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ABSTRACT 

Geometrical parameterisation has an important role in the aircraft design process due to 

its impact on the computational efficiency and accuracy in evaluating different 

configurations. In the early design stages, an aircraft geometrical model is normally 

described parametrically with a small number of design parameters which allows fast 

computation. However,this provides only a course approximation which is generally 

limited to conventional configurations, where the models have already been validated. 

An efficient parameterisation method is therefore required to allow rapid synthesis and 

analysis of novel configurations. Within this context, the main objectives of this 

research are: 1) Develop an economical geometrical parameterisation method which 

capturessufficientdetail suitable for aerodynamic analysis and optimisation in early 

design stage, and2) Close the gap between conceptual and preliminary design stages by 

bringing more detailed information earlier in the design process. 

Research efforts were initially focused on the parameterisation of two-dimensional 

curves by evaluating five widely-cited methods for airfoil against five desirable 

properties. Several metrics have been proposed to measure these properties, based on 

airfoil fitting tests.The comparison suggested that the Class-Shape Functions 

Transformation (CST) methodis most suitable and therefore was chosen as the two-

dimensional curve generation method. A set of blending functions have been introduced 

and combined with the two-dimensional curves to generate a three-dimensional surface. 

These surfaces form wing or body sections which are assembled together through a 

proposed joining algorithm. An object-oriented structure for aircraft components has 

also been proposed. This allows modelling of themain aircraft surfaces which contain 

sufficient level of accuracy while utilising a parsimonious number of intuitive design 

parameters. 

Three aircraft configurations:a twin-jet airliner, an unmanned aerial vehicle and a 

blended wing body, have been chosen for evaluation, covering both conventional and 

unconventional configurations. Aerodynamic analyses have been performed with a 
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potential flow solver and the results have been validated with high fidelity models and 

wind-tunnel data according to availability. The validation shows marked improvements 

in accuracy for an unconventional design where the empirical models are no longer 

valid. Finally, for evaluation purpose, the proposed parameterisation method and the 

selected potential flow solver have been integrated with relevant test cases for aircraft 

conceptual design. It is demonstrated that, by introducing higher fidelity into the 

conceptual design stage, it extends the scope of the design to more unconventional 

concepts with reliable aerodynamic analysis at affordable computational cost. Currently, 

the proposed parameterisation method is able to generate only the surfaces of the main 

aircraft components such as wing, tail, fuselage, and nacelle. Future work can be 

extended in a few directions, including the definition of control surfaces and a more 

detailed mission analysis, e.g., at take-off and landing which is required for noise 

prediction. 
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1 Introduction 

 

 

 

Aircraft life cycle is an iterative process which can be divided into eight stages,starting 

from customer requirements, conceptual design, preliminary design, detailed design, 

manufacturing and assembly, flight test, operation, and finished in a disposal stage, as 

demonstrated in Figure 1-1. Successful review of solutions from an earlier stage is 

passed to the next one where more details are added in each subsequent stage as the 

design progresses. 

Engineering especially aerospace put special attention to the conceptual and preliminary 

design stages where the design concepts are explored and chosen. Different design 

options are considered in conceptual stage and continue to work out in more detail in 

preliminary design stage. 

1.1 Conceptual Design 

The conceptual design phase addresses the highestlevel questions about the proposed 

aircraft. Inparticular the main requirements and desired functions are considered. 

Normally a number ofpotential configurations are outlined which willundergo a trade-

off study. The solution which bestmatches the requirements will be chosen. Like 

anydesign process this phase is highly iterative, but it tends to be the most open and 

unconstrained phaseof aircraft design, so the largest number of design solutions will be 

explored here. (Price et al., 2006) 
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Figure 1-1Aircraft Design Process (Raymer, 1992) 

 

The result of the conceptual phase is aconfiguration with the basic size and arrangement 

ofits main aspects for instance the wing, empennage, engines, fuselage, control surfaces, 

etc. These dataare built from few initial equations and empirical data which provide a 

starting point for the design.As the design proceeds, more values are being fixedand the 

design space is being gradually reduced.However, at the same time the number of 

designparameters is increasing as shown in Figure 1-2. 

