Skoog et al., 1996). The potential range for a mercury 

electrode in 1M KCl against a saturated calomel electrode (SCE) is -1.8V to +0.2V. In 

aqueous solutions, these ranges are defined by the simultaneous oxidation and 

reduction of water to give oxygen at positive potentials and hydrogen at negative 

potentials respectively. 

 

Gold disk microelectrodes (GDM) were fabricated in-house to determine the amount 

of disulfiram (DSF) – a fungicide – by Differential Pulse Adsorptive Stripping 

Voltammetry (DP-AdSV) (Agüí et al.,  2002). A microelectrode was used to reduce 

the deposition time. The GDM was pre-treated daily by polishing with diamond 

powder for one minute before placing into a buffer solution of H2PO4
-/HPO4

2- (at pH 
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6.0) and successively applying a range of negative potentials from -0.4 to -1.5V at 

intervals of -0.2 to -0.3V for thirty seconds each. The DSF adsorbed well to the GDM. 

Compared to conventional macro-electrodes, the GDM also offers better signal-to-

noise ratios corresponding to a detection limit of 6.3 ×10-8 mol l-1 and greater 

precision (RSD of 1.3%). 

 

Gold working electrodes tend to suffer from “memory effects” as a result of 

incomplete removal of copper from the electrode surface in addition to poor 

repeatability and low sensitivity. The procedures required for regenerating the surface 

of the gold working electrode tends to be time-consuming (Feeney & Kounaves, 

2002). However, this is deemed a necessity if quantitative results are required. Feeney 

and Kounaves developed a portable micro-array of gold electrodes which was 

employed for both field and in-situ analysis. SWASV was the voltammetric method 

employed. A limit of detection of 0.1 ppb was attained for arsenic. It was observed 

that copper suppressed the arsenic signal significantly. For example, the signal 

corresponding to 100 ppb As (III) was suppressed by 50% when 50 ppb Cu (II) was 

present as observed with mercury working electrodes. The authors concluded by 

encouraging the development of on-site monitoring and screening devices. 

 

Developing portable and robust devices has become a major goal for researchers over 

the recent years. One example is the development of a portable instrument that 

employed a flow cell in which a gold film was renewed on a platinum wire electrode 

(Huang & Dasgupta, 1999). The platinum electrode is cleaned by application of a 

potential at +0.95V (vs Ag/AgCl) for 5 seconds. As the cell is flushed with a gold 

(III) solution (50 ppm) a potential of -0.1V is applied for 9 seconds. Finally, a 

potential of +0.6V is applied which removes any impurities which will have co-

deposited with the gold film. Quantitative determinations of arsenic (III) and total 

arsenic were performed with limits of detection in the region of 0.5 ppb attained at a 

deposition potential of 80 seconds. However the authors also noticed that in the 

presence of copper (~20 fold), the arsenic signal was suppressed (~50%). The arsenic 

signal decreased further as the concentration of copper was increased. The authors 

therefore attributed this phenomenon to the formation of the inter-metallic compound 

Cu3As.  
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Multivariate calibration can take into account the effects of inter-metallic compound 

formation. Section 2.2 has discussed the applications of a number of techniques to 

voltammetric datasets employing CLS, MLR, PCR, PLS, and ANNs. PLS regression 

was employed to determine the amount of arsenic (As) in the presence of copper by 

stripping voltammetry on gold electrodes (Jagner et al.,  1994). The authors were able 

to model such effects as the inter-metallic compound formation of arsenic with 

copper, stripping peak overlap with tin (IV), and at concentrations of arsenic below 

1µg/L, and the background effect of gold working electrode surface. Although the 

arsenic concentration in “natural waters” is in the “sub-µg/L” level, interference from 

copper (II) can make the accurate determination of arsenic difficult. The authors, 

however, showed that PLS could overcome this. They also stress that “at higher 

concentration ranges, the calibration design must provide ample variations in the 

concentrations of the analytes”. Table 3.2 details very good agreement attained when 

the predicted concentrations of arsenic (V) in synthetic samples where the copper (II) 

and tin (IV) concentrations were treated as unknowns. 

 

Table 3.2: Results from PLS calibration predictions of arsenic (V) in the presence of 100 µg l-1 

copper (II) and 500 µg l-1 tin (IV) treated as unknowns 

True concentration of As 
(µg l-1) 

Number of 
Samples 

Predicted concentration of As 
(µg l-1) 

10 6 11.8 ± 1.3 (11%) 
30 6 30.0 ± 1.3 (4.2%) 
50 4 49.2 ± 0.9 (1.8%) 
70 6 69.6 ± 1.2 (1.7%) 
90 6 88.9 ± 1.9 (2.1%) 

 

Table 3.1 listed the potential window of a number of working electrodes. In some 

cases, these electrodes can be employed simultaneously such as in “electronic 

tongues” (Winquist et al.,  1997; Winquist et al.,  2000; Winquist et al.,  2005). These 

are employed for the analyses of liquids just as “electronic noses” are employed for 

the analyses and identification of gases. They both contain an array of sensors with 

specific but differing characteristics which are tailored for identifying specific 

components in the liquids. 
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Electronic tongues initially developed were based on potentiometry which thus 

limited their application to charged species in addition to being sensitive to noise 

(Winquist et al.,  1997). However, advancements in electronics led to the application 

of voltammetry which broadened the scope of selectivity. The advantages of 

voltammetry over potentiometry were the ability to apply a potential in addition to 

varying the scan rate, pulse amplitude and the mode of stripping. The data generated 

from these sensors was plentiful and thus warranted the application of multivariate 

analysis in the form of principal component analysis (PCA) for data reduction and 

artificial neural networks (ANNs) for modelling (Winquist et al.,  2000). A major 

application for electronic tongues is in on-line monitoring. However, such devices 

must be robust and be able to withstand harsh conditions such as strongly acidic and 

alkali environments (Winquist et al.,  2005). 

 

3.2.3 Disposable Gold-Ink Working Electrodes 

 

The majority of working electrodes still suffer from the cumbersome task of intense 

cleaning and polishing, such as with the gold disk electrode especially if the cleaning 

cycle is not equally efficient leading to variance in the measurements. The need for 

disposable electrodes is paramount for a more rapid turn-around of data generation. 

Gold-ink screen-printed electrodes have recently been successfully employed in this 

laboratory to determine and quantify the amounts of arsenic and mercury in real and 

synthetic samples (Cooper, 2004). Optimal parameters obtained have been a 

deposition potential of 0.0V, a deposition time of 30 seconds and a 4M HCl 

electrolyte. However, the voltammetric peaks obtained tended to be rather broad. 

Furthermore, arsenic speciation factors could not be accounted for in one 

measurement, and thus reduction of the less toxic arsenic (V) was performed with L-

cysteine following a set method and determined under differing voltammetric 

conditions than for arsenic (III). In addition, if in the presence of copper, the 

quantification of mercury could not be accounted for due to the two elements 

possessing very similar electrode potentials and thus leading to severe voltammetric 

peak overlap. 

 

The application of multivariate calibration techniques is thus a necessity in this 

instance. To the author’s knowledge, applications of multivariate calibration to gold-
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ink screen-printed electrodes for the simultaneous determination of arsenic, mercury 

and copper have not been reported in the literature. This chapter will therefore discuss 

the application of multivariate calibration on voltammograms acquired on disposable 

gold-ink screen-printed electrodes. The deconvolution of the overlapping mercury and 

copper peaks is thus deemed of paramount importance. 

 

It must be noted that gold-ink screen-printed electrodes have been in use for many 

years for example in the electronics industry (Hoffman & Nakayama, 1968). 

However, the manufacture of these electrodes is costly due to the high curing 

temperatures (~ 750°C) and the use of a ceramic substrate. The inks employed in this 

study are a new concept in that they can be cured at much lower temperatures (~ 

150°C) and so can be printed on to plastic sheets making them low-cost and therefore 

amenable to mass production. 

 

In addition to the evaluation of these inks, the protocols developed and discussed in 

Chapter 2 will also be applied with the aim of quantifying the presence of the three 

target metals: arsenic, mercury and copper. 

 

3.3 Materials and Methods 
 

The gold-ink screen-printed electrodes were primarily employed to detect arsenic 

(III), mercury (II) and copper (II). Background information on two of these three 

target metal ions is given followed by details of the methods and materials employed.  

 

3.3.1 The Target Metal Analytes 

 

The physical attributes of arsenic and mercury are presented in Sections 3.3.1.1 and 

3.3.1.2 respectively. 

 

3.3.1.1 Arsenic (As) 

 

Arsenic was one of the earliest elements to have been discovered, even before the 

elemental discovery of nitrogen (in 1772) and phosphorus (in 1669) dating back to the 
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fifth century BC (Greenwood & Earnshaw, 1990). Early recorded isolations of the 

element were made by Albertus Magnus (AD 1193 – 1280) who heated orpiment 

(As2S3) with soap. Arsenic is in fact classed as a semi-metal (or metalloid). It is 

known to chemists as a chalcogen due to it being found in combination with sulphur 

(S), selenium (Se) and tellurium (Te), rather than as oxides or in silicates. Its 

abundance in the Earth’s crust is on average 1.8 ppm. 

 

On an industrial scale, arsenic (As) is obtained by the smelting of arsenopyrite 

(FeAsS) or loellingite (FeAs2) in the absence of air at a temperature of 700°C. The 

arsenic gas that is produced is then condensed. It is mainly used in alloys with copper 

and lead. Organo-metallic compounds of arsenic are used considerably in the 

agricultural sector, mainly as pesticides and herbicides to destroy pests and weeds 

respectively. Three examples are monosodium methylarsonate (NaMeHAsO3), 

disodiummethylarsonate (Na2MeAsO3) and cacodylic acid (also known as 

dimethylarsenic acid, Me2AsO(OH)). Arsenic acid (AsO(OH)3) is used for defoliation 

of cotton bolls and as a wood preservative whilst sodium arsenite is used in sheep and 

cattle dips. In recent years, however, their use is being decreased due to the overall 

toxic effects of the arsenic-containing compounds and more efficient replacements are 

being sought.  

 

Though arsenic is toxic, it can be difficult to diagnose (Relfe, 2003). This is due to the 

majority of the arsenic ions leaving the body after around three days of exposure with 

only small amounts being stored in the brain, bones, organs and tissue, which 

accumulate over time. This can lead to a range of cancers and conditions such as 

diabetes. Exposure itself can lead to stomach cramps, vomiting, diarrhea, nausea and a 

decrease in the production of red and white blood cells. Inorganic arsenic can be 

absorbed through the gastrointestinal tract and be distributed to the majority of the 

vital organs including the skin (ATSDR (Agency for Toxic Substances and Disease 

Registry), 1989). Humans are more susceptible to arsenic poisoning than animals 

which only suffer a depression in the immune system. 

 

Recent reports have shown that arsenic is becoming a huge problem in ground water 

especially in Third World countries like Vietnam, Nepal, India and Bangladesh, but 

also in the US (Pearce, 2003). For example, of 3000 tube wells measured in Bihar 
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(India), 40% of them contained arsenic levels in excess of the World Health 

Organisation (WHO) limit which is 0.01 mg per litre. However, the Bangladesh 

Standards for Testing Institution (BSTI, 1989) have set the limit to 0.05 mg per litre 

(World Health Organisation (WHO), 2000). Researchers in West Bengal have been 

reported to be working on a “homeopathic rememdy” for arsenic poisoning based on 

arsenic oxide which had seen the reduction of liver toxicity in mice after having been 

fed the antidote which they call Arsenicum Album (Bhattacharya, 2003). 

 

3.3.1.2 Mercury (Hg) 

 

The abundance in the Earth’s crust is on average 0.08 ppm (Greenwood & Earnshaw, 

1990). The main ore is cinnabar (HgS) and is converted to the liquid metal by heating 

in air at 600°C. The metal is volatile thus easily contaminates the atmosphere. The 

effects of mercury in the environment have already been explained such as the 

Minamata Bay disaster in Japan (Hosohara et al.,  1961). Mercury was also used to 

make the felt on hats smooth; however the workers were exposed to the mercury 

vapour and consequent damage to their central nervous systems resulted – a ‘mad 

hatter’. 

 

The most toxic form of mercury is methyl mercury, MeHg+ and this was used in 

fungicides - the seed actually being coated with the MeHg+ (Ferguson, 1990). 

However, when it breaks down, the mercury will get into the soils and hence into the 

food chain. MeHg+ pesticides have now been banned. The decreasing order of toxicity 

of mercury salts are thus: Organic > Inorganic (divalent) > Inorganic (monovalent). 

Methyl mercury can enter the central nervous system rapidly leading to changes in 

behaviour and neural disorders (ATSDR (Agency for Toxic Substances and Disease 

Registry), 1989; Goyer, 1991). Ingesting the elemental mercury usually causes no ill-

effects (Goldwater, 1972). Ingesting inorganic salts can lead to renal failure, 

gastrointestinal problems, and even death if the dose is up to 4g (Goyer, 1991). 

Inhalation of the vapour can irritate the respiratory tract, affect the kidneys, severely 

affect the central nervous system or death if huge amounts are inhaled (ATSDR 

(Agency for Toxic Substances and Disease Registry), 1989). 
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Mercury is used in the electrical instruments industry as a conducting medium and in 

highly efficient lights due to the vapour (Greenwood & Earnshaw, 1990). Mercury 

electrodes are used in the electrolysis of brine. Long term exposure to mercury also 

causes loosening of teeth. The main intake of mercury comes from fish (2.61µg). The 

methylation of mercury in rivers and lakes is important at low pHs due to more of the 

Hg2+ ions being extracted from sediments via ion exchange processes at high 

hydrogen ion concentrations. The low pH favours the formation of more methyl 

mercury since more of the Hg2+ is extracted. 

 

Mercury has thus entered the environment mainly by human activities, from broken 

thermometers to pharmaceutical properties but sewage effluent is a major cause of 

pollution with up to 10 times the level of mercury that is found in natural waters 

(Manahan, 1994). 

 

3.3.2 Preparation of Gold-Ink Screen-Printed Electrodes 

 

The gold-ink screen-printed electrodes were printed by a third-party organisation (Du 

Pont (UK) Ltd., Bristol, UK) according to a design supplied by Cranfield University. 

The manufacturers prepared a number of batches of these novel and proprietary inks 

for the purposes of comparing different ink formulations and properties. Specific 

codes relating to the inks and substrates employed will be given when appropriate in 

Section 3.4. A description of the manufacture of the gold-ink screen-printed 

electrodes is given in Table 3.3 (Cooper, 2004). These inks were printed on to a 

polyester sheet with a 77T, 45° mesh screen at the manufacturer’s premises in Bristol 

(UK). 
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Table 3.3: Description of the manufacture of a batch of gold-ink screen-printed electrodes by Du 

Pont as employed by Cooper 

Day Procedure 

1 The polyester sheets (HT5) of thickness 125µm are heat-stabilized. The 
three carbon tracks are printed using carbon-ink (7105) on the sheet in 
groups of eight. These are left to air-dry at room temperature overnight. 

2 The silver/silver chloride ink (5874) is printed on the appropriate 
carbon track ensuring that the ink covers the track completely. This is 
the reference electrode. This is left to air-dry at room temperature 
overnight. 

3 The gold ink (7106-E93335-92D) is applied to the working electrode in 
the same manner as the reference electrode. It is critical that the gold 
ink covers the working electrode completely and does not touch the 
reference electrode and the counter electrode. These are again left to 
air-dry overnight. 

4 The clear insulating ink (20µm thickness) is applied to the sheets. The 
sheets are again left to air-dry overnight. 

5 The sheets are then cured in a fan-assisted box-oven for 15 minutes at a 
temperature of 130°C.  

 

Figure 3.1 shows a single polyester sheet with a group of eight gold-ink screen-

printed electrodes. 
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Figure 3.1: Gold-ink screen-printed electrodes. (Reprinted with kind permission from Cooper 

(Cooper, 2004)) 
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Section 3.4.1 discusses two studies performed in this thesis in which a number of low-

temperature curable ink formulations are compared. 

 

3.3.3 Sample Preparation 

 

All glassware had been soaked overnight in a 10% v/v solution of nitric acid. The 

glassware was rinsed with HPLC water (Fisher, UK) and dried in an oven for 1-2 

hours at 80°C. 

 

25% (w/v) solution of sodium hydroxide (NaOH) – (AnalaR, BDH, UK) – was 

prepared in HPLC water (Fisher, UK). This involved dissolving 25.51g of NaOH 

(Assay = 98%) in HPLC water and then making up to 100ml. 

 

0.13218g of arsenic trioxide (As2O3) – (SPEXCertiprep, UK) – was dissolved in 1ml 

of the above 25% NaOH solution and then immediately acidified with 2ml of 32% v/v 

hydrochloric acid (HCl) – (Analytical Grade, Fisher, UK) – with a specific gravity 

(SG) of 1.16. The solution was made up to 100ml with HPLC water, resulting in a 

final concentration of 1000ppm. 

 

0.2678g of hydrazinium chloride (NH2NH2.2HCl) – (Fisher, UK) – was dissolved in 

HPLC water and made up to 50ml resulting in a final concentration of 50mM. This 

was employed to prevent the oxidation of arsenic (III) to the electro-inactive arsenic 

(V) species (Sadana, 1983; Svancara et al.,  2002; Cooper, 2004). 

 

The newly made up 1000ppm As (III) stock standard solution along with the 

commercially available stock standard solutions also at 1000ppm of Cu and Hg 

(BDH, UK) were diluted to 10ppm with HPLC grade water. 

 

The molar concentration of the HCl was calculated to be 10.17M taking into account 

the specific gravity (SG), formula weight (~36.5 g/mol) and assay (32% v/v). 

 

The respective metal standards were diluted to their appropriate concentrations 

(details given below) with 1.96ml of HCl and 100µl of hydrazinium chloride and 
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made up to a final volume of 5ml with HPLC water. This resulted in each sample 

containing 4M HCl and 1mM hydrazinium chloride. 

 

Training Set 

A randomised five level (0, 200, 400, 600, and 800 ppb), three factorial design was 

employed such that 125 samples were prepared. The design was generated by a 

custom-built in-house program (in the LabVIEW environment). 

 

Validation Set 

A randomised three level (300, 500, and 700 ppb), three factorial design was 

employed such that 27 samples were prepared. Again, the design was generated by a 

custom-built in-house program and incorporated into the training set design as shown 

in Figure 3.2. 

 

 
Figure 3.2: Overall experimental design: Training set (coloured with respect to As concentration) 

consists of five levels and three factors resulting in the preparation of 125 samples containing 

arsenic (As), mercury (Hg) and copper (Cu) at concentrations ranging from 0, 200, 400, 600 and 

800 ppb; Validation set (●) consists of three levels and three factors resulting in the preparation 

of 27 samples containing As, Hg and Cu at concentrations ranging from 300, 500 and 700 ppb 
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Unknown Set 

In addition to the training and validation sets detailed above, five “unknown” samples 

were prepared in the same manner in order to determine the strengths and efficiencies 

of the models generated. The concentrations of the respective metal ions are given in 

Table 3.4. 

 
Table 3.4: Concentrations (in ppb) of the metal ions in the “unknown” samples 

Sample As Hg Cu 
UNK1 600 400 200 
UNK2 400 0 400 
UNK3 0 600 0 
UNK4 0 600 200 
UNK5 500 200 200 

 

3.3.4 Data Acquisition 

 

The voltammograms were acquired on a multi-channel Autolab PGSTAT10 

potentiostat (Eco Chemie, Holland) connected to a PC running under Windows 98 

(Microsoft, USA), and controlled by the General Purpose Electrochemical Software 

(GPES) program (Version 4.6, Eco Chemie, Holland). A 4-way screen-printed 

electrode (SPE) connector was constructed in-house (by the author) in order to 

facilitate multi-electrode data acquisition. The instrumental set up is displayed in 

Figure 3.3. 

 

 
Figure 3.3: Instrumental set up of the multi-channel Autolab PGSTAT10 potentiostat 
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Due to only a limited number of electrodes having been supplied by Du Pont, only 

three measurements per sample were simultaneously performed. The electrodes were 

disposed of after each measurement. Table 3.5 details the experimental conditions 

employed during the acquisition. 

 
Table 3.5: Instrumental parameters employed for the acquisition of the voltammograms 

Parameter Value 
Starting Potential (V) 0.0 

End Potential (V) 0.5 
Deposition Potential (V) 0.0 

Deposition Time (s) 30 
Potential Pulse (mV) 50 

Pulse Width (ms) 50 
Period (ms) 500 

Scan Rate (mV/s) 10 
 

3.3.5 Data Processing 

 

Data pre-treatment, modelling, validation and predictions were performed via the 

custom-built data analysis package described in Section 2.3.3. In summary, the 

package performs the following tasks: 

 

• Import datasets consisting of DPASV voltammograms 

• Perform a range of data pre-treatment techniques such as PCA, weighting, 

mean-centring, range-scaling and Savitzky-Golay smoothing 

• Construct multivariate calibration regression models via one of a range of 

modelling algorithms (NIPALS, SIMPLS, PCR and ANNs) 

• Perform leave-one-out cross validation and independent test set validation 

• Predict the unknown concentrations of the target components in a given 

sample 

 

The package can thus perform the same tasks as any given commercial product but 

allows the user more freedom in the manipulation of the data. 
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3.3.6 Preparation of the CRM Soil Sample Extract 

 

The filtered soil extract from the certified reference material (CRM) sample employed 

in Section 2.4.2 was also analysed for arsenic (III). This involved transferring 1ml of 

the extract to a clean 15ml plastic centrifuge tube followed by the addition of: 

 

• 1.96ml of concentrated hydrochloric acid (10.17M) 

• 100µl of 50mM hydrazinium chloride 

• HPLC water up to 5ml ensuring that the solution contained: 

o 4M HCl 

o 1mM hydrazinium chloride 

 

Another two samples were prepared in the same manner but with equal amounts of 

arsenic (III) and copper (II) added. These two solutions contained an additional 400 

and 800 ppb of both arsenic and copper. Voltammograms were thus acquired on an 

Autolab PSTAT10 potentiostat (Eco Chemie, Holland). Mercury (II) was not added 

due to the overlap with the copper (II) peak (Section 3.4).  

 

3.3.7 Determination of Arsenic (V) on Gold-Ink Screen-Printed Electrodes 

 

The samples were prepared in accordance with Cooper (Cooper, 2004). The objective 

is to reduce any electro-inactive arsenic (V) species in the CRM extract to the electro-

active arsenic (III). 

• A 20% solution of L-cysteine was prepared by dissolving 1g into 5ml HPLC 

grade water 

• On dissolution, 1.25ml of concentrated hydrochloric acid (32%; 1.16SG) was 

added followed by dilution to 20ml with HPLC grade water. 

• 0.1ml of this solution was added to the CRM samples prepared in Section 

3.3.6 and heated in a water bath for ten minutes at 75°C  

• Acquisition of the voltammograms was achieved on an Autolab PSTAT10 

(Eco Chemie, Holland) under the following instrumental parameters: 

o Deposition potential: -0.3V 

o Deposition time: 30s 
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o Range: -0.3V to +0.5V 

o Scan rate: 10 mV/s 

o Interval: 0.5s 

o Step potential: 5mV 

o Pulse amplitude: 50mV 

o Pulse Duration: 50ms 

 

All potentials were recorded in triplicate (n = 3) unless otherwise stated and all stated 

potentials are relative to Ag/AgCl reference electrodes (+0.197V vs SHE). 
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3.4 Results and Discussion 
 

Due to the novelty of the low-temperature curable ink material, a number of different 

batches of gold-ink screen-printed electrodes were fabricated and supplied by Du 

Pont. These batches differed from one another with respect to the formulation of the 

inks employed to the different curing methods. Section 3.4.1 discusses electrode 

composition and electrochemical performance. Section 3.4.2 will discuss the 

application of the multivariate calibration regression models to datasets consisting of 

voltammograms acquired on the gold-ink screen-printed electrodes for the 

quantitative determination of arsenic, mercury, and copper. Finally, Section 3.4.3 

briefly discusses the determination of arsenic in the same CRM soil sample that was 

employed in Section 2.4.2. 

 

3.4.1 Comparison of Select Batches of Gold-Ink Screen-Printed Electrodes 

 

Due to propriety issues, the formulations of the actual inks employed in this study are 

not known by the author. Therefore any distinctions made between the various inks 

employed in this study are made via codes. Two sets of comparisons were performed. 

The first involved batches that varied slightly in their fabrication in relation to the 

batch employed by Cooper (Cooper, 2004) (Section 3.4.1.1). The second comparison 

involved batches that were fabricated with alternative ink formulations coupled to 

different curing techniques (Section 3.4.1.2). 

 

3.4.1.1 Comparative Study 1: Comparison of gold electrodes with previous gold 

electrode study of Cooper 

 

Four sets of gold-ink screen-printed electrodes were supplied by Du Pont in 

September 2004. Table 3.6 lists the inks employed in each set including the 

encapsulant which is the compound employed to agglomerate the gold nano-particles 

within the ink. 
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Table 3.6: Composition of the four batches of gold-ink screen-printed electrodes as represented 

by codes 

Batch Carbon Ag/AgCl Au Encapsulant 
A 7105 5874 BQ331 5036 
B 7105 5874 BQ331 5036 
C 7105 5874 BQ331 5018 
D E100735-155 5874 BQ331 E017257-1 

 

An internal discussion within Du Pont led to the hypothesis that the solvent employed 

was interacting with the encapsulant (5036). The screen-printed electrodes (SPEs) 

were dried in an oven at 130°C. Batch A was prepared in the same manner as those 

employed by Cooper (Cooper, 2004) (Batch N). Batch B involved “a dwell time of 30 

minutes” before the encapsulant was dried. In Batch C, a “UV cure dielectric” was 

employed (5018). Batch D employed an alternative and more active carbon along 

with a different encapsulant. Further details are not available due for propriety 

reasons. 

 

For the purposes of this comparative study, individually prepared standard 

concentrations of arsenic (As), mercury (Hg) and copper (Cu) at concentrations of 0, 

100, 200, 400, 600 and 800 ppb were employed. The arsenic standards included 1mM 

hydrazinium chloride whereas the mercury and copper standards did not. The 

corresponding voltammograms of the standards were recorded on all five batches (A, 

B, C, D and N). Good peak responses are observed for batches A, B, C and D with the 

exception of Batch N which displays a severe reduction in response for mercury and 

copper, but a flattened peak for arsenic (Figure 3.4). This implies that the Batch N 

electrodes have suffered degradation over a period of time. The same observation was 

evident when the mercury standard also included 0.1M KCl (not shown). 
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Figure 3.4: Voltammograms recorded for 600 ppb As, Hg, and Cu in 4M HCl, 1mM hydrazinium 

chloride. Deposition time: 30s; Deposition potential: 0.0V; Scan Rate: 20mV/s 
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Figure 3.5: Calibration curves calculated from peak areas for As (III) on the four batches: A, B, 

C and D.  Experimental parameters as in Figure 3.4 
 

It was therefore not possible to calibrate mercury and copper on the Batch N 

electrodes. Figure 3.5 (above) illustrates the calibration curve for arsenic recorded on 

the other 4 electrode groups. 
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By referring to the calculated coefficient of determinations (R2) for batches A, B, C 

and D in Figure 3.5, the best calibration has been obtained for the Batch D electrodes. 

As there were a limited number of electrodes in each batch for this study, the 

individual calibration curves for mercury and copper were not recorded. Instead, the 

metal ions were mixed in the same proportions. For example, standards of 0, 200, 

400, 600 and 800ppb containing a mixture of arsenic (III) and mercury (II), and also 

arsenic (III) and copper (II) were prepared. Tables 3.7 and 3.8 summarise the 

correlation coefficients obtained on all four batches for the calibration curves of 

arsenic and mercury, and arsenic and copper respectively. 

 
Table 3.7: Correlation coefficients for As (III) and Hg (II) for Batches A to D. JC refers to 

correlation coefficients obtained by Cooper (Cooper, 2004) under the same conditions. 

Experimental parameters as in Figure 3.4 

Batch As (III) Hg (II) 
A 0.9586 0.9806 
B 0.9112 0.9778 
C 0.7366 0.9472 
D 0.9989 0.9957 

JC (N) 0.9912 0.9942 
 
Table 3.8: Correlation coefficients for As (III) and Cu (II) for Batches A to D. Experimental 

parameters as in Figure 3.4 

Batch As (III) Cu (II) 
A 0.9987 0.9021 
B 0.9549 0.7515 
C 0.8560 0.2369 
D 0.9915 0.8645 

JC (N) Not measured Not measured 
 

In Table 3.7, the Batch D electrodes have produced the better response, even slightly 

better than those obtained by Cooper under the same conditions. In contrast, Batch C 

has produced the poorest correlation coefficients. In Table 3.8, the Batch A electrodes 

have produced the better correlation followed by Batch D. The Batch C electrodes 

have again performed poorly. Cooper had not acquired voltammograms for standards 

containing only arsenic (III) and copper (II) ions. 

 

Cadmium (Cd) and lead (Pb) were also analysed on the four test batches in addition to 

Batch N. Cooper had reported the possibility of a stripping peak at -0.25V (Cooper, 
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2004). However, no distinct peaks were observed except for a significant peak at 

+0.05V which increased as the concentration of the cadmium and lead increased. 

Figure 3.6 displays the overlaid voltammograms obtained for a solution containing 

400 ppb cadmium, lead, arsenic, mercury and copper in 4M HCl and 1mM 

hydrazinium chloride recorded on all but Batch B. 

 

0.00E+00

2.00E-06

4.00E-06

6.00E-06

8.00E-06

1.00E-05

1.20E-05

1.40E-05

1.60E-05

1.80E-05

2.00E-05

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Potential (V)

C
ur

re
nt

 (A
)

Batch N
Batch A
Batch C
Batch D

Cd & Pb (?)

As

Hg & Cu

 
Figure 3.6: Voltammograms for 400 ppb Cd, Pb, As, Hg and Cu in 4M HCl and 1mM 

hydrazinium chloride recorded on electrodes of Batch N, A, C and D.  

Deposition potential:  -0.6V; Deposition time: 30s; Scan Rate: 10mV/s; Interval time: 0.5s 
 

As can be seen in Figure 3.6, the Batch D electrodes have produced the better 

response, with a clear definition of the arsenic (III), mercury (II), and copper (II) 

peaks. Furthermore, the effects of noise are less pronounced in the Batch D 

voltammogram compared to the other batches. There is also a noticeable shoulder at 

~-0.25V indicating peak activity which complies with the findings of Cooper. Further 

investigations however would be warranted to determine whether the peaks at +0.05V 

do pertain to cadmium (II) and/or lead (II), however this was not the scope of this 

work. Figure 3.7 compares the peak areas obtained for the five metal ions for Batches 

A and D. 
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Figure 3.7: Comparison of peak areas calculated in Figure 3.6 for Batches A and D 

 

Figure 3.7 illustrates that the response of Batch D is almost twice than that for Batch 

A for all the metals except for arsenic. 

 

To conclude, the Batch D electrodes offer the best response followed by Batch A with 

Batch C the poorest. Unfortunately, this conclusion cannot be statistically supported 

due to only a limited number of electrodes (sensors) available to work with (~ 30). It 

has however been observed that there is a finite shelf-life as shown by Group N. 

 

3.4.1.2 Comparative Study 2: Comparison of gold electrodes with different ink 

formulations to the previous gold electrode study 

 

A major objective of the collaborative study between Cranfield University and Du 

Pont was to establish an improved low-temperature curable gold ink formulation. One 

aspect of the study was to ascertain the performance of the novel curable inks over 

time (12 months in the dark at ambient temperature of 20°C). Figure 3.8 compares the 

voltammogram acquired on a Batch D electrode of a standard containing 800 ppb 

arsenic (III) and mercury (II) and 200 ppb copper (II) with a voltammogram of the 

same standard acquired on a solid-state gold electrode. 
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Figure 3.8: Voltammograms of 800 ppb As (III), 800 ppb Hg (II) and 200 ppb Cu (II) in 4M HCl 

and 1mM hydrazinium chloride acquired on solid-state gold electrode (blue) and Batch D screen-

printed electrode (red) after a storage in the dark at 20°C for 12 months.  

(Deposition potential: 0.0V; Deposition Time: 30s; Scan Rate: 10mV/s). 
 

There are no distinctive peaks observed on the Batch D screen-printed electrode in 

contrast to the solid-state electrode in which the presence of the three metal ions with 

a broad peak at ~ +0.15V for arsenic (III) and +0.32V for mercury and copper. This 

further supports the fact that further ink development by Du Pont would be warranted. 

Application of a conditioning potential of +1.0V for up to thirty seconds saw no 

improvements in responses (figure not shown). Some of the sheets were placed in the 

oven at differing lengths of time from 30 minutes up to 4 hours, the objective being to 

investigate if electrode performance had been compromised by the adsorption of 

components from the atmosphere to the gold-ink working electrodes, which could be 

removed by heating, but again no improvements were observed. 

 

Another four batches of screen-printed electrodes were supplied by Du Pont (July 

2005) with different ink formulations such that new carbon-ink, reference-ink and 

encapsulant formulations were employed; only the gold-ink formulation remained 

unchanged. Again, the exact formulations of these inks are not known by the author 

due to propriety issues. Table 3.9 details the composition of the new batches. 
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Table 3.9: Composition of the four new batches of gold-ink screen-printed electrodes. Codes refer 

to labels corresponding to the appropriate inks 

Batch Carbon Ag/AgCl Au Encapsulant 
1 BQ225 BQ164 BQ331 BQ4251 
22  BQ225 BQ164 BQ331 BQ425 
3 BQ221 BQ164 BQ331 BQ425 
4 BQ225 BQ164 BQ331 BQ411 

 

The screen-printed electrodes were prepared using “HT5 grade PET” (poly(ethylene 

terephthalate)). A “static box oven” was used at 130°C. The same experimental 

procedures were employed as detailed in Section 3.4.1.1. Figure 3.9 displays the 

averages of the overlaid voltammograms for each respective standard recorded on 

Batches 1 to 4. 
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Figure 3.9: The averaged voltammograms acquired on Batches 1 to 4 corresponding to the 

standard concentrations of As, Hg and Cu  (0, 200, 400, 600 and 800 ppb in 4M HCl and 1mM 

hydrazinium chloride). Experimental conditions as in Figure 3.8 

 

It is uncertain as to what the flattened peaks at +0.1V and +0.4V pertain to, as 

observed in the voltammograms corresponding to the blanks (Bx-00, where x = 1, 2, 3 

                                                 
1 UV-curing at 600mJ/cm2 
2 Re-drying using a 1meter/min 130°C IR belt profile. 
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or 4). It is postulated that these impurities arise from the acid, the hydrazinium 

chloride or inks used in the electrode manufacture.  

 

Table 3.10 shows the correlation coefficients acquired from the average of the peak 

areas obtained for each metal in the four batches. 

 
Table 3.10: Correlation coefficients for the calibration curves recorded for each metal in each 

batch. Average of the calculated peak areas plotted against concentration. 

Batch As Hg 
1 0.8615 0.9598 
2 0.9929 0.9703 
3 0.9688 0.8180 
4 0.9716 0.9737 

 

As seen in Table 3.10, the better batches, based on the correlation coefficient data, 

appear to be 2 and 4. It was therefore concluded that Batch 2 offered the better 

response and thus should be employed for the quantitative determination of the three 

target elements. Based on the correlation coefficients listed in Table 3.10, Batch 4 

could also be employed.  

 

Four further batches of electrodes were thus prepared by Du Pont and supplied in 

November 2005. The electrodes had been prepared employing 125µm HT5 grade 

PET (poly(ethylene terephthalate). These in effect were split into two sub-sections in 

which one was dried in a box-oven at 130°C for 15 minutes (O) whilst the other was 

dried on an “IR combi belt drier at 130°C” moving at a rate of 1m/min (I). Table 3.11 

lists the codes of the inks and encapsulants employed. 

 
Table 3.11: The codes and methods of preparation of the batches of gold-ink screen-printed 

electrodes supplied by Du Pont in November 2005. Quantity refers to the number of sheets per 

batch each containing 8 screen-printed electrodes 

ID C Ag/AgCl Au Cure Encapsulation Quantity 
AO BQ225 BQ164 BQ331 Oven BQ411 30 
AI BQ225 BQ164 BQ331 IR BQ411 75 
BO BQ242 BQ164 BQ331 Oven BQ411 20 
BI BQ242 BQ164 BQ331 IR BQ411 30 
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By comparing Table 3.11 with Table 3.9, the AO and AI batches above resemble 

Batch 4 in Table 3.9. The BO and BI batches have employed a different carbon ink 

but the same reference and gold inks in addition to the same encapsulant. As there 

were 75 sheets of eight electrodes, the AI batch was employed to acquire the 

voltammograms for the training, validation and unknown datasets (Section 3.4.2). 

However, by calculating and summing the standard errors of each point, it was found 

that Batch BI yielded the greatest repeatability (Figure 3.10). 
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Figure 3.10: The calculated standard errors for each batch in terms of the areas of the respective 

metal ion peaks acquired from a standard containing 500 ppb As (III), Hg (II) and Cu (II) in 4M 

HCl and 1mM hydrazinium chloride (n = 3). 

Deposition potential: 0.0V; Deposition time: 30s; Scan rate: 10mV/s 
 

From Figure 3.10 the B batches are more reproducible than the A batches as 

supported by Table 3.12. 

 
Table 3.12: Comparison of the relative standard deviations of the four electrode batches 

BATCH As (III) Hg (II) and Cu (II) 
AI 6.34% 47.39% 
AO 15.47% 59.18% 
BI 1.89% 18.60% 
BO 2.63% 35.19% 

 

Although the reproducibility for arsenic in the AI batch is very good (6.34%), that for 

mercury and copper was relatively poor in comparison (47.39%). Based on this 
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observation, and due to electrode availability the AI batch was employed for further 

studies. 

 

3.4.2 Quantitative Determination of Arsenic, Mercury and Copper by 

Multivariate Calibration 

 

Having identified the current optimum electrode manufacturing process, the aims of 

this study were to quantitatively determine the concentrations of arsenic (As), 

mercury (Hg) and copper (Cu) on gold-ink screen-printed electrodes via differential 

pulse anodic stripping voltammetry (DPASV) and multivariate calibration. The main 

objective had been to account for the overlapping mercury and copper peaks. 

 

Similar to the findings in Section 2.4.1 the SIMPLS algorithm was identified to be the 

most efficient modelling approach compared against the NIPALS algorithm, PCR and 

ANNs. For example, the RMSEP for copper at the 7th latent variable was 81.22, 

76.06, and 76.02 ppb for PCR, NIPALS and SIMPLS respectively after range-scaling 

and Savitzky-Golay smoothing. Figure 3.11 compares the RMSEP values for the 

quantitative determination of arsenic, mercury, and copper via models constructed via 

the SIMPLS and ANNs algorithms. 
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Figure 3.11: RMS error values for As, Hg and Cu recorded on a gold-ink SPE (Batch N). Dataset 

range-scaled and smoothed with Savitzky-Golay function (cubic polynomial and window size of 

41). SIMPLS and ANN are the modelling algorithms; PCA denotes data reduction prior to ANN; 

PCs denotes the number of PCs retained. N/A denotes not applicable 
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The architecture of the neural network (Hagan et al., 1996) was dependent upon the 

potential scan range, for example, 0.0 to 0.5V, and the number of metal ions that are 

present (98-15-3). There were thus 15 neurons in the hidden layer incorporating a 

sigmoidal transfer function. Three neurons are present in the output layer and a linear 

transfer function outputs the concentration values of the respective metal ions. The 

number of neurons was determined by the NNPLS1 algorithm contained with the PLS 

Toolbox (Wise & Gallagher, 1998b). The network was optimised via a back 

propagation algorithm which reduces the error between the predicted and required 

outputs by alteration of the weights of the links between the neurons within the 

network (Hagan et al., 1996). As can be observed in Figure 3.11, application of the 

SIMPLS algorithm resulted in better predictions.  

 

Direct modelling of the entire training set with the SIMPLS algorithm was not 

possible due to the presence of outliers. This was apparent when leave-one-out cross-

validation was performed (Figure 3.12). 
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Figure 3.12: Application of leave-one-out cross-validation on the training set prior to removal of 

outliers (A) and after (B) 
 

This was confirmed by observing the SIMPLS X-scores (Figure 3.13) where the 

presence of outliers is obvious. Confirmation is given by generally plotting the first 

latent variable of the X-score (T) against the first latent variable of the Y-score (U); 

this reveals the presence of strong outliers (Eriksson et al.,  2000). 
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(A) 

 
(B) 

Figure 3.13: SIMPLS X-score plot (A) and U vs T plot (B) revealing the presence of outliers 
 

After removal of the four outliers illustrated in Figure 3.13, another four were 

revealed and removed (not shown). Prior to performing independent test set 

validation, the validation set was subjected to the SIMPLS algorithm which revealed 

the presence of an outlier in the X-score (T) plot (not shown). The cause of the 

outliers was due to a faulty connection of the respective screen-printed electrode to 

the analytical system. 

 

After removal of the outlier from the validation set, the set was integrated with the 

training set and then re-modelled (Martin et al.,  2005). Table 3.13 compares the 

variance captured at the first latent variable in both the X and Y block under different 

data pre-treatments. It shows that the application of mean-centring has resulted in 

fewer captured variance. This is attributable to the fact that mean-centring results in 

weighting of spectral regions if the peak magnitudes differ substantially, in this 

instance the increasing background current (Thissen et al.,  2004). 

 
Table 3.13: Captured variance in the first latent variable by modelling with the SIMPLS 

algorithm after applications of various data pre-treatments 

Pre-treatment X-block Y-block 
None 84.93% 76.12% 

Range-scaling 94.70% 71.03% 
Mean-centring 69.55% 13.64% 

 

With reference to Figure 3.12B the recommended numbers of latent variables to 

employ are 4, 5 or 6 for mercury, arsenic and copper respectively. However inclusion 

of more latent variables in to the model ensures that non-linear and inter-metallic 
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effects are also modelled (Thennadil & Martin, 2005). A number of models were 

constructed with the SIMPLS algorithm after relevant pre-treatment of the datasets. 

Figure 3.14 displays the appropriate RMSEP plots calculated from the prediction of 

the prepared “unknown” samples listed in Table 3.4. 

 
Table 3.4: Concentrations (in ppb) of the metal ions in the “unknown” samples 

Sample As Hg Cu 
UNK1 600 400 200 
UNK2 400 0 400 
UNK3 0 600 0 
UNK4 0 600 200 
UNK5 500 200 200 
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Figure 3.14: The RMSEP plots for the prediction of the “unknown” dataset in Table 3.4 with 

respect to the different data pre-treatments employed. Note that all appropriate outliers removed 

Key: RAW implies no scaling; R-S implies range-scaling and Savitzky-Golay smoothing 

(polynomial: 3; window: 21); M-C implies mean-centring and Savitzky-Golay smoothing 

(polynomial: 3; window: 21); WTD implies the application of weights (High: 5.0; Low: -2.0; 

Savitzky-Golay smoothing (polynomial: 3; window: 21); MR and FT implies predictions at the 

latent variables suggested by minimum RMSEP and F-test respectively; L20 implies predictions 

for all metals at the 20th latent variable 
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As can be seen in Figure 3.14, the range-scaled data (R-S) had produced the best 

predicted values with an overall RMSEP of just fewer than 99 ppb for the optimum 

latent variables suggested via the minimum RMSEP values for each respective metal 

ion. In most instances, the suggested optimum latent variables via the F-test (Section 

1.5.5.2) have not proved efficient at predicting the unknown samples, except for the 

weighted variables. Further pre-treatment of the weighted datasets do not lead to an 

overall improvement of the predictability of the generated models (not shown). This 

can be deemed discouraging in respect of having attained lower RMSEP values in 

Section 2.4.1.4. Figure 3.15 displays the voltammogram of a standard containing 600 

ppb arsenic, 800 ppb mercury and 600 ppb copper prior to and after the application of 

the weighting function (previously described in Section 2.4.1.3). Table 3.14 shows the 

index value ranges where the high weights were applied. 
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Figure 3.15: The effect of weights applied to the training dataset illustrated by a standard sample 

(600 ppb As and Cu; 800 ppb Hg in 4M HCl and 1mM hydrazinium chloride). 

Deposition potential: 0.0V; Deposition time: 30s; Scan rate: 10mV/s 

Key: A: Raw; B: Weighted (High: 5.0; Low: -2; Savitzky-Golay (SG) polynomial: 5; window: 21) 

 
Table 3.14: The ranges in which the high weight is applied to the respective metal ion 

Metal (Au-SPE) Range: Index (potential) 
As 28 (0.151V)  42 (0.220V) 
Hg 63 (0.322V)  68 (0.347V) 
Cu 75 (0.381V)  84 (0.425V) 

 

In addition to obtaining three distinctive voltammetric peaks after the application of 

the weights, a linear baseline is obtained. This is due to the application of the low 

weight to the variables outside the ranges listed in Table 3.14. However, an 
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improvement in the RMSEP values was not attained. This warranted closer inspection 

of the training dataset. In particular, voltammograms pertaining to samples containing 

equal concentration values ranging from 0 to 800 ppb of the three metal analytes were 

extracted and plotted (Figure 3.16). 
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Figure 3.16: The raw voltammograms for equal concentrations of arsenic (III), mercury (II) and 

copper (II) in 4M HCl and 1mM hydrazinium chloride (A to E) and the average of the 

voltammograms (F).  

Deposition potential: 0.0V; Deposition time: 30s; Scan rate: 10mV/s 

 



PhD Thesis  Chapter 3 
 

 
Cranfield University  Michael Cauchi 153

A significant peak is evident at 600 ppb (Figure 3.16F) which leads to the postulation 

that these discrepancies in the data results in the high RMSEP values and will also 

make successful univariate calibrations difficult unless the sample is omitted. It had 

been observed in Figure 3.10 that a very high standard error had been observed for 

mercury and copper for the AI batch compared to the other electrode batches 

therefore problems could have been foreseen. Furthermore, the averaged 

voltammogram attributed to the blank (0 ppb) contains a broad peak at ~+0.25V 

which is clearly observed in Figure 3.16A. Again, as it was not known what the inks 

contained, it was therefore difficult to postulate as to the cause of this peak. However, 

it was appeared to be suppressed in the presence of metal ions such as arsenic. It is 

thus feasible that the model had failed to account for the blank due to the peak which 

resulted in the attainment of the high RMSEP values. Figure 3.16 has shown that there 

is significant variation between the individual gold-ink screen-printed electrodes 

especially in Figures 3.16D and 3.16E for 600 and 800 ppb respectively. 

 

Another postulation is that at differing concentrations of mercury (II), the working 

electrode’s response varies. As it is not known what comprises the inks, especially 

with regards to the gold, a reaction or series of reactions could be taking place which 

inhibits the successful deposition of the mercury ions on to the gold working 

electrode, a phenomenon that becomes more pronounced at higher concentrations 

(e.g. > 400 ppb). As the work here is novel, no other problems have been cited thus 

far in the literature. However attempts have been made by other researchers to create 

their own low-temperature curing gold inks (Huang et al.,  2003). 

 

A calibration curve for the mixture of mercury and copper was acquired (not shown). 

The standard containing 600 ppb mercury (II) contributed to the very poor curve 

obtained (R2 = 0.2134); omission of the standard led to a considerable improvement 

(R2 = 0.9929). This further re-enforces the point that mercury interaction with the 

gold working electrode may well involve a number of complex phenomenae, 

particularly when higher concentrations of mercury are present (e.g. > 600 ppb). 

Future work should consider such further investigations.  
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Figure 3.14 illustrated that the RMSEP values were marginally better by 5 – 10 ppb 

for the range-scaling than the mean-centring. This can be attributed to better defined 

peaks observed in the loading plots (Figure 3.17). 

 

 
(A) 

 
(B) 

Figure 3.17: Comparison of the X-loadings (LV1) against the potential for SIMPLS models 

generated after data pre-treatment of the training set involving range-scaling (A) and mean-

centring (B). 
 

In the absence of a validation set, the custom-built data analysis package is capable of 

splitting the training set into a separate calibration set and a test set, as explained in 

Section 2.4.1.3. Table 3.15 shows the correlation coefficients obtained when the 

predicted concentration values were plotted against the actual values for a number of 

pre-treated datasets. The last ten samples in the training set were employed as a test 

set. Only the optimum latent variables suggested via the minimum RMSEP values 

were employed. 

 
Table 3.15: Correlation coefficients for the plots of predicted concentration versus actual 

concentration with respect to the different pre-treatment techniques employed 

Correlation coefficient Description of pre-treatment techniques 
employed As Hg Cu 

Before weighting of variables 0.9619 0.8131 0.6348 
Mean-centred3 0.9669 0.8220 0.6941 
Range-scaled3 0.9697 0.8275 0.6273 

After Weighting 0.9250 0.8572 0.8844 
Weighting + Mean-centred3 0.9101 0.8563 0.9018 
Weighting + Range-scaled3 0.9206 0.8410 0.9291 

 

                                                 
3 And Savitzky-Golay smoothing with a polynomial of 3 and a window of 21 
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Table 3.15 has shown that application of the weights to the datasets in conjunction 

with range-scaling and Savitzky-Golay smoothing has indeed improved the predictive 

capability of the respective models especially for copper as we see the correlation 

coefficient rise from 0.6273 to 0.9291. However, a slight loss in correlation for the 

arsenic ion is observed after the weighting has been applied. In addition, prior to 

application of the weights, the range-scaling slightly improved the correlation for 

arsenic. Figure 3.18 compares the plots of predicted against actual concentrations for 

the range-scaling of the datasets without and with the application of weighting. 
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Figure 3.18: Predicted versus actual plots for As (III), Hg (II) and Cu (II) with range-scaling but 

no weighting (A) and range-scaling after weighting (B). 
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It is clear to see in Figure 3.18A that the prediction of copper (at 250 ppb) at the 

actual concentration of 600 ppb has contributed to the attainment of the correlation 

coefficient of 0.6273. Application of the weights has thus improved the prediction of 

the copper (520 ppb) at the actual concentration of 600 ppb; even with the prediction 

at 200 ppb being widely dispersed (Figure 3.16B). 

 

3.4.3 Application to Real Samples 

 

Standard addition, multivariate calibration and HG-AAS will be discussed in relation 

to the determination of arsenic in the CRM extract. 

 

3.4.3.1 Standard Addition 

 

Voltammograms were acquired on both the AI and AO batches of gold-ink screen-

printed electrodes (Figure 3.19). 

 

0.00E+00

2.00E-06

4.00E-06

6.00E-06

8.00E-06

1.00E-05

1.20E-05

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Potential (V)

C
ur

re
nt

 (A
)

CRM000

CRM400

CRM800As

Cu

(A) 

y = 1E-10x + 9E-09
R2 = 0.9809

y = 4E-11x - 7E-11
R2 = 0.9824

-2.00E-08

0.00E+00

2.00E-08

4.00E-08

6.00E-08

8.00E-08

1.00E-07

1.20E-07

0 100 200 300 400 500 600 700 800 900

Concentration Added (ppb)

A
v 

A
re

a As
Cu
Linear (As)
Linear (Cu)

 
(B) 

0.00E+00

1.00E-06

2.00E-06

3.00E-06

4.00E-06

5.00E-06

6.00E-06

7.00E-06

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Potential (V)

C
ur

re
nt

 (A
)

CRM000

CRM400

CRM800

As

Cu

(C) 

y = 6E-11x + 5E-09
R2 = 0.9916

y = 2E-11x - 1E-09
R2 = 0.7137

-1.00E-08

0.00E+00

1.00E-08

2.00E-08

3.00E-08

4.00E-08

5.00E-08

6.00E-08

0 100 200 300 400 500 600 700 800 900

Concentration added (ppb)

A
R

EA

As
Cu
Linear (As)
Linear (Cu)

 
(D) 

Figure 3.19: Overlaid voltammograms (A) and (C) and standard addition plots (B) and (D) 

acquired on gold-ink screen-printed electrodes. Batches: AI (A and B); AO (C and D). 

Instrumental conditions: deposition potential: 0.0V; deposition time: 30s; scan rate: 10 mV/s. 
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The voltammograms pertaining to the CRM extract only (CRM000) in Figure 3.19A 

and 3.19C for the AI and AO batches respectively closely resemble voltammograms 

pertaining to a blank solution, particularly as one can observe the characteristic 

flattened peak at ~ +0.1V (refer to Figure 3.16). This implies that there is no arsenic 

in the extract. With regards to the copper, it is difficult to quantitatively ascertain 

whether the copper was extracted due to the steep increase in current from +0.3V up 

to +0.5V. Copper was indeed extracted (Section 2.4.2) however it is plausible to 

suggest that coupled with other interfering ions in the CRM and the 4M HCl, the 

copper peak is suppressed. A number of proposed hypotheses are the formation of 

copper (I) chloride (Vvedenskii & Grushevskaya, 2003; Matsumoto et al.,  1994), and 

inter-metallic bonding with arsenic and any other trace metals present in the CRM 

(Sadana, 1983; Zima & van den Berg, 1994; Copeland et al.,  1974; Ben-Bassat & 

Azrad, 1978). 

 

It must be noted that there is no error data reported in Figure 3.19D since only one 

measurement per sample was performed because of the limited availability of the AO 

batch. Addition of arsenic to the CRM extract leads to a positive response at +0.15 to 

+0.20V but not so for copper. This increase is more pronounced on the AO batch 

leading to a better coefficient of determination (R2) value. However, the calibration 

curve for copper is much worse on the AO batch. When extrapolating to Y=0, it is 

clear to see from both Figures 3.19B and 3.19D that the predicted concentration of 

copper is zero which would imply that copper had not been extracted from the CRM.  

 

According to the standard addition, the procedure recovered ~90% of the arsenic 

present in the CRM for both the AI and AO batches. The true amount of arsenic in the 

CRM was 5.64 mg/kg. Other methods do exist for extracting arsenic from soils (not 

discussed here) but the only way to confirm whether any arsenic is present in the 

CRM solution is to measure it on a standard laboratory instrument such as ICP-MS. 

 

3.4.3.2 Multivariate Calibration 

 

Applying the SIMPLS model constructed in Section 3.4.2, in conjunction with range-

scaling and Savitzky-Golay smoothing with a polynomial of 3 and a window size of 

21, indicates that there is no arsenic and copper present in the CRM. This does not 



PhD Thesis  Chapter 3 
 

 
Cranfield University  Michael Cauchi 158

concur with the values supplied with the CRM (5.64 mg/kg arsenic and 18.8mg/kg 

copper respectively). Values of 0 ppb (and thus 0 mg/kg) were attained throughout. 

The same was observed when the SIMPLS model originating from un-scaled data 

(after outlier removal) is applied. This implies that the method of standard addition is 

unreliable here possibly due to the matrix effects and analyte interactions in the CRM. 

This suggests that the extraction method is inefficient with respect to arsenic 

extraction. However there are too many variables to consider at present, and one must 

be aware that the relatively high RMSEP values had been observed in Section 3.4.2. 

 

3.4.3.3 Hydride Generation AAS (HG-AAS) 

 

The CRM extract employed in Section 2.4.2 was diluted ten-fold (0.5ml  5ml). 

Standards were prepared and recorded on the AAS also employed in Section 2.4.2 in 

conjunction with the hydride generation (HG) unit. Table 3.16 details the hardware 

parameters whilst Table 3.17 lists the parameters used for arsenic determination. 

 
Table 3.16: Hardware and computational parameters for the HG-AAS instrument 

Atomiser Standard Burner Delay Time (s) 25 
Measurement 

Mode 
Working Curve Signal Record Direct 

Flame Acetylene-Air 
(2125 -  2400°C 

Signal Mode Background 
Correct 

Oxidant Pressure 
(KPa) 

160 Replicates Std = 2  
Sample = 1 

Oxidant Flow 
(L/min) 

15 Calculation Peak Height 

Calculation Time 
(s) 

5 Slicing Height 10% (P. W. Only) 

 
Table 3.17: Parameters for arsenic as employed on the HG-AAS 

Element Current 
(mA) 

Wavelength 
(nm) 

Slit (nm) Fuel Flow 
(L/min) 

Burner 
Height 
(mm) 

As 10 193.7 1.3 1.5 7.5 
 

As seen in Table 3.16, the standards were measured in duplicate whilst the sample 

was measured only once due to being limited in volume. Figure 3.20 displays the 

calibration curve of atomic absorbance at increasing concentrations of arsenic. 
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Figure 3.20: Calibration curve for the detection of arsenic via HG-AAS. Instrumental 

parameters described in Tables 3.16 and 3.17 
 

An excellent correlation was thus attained. The % recovery of the CRM extract was 

calculated to be 11.76%. The value of 11.76% implies that arsenic was extracted from 

the CRM soil sample. HG-AAS is classed as a highly sensitive technique. However, 

the previous section stated that the multivariate calibration regression models 

predicted no arsenic present. This implies that the gold-ink working electrodes were 

not sensitive enough to detect the arsenic. However, one can argue that arsenic was 

only present in the CRM extract as arsenic (V) which would therefore result in no 

peak attained (Figure 3.19) at the experimental conditions employed for DPASV 

(Table 3.5) which is the optimum for the detection of arsenic (III). This implies that 

the procedure described in Section 3.3.6 which was developed by Svancara (Svancara 

et al.,  2002) must be employed to reduce any arsenic (V) species to arsenic (III). 

Section 3.4.3.4 discusses the findings. 

 

3.4.3.4 Arsenic (V) on Gold-Ink Screen-Printed Electrodes 

 

A qualitative determination of arsenic (V) was performed on both the AO and AI 

batches of gold-ink screen-printed electrodes. Figure 3.21 displays the overlaid 

voltammograms acquired on both batches. 
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Figure 3.21: Overlaid voltammograms for the CRM extract for the determination of arsenic (V) 

on both the AI and AO batches of gold-ink screen-printed electrodes. 

Key: X refers to the unknown concentration of As (V) in the CRM; X + 1000 refers to the 

addition of 1000 ppb As (V) standard solution.  

Instrumental parameters: Deposition potential: -0.3V; Deposition time: 30s; Scan rate: 10mV/s 
 

The profiles for the AI batch in Figure 3.21 overlay exactly over one another implying 

that the addition of the arsenic (V) standard has not been detected. In contrast a 

response has been detected on the AO batch. This is reflected in Figure 3.22. 
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Figure 3.22: Average Areas calculated on both batches for the determination of arsenic (V) at 

+0.40V for the CRM extract. Instrumental conditions as in Figure 3.21 
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The AO batch is distinctly more responsive to the presence of the reduced arsenic 

addition than the AI batch. However, there are a number of parameters to consider. 

There are the presence of other metals in the CRM which will have also been 

extracted, in particular copper which we know to form inter-metallic complexes with 

arsenic and many other metals such as nickel and zinc (Herrero & Ortiz, 1997). In this 

respect, it is possible that the arsenic (III) generated by the reduction with the L-

cysteine has formed an inter-metallic bond with copper ions present in the CRM. 

Cooper had also observed one broad peak for As (V) at ~+0.3V (Cooper, 2004). 

Furthermore, it is possible that not all of the arsenic (V) is reduced to arsenic (III) 

during the reduction step. 

 

Figure 3.23 displays the PCA score and loadings plot for the voltammograms 

acquired on the AI and AO batches. 
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Figure 3.23: PCA scores (A) and loadings (B) of the voltammograms acquired on both the AI and 

AO batches of gold-ink screen-printed electrodes 

 

As can be seen the AI and AO batches have been clearly classified into separate 

groups (Figure 3.23A). The corresponding loadings plot indicates that the sharp peak 

at 0.0V leads to the distinction between the two batches (Figure 3.23B). The PCA 

loadings plot illustrates that the greatest variance is observed in PC2. The intense peak 

at 0.0V can be observed in Figure 3.21 and can possibly be attributed to the chloride 

ions in the electrolyte equilibrating with the chloride ions on the reference electrode, 

or reacting with the gold nanoparticles in the ink formulation since no peak was 

observed when a sulphuric acid electrolyte was employed (Cooper, 2004). By looking 
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at Table 3.11 the only difference between the two batches is the curing employed (box 

oven for AO and IR belt for AI). 

 

In short, due to the presence of the other metal ions in the CRM, in particular copper, 

it will therefore be difficult to quantify the presence of arsenic in the CRM. The 

solution to this is to employ specific masking agents that will complex, for example 

with copper and prevent it from interfering with the deposition of arsenic on to the 

working electrode. Examples of masking agents for copper are 1,10-phenanthroline, 

picolinic acid, and L-cysteine which has been shown to stop the complete reduction of 

arsenic (V) to arsenic (III) due to the masking of the copper ions present (Ek & 

Hulden, 1987; de Campos et al.,  2002). A typical masking agent for zinc is sodium or 

potassium cyanide (Skoog et al., 1996). 
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3.5 Conclusions 
 

The comparative studies detailed in Section 3.4.1 in conjunction with the application 

of one of the batches (AI) in Section 3.4.2 indicate that further research is still 

required by Du Pont in producing more stable, robust and reproducible low-

temperature curable inks for their screen-printed electrodes. In addition, these 

electrodes should possess longer shelf-lives, just like their carbon counterparts. The 

most promising batches tested were Batch 2 in Section 3.4.1.2 closely followed by 

Batch 4. The batches employed in the quantitative study were derived from Batch 4, 

due to electrode supply issues, even though Batch 2 yielded slightly superior 

voltammograms in terms of peak areas and repeatability. 