Design 

Iterations 

Detailed Design 
- Design actual pieces to be built 

- Design tooling and fabrication process 
- Test major items- Structure, Landing Gear, …  

- Finalise weight & performance estimates 

 

Preliminary Design 
- Start with single concept selected 

- Study it to find improvements, fix problems 
- Expert assessments, sophisticated analysis & tests 

- Key milestone: Configuration Freeze 

Conceptual Design 
- Explore the widest possible design space 

- Design numerous alternative aircraft concepts 
- Extensive design trade study 

- Assess and improve requirements 

Customer Requirements Definition 

Manufacturing/Assembly 

Flight Test 

Operation 

Design 

iterations 

Disposal 
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Figure 1-2 Increasing Numbers of Design Parameters (Price et al., 2006) 

1.2 Preliminary Design 

Once the concept has been accepted and the design space is sufficiently well defined or 

constrained, preliminary design may proceed. Each major system of the aircraft is now 

considered again and more detailed estimates of size, thickness, material are made. The 

number of design parameters is now elevated. 

Design and analysis continues through the detailed stage including activities such as 

stressing of the final shape and form of the components. Manufacturing details are 

added, specifying exactly how the aircraft will be built. 

1.3 Multidisciplinary nature of design 

As discussed earlier, aircraft design process is highly iterative in nature. Each discipline 

is reviewed in turn in order to keep the detailed definitions within acceptable boundsas 

shown in Figure 1-3. It is highly unusual for any detail change to affect the overall 

concept since the design of such local features is highly constrained. However, such 

changes can be difficult to handle if they occur. This is the motivation to investigate 

how to facilitate bridging between the conceptual and preliminary design stages 

efficiently. 
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Figure 1-3 Design Spiral (Keane and Nair, 2005) 

 

Different levels of model fidelity are used in each design stage. Figure 1-4 shows a 

schematic representation of the conventional conceptual and preliminary design phases. 

Vehicle weights are estimated as a function of the configuration parameters using 

historical or generic analysis-based data. The actual structural design is typically not 

selected until the preliminary design phase. Thus, if the aircraft being designed is not 

much different from those on which the weights database is constructed, the designed 

weights will be fairly close to the estimated ones obtained during the conceptual 

design.However, if the new configuration is different from original, there will be a large 

uncertainty in weight estimation. At this stage of the design process, making significant 

changes to the aircraft configuration can be extremely difficult since these changes will 

affect many systems, not just structures.  
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Figure 1-4 Schematic of convention structural design process (Sensmeier and 

Samareh, 2005) 

Similar scenarios occur in aerodynamic analysis and optimisation. In a conceptual 

study, the aerodynamics coefficients are calculated with simple empirical models. Once 

the outline configuration is fixed, aerodynamic analysis commences. The geometrical 

model is usually described in high fidelity with thousands of grid points. In this stage, 

computational tools have no direct impact on the geometry of the design and the 

designer has to make a decision on how to change the design as a result of studying the 

outputs, as illustrated in Figure 1-5. 

 

Figure 1-5 Aerodynamics analysis (Vandenbrande et al., 2006) 
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Even though the structural and aerodynamic analyses are coupled in the design process, 

shape parameterisation is more concerned with aerodynamic analysis than structural 

analysis since flow analysisare often the most subtle and difficult to deal with (Keane 

and Nair, 2005). An efficient parameterisation method which contains sufficient detail 

descriptions and intuitive design parameters is therefore required early in the design 

process and this is the second motivation behind this research. 
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1.4 Fidelity Level 

The fidelity of a mathematical or computational model is the degree to which the model 

accuracy reflects reality. Higher fidelity models correspond closer to the reality 

(Robinson, 2007).Low fidelity models tend to use simple equations and look up tables, 

and often will not have any geometric models associated (Price et al., 2006).Medium 

fidelity models will mostly have some form of linear analysis and high fidelity models 

contain a lot of detail and often model non-linear behaviour. Thus, in order to make 

trade-off study in the early design stages, low fidelity models are often used. These 

models are generally fast and many different disciplines may be considered at the same 

time. High fidelity models are to be used later in the design phase in local areas since 

they are expensive in time and resources (Armstrong et al., 2002). 

It becomes obvious that the appropriate mix of fidelity level is needed to be optimised 

in orderto get reliable answers for as many configurations as possible (Knight et al., 

2002, and Blair et al., 2006). 

 

Figure 1-6 Fidelity Levels in Various Disciplines (Price et al., 2006) 

Figure 1-6summarises tools with different fidelity levels used in various analysis 

disciplines. In aerodynamic analysis, the model is first analysed with simple empirical 

model or Vortex Lattice method in low-medium fidelity level, before further analysed 

with high fidelity tools such as Fluent in Computational Fluid Dynamic (CFD) in later 
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stage. In structural analysis, the high fidelity model used for Finite Element Analysis 

might contain thousands of parts, much more detailed than the one in the low fidelity. 

At any point of the design, trade-offs may be require focused on one given aspects. The 

data needed for that may come from several levels of fidelity. For instance, a Finite 

Element Analysis (FEA) model may take data from low fidelity aerodynamic model. 

 

Figure 1-7 Design Fidelity in Conceptual and Preliminary Design Stages  

Aircraft Models (Kroo et al.,2005) 

Figure 1-7 shows examples of supersonic aircraft models in two levels of fidelity (Choi 

et al., 2005). The low fidelity model on the left uses 16 design variables the wing area, 

aspect ratio, sweep angle, the location of the wing root leading edge, the thickness of 

chord length at three locations on the wing, the minimum cockpit diameter, the 

minimum cabin diameter, and the fuselage radii at six locations. While the medium 

fidelity model (Figure 1-7 right) uses 126 design variables: leading edge and trailing 

edge droop, twist, and 15 Hicks-Henne bumps at each of 7 locations on the wing.These 

two models present the use of the parameterisation of relevant level of descriptions.  
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1.5 Shape Parameterisation 

Nowadays, computer aided design (CAD) iswidely used as drawing and drafting tool. 

Modern CAD has become more sophisticated and can capture complex geometry using 

Non-uniform Rational B-Spline (NURBS) curves and surfaces. CAD allows 

geometrical data transferred between analysis tools. However, using control points as 

design variables in CAD is considered to be computationally demanding, and does not 

provide physical meaning to designers to understand the change they are trying to make 

over the design.Other analytical techniques were then developed to overcome this 

challenge. The two main needs for efficiency in design is the compromise between: 

 Achieving sufficient level of detail and local control 

 Minimising complexity of design task 
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1.6 Aim and Objectives 

The overall aim is to investigate how to provide designers with more information earlier 

in the design process through an efficient geometrical parameterisation method. 

The objectives supporting this aim have been formulated as follows: 

1. Develop an economical geometrical parameterisation method which captures 

sufficient detail focusing on aerodynamic analysis and optimisation in early design 

stage 

2. Close the gap between conceptual and preliminary design stages by bringing more 

detailed information earlier in the design process.  

1.7 Thesis structure 

This thesis contains 7 chapters. The next chapter (Chapter 2) gives an insight of shape 

parameterisation methods. It focuses first on the parameterisation methods for airfoils 

and then extended to surface generation methods. In Chapter 3, five chosen methods for 

airfoils were evaluated against a set of desirable criteria and summarised in comparison 

matrices. Chapter 4 presents the proposed parameterisation method for three 

dimensional aircraft components and then assembly into full aircraft configuration 

including the joining algorithm for intersections. Chapter 5 presents the aerodynamic 

analysis results and validation for representative aircraft configurations. The proposed 

parameterisation method and the selected aerodynamic analysis tool has been integrated 

with an industrial test case and evaluated in Chapter 6. The conclusions, novelty, 

current limitation and future work are finally summarised in Chapter 7. 
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2 Literature Survey 

 

 

 

In order to develop an economical geometrical parameterisation method, the widely 

used shape parameterisation methods must be studied and evaluated.This chapter gives 

a review of shape parameterisation methods. First it focuses on the parameterisation 

methods for curves and then extends to surface generation methods. The list of desirable 

properties for application in optimisation has also been summarised at the end of this 

chapter. 