 

The most efficient pre-treatment technique has been range-scaling coupled with 

Savitzky-Golay smoothing with a polynomial of 3 and a window size of 21. However, 

the current SIMPLS models that were generated are deemed inadequate and 

inefficient to successfully predict the concentrations of arsenic, mercury and copper in 

unknown samples. Complete separation of the mercury and copper peaks has not yet 

been achieved. More work is thus required in varying the weights in order to optimise 

the parameters and thus to lower the RMSEP values, for at this instance they are too 

high (ranging from 98 to 130 ppb for range-scaled and Savitzky-Golay smoothed 

data).  

 

The extraction procedure described in Section 2.3.4 has not been successful in relation 

to the determination of arsenic on a gold-ink screen-printed electrode under the same 

conditions. This can be attributed to a number of causes such as the irreproducibility 

of the gold-ink electrodes themselves, the complex characteristics of the arsenic ion 

(speciation), and the other metallic ions present in the given CRM. Though standard 

addition gave a recovery of ~90% the multivariate approach predicted 0% analyte 

present. Observation of the respective voltammograms leads one to conclude that the 

standard addition method is inappropriate in this regard due to the presence of the 

other metal analyte ions. Furthermore, additional concentrations should have been 

employed in addition to 400 and 800 ppb. 
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HG-AAS in contrast has shown that arsenic was indeed extracted from the CRM soil 

sample. However, judging by the % recovery (11.76%) the process described in 

Section 2.3.4 was not efficient for arsenic. DPASV measurements performed on two 

batches of gold-ink screen-printed electrodes for the qualitative determination of 

arsenic (V) have indeed shown that arsenic was extracted from the CRM soil sample. 

The AO batch has been shown to be more responsive than the AI batch and a PCA 

score plot clearly distinguished between the two batches mainly due to a significant 

voltammetric peak at 0.0V. 

 

In relation to the objectives of the ARTDEMO project the work described in this 

chapter can lead to the development of a rapid screening tool for the determination of 

metal species – thus a peak at a certain potential suggests the presence of copper, 

mercury and/or arsenic present which necessitates re-running the sample on carbon-

ink screen-printed electrodes where arsenic will not interfere with copper.  This could 

be done simultaneously on the multiplex potentiostat developed in-house (Section 4.4 

and Appendix A5).  Therefore these electrodes are useful for site characterising and 

mapping i.e. field based tool that enables better field-based management of a site. 

 

Electrochemical methods offer a more cost-effective solution to the determination of 

metal ions in a sample. Anodic and cathodic stripping voltammetry (ASV and CSV 

respectively) are heavily employed in this field. However, certain procedures involve 

the use of mercury-film electrodes and it is therefore desirable to find a safer and 

more efficient means of determining the metal ions in the absence of mercury. This 

chapter has thus illustrated the potential of applying multivariate calibration 

techniques to voltammograms acquired on gold-ink screen-printed electrodes. 

 

Furthermore, the application to field analysis necessitates the need to further develop 

analytical techniques in portable devices leading to the screening and quantification of 

target analytes. Chapter 4 presents such a device. 
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CHAPTER 4:  

DEVELOPMENT OF A PORTABLE FIELD-DEVICE 

INCORPORATING MULTIVARIATE CALIBRATION 

REGRESSION MODELS 

 

4.1 Overview 
 

This chapter discusses the advances made in the development of portable field devices 

and its importance as applied to on-line and at-line measurements. Electro-analytical 

flow systems will be discussed with the focus being on the on-line detection of heavy 

metals. The chemometric tool of instrument standardisation will be introduced with 

examples of its importance in multivariate data analysis. The development of an in-

house custom-built personal digital assistant (PDA) program designed to process 

multivariate data will be presented in conjunction with acquisition of DPASV 

voltammograms on carbon-ink and gold-ink screen-printed electrodes via a custom-

built multi-channel controller. Finally, preliminary work on the development of an 

automation system is also presented. 

 

4.2 Introduction 
 

Chapter 2 discussed the application of multivariate calibration to DPASV 

voltammograms acquired on carbon-ink screen-printed electrodes, whilst Chapter 3 

discussed the same but on voltammograms acquired on gold-ink screen-printed 

electrodes. In each case, the voltammograms were acquired on laboratory-based 

instruments which require a dedicated bench space, a high performance personal 

computer containing the software application to control the instrument in addition to 

other applications for data manipulation, a qualified technician to operate them and 

power from a 220-240V alternating current (AC) mains input. 

 

Recent years have seen the development of so called “laboratory-on-a-chip”, the onus 

being to fabricate portable devices for application in the field in which the major 

components of the main sensor are miniaturised on to a chip. An ideal example is the 
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manufacture of on-line sensors which acquire data in real-time and transmits it to a 

central computer where it is manipulated prior to storage on a dedicated database 

which has been one of the major objectives of the ARTDEMO project. If the aim is to 

determine the quality of river water at a given site, these sensors can thus be in the 

form of flow cells (electro-analytical) or electronic tongues (Winquist et al.,  2005). 

 

If conditions prevent the acquisition of on-line measurements such as the harshness of 

the environment or the need to chemically pre-treat the sample, then at-line 

measurements are preferred. These involve the development of portable field 

instruments in which all the major components are contained within a small purpose-

built device, which is powered, for example by a 9V direct current (DC) battery. The 

device itself can be stand-alone or controlled by a personal digital assistant (PDA). 

The PDA will contain the appropriate software application to acquire, manipulate and 

store the data. Furthermore, should any abnormal levels of target analytes be 

observed, certified action schemes can be put into immediate effect, as has been 

adopted by one of the ARTDEMO project partners: The Gothenburg Region 

Association of Local Authorities (GR), Gothenburg, Sweden (Lundh et al.,  2003). 

 

The following sections will discuss in greater detail the application of electro-

analytical flow cells leading to the benefits of miniaturisation in addition to the 

importance of instrument standardisation which can relate the measurements 

performed on a field-based instrument to measurements performed on a laboratory-

based instrument. 

 

4.2.1 Electro-analytical Flow Systems 

 

Recent advances have been reviewed, spanning the last several years, in the field of 

electro-analytical flow measurements, emphasising the important role it will play in 

the development of, for example, miniaturised measuring devices, mechanisation and 

automation of analytical processes (Trojanowicz et al.,  2003). The need to reduce 

costs, and at the same time attain better detection levels, is paramount. These devices 

will be beneficial for on-line or at-line monitoring of ground water sites and rivers 

especially with regards to the ARTDEMO project. 
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4.2.1.1 Flow Injection Systems 

 

The concentration of lead in blood by hydrodynamic voltammetry in a flow injection 

system with a wall-jet detector has been reported (Jaenicke et al.,  1998). The wall-jet 

detector had to be configured in such a way that there was no breakage in the jet of 

electrolyte striking the working electrode; the jet diameter was negligible compared 

with the diameter of the electrode, and that the reference and counter electrodes were 

sufficiently remote from the working electrode so that the boundary layer was not 

disturbed. Emphasising the long-term effects of lead in the environment and body, the 

authors still utilised a mercury film electrode (MFE). However, the carbon surface 

was modified with a Nafion®- membrane (polytetrafluoroethylenesulphonate) in 

order to prevent proteins present in the blood from fouling the electrode. The MFE 

offered a higher surface-to-volume ratio compared to the mercury drop which resulted 

in a faster diffusion of ions to the surface of the electrode and thus sharper stripping 

peaks. The authors concluded that the fabrication of disposable screen-printed 

electrodes could be used in portable instruments, eventually leading to the preparation 

of “a solid matrix blood-lead sensor”. 

 

As well as applications to the medical sector, such as the determination of urea in 

human serum samples (Walcerz et al.,  1998), flow analysis coupled with 

voltammetric detection has been suggested as a tool for on-line monitoring in the 

environment and industrial processes (Trojanowicz et al.,  2003). Furthermore, the 

use of dual electrodes or even four parallel electrodes were discussed, the latter being 

polarised at different potentials in order to determine the isomers of resveratrol which 

is a natural phenolic compound in wine and grape juice (Zhu et al.,  2000). Detection 

at four potentials allows peak purity to be attained when dealing with complex 

matrices due to “comparing ratios at different energies for both standards and 

samples”. It was also reported that metallic copper was employed as a working 

electrode in capillary electrophoresis (CE) voltammetry for the determination of 

amino acids (Trojanowicz et al.,  2003). This leads to the development of portable 

integrated microchips “for application in the field”. 

 

DPASV can be combined with a flow system to determine the concentration of heavy 

metals in alga samples (Fernandez-Bobes et al.,  1998). An HMDE was employed as 
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a working electrode resulting in high reproducibility. De-oxygenation of the solution, 

which can result in poor sample throughput, was not required. The pre-concentration 

time was 60 seconds and the amount of sample that passed through the cell was 

dependent on the flow rate and the loop volume. Matrix effects were eliminated by 

the use of bismuth as an internal standard. The concentrations of zinc, cadmium, lead, 

and copper in the alga samples, as determined by the FI-DPASV compared 

favourably to ICP-MS data. 

 

Dual pulse staircase voltammetry (DPSV) has been employed in conjunction with 

multivariate calibration to quantitatively determine the amounts of glucose, fructose 

and ethanol in given samples (Richards et al.,  2003). The calibration sets were 

developed via an in-house custom-built automated device employing a number of 

pumps to prepare a mixture of analytes as determined by the experimental design and 

to employ a flow cell in which the electrochemical measurements were performed. 

The best multivariate calibration models were developed by ANNs, which were 

optimised further by genetic algorithms. Lower error values were attained compared 

to manually prepared samples coupled with manual data collection. 

 

4.2.1.2 On-line Detection of Heavy Metals 

 

Other systems include a cylindrical microcell containing a working microsensor unit 

and a reference and counter microsensor unit for the on-line voltammetric detection of 

heavy metals (Keller & Buffle, 2000a). The microcell had contained integrated micro-

channels to enable the solution to “flow-through”. The same authors then coupled it to 

a “supported liquid membrane (SLM) pre-concentration technique” which itself is 

mostly used for the “industrial separation and recovery of target elements: gases, 

amino acids, organic acids, anions, complexes and cations” (Keller & Buffle, 2000b). 

 

The SLM contains a microporous hydrophobic membrane which is impregnated with 

a liposoluble complex-forming agent dissolved in an organic solvent. When the 

membrane is placed in a sample containing the metal ion such as lead or cadmium, the 

metal ion reacts with the complex-forming agent at the membrane/sample interface 

and migrates through the membrane towards the membrane/strip interface where the 

metal ion combines with a hydrophilic ligand present in the aqueous strip solution. 
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ASV is then performed on the mercury-coated iridium microelectrode. Iridium was 

used due to its low solubility in mercury. The authors state that mercury electrodes are 

more reliable than solid-state electrodes, however they also reported that the mercury 

had to be plated on to the iridium surface by pumping a degassed mercury (II) 

solution into the hollow-fibre SLM after its assembly followed by application of a 

potential of -1.1V vs the Ti/IrO2/MES (pH 6) reference electrode for 15-30 minutes 

(MES: morpholino ethane sulphonic acid). The overall system was thus able to 

analyse for trace metals without the need for sample pre-treatment. 

 

A “high-throughput fast-scan ASV in a microflow system” has also been developed 

(Zhou et al.,  1997). Due to the low dead volume of the flow-injection system coupled 

with the miniaturised “flow-onto thin-layer electrochemical cell” a dramatic reduction 

in sample consumption was obtained along with an increase in sample throughput. 

Only a few seconds are required in the pre-concentration step. Although the stripping 

peaks for lead and cadmium are well-defined, considerable peak overlap was still 

observed. 

 

4.2.2 Instrument Standardisation 

 

The need for instrument standardisation is exemplified by the fact that multivariate 

calibration models developed on one near-infrared (NIR) instrument do not 

necessarily concur with results obtained from other similar systems (Wang et al.,  

1991). The main reasons for these discrepancies has been suggested to be due to 

different instrumental responses between instruments, a shift in the wavelength over 

time, and sample variation between batches. The latter implies that a calibration 

model developed from one batch cannot be applied to another batch. To overcome 

this, the calibration would need to be performed on the second instrument employing 

the entire calibration set. This was deemed impractical and costly, especially should 

the samples were also deemed to be physically or chemically unstable. 

 

Four standardisation methods are described below: classical, inverse, direct and 

piecewise. The first two directly apply corrections to the calibration model whilst the 

latter two apply a correction to the response from the second instrument in order to 

equalise the response to that of the primary instrument. 
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4.2.2.1 Classical Calibration Model 

 

This assumes a linear relationship between the response and the concentrations of the 

analytes such that: 

 

R1 = CK1  4.1 

 

where R1 is the response on the first instrument, C is the concentration matrix for the 

full dataset and K1 is a “sensitivity” matrix. The same equation can be written for the 

response on the second instrument so that: 

 

R2 = C(K1 + ∆K) 4.2 

 

The equation thus holds for the standardisation subset (Equation 4.3). 

 

R2
S = CS(K1 + ∆K) 4.3 

 

Substituting ∆K into Equation 4.2 and using Equation 4.1 leads to the estimation of 

R2: 

 

R2 = R1 + CCS
+(R2

S – R1
S) 4.4 

 

where CS
+ is the pseudo-inverse of CS. It is also assumed that the linear relationship is 

valid on both instruments and the concentrations of the analytes contributing to the 

responses must be known. 

 

4.2.2.2 Inverse Calibration Model 

 

This involves the calculation of regression vectors (b1 and b2) for a given analyte on 

both instruments. The estimation of b2 is shown in Equation 4.5. 

 

b2 = R+
1c + (R+

2
S – R+

1
S)cS 4.5 
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This can thus be employed to predict analyte concentrations on the second instrument. 

If there is more than one analyte concentration then regression vectors (c and b) are 

replaced by concentration and regression matrices (C and B) respectively. This differs 

from the classical method in that only the concentration of the target analyte need be 

known. 

 

4.2.2.3 Direct Standardisation 

 

This approach involves the correction of spectra acquired on the second instrument to 

“match” the spectra acquired on the primary instrument. Furthermore, the calibration 

model is untouched. The two data subsets acquired on both instruments are related in 

Equation 4.6: 

 

R1
S = R2

SF 4.6 

 

F is the square transformation matrix whose dimensions are dependent on the number 

of wavelength variables. It is calculated from “a relatively small subset” in which 

singular value decomposition (SVD) is employed to project the raw spectra on to the 

space of R1. The generated scores are thus employed to generate the transformation 

matrix; the added bonus being that noise is filtered out. 

 

With direct standardisation, the concentration of the analytes is not required. This 

implies that certified or standard reference materials could be employed in place of 

the actual sample sets. 

 

4.2.2.4 Piecewise Direct Standardisation (PDS) 

 

A limitation with the standardisation methods previously discussed is that the number 

of subset samples must not exceed the rank of R1. Furthermore, the direct 

standardisation approach involves employing the whole spectrum acquired on the 

secondary instrument to be fitted to every spectral point on the spectra acquired on the 

primary instrument. However, if spectral variations are apparent, each spectral point 

will more likely be related to neighbouring spectral measurements than to the 

secondary instrument. 
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This led to the development of a “piecewise” approach in which each spectral point 

on the primary instrument is reconstructed from a number of spectral points in a small 

window on the secondary instrument. This implies that a spectral point at 800nm on 

the secondary instrument will not influence the spectral point at 550mn on the 

primary instrument (Wang et al.,  1995). The transformation matrix, F is constructed 

by placing all of the transformation coefficient vectors for each response into the main 

diagonal and zeros everywhere else (Wang et al.,  1992). Thus have: 

 

F = diag(b1
T, b2

T, …, bi
T, …, bp

T) 4.7 

 

The term bi
T is a “vector of transformation coefficient for the ith response channel”. P 

refers to the total number of channels. The window size is determined by the number 

of elements in bi
T. Each calculation of b is via the computation of a number of 

multivariate calibration regression models, usually PLS (Bouveresse et al.,  1996). 

The transformation matrix can then be employed to standardise any response acquired 

on the secondary instrument (Wang et al.,  1992).  

 

A comparison of the four standardisation methods were performed and piecewise 

direct standardisation (PDS) was found to be the most efficient (Wang et al.,  1991). 

The classical and inverse methods worked efficiently but required very large sample 

subsets. Initial findings indicated that the application of PDS did not lead to better 

RMSEP values than if the calibration was repeated in full on the secondary instrument 

(1.2 – 1.6 × error increase). The authors expressed that this was acceptable for real 

world samples due to the small amount of subset samples employed. In a later study, 

it was observed that the PDS improved considerably as the number of subset samples 

increased (Wang et al.,  1992). This further led to PDS giving better RMSEP values 

than if the calibration was repeated in full on the secondary instrument. This is 

attributed to the method taking advantage of the “larger rank” obtained via a high 

quality instrument. This further leads to the elimination of on-site calibration. 
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4.2.2.5 PDS, Additive Background Correction and Sample Subset Selection 

 

The application of PDS in the work reported in this thesis was in conjunction with 

additive background correction. Although better RMSEP values were reported in 

Section 4.2.2.4, PDS is merely a “multiplicative correction” method (Wang et al.,  

1995). In the majority of cases, there are also “additive differences”. Examples are the 

drift in the source wavelength “between measurements of background and sample 

with a single-beam spectrometer” as inherent in FT-NIR, and in dual-beam 

spectrophotometers, in which the two beam paths “are never identical”. This can be 

due to an element in the sample path differing from one in the background path. If this 

element is thus different in the second instrument, the additive background will be 

significant. 

 

Two methods had thus been proposed. The first involved taking the second 

derivatives of the acquired spectra on each instrument, whilst the second involved 

mean-centring the spectra according to the maximum mean value obtained from the 

first instrument. However, both were deemed to be overly inefficient. The first 

method only leads to a minimal improvement due to the structure of the background. 

If the background was a line of constant slope the standardisation would be greatly 

improved. The second method is deemed only plausible if both instruments possess 

near-identical backgrounds. Instead, mean-centring the individual set of transfer 

samples led to the removal of the differences observed in the baseline. This resulted in 

the generation of a vector containing a correction term corresponding to each 

wavelength variable. 

 

A disadvantage reported with PDS was that there was no official guidance in 

determining the actual number of samples in the subset to be standardised 

(Bouveresse et al.,  1996). This is crucial in performing PDS efficiently. The selection 

method previously employed involved selection of samples with the highest leverage 

(Wang et al.,  1991). Instead a more representative subset was selected via the 

Kennard-Stone algorithm (Kennard & Stone, 1969) (Bouveresse et al.,  1996). In 

brief, it begins by selecting two spectra that are the farthest from one another as 

determined by a scores plot (PC2 vs PC1). The next stage involves three steps in 

which the next sample is selected: 
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• Calculation of the Euclidean distances between the spectrum under 

consideration and the spectra already present in the subset 

• The smallest Euclidean distance between the spectrum under consideration 

and the already selected spectra is selected 

• The spectrum that has the largest Euclidean distance is determined and added 

to the subset 

 

The iteration continues until the required number of samples has been attained. It 

must be stressed that the algorithm is applied to the raw data and that all outliers have 

been omitted. Outliers are samples within a dataset that do not possess any similarities 

with the other present samples. PCA score plots can identify potential outlying 

samples. The selection of the subset samples described above must cover the entire 

calibration range (Bouveresse et al.,  1996; Bouveresse & Massart, 1996). 

 

4.2.2.6 PDS and Electrochemistry 

 

The application of PDS is not restricted to NIR spectra (Wang et al.,  1991). Any 

analytical method that generates multivariate responses can be processed with PDS 

such as chromatography, flow injection analysis, fluorescence spectroscopy and 

voltammetry. One example is the application of PDS for the determination of zinc, 

cadmium, lead and copper via differential pulse polarography on the same instrument 

but over a number of given days (Herrero & Ortiz, 1997). Although there are many 

inter-metallic compounds such as gold-zinc, copper-cadmium, copper-zinc, copper-

tin, nickel-zinc, etc, the focus in the literature has been on copper-zinc inter-metallic 

compounds due to their presence in a number of analytical samples ranging from 

environmental to pharmaceutical. Their presence can be reflected by the observation 

of a depressed and/or shifted polarographic peak. 

 

Differential pulse polarography is generally employed if the concentration of the 

target analyte(s) exceeds 1ppm (for each analyte) leading to the minimisation of the 

effect of inter-metallic compound formation. Partial least squares (PLS) regression 

was employed leading to the successful calibration of the target metal ion peaks. The 
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application of PDS implies that there was no need to repeat the entire calibration on 

the same instrument at a later stage and hence no requirement to construct a new PLS 

model, since the original PLS model sufficed. Furthermore, the number of 

measurements was reduced from 28 to 8. The combination of PLS modelling with 

PDS calibration transfer has led to the development of powerful chemometric 

techniques. 

 

4.2.3 Chemometrics on a PDA 

 

Personal Digital Assistants (PDAs) are finding great use in the scientific community 

and this can be useful when performing on-line or at-line analysis. PDA technology 

itself is also taking a step forward as wireless communications are incorporated which 

could make at-line/on-line analysis even simpler. For example, evaluation of a “trial 

of networked PDAs in the NHS” which would permit doctors and other medical staff 

instant access to sensitive information and also omitting the need to carry bulky items 

about their person is being carried out (Turner et al.,  2004). 

 

With the advent of PDAs, field-deployed instruments can be easily controlled in the 

absence of a PC or even a laptop. The literature reports an amperometric analyser 

constructed in-house using “off-the-shelf electronic components” (Avdikos et al.,  

2005). The PDA employed was very basic with a three-button keypad. Extensive 

information is given by the authors with regards to the construction and operation of 

the device. It can operate as “stand-alone” or be connected to a PC. The mode of 

operation was to perform a self-calibration prior to acquiring a univariate calibration 

curve and then to perform a prediction of the last sample measured. The target 

compound was ascorbic acid which is present in some pharmaceutical tablets. The 

electrolyte used was 50mM phosphate buffer at pH5 in 0.5M KCl. Good agreement 

had been achieved when compared to a standard potentiostat (Autolab PSTAT10). A 

“relative discrepancy of only 0.4%” was attained. 

 

Although PDAs are being employed to acquire data, there has so far been no mention 

in the literature of the application of PDAs to perform on-line or at-line predictions 

via multivariate calibration regression models. Perhaps the main reason can be 

attributed to the hardware performance of the PDAs, for example with regards to 
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storage capacity and internal memory. It must also be stressed that certain program 

applications on PDAs do not contain the same functionality as their PC-based 

counterparts mostly due to the lack of processing power of the PDA. 

 

This chapter will therefore discuss preliminary findings of the employment of PDAs 

for the quantitative determination of specific target metal ions using PDS and 

multivariate calibration regression models developed in both Chapters 2 and 3 for 

voltammograms acquired on carbon-ink and gold-ink screen-printed electrodes 

respectively. Furthermore, the subject of automation is discussed with reference to a 

proposed screen-printed electrode delivery system. 

 

4.3 Materials and Methods 
 

4.3.1 Development of Prototype PDA Application 

 

LabVIEW 7.1 Student Edition with the PDA Module (National Instruments, Austin, 

TX, US) was purchased and installed on a stand-alone PC with a 750MHz Athlon 

AMD processor and 354MB RAM running Windows XP Service Pack 2 (Microsoft, 

US). 

 

A Pocket PC 2003 iPAQ PDA (HP) was employed to run the application. In order to 

allow communications between the PDA and the PC, Microsoft ActiveSync was also 

installed on the PC. 

 

A number of multivariate calibration regression models which had been previously 

created in LabVIEW were transferred on to the PDA and loaded into the PDA 

application. 

 

4.3.2 Incorporation of Piecewise Direct Standardisation 

 

The data analysis packages developed in Section 2.3.3 in both the Matlab and 

LabVIEW environments were upgraded with the incorporation and implementation of 

the piecewise direct standardisation (PDS) algorithm. Focusing on LabVIEW, a new 
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virtual instrument (VI) was constructed and incorporated into the main program. The 

front panel is displayed in Figure 4.1. 

 

 
Figure 4.1: The front panel for the instrument standardisation virtual instrument (VI) 

 

As can be seen, the listbox contains the identities of the samples whose 

voltammograms are correspondingly displayed in the XY graph on the right. Once 

opened, the user navigates to the text file containing the dataset to be standardised 

followed by the validation set. The variables are then extracted, and in the example 

above, there are a total of 60 samples. The user is then able to view the 

voltammograms from either dataset. 

 

The dataset is then standardised. The user selects whether additive background 

correction (ABC) is carried out, and also has the option of selecting whether to 

manually input a window size, or to let the PC select it by checking the “Auto” 

checkbox. If the window size is set to zero, only direct standardisation (DS) is 

performed.  

 

This virtual instrument (VI) will also crop the original datasets (training and 

validation) should the dataset to be standardised contain fewer variables than the 

original data. Referring to Figure 4.1, there is a checkbox entitled “Create from Raw 
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PDA Data”. If checked, and the user clicks on the “Import Data from PDA” button, a 

new window appears which allows the user to create the PDA dataset from the 

individual text files. The user is thus presented with a new interface. The user must 

input the sample identity for every sample until all samples have been identified. The 

VI also constructs the appropriate matrix along with the concentration matrix and 

vector of sample labels, which are all then randomised accordingly. The “raw PDA 

data” originates from an in-house custom-built PDA application described in Section 

4.3.3. 

 

4.3.3 Acquisition on Carbon-Ink Screen Printed Electrodes via the PDA 

 

Instrumentation 

The PDA program to acquire the voltammograms was created in-house in C# 

(Microsoft Visual Studio .Net, Microsoft, US) by Mr Paul Knight at Cranfield 

University at Silsoe, UK. This was downloaded on to the PDA (a Pocket PC 2003 

iPAQ (HP, USA)). The PDA was connected to the multi-channel potentiostat 

(constructed in-house) which contains four channels with which four electrodes can 

be connected (Figure 4.2). A more detailed description of the device is given in 

Appendix A5. The C-SPE-O batch of carbon-ink screen-printed electrodes was 

employed throughout. 

 

 
Figure 4.2: In-house custom-built multi-channel potentiostat and Pocket PC PDA 

 

Acquisition 

A number of samples were randomly selected from the batch of standards that had 

been prepared and employed in Section 2.4. The range of standards encompassed the 

training and validation sets. Due to electrode availability, the samples were only 
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measured once. A 100µl drop was placed on the working area of the respective 

electrodes. 

 

Acquisition of the voltammograms occurs in a two-step process. The first involves 

running the deposition sub-program. After the allotted time, the user must then return 

to the main program and commence the scan (stripping). After the scan, the user must 

then press STOP. On doing so, a text file is automatically generated; the 

corresponding filename is the time in hours, minutes and seconds. It is these text files 

that are imported into the “Import Data from PDA” VI (Section 4.3.2).  Table 4.1 

displays the experimental parameters. 

 
Table 4.1: The instrumental parameters employed by the PDA acquisition 

Parameter Value 
Electrochemical method DPASV 

Deposition potential (mV) -1100 
Deposition time (s) 165 

Initial potential (mV) -1100 
Final potential (mV) -200 
Step potential (mV) 5.0 

Modulation amplitude (mV) 50 
Modulation time (ms) 50 

Interval time (ms) 500 
Scan rate (mV/s) 10 

 

Measurements were performed at ambient temperature with the standards employed 

in Section 2.4.2. 

 

Twenty standards were recorded (Section 4.4.2.3). An extra three samples labelled as 

“unknowns” were also recorded in order to test the applicability of the data treatment 

model. These samples had also been employed in Section 2.4.1 and their 

concentrations are displayed in Table 4.2 for convenience. 

 
Table 4.2: Concentration values for the three “unknown” samples 

Sample Cd Pb Cu 
UNK1 200 80 160 
UNK2 100 20 0 
UNK3 0 140 180 
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The raw data was then either transferred on to a desktop PC for further processing, or 

manipulated on the PDA itself. 

 

Finally, a number of voltammograms from the extract of the certified reference 

material (CRM) soil sample described in Section 2.4.2 were acquired on the PDA 

under the instrumental conditions detailed in Table 4.1. 

 

4.3.4 Acquisition on Gold-Ink Screen Printed Electrodes via the PDA 

 

The instrumentation has already been described in Section 4.3.3. Data was also 

acquired via a PDA under the instrumental conditions detailed in Table 4.3 but 

employing the AO batch of gold-ink screen-printed electrodes (Section 3.4.2). 

 
Table 4.3: Instrumental parameters employed for the acquisition of the voltammograms via the 

PDA 

Parameter Value 
Starting Potential (mV) 0.0 

End Potential (mV) 500 
Deposition Potential (mV) 0.0 

Deposition Time (s) 30 
Potential Pulse (mV) 50 

Pulse Width (ms) 50 
Period (ms) 500 

Scan Rate (mV/s) 10 
 

Measurements were performed at ambient temperature with the standards employed 

in Section 3.4.2. A total of 29 standards were recorded (Section 4.4.3.2) in addition to 

an extra five samples labelled as “unknowns”. These samples had also been employed 

in Section 3.4.2 and their concentrations are displayed in Table 4.4 for convenience. 

 
Table 4.4: Concentrations (in ppb) of the metal ions in the “unknown” samples 

Sample As Hg Cu 
UNK1 600 400 200 
UNK2 400 0 400 
UNK3 0 600 0 
UNK4 0 600 200 
UNK5 500 200 200 
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The raw data was then either transferred on to a desktop PC for further processing, or 

manipulated on the PDA itself. 

 

Finally, a number of voltammograms from the extract of the certified reference 

material (CRM) soil sample described in Section 3.4.3 were acquired on the PDA 

under the instrumental conditions detailed in Table 4.3. 

 

4.3.5 Automation of Data Acquisition 

 

Two main objectives were sought in the initial attempts at developing an automated 

system: 

 

• The construction in the LabVIEW environment (version 6.1, National 

Instruments, Austin, TX, US) of a program to control an in-house custom-built 

sample preparation device in addition to acquisition of DPASV 

voltammograms via communication with an Autolab PSTAT10 

• The conception and implementation of a screen-printed electrode delivery 

system 

 

Section 4.4.4 discusses the procedures and findings in greater detail. All potentials are 

stated relative to Ag/AgCl reference electrodes (+0.197V vs SHE). 
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4.4 Results and Discussion 
 

The PDA application developed in the LabVIEW environment will be discussed 

(Section 4.4.1) followed by the implementation of piecewise direct standardisation 

(PDS) with regards to DPASV voltammograms acquired on carbon-ink (Section 

4.4.2) and gold-ink (Section 4.4.3) screen-printed electrodes. Finally, preliminary 

work on the automation and proposed electrode delivery system will be briefly 

discussed (Section 4.4.4). 

 

4.4.1 Functionality of the Prototype PDA Application 

 

Figure 4.3A displays the main screen of the PDA application with the options of 

loading a model, viewing its properties, acquiring a set of voltammograms and 

carrying out predictions. When the user imports a model, the properties can be viewed 

via the “Properties” option (Figure 4.3B). 

 

 
(A) 

 
(B) 

Figure 4.3: The prototype PDA application constructed in the LabVIEW environment:  

(A) The welcome screen and root menu; (B) The properties screen of an imported model 
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The “About” option (Figure 4.3A) informs the user that the current PDA application 

is only capable of loading models that were created with either no data pre-treatment, 

range-scaling, or mean-centring. No other treatments such as smoothing with the 

Savitzky-Golay algorithm, and the application of weights are currently available. As 

can be seen, the model was generated with the SIMPLS algorithm employing 20 

latent variables (Figure 4.3B). The three target metal ion components were cadmium 

(Cd), lead (Pb) and copper (Cu). It is also evident that range-scaling and “Instrument 

Standardisation” was performed. 

 

Figure 4.4A displays the “Acquisition” screen in which the datasets containing the 

voltammograms of the “unknown” samples are imported. There is also the option of 

importing the raw PDA files. If the checkbox is checked, a new screen appears in 

which the user imports the PDA text files generated by the multi-channel potentiostat 

(Section 4.3.3). PDA application, and labels them accordingly (just as in the desktop 

PC version). Figure 4.4B displays the predicted values. 

 

 
(A) 

 
(B) 

Figure 4.4: The prototype PDA application constructed in the LabVIEW environment:  

(A) The “Acquisition” screen; (B) The “Prediction” screen 
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The voltammograms are thus viewed by selecting the appropriate number in the list 

box and then selecting “View” (Figure 4.4A). The user selects the method employed 

to generate the optimum latent variables (OptLV) via the “Method” text ring (Figure 

4.4B). The two choices available are F-test and Min RMSEP (Section 1.5.5.2). The 

user must then enter the number of measurements per sample (MPS). Selecting 

“Predict” displays the predicted concentration values for each target metal analyte. As 

can be seen from the table, there were only three “unknown” samples, and the three 

target metal analytes were cadmium, lead and copper. The default display in the table 

is the “Mean” values. The user is therefore able to select from the drop-down menu 

whether the mean, standard deviations, or relative standard deviations are to be 

viewed. The final option for the user is to be able to save the predicted results. The 

filename is automatically generated with the time in seconds appended to the end of 

the default filename so that the data file is appropriately date-stamped. 

 

It had been observed that many of the functions that are employed in the Windows 

(desktop) version of LabVIEW (whether version 6.1 or 7.1) cannot be employed in 

the PDA application. For example, the PDA cannot use Property Nodes which add 

extra functionality to an indicator or a button, such as greying out (i.e. disabling) a 

button until a specific event has occurred. 

 

4.4.2 Quantitative Determination of Cadmium, Lead and Copper via the PDA 

 

All measurements were performed on the C-SPE-O batch of carbon-ink screen-

printed electrodes (Section 2.4.2.2). 

 

4.4.2.1 Conversion of PDA Data 

 

When the voltammograms are acquired via the PDA, they are not stored as DPASV 

voltammograms. Instead, the forward and backward currents are stored. The forward 

current is the current prior to the application of the 50mV potential pulse (S1); the 

backward current is the current prior to the removal of the pulse (S2) (Figure 1.7). 

Modules were constructed in both the Matlab and LabVIEW environments to convert 

the PDA data into DPASV voltammograms. Figure 4.5 displays a portion of the 

LabVIEW interface to illustrate the conversion. 



PhD Thesis  Chapter 4 
 

 
Cranfield University  Michael Cauchi 185

 

 
(A) 

 
(B) 

Figure 4.5: Post-processing of an acquired PDA data file corresponding to sample CPC338:  

(A) RAW; (B) Derived voltammogram 
 

The filename which changes to the assigned sample name when the conversion 

ensues, may also be observed. 

 

4.4.2.2 Univariate Approach 

 

Figure 4.6 shows the voltammetric profiles obtained for a series of measurements 

performed on the carbon-ink screen-printed electrodes (C-SPEs) and acquired with 

the PDA. 
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Figure 4.6: Voltammetric profiles for a set of standard samples measured on C-SPEs connected 

to a multi-channel potentiostat controlled by a PDA. Each standard contained the same metal ion 

concentration (ranging from 0 ppb to 200 ppb in increments of 50 ppb) in 200ppm mercuric (II) 

nitrate, 1% nitric acid, 0.1M KCl. Deposition time: 165s; Deposition potential: -1.1V; Range: -1.1 

to -0.2V.; Scan Rate: 10mV/s. 
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A considerable difference in peak height for cadmium and lead between the 0 ppb and 

the 50 ppb standards may be observed; however there is only a marginal difference 

with regards to the copper. It is yet unclear as to why there are significant and cyclic 

waves within the 0 ppb standard which could give rise to low signal-to-noise ratios, 

hence higher detection limits. One postulation is that this phenomenon is due to 

electronic interference on or around the connectors, and/or improper shielding. Figure 

4.7 displays an auto-correlation plot which supports the claim that there is indeed a 

cyclic tendency. 

 

 
Figure 4.7: Auto-correlated plot for the 0 ppb standard acquired on the PDA under the 

experimental conditions described in Figure 4.6 
 

The relatively high correlation coefficient values observed, even after a lag of 5 

potential indices, confirm that there are cyclic tendencies. If there was no auto-

correlation, the “Correlation plot” would be very close to zero irrespective of the lag 

(except for when the Lag = 0; the correlation coefficient = 1). 

 

It has also been observed that there are no major increases in peak intensity from 50 

ppb to 200 ppb except for cadmium. This implies that the correlation between the 

concentration and the peak areas will have a tendency to be of a non-linear nature. 

Figure 4.8 displays the resultant univariate calibration curve. 
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Figure 4.8: Univariate calibration plot of the calculated areas against standard concentrations 

from the voltammograms acquired on the PDA under the experimental conditions described in 

Figure 4.6. Concentration values of 0, 50, 100, 150, and 200 ppb for each metal. Error bars not 

shown due to each standard being measured only once. 
 

As expected, the coefficients of determination (R2) are relatively poor for lead and 

copper at 0.8111 and 0.7857 respectively compared with 0.9828 and 0.9782 from the 

Autolab PSTAT10 (Section 2.4.1.1) . Inclusion of the validation concentrations at 90, 

130 and 180 ppb did not improve the coefficients (0.7656 and 0.7694 respectively). 

The coefficient for cadmium also decreased from 0.926 to 0.8861. This is also 

reflected in the predictions of the “unknown” samples as shown in Table 4.5. 

 
Table 4.5: The predicted concentration values calculated from the respective slopes and 

intercepts from Figure 4.8 and the inclusion of the validation concentration set (IVCS) and 

compared to the actual values 

 TRUE Figure 4.8 IVCS 
Components Cd Pb Cu Cd Pb Cu Cd Pb Cu 

UNK1 200 80 160 131 117 110 128 116 109 
UNK2 100 20 0 101 1 75 98 (-10) 71 
UNK3 0 140 180 (-18) 118 172 (-21) 116 175 

 

This leads to an overall root mean square error (RMSE) of 41.45 ppb for Figure 4.8, 

and 42.19 ppb for inclusion of the validation concentration (IVCS). This further 
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implies that the univariate approach cannot be employed for prediction of the 

unknown samples. 

4.4.2.3 Multivariate Approach 

 

Due to the small number of samples employed for multivariate calibration on the 

PDA (Table 4.6) high RMSEP values were obtained for the prediction of the 

unknown samples compared to Section 2.4.1.2.   

 
Table 4.6: Concentrations of the standards employed in the acquisition of the respective 

voltammograms via a PDA. Experimental conditions described in Figure 4.6 

Standard Cd Pb Cu 
1 130 130 180 
2 180 180 130 
3 0 150 200 
4 90 90 130 
5 150 200 50 
6 150 150 150 
7 130 130 130 
8 90 90 90 
9 180 180 180 
10 100 100 100 
11 200 200 200 
12 50 50 50 
13 0 0 0 
14 0 50 150 
15 0 100 0 
16 0 200 0 
17 200 0 150 
18 150 0 150 
19 0 100 100 
20 150 100 0 

 

The optimum latent variables suggested via the minimum RMSECV and the F-test 

were identical throughout. A U vs T plot (not shown) indicated that there were no 

outliers. The average overall RMSEP values calculated for the unknown samples were 

69.65, 70.44 and 72.60 ppb for data pre-treatment with range-scaling, no scaling and 

mean-centring respectively. 
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4.4.2.4 Instrument Standardisation 

 

The voltammograms of the standards acquired via the PDA (Table 4.6) were 

transferred to a desktop PC and combined into a 20 × 3 matrix. The corresponding 

voltammograms were thus extracted from the relevant training and validation sets 

(employed in Section 2.4.1) and combined into a second matrix. The two matrices 

were then employed to effect the instrument standardisation. The voltammograms 

pertaining to the “unknown” samples (Table 4.2) were transferred from the PDA to 

the PC, standardised by the transformation matrix (Section 4.2.2.4) and predictions 

carried out. Figure 4.9 compares the calculated overall RMSEP values for 

standardised datasets. 
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Figure 4.9: RMSEP plots for range-scaled data after SIMPLS modelling: (A) “No PDS” implies 

that predictions were carried out on the unknown samples measured on the Autolab; (B) “Yes 

PDS” implies that predictions were carried out on the unknown samples measured on the PDA 

and thus having undergone instrument standardisation. Window size: 87; (C) “Yes PDS – No 

ABC” implies (B) but with no additive background correction (ABC).  

 

A similar trend was also observed for mean-centred data (not shown). As can be seen, 

the predictions performed for the unknown samples acquired on the Autolab are better 

than those acquired on the PDA by 10 to 15 ppb. However a number of reasons were 

considered for this. One is the minimal number of voltammograms acquired on the 

PDA pertaining to the standards in Table 4.6 leading to minimal variability in the 
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modelling implying the generation of a weak transformation matrix. Another is due to 

the fewer number of variables in the voltammograms acquired on the PDA (175) 

compared to the Autolab (184), the voltammograms acquired on the latter must thus 

be cropped leading to the possible loss of information. However as only the first few 

variables at either end of the voltammogram are omitted, this is considered not to 

have a significant impact. It was also observed that the omission of additive 

background correction (ABC) worsened the predictive abilities of the SIMPLS model 

in conjunction with a weaker transformation matrix with an increase of 20 – 25 ppb. It 

must be stressed that the data analysis was performed both in the Matlab and 

LabVIEW environments, and that identical results were attained.  

 

A final point to mention is that setting the window size to zero, and thus invoking the 

direct standardisation method as opposed to piecewise direct standardisation, leads 

to very poor standardisation models generated; so poor that the results are not shown 

(very high RMS values exceeding 108 were obtained!). This is due to singular 

matrices being generated during the modelling stages of the standardisation via the 

SVD function (warning messages are displayed in Matlab). No results could be 

obtained in the LabVIEW version due to the LabVIEW SVD function outputting an 

empty matrix rather than a singular one. 

 

4.4.2.5 Application of PDS to CRM Soil Extract 

 

Figure 4.10 shows the overlaid voltammograms acquired on the PDA of the prepared 

CRM samples with increasing concentrations of cadmium, lead and copper compared 

to voltammograms acquired on the Autolab PSTAT10. 
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Figure 4.10: Overlaid voltammograms of Cd, Pb and Cu in the CRM samples acquired on the 

PDA (A) and Autolab PSTAT10 (B). Instrumental conditions: deposition time: 165s; deposition 

potential: -1.1V; scan rate: 10mV/s) 
 

It is evident to see that the extraction procedure employed has been very successful in 

extracting the target metal ions. However, the peak heights of the voltammograms are 

less distinguished (Figure 4.10A), especially at the 100 and 150 ppb level. Standard 

addition experiments were also performed (Figure 4.11). 
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Figure 4.11: Standard addition performed after calculation of the peak areas obtained in Figure 

4.10: (A) PDA; (B) Autolab PSTAT10 
 

As is clear to see in Figure 4.11B, the coefficients of determination (R2) are 

encouraging. The magnitude of the error bars increase with concentration, particularly 

for copper (concurs with previous findings). However, the calibration is not as good 

for the PDA-acquired data (Figure 4.11A). This is evident in the coefficients of 

determination (R2) and the increase in the heights of the error bars. Table 4.7 

compares the calculated % recoveries of metals from the soil on the PDA and Autolab 

via standard addition whilst Table 4.8 compares the different multivariate calibration 
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regression models. The method employed to calculate % recoveries of the respective 

metals is to calculate the amount of metal in mg/kg from the predicted concentrations 

taking into account the dilution factors and then to divide by the true amount as stated 

on the information sheet supplied with the CRM sample. 

 
Table 4.7: Determination of the % recovery for Cd, Pb and Cu present in the CRM via standard 

addition (Figure 4.12) 

Target Ion % Recovery 
(Flame AAS) 

% Recovery  
(PDA) 

% Recovery 
(Autolab) 

Cd 68.49 114.5 118.5 
Pb 26.34 93.01 93.01 
Cu 38.32 63.32 63.32 

 
Table 4.8: Determination of the % recovery for Cd, Pb and Cu present in the CRM via 

prediction with the PDS and SIMPLS models (Minimum RMSEP). Key: P = PDA; A = Autolab 

Note: PDS only applied to PDA voltammograms 

Raw Range-scaled Mean-centred Weighted Element Flame 
AAS P A P A P A P A 

Cd 68.49 6.90 60.23 15.29 - 17.89 61.88 37.81 68.18 
Pb 26.34 33.89 47.05 32.98 - 34.02 47.35 64.56 40.76 
Cu 38.32 39.85 19.96 35.54 - 40.57 18.90 57.90 27.16 

 

The % recoveries calculated from the voltammograms acquired on the Autolab agree 

more with the % recoveries determined by flame AAS than do the PDA 

voltammograms. This can be attributed to the poor transformation matrix generated 

by the PDS algorithm as explained in the previous section. This has led to the 

SIMPLS models employed not being sufficiently robust to predict the analyte 

concentrations. This is re-enforced by the % recovery calculated via standard addition 

(Table 4.7) in which the values calculated from the voltammograms acquired via the 

PDA and the Autolab are in very close agreement, for example 63.32% for copper. 
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4.4.3 Quantitative Determination of Arsenic, Mercury and Copper via the PDA 

 

All measurements were recorded on the AO batch of gold-ink screen-printed 

electrodes (Section 3.4.1.2). 

 

4.4.3.1 Univariate Approach 

 

The voltammetric response obtained on the PDA was very poor compared to the 

response on the carbon-ink screen-printed electrodes (Figure 4.6). Figure 4.12A 

displays the overlaid voltammograms acquired on the PDA with the corresponding 

univariate calibration curve in Figure 4.12B. 
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Figure 4.12: The overlaid voltammograms (A) and calibration curves (B) for arsenic (III) and the 

“mixture” of mercury (II) and copper (II) acquired on the AO batch of gold-ink screen-printed 

electrodes. Instrumental conditions as in Table 4.3 

 

As can be seen by the coefficients of determination, there is no correlation (Figure 

4.12B). In the case of arsenic, it is due to the huge area calculated at 500 ppb. 

However, as the concentration increases, the computed areas decrease. Calculating the 

coefficient of determination for the 200, 300 and 600 ppb arsenic concentrations, a 

linear relationship (R2 = 0.9992) is observed. The mercury and copper “mixture” is no 

better. This is mostly due to no distinct peak being observed from the baseline and so 

determining the area was difficult. 

 

It must be stressed here that only one measurement per sample was acquired due to a 

limited number of electrodes. As can be seen, the arsenic peak intensity does not 

increase as the concentration increases (Figure 4.12A). This can be attributed to a 
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number of factors such as the poorer performance of the AO batch (discussed in 

Section 3.4.2) and the sensitivity of the in-house built multi-potentiostat compared to 

the “more sophisticated” Autolab. Employing the coefficient of determination of 

0.9992, the arsenic concentration was determined in the sample labelled “UNK2” 

(Table 4.4) which had also been measured on the PDA. The predicted concentration 

was 487 ppb (400 ppb true). No other predictions were performed. 

 

4.4.3.2 Multivariate Approach 

 

Table 4.9 displays the standards measured on the gold-ink screen-printed electrodes 

via the PDA. 

 
Table 4.9: The standards measured on the PDA under the same experimental conditions as 

detailed in Table 4.3 

Sample As Hg Cu Sample As Hg Cu 
AHC822 800 200 200 AHC000 0 0 0 
AHC628 600 200 800 AHC733 700 300 300 
AHC888 800 800 800 AHC555 500 500 500 
AHC662 600 600 200 AHC333 300 300 300 
AHC222 200 200 200 AHC753 700 500 300 
AHC840 800 400 0 AHC533 500 300 300 
AHC648 600 400 800 AHC337 300 300 700 
AHC666 600 600 600 AHC777 700 700 700 
AHC622 600 200 200 AHC000 0 0 0 
AHC024 0 200 400 AHC-U1 600 400 200 
AHC824 800 200 400 AHC-U2 400 0 400 
AHC444 400 400 400 AHC-U3 0 600 0 
AHC262 200 600 200 AHC-U4 0 600 200 
AHC026 0 200 600 AHC-U5 500 200 200 
AHC864 800 600 400 -- -- -- -- 
 

The leave-one-out cross-validation plots for the dataset that had been acquired on the 

PDA (not shown) were poor due to the insufficient number of samples and the fact 

that only one measurement per sample was performed. For example, the plot for 

copper contained a maximum at the 14th latent variable which can also be attributed to 

the presence of an outlier but is more likely due to the absence of a discernible peak in 

the +0.45V range. Application of range-scaling and mean-centring does not improve 

matters. Furthermore, the variance captured in the Y-block for the first latent variable 
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decreases from 75  67  12% respectively. Application of weights to the dataset 

does not improve matters (Figure 4.13). 
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Figure 4.13: RMSEP plots for the prediction of the “unknown” concentration values (Table 4.4) 

with respect to the different pre-treatment techniques 
 

As can be seen, the model constructed via the range-scaled data offers the better 

predictions in both the non-weighted and weighted datasets (with ~240 and ~260 ppb 

respectively). Overall, the models are very poor due to only a small number of 

samples employed. 

 

4.4.3.3 Instrument Standardisation 

 

Due to the overall poor quality of the voltammograms obtained with the AO batch 

employed on the PDA “field” device, it was envisaged that instrument standardisation 

would not be successful in contrast to what had been observed with the carbon-ink 

screen-printed electrodes. Figure 4.14 compares two voltammograms of the same 

standard but acquired on different instruments. 
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(A) 

 
(B) 

Figure 4.14: Voltammograms of standard AHC662 (600 ppb As and Hg; 200 ppb Cu) acquired 

on an Autolab multi-PSTAT10 (A) and the PDA-controlled in-house built multi-potentiostat (B) 
 

Instrument standardisation was performed with the piecewise direct standardisation 

(PDS) algorithm incorporating additive background correction (ABC). Figure 4.15 

displays the RMSEP plots for the predictions of the three target metal ions under 

different pre-treatment techniques. 
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Figure 4.15: The RMSEP plots for the predicted concentrations of arsenic (III), mercury (II) and 

copper (II) in 4M HCl from standardised PDA data 
 

Data pre-treatment with range-scaling (RS) has led to a better overall RMSEP value 

with ~250 ppb compared to an average of ~550 ppb for the other pre-treatment 

techniques. The “WTD2” term implies that the PDA data was also weighted in order 

to observe whether improvements could be made, in other words, whether the PDA 

data should also be weighted, as was suggested in Section 4.4.2. One would therefore 
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expect improved PDS models to be attained. Although there is a slight improvement 

of ~ 100 ppb in the RMSEP values compared to the normal default weighting (Figure 

4.15), it was deemed necessary to make alterations to the main programs at a later 

stage. 

 

In short, there are insufficient samples to properly generate a PDS model 

(transformation matrix) and hence to standardise the voltammograms that were 

acquired on the PDA-controlled “field” device. This is partly attributable to the 

limited electrodes available. Furthermore, the qualities of the voltammograms were 

very poor compared to those recorded on the AI batch on the Autolab multi-PSTAT10 

instrument (Section 3.4.2). 

 

4.4.3.4 The CRM Soil Extract 

 

Figure 4.16A displays the overlaid voltammograms acquired on the AO batch of 

electrodes via the PDA. Only one measurement per sample was performed. The 

profiles are not distinctive although a small flattened peak in the CRM000 

voltammogram for arsenic is observed at +0.2V. This peak is also more pronounced 

after the addition of 800 ppb arsenic. However, a “tailing off” for copper in the 

+0.45V region is not observed. This has therefore made it difficult to ascertain the 

peak area. This has thus contributed to the relatively poorer standard addition curve as 

shown by the coefficient of determination (R2) value of 0.923 (Figure 4.16B). 
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Figure 4.16: Overlaid voltammograms (A) and standard addition curve (B) for As and Cu 

recorded on the AO batch of gold-ink screen-printed electrodes via the PDA 
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As the extrapolation of both arsenic and copper at Y=0 does not lead to a “negative” 

value on the X-axis in conjunction with negative values on the Y-axis at X = 0 ppb 

(Figure 4.16B), this implies that no arsenic and copper was present in the CRM 

solution. This conforms to what was observed in Section 3.4.3.2 in that the SIMPLS 

models predicted no presence of both arsenic and copper, but is in contrast to what 

was observed in Section 3.4.3.1 for the standard addition performed on 

voltammograms acquired on the Autolab in which an extraction value of ~90% was 

attained. However, it must be stressed that there are only three data points in the 

standard addition curve (Figure 4.16B). Furthermore, the samples were only measured 

once on the gold-ink screen-printed electrodes which, as has been shown elsewhere, 

are not very reproducible. 

 

Importing models in which data pre-treatment in addition to instrument 

standardisation was performed gave a highly over-predictive arsenic content in which 

the % recovery was in excess of 350 and 800 for un-scaled and range-scaled data 

respectively. The poor performance was expected due to instrument standardisation 

not being highly successful in the previous section. 

 

4.4.4 Development of an Automated System 

 

The advantages of developing an automated data acquisition system negates the 

effects of human error and increases the number of experiments performed 100-fold 

compared to manual acquisition (Richards et al.,  2003). Section 4.4.4.1 briefly 

describes the development of a sampling preparation device. Section 4.4.4.2 describes 

the preliminary efforts to develop a screen-printed electrode dispenser. Finally, 

Section 4.4.4.3 details the preliminary attempts at creating an interface in LabVIEW 

to acquire DPASV voltammograms directly from the hardware controller. 

 

4.4.4.1 Development of the Sample Preparation Unit 

 

The sample preparation device was developed in-house in order to automatically 

prepare samples prior to the acquisition of a dual pulse staircase voltammogram 

(Richards et al.,  2003). The device was labelled a “Robotic Technician” or 

“Robotech” for short. A program had been constructed in Borland Visual C++ 
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(Windows 98) to control the array of pumps in order to effect the sample preparation 

within the mixing chamber. Solid-state electrodes were employed throughout and 

connected to an external analytical system with which the program communicated. 

Full functionality and operating conditions of the program and the device are detailed 

in the reference. 

 

Due to the author’s prior knowledge of the LabVIEW programming environment, a 

new program was constructed to communicate with the sample preparation device. 

The advantage of this action is that the program would be much easier to upgrade as 

advances were made. Furthermore, the data analysis package developed in the 

LabVIEW environment (Chapter 2) could either be implemented as a sub-program, or 

the data generated by the new program (labelled as “Robotech II”) could be exported 

in a custom format so as to be easily manipulated by the data analysis package. 

 

Acquisition of the DPASV voltammograms was by an Autolab PSTAT10 (Eco 

Chemie, Holland) which was connected to the sample preparation device by a parallel 

printer cable. With both the Borland Visual C++ and LabVIEW versions, the GPES 

4.9 application (Eco Chemie, Holland) was also initiated. In order to allow 

communication between the two programs and for data acquisition to commence, a 

custom-built macro was executed (Figure 4.17). 

 

Procedure!Method = VA 
Procedure!Open("C:\MikeC\LabVIEW\ROBOTECH II\DPASV-AuSPE") 
DIO!SetMode("P2","A","IN") 
Repeat(250) 
System!Beep 
DIO!WaitByte("P2","A","1") 
Procedure!Start 
System!Beep 
Dataset!SaveAs("C:\MikeC\LabVIEW\ROBOTECH II\DATA\DEFAULT") 
EndRepeat 

Figure 4.17: The MACRO script executed by the GPES application 

 

In short, the method is loaded (VA), then the Procedure File is loaded. The GPES is 

then notified that an external source will trigger the Autolab via “P2” and channel 

“A”. The “IN” function informs the GPES that it is an “incoming” signal. In the 

above case, there will be 250 measurements. The GPES is then told to WAIT until the 

signal is received before acquiring the voltammogram. When the signal is received, 

the voltammogram is acquired (deposition followed by stripping as detailed in the 
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Procedure file). When the voltammogram has been acquired, the system emits an 

audible signal and the file is saved as “Default”. The MACRO loops round and waits 

for the next input signal, or terminates when all 250 measurements have been made. 

 

4.4.4.2 A Proposed Development for a Screen-Printed Electrode Dispenser 

 

The circuitry for the screen-printed electrode delivery system was designed, built and 

implemented into the “Robotech II” LabVIEW program. The circuit board was 

equipped with four LEDs. The purpose of the LEDs is to inform the user as to what 

the status of the dispenser is. Figure 4.18 illustrates the simplified electronic design of 

the device. 
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Figure 4.18: Simple electronic design of the screen-printed electrode delivery device 

 

This circuit board would later be contained within the dispenser unit which itself 

would be powered by an external power source either by AC mains via a built-in 

transformer or a 9 or 12V DC input. This would be connected to the PC via the serial 

port (COM1: 9600 baud rate; 8-bits; 1-stop bit; 0-parity). The outlined approach is 

executed as follows: 
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• The voltage regulator ensures that the 5V passes through the entire circuit. The 

capacitors (1 and 0.1µF) act to “steady the flow of current”. 

• The PIC (programmable integrated circuit) micro-controller designates which 

LED is to be lit dependant on what signal it receives from the COM1 port of 

the PC. A small program written in BASIC is embedded within the controller 

• The appropriate LED is lit when the corresponding pin on the PIC is set to 0V; 

this creates a potential difference which allows the current to flow and thus the 

LED to be lit. The LED is unlit when the corresponding pin on the PIC is set 

to 5V. 

 

The design of the delivery system is currently envisaged to be in the form of a rotating 

disc containing four grooves which each hold a single screen-printed electrode. A 

stack of pre-cut electrodes sits above the disc. As the disc rotates, and one of the 

grooves passes beneath, an electrode is released. This electrode remains in the groove 

until it reaches the connector and is employed. After the acquisition of a 

voltammogram, the disc is rotated. As another electrode is selected, the previous one 

is ejected. Figure 4.19 displays the overall instrumental set up of the proposed system. 
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Figure 4.19: Proposed instrumental set up for automated system 
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There are at present four LEDs. Each of these informs the user that a specific function 

is being carried out. Table 4.10 lists the functions of the LEDs along with their bit 

values. 

 
Table 4.10: Function of the four LEDs and corresponding bit patterns 

LED (and pin) Function Numeric Hexadecimal Bit pattern 
∆ (RC4) Rotate disc 1 1 0001 
γ (RC3) Contacting 2 2 0010 
β (RC6) Eject SPE 4 4 0100 
α (RC7) New SPE 8 8 1000 

 

If the ∆-LED is lit an appropriate signal is sent to the rotor to rotate the disc for a 

specified number of seconds (depending on the speed of rotation of the rotor coupled 

with the ability to be able to vary the rotational speed). Alternatively, if the γ-LED is 

lit, then a solenoid is activated so as to ensure contact is made between the terminals 

of the screen-printed electrode and the device. 

 

An alternative design is illustrated in Figure 4.20. It consists of a substrate disc of 

carbon-ink screen-printed electrodes (blue). The areas in white are blank but contain 

drainage holes for the cleaning cycle. Once every electrode on the disc has been 

exhausted, the terminal connectors retract whilst the drop dispenser swivels to the 

right. The next disc is dropped for the next round of measurements. Should there be 

insufficient discs, the program controlling the automated process would pause the 

acquisition until new discs are placed in the holder. 
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Figure 4.20: An alternative design for the screen-printed electrode dispenser 

 

In order to avoid cross-contamination, a second tube could be employed to remove the 

drop after acquisition of the voltammogram. The important part of the design is that 

the height of the terminal connector is adjustable and rises as a new disc drops. 

Sophisticated mechanisms would be required. However the advantage of this design 

over the one in Figure 4.19 is that there is no risk of an electrode failing to fall into a 

groove. Furthermore, there is no need to cut out individual electrodes from the sheets.  

 

For each measurement to be made, the following steps would be performed (Figure 

4.19): 

1. Disc rotated one-eighth of a turn clockwise which contains a new SPE. The 

corresponding LED (∆) is lit. 

2. Sample preparation performed by pumps as determined by the concentration 

values of each component for that particular sample 

3. Disc rotated one-eighth of a turn clockwise which places SPE in position. The 

corresponding LED (∆) is lit. 
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4. Contact is made with the terminals of the SPE. The corresponding LED (γ) is 

lit. 

5. Sample is injected on to the working area of the SPE by the sample 

preparation device. 

6. The Autolab is triggered. DPASV voltammogram is recorded by the Autolab 

and stored in a text file with a default filename. 

7. The main program copies the default file with a new name and deletes the 

default file. This is to prevent loss of data should problems arise. 

8. The program extracts the new voltammogram from the new file and displays 

it. 

9. The terminals of the SPE are disconnected. The corresponding LED is unlit. 

10. A new SPE is placed on to the disc whilst an older SPE is ejected. The 

appropriate LEDs are lit when this occurs. 

11. The disc is rotated one-eighth of a turn. The corresponding LED (∆) is lit. 

12. The wash cycle is performed. Go to Step 2. 

 

Ten measurements were performed for the analysis of cadmium, lead and copper in 

200 ppm mercuric (II) nitrate, 1% v/v nitric acid, and 0.1M KCl. As the dispenser 

does not exist, the samples were added manually on the SPE. The purpose for the run 

was to ensure that the LEDs functioned when required, and that the dispenser could 

actually be physically implemented into the design. Figure 4.21 shows the user 

interface for the “Robotech II” application after acquisition and displaying of a 

voltammogram. 
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Figure 4.21: User interface of application after acquisition of voltammogram (100 ppb) 

 

Note that the concentration values displayed in the concentration matrix table in 

Figure 4.21 do not correspond to the concentrations of the samples measured in this 

instance. The measurements were performed to ensure that the program could acquire 

and store the data whilst controlling the other peripherals such as the pumping unit 

and the dispenser. The voltammograms obtained for 50, 100, 150 and 200 ppb are 

displayed in Figure 4.22. 
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Figure 4.22: Voltammograms acquired via the Robotech II unit for 50, 100, 150 and 200 ppb Cd, 

Pb and Cu in 200 ppm mercuric (II) nitrate, 1% nitric acid and 0.1M KCl. Instrument 

parameters: deposition potential: -1.1V; deposition time: 165s; scan rate: 10mV/s 
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There is a substantial increase in the peak heights from 50 to 100 ppb and then from 

100 to 200 ppb. However, the 150 ppb peak appears to be more intense than the 200 

ppb peak. This can be attributed to the SPE itself seeing as only one measurement per 

sample was performed. 