2.1 Curve Parameterisation methods 

Since the basic process of design involves the making of decisions that change the 

product definition, the purpose of geometric parameterisation is to aid in this design 

process by providing increasingly powerful manipulation schemes for changing design 

definitions. (Keane and Nair, 2005) 

The startingOne of the simplest formof parameterisation is indiscrete form,which uses 

sequence of coordinates of sample points with linear interpolationbetween these points 

to generatecurves and surfaces.Since it uses each point as a design variable, this method 

provides flexible parameterisation and allowsdesigners to manipulate the shape easily. 

The higher level of accuracy can be achieved by adding more grid points. However, this 

leads to high computational cost of the analysis. It is also difficult to maintain a smooth 

geometry since each point is independent from the others, as shown in Figure 2-1. 

Moreover, this method cannot provide consistent representation for analysis in various 

disciplines since the grid formulations are different. Analytical methods were then 

developed to improve the control of curves.  
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Figure 2-1 Changes in an airfoil described by a series of points (Keane and Nair, 

2005) 

An attempt to link multiple points together with control over local curvature and 

smoothness leads to the use of spline curves and polynomials. Detail formulations of 

each parameterisation method are described as below:  

2.1.1 NACA airfoil 

National Advisory Committee for Aeronautics (NACA) has developed one of the 

earliest geometric parameterisation for airfoils through experimental and form a famous 

NACA-4 digit series. These airfoils have been used extensively in the aircraft industry 

but have been gradually replaced by more advances methods developed on CFD basis. 

The NACA Report 460 (Jacobs etal, 1933) presented the definition of NACA-4 digit 

which can be summarised as follows: 

An airfoil is described with an expression for camber line with a thickness distribution 

on either side of this line. This forms the upper and lower surfaces in two-dimensional 

(x,z) coordinates. The camber line, zc, consists of one parabola from leading edge to the 

point of maximum camber, and another parabola extending from this point to the 

trailing edge as: 

𝑧𝑐 = 𝑧𝑐,𝑚𝑎𝑥 (
1

𝑥𝑚
2
) (2𝑥𝑚

𝑥

𝑐
− (

𝑥

𝑐
)
2

)   𝑓𝑜𝑟 0 ≤
𝑥

𝑐
< 𝑥𝑚 

𝑧𝑐 = 𝑧𝑐,𝑚𝑎𝑥 (
1

(1−𝑥𝑚)2
) (1 − 2𝑥𝑚 + 2𝑥𝑚

𝑥

𝑐
− (

𝑥

𝑐
)
2

) 𝑓𝑜𝑟𝑥𝑚 ≤
𝑥

𝑐
< 1 [‎2.1] 

wherezc,max is maximum camber, xm is chord wise position of maximum camber, c is 

chord length. 
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The thickness distribution is described with polynomial function where the coefficients 

are determined by fitting Clark Y and Gottingen-398 airfoils. 

𝑧𝑡 = 5𝑧𝑡 𝑚𝑎𝑥(0.2969√𝑥 𝑐⁄ − 0.1260𝑥 𝑐⁄ − 0.3537(𝑥 𝑐⁄ )2 + 0.2843(𝑥 𝑐⁄ )3 −

0.1015(𝑥 𝑐⁄ )4)[‎2.2] 

whereztmax is airfoil maximum thickness.  