 

Finally, for automation to be successful, the system must be able to operate for long 

durations as specified by the operating time and sampling frequency. The system was 

thus set up to do so by connecting a single carbon-ink screen-printed electrode to the 

Autolab PSTAT10 and placing the electrode in a beaker containing 200 ppb 

cadmium, lead and copper in 200 ppm mercuric (II) nitrate and 0.1M KCl. DPASV 

voltammograms were successfully acquired over a period of 24 hours. 

 

4.4.4.3 The Direct Acquisition of DPASV Voltammograms with LabVIEW 

 

It would be highly advantageous to be able to omit the acquisition of the DPASV 

voltammograms via the GPES software which controls the Autolab PSTAT10 

potentiostat by constructing the equivalent interface in the LabVIEW environment. 

This is thus feasible seeing as other workers have constructed specific modules in 

order to acquire and process data (Avdikos et al.,  2005). 

 

As the Autolab potentiostat was connected to the PC via the ISA slot, preliminary 

investigations were performed in order to determine whether such a module could be 

constructed to control the potentiostat. This involved constructing a monitoring 

module to capture the signals transferred to and from the PC via the ISA slot on all 

available channels during the acquisition of a voltammogram. PCA score plots 

indicated that of the eight channels, the first, second, and fifth channels were involved 

with the acquisition of the signal; the sixth channel was involved in the deposition 

stage. A Matlab script was then written to convert the captured data from the first, 

second and fifth channel and construct a voltammogram (Figure 4.23). 
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Figure 4.23: Calculated voltammogram (200 ppb Cd, Pb, Cu) from the measured raw data points 

contained in Channels 1, 2 and 5 (dep time: 80s; dep pot: -1.1V; scan rate: 10mV/s; modulation 

amplitude: 50mV; interval time: 0.5s; modulation time: 50ms; range: -1.1 to -0.2V) 
 

The “voltammogram” in Figure 4.23 was acquired by calculating the difference 

between channels 1 and 5, and then subtracting channel 2 from this difference. Three 

distinct peaks are visible which could correspond to cadmium, lead and copper 

respectively. 

 

There is thus strong evidence that a module can be constructed. However, it must be 

borne in mind that it is unclear how the electronic signals are conveyed within the 

ISA card (supplied by Eco Chemie) as well as within the hardware controller. 

Furthermore, it is not known how the GPES program processes the data/signals 

exchanged between the PC and the hardware controller. Another point to overcome is 

how to inform the hardware controller to apply a deposition potential of -1.1V or -

0.7V. Further analyses of the generated data files are thus warranted. 

 

There is thus great potential for the development of an automated data acquisition 

system coupled with data pre-treatment and multivariate calibration techniques; 

models are developed in the laboratory, exported to the PDA which then acquires 

voltammograms in the field and predicts the amounts of the target analytes after 

application of a standardisation routine. This therefore satisfies the requirements for 

at-line analysis. 
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4.5 Conclusions 
 

Although disposable screen-printed electrodes offer the possibility of at-line analysis, 

flow injection systems, as described in Section 4.2.1, applied to the ARTDEMO 

project would provide “real-time” readings to feed into an overall process 

management protocol. An alarm can be immediately raised should problems, such as 

contamination in the form of an excess of metal ions, arise. However, following the 

raising of an alarm, at-line analysis employing a PDA and a field-based instrument to 

confirm any problems will still be preferable to the laborious process of sampling, 

transportation to a central laboratory and finally measurement on a laboratory-based 

instrument. 

 

Initial attempts to incorporate chemometric techniques via a custom-built PDA 

application have proved successful. This follows from the successful implementation 

of the instrument standardisation techniques of direct standardisation and piecewise 

direct standardisation with additive background correction. It has been reported that 

both range-scaling and mean-centring offer improved predictions of both 

voltammograms acquired in the laboratory, and on the PDA via instrument 

standardisation. 

 

Regarding carbon-ink screen-printed electrodes, weighting does not improve the 

predictions when employed in conjunction with PDS. It has been postulated that 

applying no weights to the voltammograms acquired on the PDA decreases the 

efficiency of the PDS modelling. This therefore implies that the weighting must be 

applied to all datasets. However, with regards to the gold-ink screen-printed 

electrodes, instrument standardisation has not been successful. This is mostly due to 

the poor qualities of the acquired voltammograms attained via the PDA. This implies 

that further investigations are warranted should the quantitative determination of the 

presence of arsenic, mercury or copper in the “field” via a PDA be a requisite. 

 

Initial attempts at developing an automated sample preparation and screen-printed 

electrode dispensing unit have proved successful. The “Robotech II” program 

constructed in LabVIEW is currently able to control the sample preparation unit, 
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communicate with an external instrument (the Autolab PSTAT10), acquire the 

voltammograms and store the relevant data over a designated period of time. The 

implementation of the dispenser circuit into the main “Robotech II” program has also 

proved successful. The next stage of the development would involve four steps: 

 

1. The construction of the dispenser itself 

2. Replacing the Autolab PSTAT10 controller with either the in-house custom-

built multi-potentiostat device or another specially constructed device which 

can also be controlled by the LabVIEW program. 

3. Finalisation of the “Robotech II” program 

4. Patenting and marketing the package 

 

The thesis has so far reported on the successful application of multivariate calibration 

regression to electrochemical data, namely differential pulse anodic stripping 

voltammograms. However, for a complete and robust system the same chemometric 

tools must be applicable to the screening and quantitative determination of organic 

analytes in the environment. Chapter 5 presents such an application to polynuclear 

aromatic hydrocarbons (PAHs), in particular anthracene, phenanthrene and 

naphthalene. 
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CHAPTER 5: 

APPLICATION OF MULTIVARIATE CALIBRATION ON 2D 

AND 3D FLUORESCENCE SPECTRA FOR THE 

QUANTITATIVE DETERMINATION OF ANTHRACENE, 

PHENANTHRENE AND NAPTHALENE 
 

5.1 Overview 
 

This chapter focuses on applications of the data analysis package developed in 

Chapter 2 for the quantitative determination of anthracene, phenanthrene and 

naphthalene via emission spectra (2D) and excitation-emission matrix (EEM) spectra 

(3D). Examples of applications of chemometrics to fluorescence spectra for the 

quantitative determinations of specific target components are given. The main focus 

of the discussion will be on partial least squares (PLS) regression. Other multivariate 

calibration techniques are also discussed. The materials and methods employed will 

be detailed followed by an in-depth discussion of the results obtained. Finally, an 

overall conclusion is drawn. 

 

5.2 Introduction 
 

Fluorescence spectroscopy has become a widely used method of analysis over the last 

two decades. The general theory and background of the application has already been 

given in Section 1.4.3. The main advantages have already been stated such as relative 

cheapness in instrumentation, high sensitivity, and non-destructive nature of the 

analytical method itself. Emission, excitation and synchronous fluorescence 

spectroscopy are some of the variants which will be discussed below. These can lead 

to the formation of 2D fluorescence data, whilst excitation-emission matrices (EEMs) 

lead to the formation of 3D fluorescence data, and thus an overall generation of huge 

amounts of data which can be dealt with adequately with chemometrics. 

 

The application of chemometrics to fluorescence spectroscopy has also seen a 

substantial growth in recent years. Some of these applications are discussed below, in 
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particular to organic data, mainly originating from pharmaceutical and environmental 

sectors. These include the application of fluorescence spectroscopy in conjunction 

with partial least squares (PLS) regression, in addition to other chemometric 

techniques such as artificial neural networks (ANNs), and principal component 

analysis (PCA). Finally, a brief discussion will follow on the application to 

polynuclear aromatic hydrocarbons (PAHs). 

 

5.2.1 Fluorescence and PLS 

 

As far back as the early eighties, the application of PLS to fluorescence and other 

spectroscopic and electro-analytical techniques has been investigated. PLS had been 

employed by Wold et al., as far back as 1983 to resolve severely overlapping 

fluorescence spectra originating from a mixture of humic acid, lignin sulphonate and 

an “optical whitener” (Sjostrom et al.,  1983). They also compared PLS against PCR 

and ridge regression (RR) which involves the addition of “a small constant to the 

diagonal elements in the moment matrix before its inversion”. PLS performed much 

better than the other two techniques.  This was mainly due to the ability of PLS to 

take the concentration (Y) matrix into account. These authors were in fact one of the 

first scientists to apply PLS to fluorescence emission spectra. 

 

Mixtures containing phenol, o-cresol, m-cresol, and p-cresol were resolved with 

excitation fluorescence spectroscopy and PLS (del Olmo et al.,  1996). These 

compounds are used as starting blocks for the synthesis of more complex compounds 

such as herbicides and insecticides. Their spectra overlap considerably which is a 

common “downside” to fluorescence spectroscopy. Fortunately, PLS regression was 

able to assist in resolving the spectra. The PLS1 algorithm was employed, which 

implies that separate models were built for each of the four components. 

 

The authors had acquired three different datasets: emission spectra (constant 

excitation wavelength of 219 nm); excitation spectra (constant emission wavelength 

of 298 nm); and synchronous spectra (constant difference between emission and 

excitation of 80 nm). Although synchronous fluorescence spectra tends to give better 

spectra with refined peaks, the authors found that better resolution with the PLS1 

algorithm occurred with the data acquired via the excitation fluorescence spectra. 
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Savitzky-Golay filtering was unable to assist in the resolution of the overlapping 

spectra with regards to emission and synchronous fluorescence. Furthermore, the 

optimum latent variables calculated for each component were derived via a statistical 

F-test on the PRESS values (Section 1.5.5.2) which calculates the F-ratio between the 

impending PRESS values and the minimum PRESS value (Haaland & Thomas, 

1988a; Haaland & Thomas, 1988b). 

 

The PLS1 algorithm was also employed in the simultaneous determination of the 

overlapping fluorescence spectra of naproxen (a substitute for aspirin), salicylic acid 

and acetylsalicylic acid (Navalon et al.,  1999). Without the appropriate chemometric 

tools, the components within the given sample would require separating out via 

classical means such as gas or liquid chromatography. It was also reported that 

finding “a common emission wavelength” for the acquisition of an excitation 

spectrum was very difficult with regard to the three components due to the inherent 

loss of sensitivity of one component with respect to the others. Contrary to (del Olmo 

et al.,  1996), the emission spectra were recorded instead. The F-test ((Haaland & 

Thomas, 1988a; Haaland & Thomas, 1988b)) was employed to determine the 

optimum latent variables for each component. The authors also found that mean-

centring the data significantly improved the predictive abilities of the PLS1 models 

(Navalon et al.,  1999). 

 

Fluorescence spectroscopy coupled with PLS has been applied to a wide variety of 

pharmaceutical formulations. The gain in popularity is understandable when one 

considers the traditional time-consuming and expensive methods employed, such as 

GC-MS and capillary zone electrophoresis, when determining the presence and 

subsequent amounts of components in given samples (Sorouraddin et al.,  2005). 

Recent years have seen the growth in the application of PLS and other chemometric 

tools in such fields as environmental, clinical, and biomedical including the analysis 

of drugs (Martos et al.,  2000). 

 

The preparation of pharmaceutical products involves many compounds. Many steps 

can be employed, and each step may require analysis to ensure that fabrication and 

processes are conforming to the appropriate protocols. If each step contains a mixture 

of a given number of components, it is extremely important to be able to resolve and 
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quantify these components, in the least-expensive but most productive and conclusive 

manner. Fluorescence spectroscopy coupled with PLS meets these criteria. 

Pyridoxine, acetylsalicylic acid and codeine are found in many pharmaceutical 

products in a differing number of combinations. PLS could successfully predict the 

amount of each component in the given pharmaceutical products. This was due to its 

ability to resolve the overlapped fluorescence spectra obtained for each product 

(Martos et al.,  2000). 

 

Human urine exhibits fluorescent properties. One way of assessing the efficiency of a 

given drug such as an antibiotic is to analyse the content in urine. One such group of 

antibiotics employed is the quinolones (Espinosa-Mansilla et al.,  2004). However, a 

marked improvement in the bactericidal properties of the quinolones is observed 

when 6-fluoro and 7-piperazinyl groups are chemically added to the molecule. It was 

reported that “conventional” 2D analysis, for example the emission spectra, was not 

possible due to the extreme overlap attained. However, when the EEM was acquired 

for each component, the authors were able to ascertain the optimum excitation 

wavelengths leading to the respective emission spectra. 

 

Caffeine is also employed in many pharmaceutical preparations alongside 

acetylsalicylic acid (Moreira et al.,  2005). HPLC is normally employed to determine 

the amounts, but at a relatively high cost. Two PLS1 models were developed for the 

simultaneous determination of the caffeine and acetylsalicylic acid via emission 

fluorescence spectroscopy. In this instance, the analytes were “pulverised” and mixed 

together in different amounts ranging from 50-170mg/g for acetylsalicylic acid and 5-

20mg/g for caffeine. These were “mixed with lactose, maize starch, talc and 

magnesium stearate in the 70:15:10:5 or 80:10:7:3 w/w proportions”. Although there 

was considerable spectral overlap, it was concluded that the application of PLS was 

sufficient to satisfactorily resolve the two components in a given “pharmaceutical 

formulation” without the need to perform any preparatory steps in the laboratory. 

 

The discussion has so far been focussed on organic compounds employed in the 

manufacture of pharmaceutical products. Little has so far been said of the detection, 

whether on-line, at-line or off-line, of organic compounds present in the environment. 

Organic compounds of interest are the polynuclear aromatic hydrocarbons (PAHs), 
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which will be discussed in greater detail later (Section 5.2.3). However, these PAHs 

will be a fraction of the natural organic matter (NOM) found for example in rivers and 

lakes which can be employed as sources for drinking water (Marhaba et al.,  2003). It 

was stated that NOMs are “complex mixtures of organic materials”. 

 

Dissolved organic carbon (DOC) can give a good indication to the NOM present in 

drinking water. Fluorescence spectroscopy is employed since some of the organic 

materials will contain fluorophores. The PLS models generated were able to predict 

the DOC in the given river water samples. It was also suggested that “other 

parameters linked to the organic content in water such as chlorophyll-a, and chlorine 

demand” could also be determined. However, it was equally stressed that the 

detection of outliers was of great importance. Glyphosphate, which is employed as a 

herbicide to destroy weeds, was successfully determined in the presence of its 

metabolite (aminomethylphosphonic acid) in river water via fluorescence emission 

spectroscopy and the PLS1 modelling algorithm (Meras et al.,  2005). However both 

components must first undergo a derivatisation reaction with 4-chloro-7-

nitrobenzofuran (NBD-Cl) in order for them to attain fluorescent properties. However, 

this only takes five minutes compared to one hour in another method suggested by 

other workers (Colin et al.,  2000). Good recoveries were obtained for glyphosphate 

(83 to 94%) and aminomethylphosphonic acid (104 to 120%) (Meras et al.,  2005). 

 

It must be stressed that in the references detailed above, the PLS optimum latent 

variables were selected by the F-test on the PRESS values (Haaland & Thomas, 

1988a; Haaland & Thomas, 1988b). 
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5.2.2 Fluorescence Incorporated with Other Chemometric Tools 

 

Although PLS regression has been shown in many instances to be the most efficient 

chemometric tool in calibrating analyte concentrations, there are a number of other 

tools that can also be employed, either instead of, or in addition to PLS, such as PCA, 

and ANNs.  In Section 5.2.1, it was mentioned that dissolved organic carbon (DOC) 

in river water was determined via fluorescence spectroscopy and PLS. The same can 

be done for the DOC in sea-water (Persson & Wedborg, 2001). A good description of 

the three groups of humic substances was given. The first is humin which is 

“insoluble in water at all pHs”, humic acid which is not soluble at < pH 2, and fulvic 

acid which is “soluble at all pHs”. 

 

A detailed explanation was given by the authors on emission, excitation and 

synchronous fluorescence spectroscopy; PCA (in particular the interpretation of 

scores and loadings); and the fundamentals of PLS regression. It had been emphasised 

that samples originating from different sources would not contain the same 

concentration of chromophores which would thus affect the single-channel emission 

spectrum. This was why EEMs were generated instead. Furthermore, the spectra 

required correcting with Rhodamine B dissolved in ethylene glycol at a concentration 

of 8g/l and “the reflection spectra of barium sulphate”, which are due to such 

phenomena as the aging of the lamp. 

 

The authors also stressed that the presence of certain metal ions can affect the 

fluorescence spectra. For example, iron and copper can lead to quenching of the 

spectra whilst magnesium and calcium also “have a slight affect on the spectra”. The 

PCA models were able to class which samples originated from specific locations, for 

example, below 10m in the Baltic Sea. Furthermore, the humic substances were 

classed in terms of terrestrial or marine origin. The PLS models were able to illustrate 

the effects of salinity. For example, there was a greater scattering of samples in the 

score plot due to the mixing of humic substances from marine and terrestrial origins. 

 

Humic substances, which originate from the “degradation of plant and animal organic 

matter”, were also studied with fluorescence spectroscopy in conjunction with 

multivariate curve resolution alternating least squares (MCR-ALS) instead of PLS 
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(Antunes & Esteves da Silva, 2005). In fact, it was described as being the best tool for 

analysing the generated EEMs since “they do not follow a rigorous multilinear 

model”. MCR-ALS relates the concentrations of the humic substances to the trends of 

the fluorescence intensities in addition to the pure emission and excitation spectra 

being recovered from the EEM which lead to the extraction of information regarding 

the “major fluorophore structures of the humic substances”. In other words, the 

number of fluorophores in the EEM of the respective humic substance can be 

identified. 

 

As mentioned in Section 1.5.4.6, the major advantage of ANNs is the ability to model 

both linear and non-linear data. The latter can also be observed in fluorescence data, 

such as in the analysis of Rhodamine B, butyl Rhodamine B and Eosin B (Zhang et 

al.,  1997). PLS was shown to be ineffective as poor models were created. Successful 

modelling occurred with ANNs. In addition to this, the authors constructed an 

algorithm which “pruned” the hidden nodes when combined with back propagation. 

The pruning itself involved determining the rank and the respective singular value 

decomposition (SVD) matrices. In essence, the optimum number of hidden nodes is 

determined, and this would lead to the number of epochs being reduced, which itself 

would ensure that the data was not being over-fitted. 

 

ANNs have also been employed to select wavelength variables from a dataset 

containing a large number of variables in each spectrum. This in essence is a form of 

data pre-treatment. The variant of ANNs employed is Kohonen (K-ANN). A square 

“Kohonen map” is generated. The ANN is trained and after a certain number of 

epochs, the wavelengths are grouped into certain cells due to their similarities. The 

selected wavelengths are those that are closest to the centre of the neuron. And thus, 

73 wavelengths were selected out of 151 for a 10 × 10 K-map for the PLS modelling 

of phenol, o-, m-, and p-cresols (Todeschini et al.,  1999), and 70 wavelengths were 

selected out of 361 for a 10 × 10 K-map for the PLS modelling of three “non-steroidal 

anti-inflammatory drugs” (Capitan-Vallvey et al.,  2000). In both cases, better PLS 

models were generated than when the entire spectrum was chosen. 

 

Other chemometric tools employed for the selection of “important” wavelengths 

include PCA, orthogonal signal correction (OSC) and wavelet analysis (Eriksson et 
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al.,  2000). Each will remove variables (wavelengths) that will not correlate with the 

corresponding Y-variables, in other words, that will not contribute positively to the 

model. In essence, these pre-treatment techniques are performed in order to “enhance 

the predictive power” of the models, for example, PLS. It was foreseen by the authors 

that OSC in combination with wavelet analysis (compression of the number of 

variables (wavelengths) in the raw data) would lead to more powerful PLS models, 

even though the authors had to conclude on this occasion that the best PLS model was 

attained with wavelet analysis only. 

 

Other Y-properties that are modelled as well as concentration values are ash content 

(as in the production of white sugar), “thickness of a tablet coating”, polymer 

strength, “ethanol content in wine, or the viscosity of a solution”. A thorough 

description was given with regards to PLS modelling, and signal correction such as 

OSC and wavelet analysis (WA). It was stated that the PLS weights (W) play an 

important role in the modelling for they interpret which “spectral variables are 

influential for the modelled responses, and which are not”. The PLS scores can be 

used to identify strong outliers, whilst plots of the residuals can spot “weak” outliers. 

 

Multiplicative signal correction (MSC) was also looked at but was found to remove 

certain X-variables that contributed significantly to the model. In addition, the OSC 

algorithm failed to completely remove the Rayleigh scattering, as had been hoped. 

The authors had not previously removed it, for example by background subtraction, 

due to the need to observe whether OSC could actually assign the peaks as irrelevant 

to the model (uncorrelated with Y) and then remove it. The authors were forced to 

conclude that the Rayleigh scatter did hold some relevant information with regards to 

the data. Finally, the WA was able to reduce the number of variables from 4000 down 

to 250, and thus leading to an overall faster computation. 

 

5.2.3 Application of Fluorescence to Polynuclear Aromatic Hydrocarbons 

 

Polynuclear aromatic hydrocarbons (PAHs) have been the subject of much research 

over the last two decades. Due to their carcinogenic and toxic properties, great 

concern has been afforded them. The chemicals are released into the environment via 

such activities as wood and coal burning, exhaust from combustion engines (whether 
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petrol or Diesel), tobacco smoke, as well as other processes such as the reactions of 

“saturated hydrocarbons in oxygen-deficient conditions” (Ribeiro & Ferreira, 2005). 

In the environment, they can be found in air, soils, sediments and water. Phototoxicity 

has become a major concern. When exposed to sunlight, the structures of the PAHs 

change and in most cases become more toxic than their parent compounds. The reason 

for the increase in toxicity is attributed to the absorption of UV and visible radiation 

by the π-orbital (Kemp, 1991). 

 

A study was carried out in 2001 in order to characterise the PAH profiles within a 

road tunnel in Gothenburg, Sweden (Wingfors et al.,  2001). Sampling points were 

placed at the entrance and exits of the tunnels. The PAHs that had been adsorbed on 

to the collectors were treated with a mixture of methanol/water (3:1) and analysed 

with HPLC employing an octyldecylsilica column. A fluorescence detector coupled to 

the exit valve of the column detected the PAHs as they were eluted. The traffic 

composition had also been recorded, for example, the number of cars, vans, and 

lorries. These were calibrated against the PAH concentration with PLS. This implies 

that the generated models can later be employed to ascertain the composition of traffic 

in other tunnels and urban areas based on the profiles/concentrations of the PAHs 

detected. 

 

As far back as the early eighties, synchronous fluorescence spectroscopy has been 

employed for the detection of PAHs such as anthracene (Thompson & Pardue, 1983). 

During this time, more attention was paid to developing the appropriate 

instrumentation instead of actually assessing the environmental implications of the 

PAHs. Today, it is a different matter. Determining the environmental impact of these 

PAHs is of paramount importance, and this itself has led to the development of even 

more sophisticated instrumentation coupled with applications of multivariate analysis 

techniques. 

 

It was long understood that single-wavelength emission fluorescence spectroscopy 

was limited in “its ability to analyse complicated multi-component samples when they 

have severely overlapping emission and/or excitation spectra” (Patra & Mishra, 

2002). Synchronous fluorescence spectroscopy was developed in order to increase the 

selectivity and avoid the need to perform separation steps. Furthermore, peaks that are 
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observed in normal emission spectra can be intensified with synchronous fluorescence 

spectroscopy. 

 

Further improvements in the synchronous fluorescence spectroscopic method have 

been proposed such as derivatisation of the spectra which leads to enhancement of the 

identification of species. The addition of surfactants such as hexadecyl-

trimethylammonium bromide also increases the fluorescence intensities. However, 

there are always instances where interfering peaks may also be intensified. In this 

regard, fluorescence quenching can be applied, for example to certain PAHs.  

 

There is the application of multivariate calibration in the form of PLS regression to 

the synchronous fluorescence spectra (Ferrer et al.,  1998). In this instance, PLS1 and 

PLS2 models were constructed for the resolution of ten PAHs including anthracene, 

phenanthrene, naphthalene and pyrene. Three synchronous spectra were recorded for 

each sample at ∆λ = 10, 50 and 100nm. However, the 10nm spectra were rejected due 

to no distinction being attainable between the PAHs. A number of pre-processing 

techniques were performed and it was found that mean-centring sufficed. Optimum 

latent variables were obtained via the F-test on the PRESS values (Haaland & 

Thomas, 1988a; Haaland & Thomas, 1988b). Overall, PLS1 models provided the 

better predictions but longer times were required since ten PAHs were being analysed 

(Ferrer et al.,  1998). PLS2 on the other hand was better at predicting synchronous 

spectra that were similar to one another. 

 

ANNs have also been applied to the determination and resolution of overlapping 

synchronous fluorescence spectra of PAHs (Ferrer et al.,  1999). Synchronous spectra 

at ∆λ = 50 and 100nm were recorded in a micellar medium and concatenated. PCA 

was then performed to reduce the number of variables, and hence increase the 

computational speed. The score matrix (14 columns) was then subjected to the ANN 

in back propagation mode. There were thus 14 input nodes, 10 hidden nodes, and 11 

output nodes (the last node attributed to the surfactant, Brij-35). Comparisons had also 

been made with PLS and PCR. 

 

With regard to the ANN, one hidden layer sufficed for the model for when more 

layers were added, results had not improved in addition to computational time being 
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increased. The F-test was performed in order to determine the optimum number of 

latent variables (Haaland & Thomas, 1988a; Haaland & Thomas, 1988b). Overall, the 

PLS model was found to be the best at prediction. However, the other calibration 

models had properties that were better than the PLS, for example PCR seemed to 

predict anthracene better whilst ANN was better at predicting phenanthrene and 

naphthalene (Ferrer et al.,  1999). 

 

The importance of being able to simultaneously determine the presence of a number 

of PAHs in the environment has been discussed. Synchronous fluorescence 

spectroscopy has played a large role in assisting in this determination. Coupling with 

multivariate analysis techniques such as PCR, PLS and ANNs have assisted these 

determinations even further. However, there are other techniques available in 

determining PAHs. One recent technique involves the development of a DNA 

biosensor in the form of a sol-gel derived array (Doong et al.,  2005). This was used 

to detect for PAHs in water as well as serum samples. 

 

The biosensor successfully detected naphthalene and phenanthrene in water but failed 

to quantify fluoranthene and benzo[a]pyrene. However, benzo[a]pyrene did show 

toxic effects at low concentrations in the serum. A fluorescence microscope was 

employed to detect the fluorescent dyes. This was coupled to a hardware controller 

which was connected to a PC. The LabVIEW program acquired the data and 

processed it. Overall, the developed biosensor was capable of detecting PAHs in both 

water and serum.  

 

PAHs are toxic and carcinogenic. Their derivatives are no exception. For example, 

naphthalene derivatives are deemed “organic pollutants” due to originating from the 

degradation of pesticides (Ortega-Algar et al.,  2003). Two important derivatives are 

α-naphthol and β-naphthol (OH group attached to the 1 and 2 position on naphthalene 

respectively). The former is found in pesticides for it is very efficient at killing pests 

but at the same time has a measurable toxicity towards mammals. However, it may 

contain traces of β-naphthol which is far more toxic than the α-form. Ironically, the β-

form is used in dyes in both the pharmaceutical and cosmetic industries. 
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The detection and determination of PAHs and their derivatives will continue to be an 

important and much researched subject, especially as certain environmental bodies 

continue to increase legislation, and reduce acceptable limits. 

 

5.3 Materials and Methods 
 

Additional background information will be given of the three main target analytes and 

the reason for their selection in this study (Section 5.3.1). A description of the 

experimental design follows for acquisition of (2D) emission spectra (Section 5.3.2) 

and (3D) excitation-emission matrix (EEM) spectra (Section 5.3.3). Application to a 

real soil sample is also described (Section 5.3.4). 

 

5.3.1 Specific Target PAHs 

 

The Environmental Protection Agency (EPA) has listed 16 PAHs (“Priority PAHs”) 

to be of great concern due to their hazardous effects on the environment in addition to 

the health and safety of living organisms. These are acenaphthene, acenapthylene, 

anthracene, benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, 

benzo(ghi)perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, 

fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene and 

pyrene. 

 

Three of the PAHs employed in this study were anthracene, phenanthrene and 

naphthalene. Anthracene and phenanthrene are three-ringed planar molecules (Figures 

5.1 and 5.2 respectively) whilst naphthalene is a two-ringed planar molecule (Figure 

5.3). These make interesting compounds for study by fluorescence spectroscopy due 

to the distinctive peaks attained in conjunction with the determination of the ability of 

the multivariate calibration regression modelling algorithm being capable of 

successfully distinguishing between them. 
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5.3.1.1 Anthracene 

 

Anthracene is extracted via fractional distillation from coal tar in which its abundance 

is 0.5% (Sharp, 1990). The colourless crystals of anthracene melt at 217°C; the 

boiling point is at 355°C. Anthracene is normally employed as an intermediate for the 

manufacture of anthraquinone, which involves electrophillic substitution at the “9” 

and “10” positions, and its derivatives. It can undergo chlorination, nitration and 

sulphonation. It is also employed in wood preservatives, coating materials, 

insecticides and in the synthesis of alizarin (a red dye) (Morrison & Boyd, 1992). The 

structure of anthracene is shown in Figure 5.1. 
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Figure 5.1: The structure of anthracene (C14H10) 

 

The numbers indicate the positions where substitution occurs, for instance 1,5-

dinitroanthracene indicates that a nitro group (NO2) has been substituted in the 1 and 

5 positions. Anthracene has also been employed in the production of smoke screens, 

crystals used in scintillation counters, and as an organic semiconductor (Hawley, 

1987). Incomplete combustion of fossil fuels is the main cause of anthracene in the 

environment. It has been identified in ground and surface waters employed for 

drinking in addition to ambient air, vehicle exhaust emissions, cigar and cigarette 

smoke, smoked foods and shellfish (ATSDR (Agency for Toxic Substances and 

Disease Registry), 1990). 

 

5.3.1.2 Phenanthrene 

 

Phenanthrene also contains three fused benzene rings (Morrison & Boyd, 1992). The 

colourless crystals of phenanthrene melt at 100°C; the boiling point is 340°C 

(Budavari et al., 1989). Phenanthrene is nearly insoluble in water, but is soluble in 

glacial acetic acid and many organic solvents. It is also obtained from coal tar via 
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fractional distillation. It has been identified in foods, surface and ground waters, and 

air. It occurs in the environment via the incomplete combustion of wood and fossil 

fuels, vehicle emissions, iron and steel works and incinerators. Figure 5.2 shows the 

structure of phenanthrene, which also possesses five resonance structures. 
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Figure 5.2: Structure of phenanthrene (C14H10) 

 

Phenanthrene is employed in the manufacture of dyes, explosives, drugs, and 

phenanthrenequinone (Sax & Lewis, 1987). Phenanthrene can be absorbed through 

the skin (Storer et al.,  1984). In vivo studies have indicated that dihydrodiols were the 

primary metabolites generated via epoxidation at the 1-2, 3-4 and 9-10 carbons 

(Nordqvist et al.,  1981). 

 

5.3.1.3 Naphthalene 

 

The structure of naphthalene is of two benzene rings fused together (Figure 5.3). At 

room temperature it is in white crystalline form with a melting point of 80°C and a 

boiling point of 218°C. The crystals are described as having a “tarry smell” (Sharp, 

1990). It too is obtained from coal tar and is most abundant at 5% (Morrison & Boyd, 

1992). It is also obtained from petroleum by the removal of methyl groups from 

methylnaphthalene fractions with hydrogen at 750°C and 10-70atm (Sharp, 1990). 

Figure 5.3 displays the structure of naphthalene. 
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Figure 5.3: Structure of naphthalene (C10H8) 
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Naphthalene is soluble in most organic solvents and only very slightly miscible with 

water (Budavari et al., 1989). It tends to undergo electrophilic reactions more so than 

nucleophilic due to its aromaticity (Morrison & Boyd, 1992). It is employed as an 

intermediate in addition to a starting material in industrial processes such as the 

manufacture of chemicals, plastics and dyes (Sandmeyer, 1981). Its main application 

is the synthesis of phthalic anhydride. Other applications include intermediates in the 

manufacture of celluloid, synthetic resins, lubricants and solvents. As a product, 

naphthalene is directly employed as an insecticide and an antiseptic for the intestines. 

 

Naphthalene enters the environment much in the same way as anthracene and 

phenanthrene but also from mothballs. Naphthalene is said to react with hydroxyl 

radicals in the atmosphere leading to degradation. In waters and soil, naphthalene 

does not bioaccumulate over time (ATSDR (Agency for Toxic Substances and 

Disease Registry), 1990). Exposure to naphthalene can lead to neurological, 

gastrointestinal, kidney and liver problems. It can seriously irritate the skin and eyes, 

and be lethal to adults at amounts of 5 – 15g, and to children at amounts of 2 – 3g 

(Sandmeyer, 1981). 

 

5.3.2 Acquisition of 2D Fluorescence Spectra 

 

5.3.2.1 Experimental Design and Sample Preparation  

 

Training samples were prepared in different concentrations of anthracene, 

phenanthrene and naphthalene (0, 100, 200, 400 and 600 ppb) in HPLC grade 

acetonitrile (Fisher, UK) via the aid of a full factorial experimental design generated 

by an in-house program developed in LabVIEW (National Instruments, Austin, TX, 

USA). Validation samples were also prepared in different concentrations of the above 

PAHs (150, 300 and 500 ppb) in HPLC grade acetonitrile (Fisher, UK). Figure 5.4 

shows the overall design incorporating both sets. 
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Figure 5.4: Overall experimental design: Training set (coloured with respect to PHE 

concentration) consists of five levels and three factors resulting in the preparation of 125 samples 

containing anthracene (ANT), phenanthrene (PHE) and naphthalene (NAP) at concentrations 

ranging from 0, 100, 200, 400 and 600 ppb; Validation set (●) consists of three levels and three 

factors resulting in the preparation of 27 samples containing ANT, PHE and NAP at 

concentrations ranging from 150, 300 and 500 ppb 
 

In addition to the above, a set of “unknown” samples were prepared.  These were 

excluded from any training and validation procedures and were employed to 

determine the strengths and efficiencies of models generated. Table 5.1 displays the 

concentrations of the three target PAHs in each of the five samples. 

 
Table 5.1: Concentration values of anthracene (ANT), phenanthrene (PHE) and naphthalene 

(NAP) in the five “unknown” samples 

Sample ANT PHE NAP 
UNK1 400 150 600 
UNK2 500 300 400 
UNK3 200 400 600 
UNK4 150 500 600 
UNK5 0 0 500 

 

The PAHs were purchased from Dr Ehrenstorfer GmbH (via QMx Laboratories Ltd., 

Thaxted, UK). 
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5.3.2.2 Data Acquisition 

 

Emission spectra of the randomised training and validation samples were acquired in 

triplicate on a FluoroMax-2 fluorimeter (ISA Instruments S.A (UK) Ltd., Jobin Yvon-

Spex, Middlesex, England) via the Datamax software (v2.20; GRAMS/32 v4.11 level 

II) also by Jobin Yvon-Spex on a personal computer operating under Windows 2000 

(Microsoft, US) over a period of four days. Table 5.2 displays the operating 

parameters of the fluorimeter. 

 
Table 5.2: Instrument parameters employed for the acquisition of emission spectra 

PARAMETER VALUE 
Start Scan (nm) 200 
End Scan (nm) 500 

Excitation Signal (nm) 254 
Increment (nm) 1 

Integration Time (s) 0.1 
Slit width (mm) 1.175 

Lamp Xe (150W) 
Cell 1 ml quartz cuvette 

 

The “unknown” samples detailed in Table 5.1 were also acquired in triplicate. In 

between measurements, the cell was rinsed with HPLC grade water followed by 

HPLC grade acetonitrile. 

 

Prior to acquiring the data on each respective day, the FluoroMax-2 fluorimeter 

required calibrating after initialisation of the hardware and the software. A set 

procedure was followed in order to achieve this (ISA, 2004). In short, the excitation 

grating was first calibrated (maximum peak at 467 ± 0.5nm), followed by the 

emission grating (maximum peak at 397nm). 

 

5.3.2.3 Data Processing 

 

The SPC files generated by the Datamax program were converted into standard text 

files by the GRMSCNVT program (also by Jobin Yvon-Spex). The SPC data files 

contain both a text and a binary portion. The text portion contains information 

regarding the instrument parameters such as the start and end wavelengths employed. 



PhD Thesis  Chapter 5 
 

 
Cranfield University  Michael Cauchi 227

The binary portion contains the intensity values and corresponding wavelengths. The 

GRMSCNVT program converts the binary portion into a separate text file which can 

be read by any text editor. The text file will contain two tab-separated columns: the 

first the wavelength values; the second the intensity (in counts per second) at the 

respective wavelength. The appropriate text files were combined into respective data 

matrices via another in-house custom-built program developed in the LabVIEW 

environment. This program was also able to simultaneously construct the 

concentration matrices (Y) from the respective filenames which contain the following 

identification labels as illustrated in Table 5.3. 

 
Table 5.3: Examples of sample IDs and corresponding concentration (in ppb) values for 

anthracene (ANT), phenanthrene (PHE) and naphthalene (NAP) in the training set 

Sample ID ANT (A) PHE (P) NAP (N) 
APN602 600 0 200 
APN114 100 100 400 
APN246 200 400 600 

 

Data pre-treatment, modelling, validation and predictions were performed via the 

custom-built data analysis package described in Section 2.3.3. Section 3.3.5 

summarised the capabilities of the package. In addition to importing DPASV 

voltammograms, the package is capable of importing fluorescence spectra. Flow-

diagrams of the functionalities of the package are detailed in Appendix A3. 

 

5.3.3 Acquisition of 3D Fluorescence Spectra (EEMs) 

 

5.3.3.1 Sample Preparation 

 

The samples analysed here were identical to those analysed with the FluoroMax-2 

fluorimeter (Section 5.3.2). 

 

5.3.3.2 Data Acquisition 

 

Excitation-Emission matrix (EEM) spectra were randomly acquired in triplicate in the 

same manner as in Section 5.3.2.2 on a prototype SPEX 3D spectrofluorometer (ISA 

Instruments S.A (UK) Ltd., Jobin Yvon-Spex, Middlesex, England) incorporating a 
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charge-coupled device (CCD) imaging camera (ISA SPECTRUMONE, Jobin Yvon-

Spec, Horriba Group, UK). It is unique as it contains no moving parts and is thus 

portable. The instrument was connected to a personal computer with a 750MHz 

Athlon processor (AMD, USA) and 128MB RAM (now upgraded to 384MB) running 

Windows 98 (Microsoft, US) via a National Instruments (NI) General Purpose 

Interface Bus (GPIB) peripheral component interface (PCI) card (AT/GPIB-TNT 

(PnP), National Instruments, US). The instrument was controlled by Datamax 

software (v2.20; GRAMS/32 v4.11 level II) also by Jobin Yvon-Spex. A sub-program 

within the main program (CCD) was employed to acquire and store the EEM in a 

“Galactic” SPC file. 

 

Table 5.4 shows the operating parameters for the SPEX 3D spectrofluorimeter. 

 
Table 5.4: Instrument parameters employed for the acquisition of EEMs 

PARAMETER VALUE (Pixel) 
Emission (X) Start 227.7 nm (1) 
Emission (X) End 724.5 nm (511) 

Emission (X) Resolution 1.0 
Excitation (Y) Start 73.9 nm (1) 
Excitation (Y) End 691.4 nm (511) 

Excitation (Y) Resolution 1.2 
Exposure Time 1.0 s 
Slit width (mm) 0.05 

Lamp Xe (75W) 
Cell 1 ml quartz cuvette 

 

The “unknown” samples detailed in Table 5.1 were also acquired in triplicate. In 

between measurements, the cell was rinsed with HPLC grade water followed by 

HPLC grade acetonitrile. 

 

Prior to acquiring the data on each respective day, the SPEX 3D spectrofluorimeter 

was employed to acquire a set number of EEMs of HPLC grade water (Fisher, UK) by 

filling a quartz cell (1cm path length). These EEMs would later be employed to 

calibrate the emission wavelengths after the entire sample EEMs had been acquired. 
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5.3.3.3 Data Processing 

 

As with the FluoroMax-2 described in Section 5.3.2, when an EEM is acquired on the 

SPEX 3D spectrofluorimeter, a Galactic SPC file is also generated but is far more 

complex than the 2D version. Each SPC file has dimensions of 512 × 511. The first 

row contains the emission wavelength values corresponding to each column in the 

EEM. Text files cannot be generated directly from this file. Furthermore, an 

additional complication is that the wavelength parameters must be re-calibrated to 

coincide with the wavelength values of specific peaks in the FluoroMax-2 data. 

 

The normal procedure for converting the EEM SPC file is to first generate SPC sub-

files, which in this case would number 511. These 511 sub-SPC files would be 

converted into the corresponding text files. The calibration is applied (Section 5.4.3.1) 

and the 511 text files are combined into one large text file. This procedure was 

deemed inefficient due to the large number of SPC files (>400). 

 

An alternative approach consisted of importing the data files into a commercial 

statistical analysis package (SIMCA 8.0, Umetrics, Sweden). Each Galactic EEM 

SPC file was imported into the program, and then exported as a text file. The file 

conversions were performed over a period of 3 – 4 days. The text files contained 

additional lines of text which therefore required omitting. A program was constructed 

in the LabVIEW environment to accomplish this (Figure 5.5). 
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Figure 5.5: The user interface constructed in the LabVIEW environment to crop the EEM text 

files 

 

The plots displayed in Figure 5.5 are from one EEM text file which had been created 

by the SIMCA application. The 3D surface plot displays the intensities (z-axis) 

against the emission and excitation wavelengths (x- and y-axes respectively). The 

intensity graph clearly demonstrates the active region on the CCD imaging camera. 

The diagonal line corresponding to the back-scattering (Rayleigh) effect is also 

visible. The emission graph displays the emission spectra at the excitation wavelength 

(or index) as dictated by the X-index (Emission) list-box. Other features of the VI are 

to be able to plot against CCD pixel number (index) or wavelength, as well as to view 

the spectra either along the emission or the excitation axis. 

 

The custom-built data analysis package was currently incapable of directly processing 

the generated EEM text files. Figure 5.6 illustrates the steps involved in converting 

the SPC files acquired on the SPEX 3D instrument into the appropriate datasets. 
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Figure 5.6: Flow-chart illustrating the conversion of the EEM files in SPC format to 2D datasets 

in text format via three processing methods (binning, PCA and extraction of synchronous spectra 

(SYNC) from the EEM files) 
 

The processing methods illustrated in Figure 5.6 include subtraction of an averaged 

background EEM which is calculated from the EEMs containing no target PAH 

components (blanks). The processing methods are briefly explained below. 

Furthermore, the calibrated wavelength refers to calibration of the emission 

wavelengths and is explained in Section 5.4.3.1.  
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Binning 

Hardware binning has been explained in Section 1.4.3.4. However, software binning 

can also be applied to a specified region of all the acquired EEMs. In this instance, it 

is defined as the summation of a given number of spectra. An experimental function 

was introduced which bins a given number of excitation and emission spectra from 

the EEM, calculates the outer product and extracts the main diagonal from it. These 

diagonals are iteratively combined into a 2D matrix for processing on the data 

analysis package. 

 

PCA 

The intensity graph in Figure 5.5 indicates that the fluorescence has been focused in 

one particular region of the CCD. The selected region of interest can have for 

example dimensions of 161 × 250. For each EEM, the region of interest was 

processed by binning the rows (emission spectra) and columns (excitation spectra) 

into respective vectors and concatenating them. Once all the EEMs had been treated 

in the same manner, PCA was performed with a minimum of 30 PCs. This value was 

chosen to explain the spectral data given that the total number of variables after 

concatenation exceeded 400. Ferrer had selected 14 PCs after concatenating 

synchronous spectra when analysing for PAHs in water samples (Ferrer et al.,  1999). 

However the concatenated spectra were similar whereas the emission and excitation 

spectra will be different with respect to the region of interest. Billa concatenated four 

emission spectra prior to PCA, however only 3 PCs were retained due to the very 

close resemblance of the spectra at the four different excitation wavelengths 

employed (Billa et al.,  2000). 

 

Synchronous Spectra 

The synchronous fluorescence spectra are generated from the respective EEMs from 

the difference between the excitation and emission wavelength (Luis et al.,  2004; 

Wiberg et al.,  2004). 

 

Data Analysis 

Further data pre-treatment, modelling, validation and predictions were performed via 

the custom-built data analysis package detailed in Section 5.3.2.3. 
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5.3.4 Extraction and Determination of Anthracene, Phenanthrene and 

Naphthalene in a Soil Sample 

 

The soil sample employed originated from a given batch labelled as B4 (Morelands, 

Severn Trent Laboratories, UK). Table 5.5 lists the amounts of the target PAHs. 

 
Table 5.5: Amounts of target PAHs in the soil sample labelled B4 (WSPC/C4507; Ref: 13010478; 

Order: 06015/478/AH; Morlands, Severn Trent Laboratories, UK) 

Target PAH Amount (mg/kg) 
Anthracene (ANT) 0.76 

Phenanthrene (PHE) 6.00 
Naphthalene (NAP) 6.50 

 

The extraction procedure detailed below was employed as a rapid method of 

determining qualitatively and quantitatively the presence of the three PAHs listed in 

Table 5.5 (Tomaniova et al.,  1998) The Soxhlet Extraction was not employed due to 

a more extensive procedure (Morrison & Boyd, 1992; Wingfors et al.,  2001). 

 

• 1.47g of the soil was weighed into a 50ml plastic centrifuge tube 

• 10ml of laboratory grade acetone was added 

• Sonication for 40 minutes. 

• Left to settle 

• 600µl of clear upper phase transferred to a 15ml plastic centrifuge tube 

• Evaporation in air 

• 20ml of HPLC grade acetonitrile (ACN) added and shaken until residue 

dissolved 

Measurements made in triplicate on a 2D and 3D fluorimeter (instrument details given 

in Sections 5.3.2.2 and 5.3.3.2 respectively). 
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5.4 Results and Discussion 
 

Section 5.4.1 discusses the univariate approach to the quantitative determination of 

the three target analytes: anthracene, phenanthrene and naphthalene. Sections 5.4.2 

and 5.4.3 discuss the multivariate approach to the fluorescence spectra acquired on the 

FluoroMax-2 spectrometer (2D) and the SPEX 3D spectrometer (EEM) respectively. 

Section 5.4.4 discusses the application of the multivariate calibration models to a soil 

sample. 

 

5.4.1 Univariate Analysis 

 

Figure 5.7A displays the individual fluorescence spectra of anthracene (ANT), 

phenanthrene (PHE) and naphthalene (NAP) at 400 ppb in acetonitrile, and Figure 

5.7B displays the overlaid fluorescence emission spectra of a 600 ppb mixture of 

ANT, PHE and NAP (APN666) in acetonitrile, where it is clear to see the high 

precision of the FluoroMax-2 instrument.  
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Figure 5.7: Individual emission spectra for 400 ppb ANT (blue), PHE (green), and NAP (red) in 

HPLC grade acetonitrile (A) and overlaid emission spectra of a mixture of 600 ppb ANT, PHE 

and NAP in HPLC grade acetonitrile (B). Experimental parameters as detailed in Table 5.2 
 

All three spectra overlap to a certain extent (Figure 5.7A). The anthracene gives the 

most intense peaks with an almost five-fold increase in intensity compared to 

phenanthrene of the same concentration. Both the anthracene and phenanthrene 
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spectra contain three main peaks which correspond to the three fused benzene rings. 

As for naphthalene, the peak is very broad and weak. This implies that no major 

electron transitions between energy states occur and/or the excitation wavelength 

(254nm) is not optimum for naphthalene. Peak areas were calculated via an in-house 

program developed in the LabVIEW environment (National Instruments, USA). 

Figure 5.8 displays the calibration curve for all three analytes acquired individually. 
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Figure 5.8: Calibration curves for anthracene (ANT), phenanthrene (PHE) and naphthalene 

(NAP). Experimental parameters as in Table 5.2 
 

Phenanthrene has given the better coefficient of determination (R2) of 0.9955 which 

corresponds to a correlation coefficient (r) of 0.9977. However, that of naphthalene is 

very poor (R2 = 0.3841). With exception to the last sample containing only 500 ppb 

naphthalene (Table 5.1), prediction of the target PAHs in the samples could not be 

determined due to the overlap of the spectra of the three molecules (Figure 5.7). An 

average concentration of 186 ppb (n = 3) was predicted, implying an error of 63%. 

This can be attributable to a low signal-to-noise ratio of naphthalene. This clearly 

indicates the need for multivariate calibration. 

 

5.4.2 Multivariate Calibration of 2D Emission Spectra 

 

The SIMPLS modelling algorithm was employed throughout. This is in conjunction 

with the successful application in Sections 2.4 and 3.4 in addition to the review in 
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Sections 5.2.1 and 5.2.3. Tables 5.6 to 5.10 display the means, standard deviations, 

and percentage coefficient of variations for the prediction of the concentrations of the 

“unknown” samples displayed in Table 5.1 after applications of specific data pre-

treatment techniques and multivariate calibration regression models, but in the 

absence of the validation set. 

 
Table 5.6: The predicted concentrations of the unknown “real” samples with no data pre-

treatment followed by modelling with SIMPLS (Optimum LV: 20 (ANT); 18 (PHE); 19 (NAP)) 

 MEANS STD DEV % CV 
Sample ANT PHE NAP ANT PHE NAP ANT PHE NAP
UNK1 356.46 183.28 573.18 13.91 1.71 2.50 3.90 0.94 0.44 
UNK2 477.13 356.31 395.13 8.54 4.46 6.61 1.79 1.25 1.67 
UNK3 180.12 462.41 575.61 4.36 1.44 1.16 2.42 0.31 0.20 
UNK4 123.70 541.19 536.18 4.66 3.38 0.60 3.77 0.62 0.11 
UNK5 0.00 0.00 485.76 0.00 0.00 3.73 NaN NaN 0.77 

 
Table 5.7: The predicted concentrations of the unknown “real” samples with range-scaling, 

Savitzky-Golay filtering (polynomial: 3; window: 41), followed by modelling with SIMPLS 

(Optimum LV: 20 (ANT); 20 (PHE); 20 (NAP)) 

 MEANS STD DEV % CV 
Sample ANT PHE NAP ANT PHE NAP ANT PHE NAP 
UNK1 393.03 154.40 496.58 2.10 4.11 4.33 0.53 2.66 0.87 
UNK2 512.07 300.38 348.31 5.21 2.91 2.40 1.01 0.97 0.69 
UNK3 166.22 413.38 544.52 4.00 5.47 5.63 2.40 1.32 1.03 
UNk4 94.21 488.41 536.88 14.19 4.51 17.20 15.06 0.92 3.20 
UNK5 0.00 0.00 452.85 0.00 0.00 12.69 NaN NaN 2.80 

 
Table 5.8: The predicted concentrations of the unknown “real” samples with the excitation peak 

removed, and no data pre-treatment followed by modelling with SIMPLS (Optimum LV: 17 

(ANT); 17 (PHE); 15 (NAP)) 

 MEANS STD DEV % CV 
Sample ANT PHE NAP ANT PHE NAP ANT PHE NAP 
UNK1 313.63 164.08 532.80 6.59 2.26 4.20 2.10 1.38 0.78 
UNK2 419.87 331.01 345.28 13.00 3.72 5.38 3.09 1.12 1.56 
UNK3 141.90 455.99 538.46 9.31 5.02 5.37 6.56 1.10 0.99 
UNK4 99.30 554.01 511.90 12.45 9.75 2.29 12.54 1.76 0.44 
UNK5 21.01 25.53 506.42 1.69 0.95 7.48 8.05 3.72 1.47 
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Table 5.9: The predicted concentrations of the unknown “real” samples with the excitation peak 

removed, range-scaling, SG filtering (polynomial: 3; window: 41), followed by modelling with 

SIMPLS (Optimum LV: 20 (ANT); 20 (PHE); 18 (NAP)) 

 MEANS STD DEV % CV 
Sample ANT PHE NAP ANT PHE NAP ANT PHE NAP 
UNK1 377.01 173.15 497.89 8.57 5.04 0.73 2.27 2.91 0.14 
UNK2 490.45 316.99 338.73 25.10 2.15 6.11 5.11 0.68 1.80 
UNK3 143.37 436.01 539.32 5.57 1.38 7.38 3.89 0.31 1.36 
UNK4 89.11 526.24 532.54 3.28 3.67 4.06 3.69 0.69 0.76 
UNK5 0.00 7.73 470.33 0.00 2.76 7.72 NaN 35.80 1.64 

 
Table 5.10: The predicted concentrations of the unknown “real” samples with the excitation peak 

removed, range-scaling, SG filtering (polynomial: 3; window: 41), followed by compression with 

PCA (5 PCs) and subsequent modelling with NNPLS (Overall Optimum LV: 5) 

 MEANS STD DEV % CV 
Sample ANT PHE NAP ANT PHE NAP ANT PHE NAP 
UNK1 352.08 263.66 393.68 3.48 1.78 16.56 0.98 0.67 4.20 
UNK2 363.35 462.44 410.99 4.21 2.20 24.15 1.16 0.47 5.87 
UNK3 400.12 201.29 170.14 7.71 4.33 38.92 1.92 2.15 22.87 
UNK4 418.54 189.22 42.23 11.01 7.17 40.49 2.63 3.78 95.86 
UNK5 145.25 0 0.71 10.60 0 1.22 7.29 NaN 173.20 

 

Table 5.11 displays the RMSEP values calculated for Tables 5.6 to 5.10. 

 
Table 5.11: Calculated RMSEP values for Tables 5.6 to 5.10 

Table 5.6 5.7 5.8 5.9 5.10 
RMSEP (ppb) 35.58 42.76 56.11 47.40 272.94 

 

Tables 5.6 and 5.7 show that the predicted concentration values are very close to the 

actual values with calculated RMSEP values of 35.58 ppb and 42.76 ppb respectively.  

Removal of the excitation peak leads to an increase in the RMSEP values (Tables 5.8 

and 5.9) but the average RMSEP value for Table 5.9 is lower than that for Table 5.8 

which enforces the need for range-scaling and filtering in that respect. Application of 

the neural network algorithm (with a 5-5-3 architecture) instead of SIMPLS has led to 

very poor predictions and a RMSEP value of 272.94 ppb (Table 5.10). 

 

In contrast, inclusion of the validation set into the model leads to overall 

improvements in the calculated RMSEP values. Table 5.12 displays the RMSEP 

values for Tables 5.6 to 5.9. All predictions were performed after the incorporation of 
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the validation dataset into the model. In all cases, predictions were performed at the 

20th latent variable for all components. 

 
Table 5.12: Calculated RMSEP values for Tables 5.6 to 5.9 after inclusion of the validation set 

into the respective models 

Table 5.6 5.7 5.8 5.9 
RMSEP (ppb) 16.71 15.07 19.99 14.88 
 

A vast improvement has been observed in the calculated RMSEP values by an 

average of 20 ppb. The removal of the variables up to and including the excitation 

peak in conjunction with range-scaling and Savitzky-Golay smoothing has led to the 

better reduction in the overall RMSEP values calculated. The opposite was observed 

for mean-centred data which yielded 215.19 ppb for inclusion of the validation set and 

36.05 ppb for exclusion. The extreme difference observed in the calculated RMSEP 

values is proposed in Section 5.4.3.4. 

 

In Section 2.4, the application of weights led to improved RMSEP values. However, 

the opposite was observed for the fluorescence spectra. This is attributed to the severe 

overlap of the three target compounds in the fluorescence spectra. Figure 5.9 displays 

the fluorescence spectra of a sample prior to and after weighting. 
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Figure 5.9: The fluorescence spectra of Sample APN166 (corresponding to 100 ppb ANT; 600 

ppb PHE and NAP): Raw spectrum (A); Weighted spectrum (B) with the following conditions: 

high weight: 1000; low weight: 0.0001; SG wt poly: 3; SG wt win: 21. 

 

Three distinct peaks have been generated along with an amplification of the 

naphthalene peak (Figure 5.9B). However, problems will arise as a result of the 
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overlapping nature of the peaks, especially if one of the PAH analytes is absent. For 

example, if phenanthrene is absent then the application of a low weight (0.0001) will 

severely reduce the portion of the spectra pertaining to anthracene and thus risking the 

loss of important information. This has thus resulted in the increase in the calculated 

RMSEP value up to 147.66 ppb. Further improvements must therefore be made to the 

weighting function so that peaks can be selectively weighted. 

 

Should a separate validation dataset be absent, the data analysis package contains an 

additional option to split the training set into a separate calibration and test set. An 

advantage of this is a swift determination of the predictability of the generated model 

at the optimum latent variables as suggested by the leave-one-out cross-validation 

function. The last 15 spectra in the original training set were set aside as the test set. 

The SIMPLS model was thus constructed with the calibration set and predictions of 

the test set were performed. Table 5.13 shows the calculated correlation coefficients 

for the predicted concentrations and the actual concentrations at varying data pre-

treatments. 

 
Table 5.13: Correlation Coefficients (CC) and RMSEP values for the prediction of the test set 

data after modelling with SIMPLS: Set A to D are in the absence of the validation set; Set E to H 

are the same but have the validation set incorporated into the respective models. Sets A – H are 

defined in Table 5.14 

PAH ANT PHE NAP 
Set CC (r) RMSEP CC (r) RMSEP CC (r) RMSEP 
A 0.99171 24.06 0.99824 13.02 0.99588 21.75 
B 0.99468 19.26 0.99810 13.21 0.99594 22.00 
C 0.98860 27.49 0.99804 15.10 0.99507 24.11 
D 0.99283 21.70 0.99862 11.48 0.99704 19.53 
E 0.99255 22.94 0.99826 13.53 0.99857 21.55 
F 0.99160 24.80 0.99819 13.18 0.99704 18.23 
G 0.98938 26.58 0.99803 14.64 0.99617 21.14 
H 0.99360 20.75 0.99854 11.91 0.99750 17.11 
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Table 5.14: Description of Sets detailed in Table 5.13 

SET VALIDATION 
SET IN 
MODEL 

DESCRIPTION 

A, (E) NO (YES) No pre-treatment 
B, (F) NO (YES) Range-scaled and SG filtered 
C, (G) NO (YES) Removal of excitation peak; no other pre-treatment 
D, (H) NO (YES) Removal of excitation peak; Range-scaled and SG filtered. 
 

As can be seen, incorporation of the validation set into the respective SIMPLS models 

led to an improvement in the calculated RMSEP values, and in the correlation 

coefficients. Overall, the better sets are D and H with very high correlation 

coefficients and the lowest RMSEP values. 

 

Figure 5.10 displays plots of the predicted concentrations against the actual 

concentrations for set D. 
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Figure 5.10: Plots of predicted against actual concentrations for the three target PAHs after 

removal of the excitation peak followed by range-scaling, Savitzky-Golay smoothing (polynomial: 

3; window: 41) and modelling with SIMPLS 
 

Overall, multivariate calibration has considerably improved the ability of the 

unknown samples to be predicted. In predicting the test set values, performing range-
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scaling and filtering with the Savitsky-Golay function after removal of the excitation 

peak and prior to SIMPLS modelling leads to low RMSEP values. 

 

5.4.3 Multivariate Calibration of 3D Excitation-Emission Matrix (EEM) Spectra 

 

Section 5.4.3.1 briefly discusses the calibration of the emission wavelengths prior to 

processing by the different data pre-treatment techniques applied to the 3D 

fluorescence spectra: binning (Section 5.4.3.2), PCA (Section 5.4.3.3) and 

synchronous (Section 5.4.3.4).  

 

5.4.3.1 Calibration of the Emission Wavelengths 

 

The purpose of calibrating the emission wavelength is to ensure that the emission and 

synchronous spectra extracted from the EEM conform to the same respective spectra 

were they acquired on the FluoroMax-2 instrument. In order to achieve the calibration 

ten EEM spectra of HPLC grade water were acquired on two occasions over a period 

of four days prior to acquisition of the sample EEMs. It was therefore envisaged that 

all ten files could be employed to produce one calibration set instead of the need to 

develop two separate calibration wavelength sets and thus applying them to the 

samples accordingly. A basic statistical analysis was performed in order to deduce 

whether all ten files could be employed simultaneously (Table 5.15). 

 
Table 5.15: Basic statistical calculations to determine whether all ten water files could be 

employed to form one calibration set 

START Water 1  5 Water 6  10 ALL 10 files 
Average 183.4 182.4 182.9 

Standard deviation 2.1909 1.5166 1.8530 
%CV 1.19 0.83 1.01 
END Water 1  5 Water 6  10 ALL 10 files 

Average 734.2 735.6 734.9 
Standard deviation 3.6332 3.3615 3.3813 

%CV 0.49 0.46 0.46 
 

As can be seen in Table 5.15, the calculated % coefficient of variance (%CV) for the 

start and end wavelengths for all ten water files are not significantly different from the 

values calculated over the respective two occasions. This implied that all ten files 
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could be employed simultaneously to form average water EEM which would then be 

employed to adjust the emission wavelengths to all the measured standards and 

samples (EEMs). 

 

5.4.3.2 Spectral Binning of Selected Wavelengths in the EEM 

 

The intensity chart in Figure 5.5 indicated the region in which fluorescence was 

localised on the CCD. Two types of binning were performed. The first binning 

involved the summation of 91 emission spectra in that range within the EEM (index 

145 ± 45). The second binning involved the summation of 91 emission (index 145 ± 

45) and excitation spectra (index 120 ± 45). The outer product of these two vectors 

was obtained prior to extraction of the main diagonal. 

 

Tables 5.16 to 5.19 show the means, standard deviations and percentage coefficient of 

variations for the prediction of the concentrations of the synthetic samples. All 

predictions were performed after the incorporation of the validation dataset into the 

model. In all cases, predictions were performed at the 20th latent variable for all 

components. SIMPLS was employed throughout. 