The airfoil coordinates are given by 

   𝑥𝑈 = 𝑥 − 𝑧𝑡sin (𝜃) 𝑧𝑈 = 𝑧𝑐 − 𝑧𝑡cos(𝜃) 

   𝑥𝐿 = 𝑥 + 𝑧𝑡sin (𝜃) 𝑧𝐿 = 𝑧𝑐 − 𝑧𝑡cos(𝜃)   [‎2.3] 

where𝜃 = arctan (
𝑑𝑧𝑐

𝑑𝑥
) 

The NACA-4 digit system uses three design variables: the first digit refers to the airfoil 

maximum camber, the second digit is the position of maximum camber in tenth of the 

chord, and the last two digits are maximum thickness as a per cent of chord. This results 

in smooth shape and high flexibility while guarantees airfoilshapes. Although these 

airfoils are easy to produce, they generate high lift compare to the new airfoils. (Sadrey, 

2012)  

2.1.2 Ferguson’s Curve 

Ferguson’s curve was introduced in Computer Aided Design (CAD) in 1964. A curve 

Z(t) is defined as the polynomial on parametric points, t, as follows: 

 𝑍(𝑡) = ∑ 𝑎𝑖𝑡
𝑖3

𝑖=0 , 𝑡 ∈ [0,1] [‎2.4] 

The curve starts from point S(0) = A, until the end point, S(1) = B, with corresponding 

tangent vectors  
𝑑𝑍

𝑑𝑡
|
𝑡=0

= 𝑇𝐴and
𝑑𝑍

𝑑𝑡
|
𝑡=1

= 𝑇𝐵 
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From the endpoint conditions: 

 

A = a0 

B = a0 +a1 + a2 + a3 

TA = a1  [‎2.5]

 

TB = a1 + 2a2 + 3a3 

 

Rearranging these equations in terms of coefficients, equation 2.5 becomes 

Z(t) = A(1 – 3t
2
 + 2t

3
) + B(3t

2
- 2t

3
) + TA(t – 2t

2
 + 3t

3
) + TB(– t

2
 + t

3
) [‎2.6] 

This can be presented in a matrix form: 

 𝑍(𝑡) = [1 𝑡 𝑡2 𝑡3] [

1
0

−3
2

0
0
3

−2

0
1

−2
1

0
0

−1
1

] [

𝑨
𝑩
𝑻𝑨

𝑻𝑩

]  [‎2.7] 

An arbitrary airfoil can bedescribed with two Ferguson curves, one for the upper and 

one for the lower curve, as shown in Figure 2-2. Six parameters are required to 

construct a complete airfoil. The curve starts from leading edge (A) to trailing edge (B) 

with their corresponding tangent vectors (TA and TB) with camber angle c and boat tail 

angle b defining the orientation of the tangent vectors, TB
lower 

and TB
upper

, respectively. 

 

Figure 2-2 Airfoil Described by 2 Ferguson Curves (Sobester and Barrett, 2008) 
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2.1.3 Splines 

Splines roots in ship-hull design where the drafting was done by passing thin strips of 

wood through points laid out on the floor. The concept has been adopted to form a 

mathematical representation of curve passing through a set of defined points. 

Formulations of Ferguson’s curve and B-Splines representation are summarised as 

follows: 

A Bezier curve is based on the similar logic as Ferguson’s curve but defined with a 

slightly different algorithm(Sobester and Barrett, 2008). A Bezier curve of order 𝑛 is 

described as: 

𝑃(𝑡) = ∑ 𝐵𝑖
𝑛(𝑡) ∙ 𝑃𝑖

𝑛
𝑖=0    [‎2.8] 

 

where𝐵𝑖
𝑛(𝑡) = (

𝑛
𝑖
) ∙ (1 − 𝑡)𝑛−𝑖 ∙ 𝑡𝑖 , 𝑖 = 0,1, … , 𝑛[‎2.9] 

and𝑃𝑖 represents the set of n+1 control points, 𝑡 is parametric point varying from 0 to 1. 

A Bezier curve is accurate when representing simple curves. As the curve complexity 

increases, higher degree of polynomials must be increased, which results in a larger 

error. In order to represent the complex curve, it is more efficient to separate the curve 

into segments and use a set of low-order Bezier curves instead.   