 
Table 5.16: The predicted concentrations with no data pre-treatment for binned emission spectra 

 MEANS STD DEV % CV 
Sample ANT PHE NAP ANT PHE NAP ANT PHE NAP
UNK1 384.8 150.5 556.9 1.30 1.99 24.56 0.3 1.3 4.4 
UNK2 501.2 312.4 412.8 0.48 3.52 36.04 0.1 1.1 8.7 
UNK3 195.6 409.6 651.9 7.09 9.91 52.15 3.6 2.4 8.0 
UNK4 149.9 499.3 585.2 3.35 3.31 25.46 2.2 0.7 4.4 
UNK5 0.0 0.0 504.3 0.00 0.00 13.71 NaN NaN 2.7 

 
Table 5.17: The predicted concentrations with data pre-treatment for binned emission spectra 

with range-scaling and Savitzky-Golay smoothing (polynomial: 3; window: 41) 

 MEANS STD DEV % CV 
Sample ANT PHE NAP ANT PHE NAP ANT PHE NAP
UNK1 388.7 146.7 590.6 2.46 2.22 17.97 0.6 1.5 3.0 
UNK2 500.0 304.6 428.2 3.58 13.16 29.92 0.7 4.3 7.0 
UNK3 197.1 380.7 591.6 6.19 33.74 27.13 3.1 8.9 4.6 
UNK4 149.9 495.9 570.3 0.76 11.22 27.44 0.5 2.3 4.8 
UNK5 0.0 0.8 526.2 0.00 1.33 10.25 NaN 173.2 1.9 
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Table 5.18: The predicted concentrations with no data pre-treatment for binned excitation and 

emission spectra 

 MEANS STD DEV % CV 
Sample ANT PHE NAP ANT PHE NAP ANT PHE NAP
UNK1 410.8 127.6 561.1 10.67 90.79 80.43 2.6 71.1 14.3 
UNK2 492.5 273.8 325.6 28.07 95.25 122.75 5.7 34.8 37.7 
UNK3 195.0 448.2 552.0 6.04 29.04 62.13 3.1 6.5 11.3 
UNK4 163.4 498.6 570.8 7.90 27.50 25.95 4.8 5.5 4.5 
UNK5 12.3 44.2 255.5 0.24 2.75 5.37 1.9 6.2 2.1 

 
Table 5.19: The predicted concentrations with data pre-treatment for binned excitation and 

emission spectra with range-scaling and Savitzky-Golay smoothing (polynomial: 3; window: 41)  

 MEANS STD DEV % CV 
Sample ANT PHE NAP ANT PHE NAP ANT PHE NAP
UNK1 381.1 138.5 574.4 5.51 9.39 18.70 1.4 6.8 3.3 
UNK2 540.0 273.5 430.9 4.33 14.88 42.40 0.8 5.4 9.8 
UNK3 198.8 364.0 516.0 5.21 31.94 45.90 2.6 8.8 8.9 
UNK4 169.9 435.2 580.6 9.01 8.47 13.04 5.3 1.9 2.2 
UNK5 87.9 115.0 491.1 4.71 1.92 7.89 5.4 1.7 1.6 

 

Table 5.20 displays the calculated RMSEP values for Tables 5.16 to 5.19. 

 
Table 5.20: Calculated RMSEP values for Tables 5.16 to 5.19 

Table 5.16 5.17 5.18 5.19 
RMSEP (ppb) 19.06 14.25 71.00 50.85 
 

Range-scaling the datasets in which the emission spectra were binned in conjunction 

with Savitzky-Golay smoothing has given the better calculated RMSEP value (14.25 

ppb). This is also an improvement from the better RMSEP value (14.88 ppb) obtained 

for 2D fluorescence spectra under the same data pre-treatment conditions in addition 

to removal of the excitation peak (Table 5.12). 

 

Weights had been applied to both binned datasets but had failed to yield low RMSEP 

values. This can be attributed to the extreme overlap observed in the spectra. As a 

result, the weights have thus been applied at the respective index ranges when they 

should have not. The custom-built weighting function works better for the heavy 

metals due to the clear difference in the peak potential for each metal ion (Section 

2.4.2). This is not the case for the three PAHs employed here, and thus it is more than 

likely that this “intelligent weighting” function needs revising. 
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It is evident that the approaches described for the binning of the emission spectra only 

(Tables 5.16 and 5.17) in conjunction with the SIMPLS modelling algorithm offer the 

best predictions, especially for sample UNK5. Furthermore, binning the excitation 

and emission spectra in conjunction with the SIMPLS algorithm led to difficulties in 

predicting the zero concentrations for anthracene (ANT) and phenanthrene (PHE) in 

sample UNK5 (Tables 5.18 and 5.19). Better precision was observed for predictions 

(low %CV values) in Table 5.16 compared against the other tables. 

 

As had been performed in Section 5.4.2, the last 15 spectra in the binned training set 

were set aside as the test set. The SIMPLS model was thus constructed with the 

calibration set and predictions of the test set were performed. Table 5.21 shows the 

calculated correlation coefficients for the predicted concentrations and the actual 

concentrations at varying data pre-treatments and binning techniques. 

 
Table 5.21: Correlation coefficient values for some of the predicted concentrations.  

Key: RS: Range-scaling; SG: Savitzky-Golay smoothing (polynomial: 3; window: 41) 

CODE ANT PHE NAP 
Binned emission spectra only 0.9995 0.9998 0.9982 

Binned excitation and emission spectra only 0.9883 0.8922 0.7067 
Binned emission spectra, RS and SG 0.9994 0.9995 0.9962 

 

Binning the emission spectra only has given the best correlation coefficients 

compared with the binning of the excitation and emission spectra. It is feasible to 

conclude that the utilisation of the main diagonal of the outer product of the binned 

excitation and emission spectra is not beneficial. 

 

5.4.3.3 PCA on Binned Spectra from the Respective EEMs 

 

The dimensions of the selected region of interest were 161 × 250. For each EEM, it 

was processed by binning all the rows and columns prior to concatenating the vectors. 

Once all the EEMs had been treated in the same manner, PCA was performed with a 

minimum of 30 PCs. Additional pre-treatment techniques were also carried out such 

as range-scaling and mean-centring prior to modelling with the SIMPLS algorithm. 

Figure 5.11 displays the RMSEP plots attained. 
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Figure 5.11: RMSEP plot for the prediction of the concentrations of anthracene, phenanthrene 

and naphthalene in a set of synthetic samples detailed in Table 5.1 from the processed datasets 

originating from the PCA scores of the binned rows and columns of the region of interest 

pertaining to the EEMs. 

Key: YV: validation set included; NV: validation set not included; 

M-C and R-S: mean-centred and range-scaled respectively with Savitzky-Golay smoothing 

(polynomial: 3; window: 41) 

 

The prediction of the PAHs following the range-scaling of the dataset is most accurate 

with a value of 170.98 ppb. Furthermore, the incorporation of the validation set into 

the model further improves the RMSEP values. The raw and mean-centred datasets 

have not performed as well. Overall, the respective models generated to predict the 

concentrations of all three PAH components have not been as effective as reported in 

Section 5.4.3.2. 

 

5.4.3.4 Synchronous Fluorescence Spectra Extracted from the EEMs 

 

Figure 5.12 displays the different spectra obtained at different synchronous 

wavelengths (∆λ = 0, 20, 40, 60, 80 and 95 nm) as extracted from the EEMs (Meras et 

al.,  2005). Figure 5.13 displays the calculated RMSEP values obtained for the 

prediction of the three PAH analytes at varying synchronous wavelengths via latent 

variables suggested by the minimum RMSEP. 
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Figure 5.12: Synchronous spectra extracted from the EEM of a standard containing 500 ppb 

anthracene, phenanthrene and naphthalene in HPLC grade acetonitrile obtained at varying 

synchronous (Syn) wavelengths (Syn20 implies ∆λ = 20nm) 
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Figure 5.13: The calculated RMSEP values for the prediction of ANT, PHE and NAP at varying 

synchronous wavelengths (∆λ) via the minimum RMSEP.  

Key: YV: validation set included; NV: validation set not included; 
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Less spectral information becomes available for ∆λ = 80nm and 95nm, which implies 

that the respective models generated by the SIMPLS algorithm will be incapable of 

providing good predictions. A synchronous wavelength of 40nm has produced the 

datasets with the most spectral information and thus the better SIMPLS model with an 

RMSEP value of 11.45 ppb. This conforms to the findings reported in the literature in 

which three synchronous spectra of anthracene, phenanthrene, naphthalene and 

pyrene were recorded at ∆λ = 10, 50 and 100 nm (Ferrer et al.,  1998). The authors 

rejected the spectra at ∆λ = 10nm due to no distinction being attainable between the 

PAHs. Referring to Figure 5.13, in all instances except for ∆λ = 80nm, the 

incorporation of the validation set into the respective models marginally improves the 

RMSEP values. This is reflected in the comparison of the LOO CV plots for ∆λ = 

40nm and 95nm (Figure 5.14). 

 

 
(A) ∆λ = 40nm 

 
(B) ∆λ = 95nm 

Figure 5.14: Comparison of the LOO-CV plots obtained for the SIMPLS models at synchronous 

wavelengths (∆λ) of 40nm (A) and 95nm (B) 
 

The LOO-CV plot for ∆λ = 95nm is thus very poor compared to that of ∆λ = 40nm. 

The naphthalene curve is also very good at ∆λ = 40nm. However, closer inspection of 

the scores plot (not shown) for the ∆λ = 95nm indicated the presence of an outlier. 

Omission of this sample and thus re-modelling did not result in an improved LOO-CV 

plot. The overall RMSEP value of 175.13 ppb was calculated, which was only a slight 

improvement from 224.86 ppb. 

 

Further pre-treatments involving range-scaling and mean-centring were performed on 

the dataset pertaining to ∆λ = 40nm in addition to predicting via the minimum 
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RMSEP and the F-test (Section 1.5.5.2). However, no improvement was observed in 

the RMSEP values. The better RMSEP value was seen for the un-scaled synchronous 

fluorescence spectra at 11.45 ppb as determined by the minimum RMSEP. Except for 

the mean-centred dataset, there was a marginal improvement in the RMSEP values 

from 1.5 to 16 ppb when the validation set was incorporated in the model. 

 

Focusing on the mean-centred data, there is some concern as to why the RMSEP 

value for incorporation of the validation set is so large compared to exclusion of the 

validation set. No outliers had been observed in the respective validation sets 

employed in both the 2D-F and SYN40 analyses. Figure 5.15 illustrates the possible 

cause of the high RMSEP values obtained for mean-centring of the binned emission 

spectra (Section 5.4.3.2). 

 

 
(A) Raw: Before ITSV 

 
(B) Raw: After ITSV 

 
(C) MC: Before ITSV 

 
(D) MC: After ITSV 

Figure 5.15: Comparison of U vs T plots before and after incorporation of the validation set 
 

As can be seen in Figure 5.15C definite clusters have been formed. When the 

validation set is thus incorporated into the model, separate clusters result (Figure 

5.15D). This most likely leads to significant underperformance of the model. This 



PhD Thesis  Chapter 5 
 

 
Cranfield University  Michael Cauchi 249

further leads to the score of an unknown sample failing to be associated with any of 

the clusters, and thus results in a high RMSEP value. Further, the validation set is 

embedded within the training set for the raw data (Figure 5.15A and 5.15B). 

 

Table 5.22 compares the calculated means for the prediction of the concentrations of 

the synthetic samples (Table 5.1) relating to the best RMSEP values calculated for the 

2D fluorescence emission spectra and the synchronous spectra (∆λ = 40nm). 

 
Table 5.22: Comparison of the calculated concentration means pertaining to the optimum 

calculated RMSEP values 

 2D Fluorescence 
(Emission) 

ACTUAL 3D Fluorescence 
(SYN40) 

Sample ANT PHE NAP ANT PHE NAP ANT PHE NAP 
UNK1 383.6 145.4 562.9 400 150 600 387.12 136.98 577.86 
UNK2 493.2 308.7 395.7 500 300 400 505.84 303.56 399.26 
UNK3 180.2 402.4 591.0 200 400 600 198.73 407.06 621.67 
UNK4 126.7 492.0 577.2 150 500 600 150.44 506.44 598.35 
UNK5 0.00 0.00 502.4 0 0 500 0.00 3.06 522.75 

 

The calculated RMSEP values were 15.07 and 11.45 ppb for the 2D and 3D 

fluorescence spectra respectively. A very close agreement in the calculated 

concentrations is observed in the 3D compared to the 2D modes of acquisition. 

However, the concentration of naphthalene in the UNK5 sample is predicted much 

well in the 2D (502.4 ppb) than in the 3D (522.75 ppb). However, a very good 

agreement is seen in the UNK4 sample for the 3D mode of acquisition. 

 

Overall, the synchronous wavelength of ∆λ = 40nm has given the better RMSEP 

value for the prediction of the three target PAH components. 

 

5.4.4 Application to Real Samples 

 

Figure 5.16 displays the averaged fluorescence emission spectra of the B4 soil sample 

solution. For comparative purposes the emission spectra of the acetonitrile and a 

standard solution have been included. 
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Figure 5.16: Fluorescence (2D) emission spectra of B4 soil sample after extraction with acetone 

(blue); blank consisting of acetonitrile included (green); standard solution: 500 ppb anthracene, 

phenanthrene and naphthalene in HPLC grade acetonitrile (red).  

Instrumental conditions: Table 5.2 
 

The anthracene peak gives a highly characteristic spectral response compared to the 

other components as can be seen in the spectrum for the standard solution. Looking at 

the spectrum for B4, one can infer that there is minimal presence of anthracene, and 

this complies with the true values listed in Table 5.5.  The presence of the other PAHs 

can also be seen in the synchronous fluorescence spectra at ∆λ = 40nm (Figure 5.17). 
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Figure 5.17: The synchronous fluorescence spectrum (∆λ = 40nm) for 500 ppb anthracene, 

phenanthrene and naphthalene in HPLC grade acetonitrile (Syn40_555), and soil sample B4 in 

acetonitrile (Syn40_B4) 
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Again one can infer the minimal presence of anthracene in the B4 sample. It is 

interesting to note that the maximum peak of the B4 sample (red) directly lies above 

the small peak at 280nm (blue). This could be attributed to naphthalene. 

 

Based on the above observations, the SIMPLS models developed in the previous 

sections were deemed inadequate for the determination of the three main target PAHs 

in the B4 sample. This is mostly due to the different spectral profiles obtained. 

Furthermore, predictions had been performed and in many cases concentrations in 

excess of 1200 ppb were predicted for naphthalene and phenanthrene which were thus 

more than double the maximum concentration of 600 ppb in the training set. The test 

samples could have been diluted down with acetonitrile but at a risk of losing spectral 

information with regards to anthracene. It is possible that a reduction in quenching 

may have resulted in more characteristic spectra. 

 

5.4.5 Prediction of Anthracene Only 

 

Section 5.4.3.3 discussed the application of PCA to the binned emission and 

excitation spectra of the region of interest illustrated in the intensity chart in Figure 

5.5 after concatenation of the vectors. The application of the respective SIMPLS 

models did not lead to good RMSEP values for the prediction of the three target PAH 

analytes. However, the literature has reported that the modelling of one target 

component leads to better RMSEP values than modelling all the components 

simultaneously; in terms of the NIPALS algorithm, PLS1 models are more robust 

than PLS2 models (Ferrer et al.,  1998). In this context, the effects of modelling only 

one component, in this case anthracene was investigated. 

 

As anthracene produces the most intense spectral profile compared to the other two 

components, namely phenanthrene and naphthalene, the RMSEP values for the 

prediction of anthracene alone were calculated. Table 5.23 shows the calculated 

RMSEP values for the application of PCA to the binned emission and excitation 

spectra. Concurrently, Table 5.24 shows the calculated RMSEP values for the 

prediction of anthracene from synchronous spectra (∆λ = 40 nm) in conjunction with 

additional data pre-treatment. 
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Table 5.23: Calculated RMSEP values for the prediction of the concentrations of anthracene only 

in a set of “unknown” samples detailed in Table 5.1 from the processed datasets originating from 

the PC scores of the binned EEMs.  

Scaling Validation set 
included 

Scaling Validation set not 
included 

None 13.30 ppb None 12.96 ppb 
Range-scaling 7.57 ppb Range-scaling 8.16 ppb 
Mean-centring 28.34 ppb Mean-centring 12.96 ppb 

 

In this instance, the range-scaled dataset has given the best prediction but the mean-

centred data has performed worse. More importantly, the RMSEP values are much 

improved, for example the RMSEP value for the prediction of anthracene in the 

“unknown” samples for the range-scaled dataset with the validation dataset included 

in the model is 7.57 ppb compared to 170.98 ppb for all three components (Figure 

5.11). 

 
Table 5.24: Calculated RMSEP values (ppb) at varying pre-treatment techniques for ∆λ = 40nm 

as suggested by the optimum latent variables from the minimum RMSEP (M) and the F-test (F) 

but for anthracene (ANT) only. Key: YV: validation set included; NV: validation set not included 

Pre-treatment Min RMSEP F-TEST 
Raw (YV) 6.94 6.12 
Raw (NV) 6.74 7.01 

Range-scale (YV) 6.44 6.51 
Range-scale (NV) 5.86 7.05 
Mean-centre (YV) 134.97 6.55 
Mean-centre (NV) 140.57 7.08 

 

Finally, regarding the extraction of synchronous spectra from the respective EEMs 

(Section 5.4.3.4), the predictions via the optimum latent variables suggested by the F-

test for the raw data (YV) is marginally better than those suggested by the minimum 

RMSEP (6.12 and 6.94ppb respectively). However, the opposite is true for range-

scaling. However, range-scaling offers the best predictions in conjunction with the 

SIMPLS modelling algorithm (6.44 ppb and 5.86 ppb for YV and NV respectively). 

Overall, a viable method for the prediction of anthracene in samples containing a 

range of PAHs is possible. 
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5.5 Conclusions 
 

Univariate analysis for the determination of the three PAHs employed in this study, 

namely anthracene, phenanthrene and naphthalene, cannot be performed successfully 

due to the overlapping spectra of the three respective molecules, under the 

experimental conditions applied. Not even the method of standard addition would be 

applicable, especially in real samples.  

 

Multivariate calibration has considerably improved the ability of the unknown 

samples to be accurately predicted. In predicting the test set values, performing range-

scaling and filtering with the Savitsky-Golay function prior to modelling leads to low 

RMSEP values. Application of weights in addition to the above-mentioned range-

scaling and filtering can lead to reduction of the RMSEP values for specific 

components, for example anthracene but cannot currently be employed to deconvolute 

all three target PAHs due to the severely overlapping spectra. Comparisons of the 

SIMPLS models generated show that better RMSEP values are obtained when the 

validation sets are incorporated into the models. 

 

Initial attempts at working with the data acquired on the 3D fluorimeter (SPEX 3D) 

have proved positive. The RMSEP values obtained were better than those from the 2D 

instrument (15.07 and 11.45 ppb for 2D and 3D respectively). Although it is usually 

not advisable to bin spectra due to the risk of losing important information, this seems 

to have not been the case. In fact, future work could involve varying the number of 

spectra binned.  

 

A vast improvement has also been observed in the overall prediction of the target 

PAH analytes, especially with the application of synchronous fluorescence 

spectroscopy to the EEM with a ∆λ of 40nm. Naphthalene has been shown to be 

difficult to predict and this is reflected in the spectra obtained. Anthracene can still be 

successfully predicted in the presence of phenanthrene and naphthalene. This was 

observed for the datasets employed on two occasions, namely in Section 5.4.5 in 

which excellent RMSEP values were calculated (5.86 ppb). 

 



PhD Thesis  Chapter 5 
 

 
Cranfield University  Michael Cauchi 254

Regarding the quantitative determination of the amounts of the three target PAHs in a 

real soil sample, initial attempts have proved unsuccessful. This is mostly due to the 

presence and hence interference of the other PAH molecules also present in the 

sample. Acetone was chosen mostly due to it being a well-utilised solvent for the 

extraction of PAH species from soil samples (Tomaniova et al.,  1998; Janska et al.,  

2004). Furthermore, predicted concentrations exceeded the maximum concentration in 

the training set especially for phenanthrene and naphthalene indicating that dilutions 

should have been made. 

 

Overall, for the simultaneous prediction of all three target PAHs, synchronous 

fluorescence spectra obtained from the EEM in conjunction with the SIMPLS 

algorithm gives the better RMSEP values. 
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CHAPTER 6: DISCUSSION AND CONCLUSIONS 
 

6.1 Overview 
 

A brief introduction will be given with a reminder of the aims and objectives. This is 

followed by a general discussion which will summarise the findings from Chapters 2 

to 5. Further explanations of procedures undertaken will be given with discussions 

with reference to the literature. Finally, an overall conclusion and recommendations 

for future work is presented. 

 

6.2 Introduction 
 

The major aims and objectives of this thesis have been met with regards to the 

development of analytical techniques for water quality determination. In Chapter 2 

quantitative determination of cadmium, lead and copper via multivariate calibration of 

DPASV voltammograms acquired on carbon-ink screen-printed electrodes was 

presented. The same was seen for arsenic, mercury and copper via multivariate 

calibration of DPASV voltammograms on gold-ink screen-printed electrodes (Chapter 

3). However it must be stressed that the quantification in terms of the calculated root 

mean square error of prediction (RMSEP) was greater in magnitude than for the 

carbon-ink electrodes implying weaker predictive capability of the multivariate 

calibration modelling algorithm. 

 

A key element of this thesis was the successful development and application of an in-

house custom-built data analysis package constructed in both the Matlab and 

LabVIEW environments. It was initially designed to handle DPASV voltammograms 

(Section 2.3.3, 2.4.1 and 3.4.2) but later was adapted to handle fluorescence spectra 

(Section 5.4.2 and 5.4.3). Extra modules were also constructed to manipulate the 

excitation-emission matrix (EEM) spectra acquired on the 3D fluorimeter (SPEX 3D). 

Excellent quantification of three target PAHs was attained, with the most reliable data 

being obtained for anthracene. 
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The development of a personal digital assistant (PDA) application for the quantitative 

determination of cadmium, lead and copper in the field was reported (Chapter 4). This 

was in conjunction with the construction of a portable multi-channel potentiostat 

which was also controlled by the PDA. Screening and quantification of the target 

analytes was achieved on the PDA or on a desktop personal computer after 

transference of the data to it. 

 

The next Section will discuss the findings from all four chapters. 

 

6.3 General Discussion 
 

6.3.1 Carbon-Ink Screen-Printed Electrodes 

 

There have been many papers published over the last few years introducing new 

variants of PLS and/or other chemometric techniques and approaches to data pre-

treatment. Chemometrics dates as far back as the early-to-mid nineteenth century 

(Brereton, 2003). Cauchy was one of the first to deal with matrices in 1829 and PCA 

was first used in 1879 for linear calibrations. The revolution came in the 1930s when 

PCA was applied to pyschometrics. It was not until the 1970s that PCA was applied to 

chemical data and the field of chemometrics was born. 

 

The non-linear iterative partial least squares (NIPALS) algorithm has long been 

established, dating as far back as the 1970s. The statistically inspired modification of 

partial least squares (SIMPLS) algorithm introduced in 1993 superseded it producing 

better models at a faster rate leading to improved predictions, as has been reflected in 

the current research. However, coupled with the increase in technological advances, 

more complex and computationally time-consuming calculations are possible. This 

has led to the incorporation of large data sets such as those obtained from DNA 

microarrays (Datta, 2001; Datta, 2003b; Datta, 2003a). 

 

The SIMPLS algorithm has been shown to be the better multivariate calibration 

regression tool for quantitatively predicting the concentration of cadmium, lead and 

copper in a given batch of samples. Although very good root mean square errors of 
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prediction (RMSEP) values were attained, there were still some issues leading to a 

cause for concern. These causes were not specifically related to the multivariate 

calibration regression model (SIMPLS) but also to the physical measurements 

themselves, namely the acquisition of the DPASV voltammograms on the carbon-ink 

screen-printed electrodes. 

 

Two batches of carbon-ink screen-printed electrodes were employed in the study. The 

first (C-SPE-O) had been employed by Cooper who had optimised the experimental 

conditions for the DPASV acquisition of voltammograms with the electrodes in 

question (Cooper, 2004). The second batch (C-SPE-N), just like the first had been 

printed in-house (details given in Section 2.3.2). However it had been observed that 

the C-SPE-O batch of electrodes was more responsive than the C-SPE-N batch. At the 

same time, it was suggested that the reference electrodes of the C-SPE-O batch had 

suffered the effects of aging due to the shifted voltammograms observed. 

 

Although the same insulator ink was employed for both batches, it was found that the 

ink employed for the C-SPE-N batch was more viscous than for the C-SPE-O batch. 

This implied that a thinning agent was required in the form of an organic solvent 

when applying to the screen. Due to propriety issues it was not possible to gain full 

details of the composition of the respective inks. However, the developed data 

analysis package was still capable of processing the acquired voltammograms on the 

C-SPE-O batch. The development of a custom-built program designed to re-align the 

voltammograms in order to increase the optimal performance of the model was 

described with better RMSEP values attained after SIMPLS modelling compared to 

no re-alignment. There are other parameters to consider with regards to the electrodes 

themselves. For example, the surface of the working electrode on each screen-printed 

electrode will be subtly different and thus possess slightly differing characteristics. 

This will in turn slightly alter the signatures of the voltammograms acquired. 

 

The respective SIMPLS models were found to be more robust compared to the PCR, 

NIPALS and NNPLS (neural network) algorithms. To this effect, the focus of the 

study turned to the application of data pre-treatment prior to SIMPLS modelling. In 

particular, weighting of the individual variables in each voltammogram was attempted 

and led to a vast improvement in the RMSEP values, especially in conjunction with 
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outlier omission and range-scaling. Application of the weighting function involves a 

preliminary scan of the respective concentration matrix in order to “decide” whether 

the weights should be applied for a particular component. If so, then a weight is 

applied at the appropriate index range as defined by pre-set parameters. If a 

component is found to have 0 ppb concentration in the given sample then a low 

weight is applied. 

 

In applying the weights to voltammograms that do not contain a corresponding 

concentration matrix (Y), the weighting function described in the previous paragraph 

is also able to account for this. Based on the pre-determined index ranges the function 

determines the standard deviation and if it exceeds a specified pre-defined limit, it 

applies the high weight, or else it applies the low weight. Overall the weighting 

function increases the signal-to-noise ratio substantially which has thus led to the 

improved RMSEP values attained. To the author’s knowledge no similar function has 

been described in the literature. 

 

Throughout the study, it was observed that the RMSEP values of lead were always 

much better (lower) than for both cadmium and copper. With reference to a DPASV 

voltammogram the lead peak was said to be on a horizontal baseline whereas the 

baselines for cadmium and copper were elevated, possibly due to hydrogen evolution 

and mercury stripping respectively at the extremes of the potential windows. 

However, another plausible cause for the superior performance of lead is possibly due 

to the inter-metallic bonding that can occur between cadmium and copper (Herrero & 

Ortiz, 1997), which contradicts the findings of Crosman and co-workers in 1975 who 

stated that cadmium did not form inter-metallic bonds with copper (Crosman et al.,  

1975). The majority of inter-metallic studies have mostly been focused on copper and 

zinc. The effects of the inter-metallic bonding lead to a depression or shift of the 

voltammetric peak (Copeland et al.,  1974; Crosmun et al.,  1975). However, this is 

unlikely to be the cause of the shifted voltammograms encountered with regards to the 

C-SPE-O batch because all three peaks were shifted suggesting a possible reference 

electrode-related issue. 

 

The quantitative determination of cadmium, lead and copper in a given certified 

reference material (CRM) soil sample by the SIMPLS models constructed with the 



PhD Thesis  Chapter 6 
 

 
Cranfield University  Michael Cauchi 259

data analysis package yielded good agreement with the determinations performed by 

graphite furnace atomic absorption spectroscopy (GF-AAS). Better agreements were 

observed between the multivariate determination and GF-AAS than with standard 

addition. This can be attributed once again to cadmium and copper being respectively 

affected by the evolution of hydrogen and the stripping of the mercury. Overall, the % 

recovery was very relatively low (~15 – 30%). 

 

However, it must be stressed that the aim of this exercise was not to develop a novel 

extraction process but merely to test the capabilities of the generated models and the 

data analysis package in processing voltammograms acquired from real samples. For 

percentage recoveries greater than 90%, an efficient but complex procedure is briefly 

described (Feeney & Kounaves, 2002). 5g of soil was placed in an extraction cell and 

placed in an oven at 200°C and pressurised to 20 – 30 bar. Acidified water was then 

pumped through the oven at 3ml/min. The extract would then be collected in a vial 

and cooled to 25°C. Cadmium, lead and copper were then determined by GF-AAS; 

the overall duration of the procedure lasting for 70 minutes. 

 

Thus overall it can be seen that application of multivariate calibration regression 

modelling, in particular SIMPLS, combined with a number of pre-treatment 

techniques shows promise as a methodology for the determination of cadmium, lead 

and copper in environmental samples. 

 

6.3.2 Gold-Ink Screen-Printed Electrodes 

 

The majority of solid state working electrodes suffer from the cumbersome task of 

intense cleaning and polishing after a measurement has been performed, such as with 

the gold disk electrode. The need for disposable electrodes is paramount for analysis 

in the field hence allowing more rapid management decisions to be made as a result of 

the data generated. Preliminary work had been carried out in-house on gold-ink 

screen-printed electrodes for the determination of arsenic, mercury and copper by 

Cooper (Cooper, 2004). Optimal parameters obtained had been a deposition potential 

of 0.0V, a deposition time of 30 seconds and a 4M HCl electrolyte. However, copper 

peaks were found to overlap with mercury and suppress arsenic (Cooper, 2004). 

Multivariate Calibration techniques were thus applied to the voltammograms to 
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quantify the presence of all three metals, but were not as successful as reported in 

Chapter 2. The gold-ink screen-printed electrodes kindly supplied by Du Pont have 

been a contributory factor to this. 

 

Section 3.4.1 presented an extensive analysis on a number of batches supplied by Du 

Pont; a company which has a long history of manufacturing electrode inks, such as 

the platinum-gold 7553 employed in the preparation of printed micro-circuits 

(Hoffman & Nakayama, 1968). It was found that the current ink formulations did not 

possess long shelf-lives. Furthermore the curing modes employed appeared to affect 

the overall analytical response of the working electrode. Table 6.1 displays the codes 

of the inks employed in addition to the optimum batches from the first and second 

batches. 

 
Table 6.1: A comparison of the codes and methods of preparation of the batches of gold-ink 

screen-printed electrodes supplied by Du Pont 

ID Carbon Ag/AgCl Gold Cure Encapsulation Quantity 
D E100735-155 5874 BQ331 Oven E017257-1 15 
2 BQ225 BQ164 BQ331 IR BQ425 10 
4 BQ225 BQ164 BQ331 Oven BQ411 10 

AO BQ225 BQ164 BQ331 Oven BQ411 30 
AI BQ225 BQ164 BQ331 IR BQ411 75 
BO BQ242 BQ164 BQ331 Oven BQ411 20 
BI BQ242 BQ164 BQ331 IR BQ411 30 

 

The gold ink is the same throughout (BQ331). The exact formulation of these inks is 

not known due to propriety issues. This in turn makes it difficult to deduce or propose 

the cause of the problems incurred. In Section 3.4.1, it was shown that the BI batch of 

electrodes had better repeatability and reproducibility. However, as only a limited 

number of electrodes were supplied the AI batch was employed. 

 

Although the AI batch was highly repeatable for arsenic (III), the same cannot be said 

for mercury (II) and copper (II). It had been observed that the response of the 600 ppb 

mercury standard was very much higher than at 800 ppb. One postulation is that an 

inter-metallic formation occurs between the copper and mercury at that specific 

concentration. Although studies have been carried out on copper-mercury inter-

metallic bonding (Ben-Bassat & Azrad, 1978) and dating far back as the 1930s, none 
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has so far at the time of writing, have been reported in the literature specifically on 

gold (-ink) working electrodes. This warrants further investigations. 

 

Researchers are continuously looking into producing their own gold-ink screen-

printed electrodes. For example it was reported in 2003 that by optimising the length 

of the alkanethiol encapsulant and the size of the gold nano-particles the gold-plated 

electrodes on a plastic substrate can be cured at a temperature of 150°C instead of the 

normal which is in excess of 200°C (Huang et al.,  2003). The fabrication of the gold 

film involved transferring a gold (III) solution (AuCl4
-) into toluene. The aqueous 

phase was removed. An alkane thiol ranging in carbon length from 4 to 12 was added; 

the length dependent on the required size of the gold nano crystals. Table 6.2 displays 

the mole ratios of the thiol:gold. 

 
Table 6.2: Mole ratios of the thiol:gold depending on the size of the required gold nano-crystals 

Gold nano-crystal diameter (nm) Mole ratio (Thiol:Gold) 
1.5 4:1 
5.0 1/12:1 

 

Sodium borohydride dissolved in water (amount not given) was added to the organic 

phase. A reaction thus ensued for 3.5 hours at room temperature. A rotary evaporator 

was then employed to remove the toluene. The remaining black residue was immersed 

in ethanol and briefly sonicated. After washing with ethanol followed by acetone and 

left to dry, the residue was re-dissolved in toluene ensuring that it was saturated. A 

micro-pipette was employed to plate the tracts on to a given substrate (Du Pont 

Melinex sheets (polyethylene terephthalate)). After drying, the black film was heated 

in two stages; the first was to sublimate the alkanethiol; completion was achieved 

when the black residue turned to gold. The second heating stage involved melting the 

film, coagulating it and then solidification in order that a conducting gold film 

resulted. 

 

The authors found that better conductivity was attained when the number of carbons 

in the alkanethiol ranged from 4 to 6. They had also performed stability studies. They 

had observed that due to a continuous evaporation of the alkanethiol, the shelf-life 

was reduced unless they were refrigerated. Further, they also observed that the larger 
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diameter gold nano-crystals were also prone to degradation due to the alkanethiol 

encapsulant evaporating as a result of the larger fraction of the gold. Overall, the 

authors concluded that hexanethiol was the better encapsulant coupled with gold 

nano-particle diameters of 1.5nm and an “annealing temperature” of 150°C. 

 

Arsenic and copper are also reported to form inter-metallic complexes (Feeney & 

Kounaves, 2002). This may be the reason why no arsenic peak was observed on the 

gold-ink screen-printed electrodes in this study after extraction from the certified 

reference material (CRM) soil sample. Hydride generation atomic absorption 

spectroscopy (HG-AAS) showed that there was indeed arsenic in the extract with a % 

recovery of 11.76%. However it has been reported that copper can interfere with 

arsenic determination on HG-AAS if its concentration exceeds 4 ppm (Amankwah & 

Fasching, 1985). An alternative explanation is that the arsenic species was in the 

arsenate (As (V)) form. This seemed likely by the acquisition of voltammograms after 

reduction of arsenate to arsenite with L-cysteine. However, the presence of copper, 

and other metals such as mercury (2.42mg/kg), chromium (27.2mg/kg), zinc 

(140mg/kg) and antimony4 (3.2mg/kg) may complicate the quantitative determination 

of the arsenate and was thus not attempted. Antimony (Sb) is also known to interfere 

with arsenic determination, especially in HG-AAS (de Moraes Flores et al.,  2002). 

However this is normally when antimony concentrations are in excess of arsenic. On 

examination of the CRM, the certified amount of arsenic (5.64mg/kg) is greater than 

that of antimony. 

 

Overall, the major issue that has affected the outcome of this study is the quality of 

the gold-ink screen-printed electrodes which has made it difficult for the SIMPLS 

algorithm employed to construct models. Artificial neural networks (ANNs) could be 

employed but as had been observed with the carbon-ink screen-printed electrodes, the 

SIMPLS algorithm was more efficient. A future work could thus be to re-apply ANNs 

to the current data set and vary the number of epochs in addition to the input, hidden 

and output nodes; especially as the datasets are larger than when ANNs was 

previously employed. 

 

                                                 
4 Not certified 
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6.3.3 Portable Field Devices and Automation 

 

The construction of the personal digital assistant (PDA) application to predict the 

amounts of target analytes in given samples via pre-loaded multivariate calibration 

regression models has been successful (Section 4.4). As had been stated the 

application in its current state is restricted in functionality. For example, the 

application is able to perform range-scaling and mean-centring but not Savitzky-

Golay smoothing or variable weighting. The latter cannot be performed because it too 

employs the Savitzky-Golay smoothing algorithm. 

 

It was not possible to simply convert the LabVIEW functions that are employed in the 

desktop version of LabVIEW into the PDA version. Although there were some 

specialised PDA functions they were rather limited in use. Attempts had been made to 

build “PDA equivalents” but they proved unsuccessful. Alternative methods were 

thus sought. One employed the construction of a desktop module to convert the 

normal text files containing voltammetric data into specialised binary files which 

could be imported into the PDA application. 

 

A current problem affecting the performance of the PDA application is the fact that 

when the model is imported, the PDA application is unable to determine whether 

instrument standardisation was performed. If a model is imported which was 

constructed in the absence of instrument standardisation, the “Properties” screen still 

indicates that it was performed. It is unclear as to why this phenomenon occurs. The 

predicted concentration values therefore disagree with the desktop version. This is 

mostly due to the input voltammograms being standardised by an empty piecewise 

direct standardisation (PDS) transformation matrix. When both a multivariate 

calibration model and a PDS model are imported on to the PDA, the predicted 

concentrations still differ. This is due to the standardisation PDA program attempting 

to perform Savitzky-Golay smoothing on the voltammograms pertaining to the target 

analytes. 

 

Parallel to the work performed in this thesis, a miniaturised multi-channel potentiostat 

capable of acquiring signals from four channels simultaneously has been developed 

by co-workers. The PDA software application constructed to acquire the signals and 
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process the data was written in the C# language. It would be better if the acquired 

voltammograms could be processed immediately instead of the need to employ 

another application, namely the LabVIEW PDA application. It may therefore be 

advisable to “re-write” the PDA application in C# seeing as there is more 

functionality available in that language. 

 

The LabVIEW version should not be dismissed. It has become employed in a wide 

variety of fields over the last decade. For example, dissolution testing of 

pharmaceutical tablets was performed in which the data was acquired, processed and 

stored by one program which had been built and validated in-house with LabVIEW 

(Johansson et al.,  2002). It was also able to perform NIPALS (PLS1 and PLS2) and 

allowed concentrations to be calculated in real time instead of the arduous task of 

sample extraction every twenty minutes, filtration and then measurements performed 

on HPLC and UV-VIS spectrophotometry. 

 

This study has also reported the successful application of instrument standardisation 

in the form of piecewise direct standardisation (PDS) with additive background 

correction (ABC). However, the selection of the subset was performed manually 

which is likely to have affected the overall RMSEP values attained. Further 

improvements to these values could be achieved by increasing the number of samples 

in the subset and ensuring that the entire concentration range is covered. However, 

application of an algorithm is more desirable than manual selection. The Kennard-

Stone algorithm has already been described in Section 4.2.5 (Kennard & Stone, 1969). 

Another algorithm involves the use of the “highest leverage” (Wang et al.,  1991). 

This ensures that there is sufficient information in the subset to “describe the 

difference between the two instruments” which in this study would be the Autolab 

PSTAT10 laboratory instrument (primary) and the PDA field instrument (secondary). 

 

The concept of piecewise direct standardisation (PDS) is to permit the model built 

with calibration data on one day to be able to predict data measured on a different 

day, and even by a different operator (Herrero & Ortiz, 1998). Another procedure 

similar to PDS is global calibration transfer method (GCT) (Herrero & Cruz Ortiz, 

1999). PDS and GCT standardisation methods can also be employed to model the 

matrix interferences of iron on copper, when measured with DPASV (Herrero & Cruz 
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Ortiz, 1999). PLS regression to determine the concentrations of both iron and copper 

in the same solution was also employed. It had been reported that utilisation of the 

standardisation methods could lead to a 75% reduction in the use of calibration 

samples. 

 

It has already been stated that the weighting functions developed in this study require 

improvements. It was also suggested that the PDA datasets should also be weighted in 

accordance with the laboratory-acquired datasets. However, in doing so one must be 

certain to ensure that the weighting occurs at the appropriate indices since the PDA 

datasets contain fewer variables than the laboratory datasets. This would also lead to 

the reduction in amplitude of the repetitive wave cycles observed in the PDA datasets 

for low and zero concentration. It is unclear what the cause of this phenomenon is but 

it can severely affect the determination of low concentration analytes. 

 

The last several years have seen a number of portable devices developed involving the 

miniaturisation of key components with the aim of performing field-measurements. 

Examples have included the speciation of arsenic in drinking water by acquisition of 

voltammograms on solid-state gold working electrodes (Huang & Dasgupta, 1999); 

the detection of uranium via capillary electrophoresis (Collins, 2002); a multi-

enzymatic electrochemical sensor for the detection of heavy metals and pesticides in 

potato and cabbage saps, which involved cholinesterase, urease, and glucose oxidase 

coupled “with silicon-nitride ion-sensitive layers” (Starodub et al.,  1999); the 

development of a planar poly(methyl methacrylate) chip for the speciation of arsenic 

by conductivity measurements (Prest et al.,  2003). 

 

6.3.4 Fluorescence Spectroscopy 

 

Fluorescence spectroscopy has become an important and powerful analytical 

technique especially when coupled to a host of chemometric tools. The application of 

weights had not led to improved root mean square error of prediction (RMSEP) 

values as had been observed for the heavy metals. This implies that a number of 

improvements to the weighting function are required, for example, in enabling the 

weighting of an individual compound, as opposed to simultaneous weighting of all 

three compounds. This is adequate for the heavy metals such as cadmium, lead and 
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copper which do not overlap (on a carbon-ink screen-printed electrode). However the 

circumstances with regards to anthracene, phenanthrene and naphthalene are different 

mostly due to the severe overlap observed. The same was observed for mercury and 

copper on the gold-ink screen-printed electrodes in Section 3.4.2. 

 

The same improvements would also be required on the “intelligent” weighting 

function with regards to the weighting of spectra and voltammograms of samples with 

unknown concentrations. Cluster analysis should also be employed to assist this 

function. As already stated, the weighting function scans the relevant index ranges 

where target peaks are likely to appear. This is sufficient for the voltammograms 

containing peaks pertaining to cadmium, lead and copper. An initial analysis of the 

sample with cluster analysis would indicate the likelihood of the presence of a target 

component; if the likelihood was above a pre-defined limit, the high weight would 

thus be applied. The cluster analysis would therefore be applicable to all data types. 

 

It has been shown in this study that better RMSEP values were attained from the 3D 

fluorescence spectra than the 2D emission spectra. This was due to being able to 

manually select the most characteristic portion of the EEM. The software binning of 

the samples led to much improved RMSEP values since prominent regions pertaining 

to the presence of the given target analyte(s) would be amplified whilst regions of 

noise would be minimised resulting in an overall improvement of the signal-to-noise 

ratio. However, the number of spectra that are to be binned still requires optimisation. 

An automated software procedure would thus be beneficial. The synchronous spectra 

extracted from the EEMs yielded superior RMSEP values. However, further 

improvements could be obtained by selective binning of the synchronous spectra, for 

example, with a ∆λ value ranging from 35 to 45nm. 

 

The concatenation of the binned excitation and emission spectra from the respective 

EEMs prior to PCA in which the first 30 components were retained did not yield 

satisfactory RMSEP values compared to binning of emission spectra. This was partly 

attributed to the loss of spectral information due to employing a smaller region of the 

EEM. A feasible suggestion could be to also combine the synchronous spectra with 

the emission and excitation spectra in order to produce a better “fingerprint”. This 

would be followed by PCA on the resulting concatenated vectors.  
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The EEMs acquired in this study were not subjected to multi-way chemometric 

analysis such as parallel factor analysis (PARAFAC), self-weighted alternating 

trilinear decomposition (SWATLD) or N-way PLS ((Bro, 1997; Chen et al.,  2000; 

Espinosa-Mansilla et al.,  2005)) because of the relative small area of interest as 

indicated by the region of interest. Furthermore, it had been reported that tools such as 

PARAFAC required further refining due to the disadvantage of the exact number of 

components in the mixture being known (Espinosa-Mansilla et al.,  2005). This would 

be most evident if a number of sample EEMs were acquired containing an unknown 

number of PAH components. 

 

In addition to the application of fluorescence spectroscopy for the detection and 

quantitative determination of PAHs and other fluorescent analytes, the technique can 

be applied to the analysis of metal ions (Skoog et al., 1996; Rouessac & Rouessac, 

2000). This results from the complexation of a target metal ion with a fluorescing 

organic compound. It was reported that uranium could be detected in the presence of 

other toxic heavy metals such as mercury, lead, cadmium and copper with a portable 

capillary zone electrophoresis “lab-on-chip” device using complexing ligands 

attached to fluorescing dyes such as rhodamine B and calix-6-arene (Collins, 2002).  

 

The application of disposable carbon-ink screen-printed electrodes for the 

electrochemical detection and determination of target metal analytes has been 

discussed in Section 6.3.2. However, it was recently reported that the same 

technology can be applied to PAHs, such as phenanthrene (Fahnrich et al.,  2003). 

The literature has reported devices containing multiple working electrodes, each 

coated with a different component that is specific for a given target analyte 

(Arkhypova et al.,  2001; Bachmann & Schmid, 1999; Bachmann et al.,  2000). This 

thus leads to the application of chemometrics and good experimental design for the 

quantitative determination of these target analytes. 
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6.4 Overall Conclusions 
 

This study has highlighted the importance and difficulty in developing the correct data 

analysis tools for the successful monitoring for the production of safe drinking water. 

The quantitative determinations of a select number of heavy metal ions and 

polynuclear aromatic hydrocarbons via specialised data pre-treatment techniques 

followed by multivariate calibration regression models have been reported. As one of 

the ARTDEMO project goals was to develop on-line and at-line monitoring tools, this 

study has seen the preliminary attempts at achieving the latter. 

 

A custom-built data analysis package has been developed in both the Matlab and 

LabVIEW environments. It is able to import the raw DPASV voltammograms and 

fluorescence spectra and construct the appropriate datasets. A range of data pre-

treatment options are available such as the omission of outliers via PCA, the omission 

of rogue variables, and the application of specific weights. Instrument standardisation 

in the form of piecewise direct standardisation is available. Other techniques include 

range-scaling and mean-centring coupled with Savitzky-Golay smoothing, moving 

average smoothing and fast Fourier transform smoothing. A final pre-treatment option 

is orthogonal signal correction (OSC). Multivariate calibration models are constructed 

via either the PCR, NIPALS, SIMPLS or ANNs algorithm followed by leave-one-out 

cross-validation. All parameters can be saved in appropriate files for retrieval at a 

later time. Predictions can thus be performed and exported into text files. The package 

can also import voltammograms acquired on the accompanying PDA application, 

standardise the datasets and predict the respective concentrations of the target 

analytes. 

 

The data analysis package has been successfully employed for the quantitative and 

simultaneous determination of cadmium, lead and copper on carbon-ink screen-

printed electrodes; arsenic, mercury and copper on gold-ink screen-printed electrodes; 

anthracene, phenanthrene and naphthalene via fluorescence emission spectra and 

synchronous spectra extracted from excitation-emission matrix (EEM) spectra. These 

were all modelled with the SIMPLS algorithm. The overall better root mean square 

error of prediction (RMSEP) values was seen with the latter; the worse values were 
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seen with the gold-ink screen-printed electrodes. This was mostly due to the electrode 

difficulties as has been explained previously. 

 

The majority of the predictions for each of the target analytes were performed at high 

latent variables ranging from 14 to 20. This would cause one to infer that the noise 

was also being modelled. However, given the nature of the voltammograms and the 

fluorescence spectra in addition to the number of variables which range from 180 to 

300, the number of latent variables stated above is sufficient. This implies that any 

non-linear interactions are taken into account. For example, with regards to the 

DPASV voltammograms, any inter-metallic complexes can be modelled such as Cu-

Hg and Pb-Cu (Zen et al.,  2000). Furthermore, the number of latent variables will 

describe the variability observed in such “complex models” (Thennadil & Martin, 

2005). 

 

A PDA application has been successfully developed and employed which leads to the 

ability to perform “chemometrics on a PDA”. Although a number of issues were 

raised with regards to incompatible results attained between the desktop and PDA 

versions, this is mostly attributable to the PDA Module Add-On supplied by National 

Instruments for LabVIEW 7.1. It is evident that the actual programs do work seeing as 

the same code is employed in both versions and that the desktop version agrees with 

the Matlab version. This issue can thus be overcome by further investigations of the 

current code, upgrading to the next available version of the Add-On or re-writing the 

entire application in a different language such as Visual C#. 

 

Overall, the aims and objectives of this study have been met. A custom-built data 

analysis package has been developed leading to the successful qualitative and 

quantitative determination of target analytes via the acquisition of DPASV 

voltammograms and fluorescence spectra via multivariate calibration. A PDA 

application has been developed which can acquire and process DPASV 

voltammograms and thus communicate with the main data analysis package. The 

potential for the application of automation via the development of a program to 

simultaneously control a sample preparation unit and screen-printed electrode 

dispenser has been demonstrated. The specific aims as set out by the ARTDEMO 

project has also been met. 
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6.5 Recommendations for Future Work 
 

A number of issues were raised during the course of this project and the bullet points 

below suggest a number of recommendations for future work. 

 

• The development of a database for storage of voltammograms (or spectra), 

regression models, RMSEP values, etc in place of the vast amounts of text 

files that are currently generated 

• The further study of gold-ink screen-printed electrodes including: 

o The effects of inter-metallic bonding between mercury and copper 

o The quantitative determination of cadmium and lead 

o The application of PCA and ANNs over a wider range of 

concentrations 

• The quantitative determination of chromium and zinc on carbon-ink screen-

printed electrodes 

• Incorporation of hierarchal cluster analysis to the main data analysis package 

to determine whether weights are applied to samples with unknown 

concentrations of target analytes 

• Merging the multi-channel potentiostat data acquisition program on the PDA 

with the LabVIEW PDA application for instant processing and prediction via 

pre-loaded models 

• The application of multi-way techniques such as PARAFAC to EEM spectra 

• The development of an overall data analysis package able to prepare samples, 

acquire datasets, process, model and predict the amounts of the target analytes 

• The application of different experimental design techniques so that larger 

concentration ranges can be employed but without the need to perform 

numerous measurements 

• Applications and adaptation of the main data analysis package for the analysis 

of pharmaceutical data 

 

The above tasks should be applicable for not only the purposes of the ARTDEMO 

project, but for any field whether environmental, industrial or pharmaceutical. 
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APPENDICES 
 

A1: The NIPALS Algorithm 
 

Known as “the classical PLS algorithm”, the steps are outlined below (Lindgren et al.,  

1993; Wise & Gallagher, 1998b) (Wise & Gallagher, 1998a). For each latent variable, 

the following calculations are performed. Firstly, the score vector for the Y matrix is 

calculated. If there is only one column, the score vector, u is set equal to it, else it is 

set equal to the column with the maximum sum of squares. The PLS weight vector is 

obtained from: 

 

uu
uw T

T
T X
=  A1.1 

 

The weight is then normalised with the norm set to one. 

 

w
ww =  A1.2 

 

The corresponding X-score vector is calculated. 

 

ww
Xwt T=  A1.3 

 

The Y-loading vector is calculated. 

 

tt
Ytq T

T
T =  A1.4 

 

The Y-score vector is computed. 

 

qq
Yqu T=  A1.5 
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The u in Equation A1.5 is substituted into Equation A1.1 until convergence has been 

achieved. This is when the difference between the new t vector and the old t vector is 

very small (normally less than 1 × 10-10). Once convergence has been achieved, the 

next set of calculations is carried out. Firstly, the X-loading vector for the latent 

variable is calculated. 

 

tt
Xtp T

T
T =  A1.6 

 

The X-score, X-PLS weights and X-loading vectors are respectively calculated by 

treatment with the norm of p from Equation A1.6. And thus: 

 

ptt ×=  A1.7 

pww ×=  A1.8 

p
pp =  A1.9 

 

The residuals for X and Y are computed via Equations A1.10 and A1.11 respectively. 

 
TtpXE −=  A1.10 

TtqYF −=  A1.11 

 

For the next latent variable, E and F are substituted into the above equations for X 

and Y respectively, and the whole procedure is repeated until all of the latent variables 

selected have been accounted for. The regression coefficient, B is then calculated 

from the W, P and Q matrices. 

 

( ) TT QWPWB 1−
=  A1.12 

 

If the dimensions of X are m × n, Y are m × h, and a latent variables were selected, the 

corresponding dimensions for B, W, P and Q are n × h, n × a, n × a, and h × a 

respectively.
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A2: The SIMPLS Algorithm 
 

SIMPLS is computationally faster than NIPALS (de Jong, 1993). Furthermore, the X-

scores, t, in SIMPLS are orthonormal and the X-loadings, p, are not normalised. This 

implies that the information with regards to the variance is contained within the 

loadings (Wise & Gallagher, 1998b). 

 

The first step is to mean-centre the Y matrix. The cross-product of X and Y0 are 

calculated. 

 

0YXS T=  A2.1 

 

For the first latent variable, the initial step is to set the Y-loading vector, q, to the most 

dominant eigenvector of the cross-product of ST and S. The X-weight, r is calculated 

(A2.2) followed by the X-score vector, t (A2.3). 

 

Sqr =  A2.2 

Xrt =  A2.3 

 

The scores are mean-centred followed by the normalisation of the scores (A2.4) and 

adaptation of the weights (A2.5) respectively. The X-block factor loading vector is 

then calculated (A2.6) followed by the Y-block loading vector (A2.7) and the 

corresponding Y-block factor score vector (A2.8). 

 

0

0

t
t

t =  A2.4 

0t
rr =  A2.5 

tXp T=  A2.6 

tYq T
0=  A2.7 

qYu T
0=  A2.8 
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The orthogonal loadings are initialised by setting v = p. Equations A2.9 and A2.10 are 

calculated for all of the latent variables except for the first one. 

 

( )pVVvv T−=  A2.9 

( )uTTuu T−=  A2.10 

 

The orthogonal loadings are normalised (A2.11) followed by “deflation” of the S 

matrix (A2.12). 

 

v
vv =  A2.11 

( )SvvSS T−=  A2.12 

 

All vectors calculated above are stored in their respective matrices and the procedure 

is repeated until all of the latent variables are accounted for. The regression 

coefficients matrix, B, is calculated below. 

 

( )TRQB =  A2.13 

 

The variances for X and Y are calculated from the cross-products of P and Q 

respectively. 

 

( )
1

var
−

=
n

PPdiagX
T

 A2.14 

( )
1

var
−

=
n

QQdiagY
T

 A2.15 

 

The diag term implies utilization of the elements along the main diagonal of the 

matrix. The number of observations (rows in X) is given as n. 
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A3: The Data Analysis Package 
 

A3.1 The Main Program 

 

The functionality of the main program is illustrated in the flow diagram below (Figure 

A3.1 and A3.2). 

 

Set working directory

Split dataset

START

Load Model? MODEL

Predict real samples?

Load New Data?
Appendix

A3.2

Load data

Standardise?

View plots Standardisation

Range scale?

Mean-centre?

View plots

Appendix A3.3Smooth?

OSC?

Modelling and Validation

Test Set

Calibration Set

Aborted?

END

 
Figure A3.1: Functionality of the main program prior to modelling 

Blue arrows denote positive output (YES); Red arrows denote negative output (NO); Black 

arrows denote normal flow 
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StandardisationModelling and ValidationTest Set

VIEW SCORES & LOADINGS

Save Model?

MODEL
Pre-Treat Pre-Treat

PREDICTPREDICT

RMSEP Mean, Std Dev, %RSD

SAVE SAVE

END

Standardise

Import Real Dataset

MODEL

Saved

 
Figure A3.2: Functionality of the main program after modelling. 

Blue arrows denote positive output (YES); Red arrows denote negative output (NO); Black 

arrows denote normal flow 
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A3.2: Importation of Datasets 

 

The functionality of the data importation program is illustrated in the flow diagram 

below (Figure A3.3). 

 

START

Set
DIR

Import previously shuffled dataset?

Determine file extension

Fluorescence
(*.PRN)

Autolab
(*.OEW)

Autolab
(*.OEA)

Abort

Load files

SHUFFLE

Save

Load data

View plots

Weight?

PCA

Omit Samples?

Baseline?

Omit Variables?

View plots

Save

END  
Figure A3.3: Functionality of the dataset importation program referenced in Figure A3.1. 

Blue arrows denote positive output (YES); Red arrows denote negative output (NO); Black 

arrows denote normal flow 
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A3.3: Application of Smoothing 

 

The functionality of the signal smoothing program is illustrated in the flow diagram 

below (Figure A3.4). 

 

START

Which Filter algorithm?

Savitzky-Golay?

Moving Average?

Fourier Transform

View plots

Again?

END  
Figure A3.4: Functionality of the smoothing program referenced in Figure A3.1 

Blue arrows denote positive output (YES); Red arrows denote negative output (NO); Black 

arrows denote normal flow 
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A4: Blood Glucose Meters 
 

Table A4.1 compares five blood glucose meters manufactured for the quantitative 

determination of glucose in blood in which operational conditions, physical construct 

and calibration modes are detailed. 

 
Table A4.1: A comparison of five blood glucose meters. 

Source: 

http://www.diabetesuffolk.com/Managing%20Diabetes/Meters/Table%20of%20meters.asp 
Manufacturer Meter Strip Blood 

Sample 

Time (s) Visual 

Reading 

Range 

(mmol/l) 

Calibration 

Hypoguard Supreme 

Plus 

Hypoguard 

Supreme 

Non-wipe 30-60 Yes 2.0 – 25.0 Coded chip 

with batch 

Lifescan Pocketscan Pocketscan Non-wipe 15 No 1.1 – 33.3 Calibration 

strip 

Medisense Precision 

QED 

Medisense 

G2 

Non-wipe 20 No 1.1 – 33.3 Calibration 

strip 

Roche 

Diagnostics 

Accu-Chek 

Active 

Accu-Chek 

Active 

Non-wipe 5 Yes 0.6 – 33.3 Coded chip 

with batch 

Roche 

Diagnostics 

Accu-Chek 

Compact 

 Non-wipe 15 Yes 0.6 – 33.3 Automatic – 

no 

calibration 

strip 

required 
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A5: Portable Multi-Channel Potentiostat 
 

Below is displayed a brochure which details the functionalities of the custom-built in-

house multi-channel potentiostat device. 

 

 

 

Portable Multi-Channel Potentiostat 
Overview: 
The four channel potentiostat is a portable 
and flexible instrument capable of carrying out 
a wide variety of electrochemical tests in the 
laboratory and in the field. 
The device is battery operated and 
ruggedised, and can operate in a stand-alone 
mode or with an attached PC or PDA 
The device is shown configured to perform 
heavy metal detection in an environmental 
application, but the flexibility afforded by its 
software configuration makes it suitable for a 
wide range of other electrochemical 
applications. 

Technology: 

•Four completely independent potentiostat channels 
•Electrochemical drive voltages fully synthesised in software to 1mV, 5usec resolution  
•Measures down to picoAmp resolution with full auto ranging. 
•Onboard Microcontroller – fast, low current consumption 
•Structured software design, implemented in ‘C’ language 
•On board data storage, or real time transmission  over RS232 / Bluetooth link to PC / PDA 
•Calibration data stored in on-board EEPROM, allows low cost hardware components to be 
used. 
•Battery operated, robust, portable for field use 
•On board or PC based data analysis 

Heavy Metal Detection Application: 

•Anodic Stripping Voltammetry – An electroanalytical method, both quantitative & qualitative 
•Rapid testing (4 min. analysis time), sensitive (down to 20 ppb) 
•Carbon + gold electrodes allow simultaneous detection of Pb, Cu, Cd, Zn, Hg, As 
•Low-cost testing (meter, disposable screen printed electrodes, reagents)  
•Rapid, low-cost site screening tool 
Medical Sensor Application 

•End of line production batch testing device for blood glucose strips for diabetics 
•Simple fixed potential application. Wide range of possible currents generated by sensors 
•Simple go / no-go indication to operator –signals details also recorded for QA traceability 

Contact :  Paul Knight or Steve Setford, Cranfield University at Silsoe, Bedford  MK45 4DT 
 Email p.v.knight@cranfield.ac.uk, s.j.setford@cranfield.ac.uk,  Tel 01525 863563  

A typical disposable screen 
printed electrode, and heavy 
metal voltammagram 
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A6: Publications 

 

A6.1: Conferences 

 

Poster presentation at the “First SWIFT-WFD Workshop on Validation of Robustness 

of sensors and Bioassays for Screening Pollutants” Conference, Mao, Menorca, Spain. 

(02 – 03 December 2004). 

 

Oral presentation at the RSC Chemometrics Committee ‘Emerging Chemometricians’ 

meeting at the GMEX Centre in Manchester (28 – 29 March 2006) on “Chemometrics 

on a PDA”. Unfortunately, the event was cancelled. 

 

Attendance of “Informatics and Data Visualisation Conference”, hosted by the 

Chromatography Society, INTECH Centre, Winchester, UK (21 – 22 October, 2004) 

 

Attendance of “4th International Conference for Instrumental Methods of Analysis 

2005 (IMA05)”, Almedar Knossos Royal Village Hotel, Crete, Greece (02 – 06 

October, 2005). 

 

A6.2: Reports 

 

Some of the findings of this thesis are to appear in the overall ARTDEMO final 

report, which is to be published in book format in the 4th quarter of 2006. 
 

A6.3: Papers 

 

At the time of writing, there are several papers pending. 

 