The B-spline is the generalisation of Bezier curve, which is defined as  

𝐶(𝑡) = ∑ 𝑃𝑖 ∙ 𝑁𝑖,𝑝(𝑡)𝑚
𝑖=0    [‎2.10] 

where𝑝 is order, 𝑃𝑖are control points, 𝑁𝑖,𝑝is B-spline basis function. 
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The example of airfoil generated by B-Spline curve is shown in Figure 2-3. 

 

Figure 2-3B-Spline curve representing airfoil with control points 

One advantage of the B-spline method is that the degree of the polynomial is not 

limited. The designer can increase the polynomial degree without changing the number 

of control points. It also allows local control by limiting the number of control points as 

design variables.  

2.1.4 Hicks-Henne Shape Functions 

Hicks and Henne (1978) introduced a compact formulation for parameterisation of 

airfoil sections. The perturbation is a linear superposition of “bumps” or analytical 

shape function on the baseline airfoil geometry. The shape functions are defined as  

𝑏𝑖(𝑥) = 𝑠𝑖𝑛𝑡(π𝑥𝑚𝑖)     [‎2.11] 

where𝑚𝑖 =
ln (0.5)

ln (𝑥𝑀𝑖)
     [‎2.12] 

 

𝑥𝑀𝑖is the position of the maximum point of the bump ranges from 0 to 1, 𝑡controls the 

width of the bump. Figure 2-4 shows sets of 10 Hicks-Henne bump functions with 

parameter 𝑡=4.  The contribution of each parameter is determined by the value of the 

participating coefficients, 𝛼𝑖associated with shape function. 
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Figure 2-4 A set of 10 Hicks-Henne shape function 𝒕=4. 

The airfoil is finally described by:  

𝑧 = 𝑧𝑏𝑎𝑠𝑖𝑠 + ∑ 𝛼𝑖𝑏𝑖(𝑥)𝑁
𝑖=1     [‎2.13] 

All participating coefficients are initially set to zero, so the first computation gives the 

baseline geometry. 

Hicks-Henne bump functions are used in airfoil design and optimisation process. Wide 

range of airfoil shapes can be generated and the computed gradients are always smooth. 

However, since a baseline airfoil shape is required, its selection is crucial to guarantee 

whether an optimal and realistic shape can be obtained.  

2.1.5 Parameter Section (PARSEC) 

The Parameter Section (PARSEC) method (Sobieczky, 1998) has been developed on 

the basis of airfoil geometrywith the aim to keep the number of required design 

parameters as low as possible. The author focuses on strong control over the curvature 

of an airfoil by using design parameters such as leading edge radius, upper and lower 

crest curvature. Similar to 4-digit NACA series, the author chooses polynomial as a 

function to generate each upper and lower surface of the airfoil, but with a higher 

order.This result in eleven design parameters used to describe an airfoil, as follows:  

rLE: leading edge radius, 

Xup, Xlo:upper and lower crest location, 

Zup, Zlo: upper and lower crest value, 

Zxx,up, Zxx,lo: upper and lower curvature at crest location, 

Zte: trailing edge thickness, 
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Zte: trailing edge vertical coordinate, 

te: trailing edge wedge angle, and 

te: trailing edge direction 

These design parameters are illustrated in Figure 2-5. 

 

Figure 2-5Design Parameters for PARSEC method(Sobieczky, 1998) 

The airfoil shape for each upper and lower curve is described by the linear combination 

of polynomial shape functions: 

𝑍𝑖 = ∑ 𝑎𝑛,𝑖𝑋𝑖

𝑛−1

26
𝑖=1     [‎2.14] 

 

The coefficients na are determined by solving system of equations [2.15] with the 

defined geometric parameters 

1. z coordinate at leading edge is described in terms of leading edge radius 

2. z coordinate at trailing edge 

3. z coordinate at upper crest location 

4. slope of trailing edge angle 

5. zero slope at upper crest location 

6. curvature at upper crest location 
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 [‎2.15] 

Six coefficients are required for each upper and lower curve. This results in the total of 

12 coefficients. However, since the first coefficients for each upper and lower curve,

1,upa and 1,loa , are set to be equal, in order to force continuity at the leading edge, the 

total number of coefficients is reduced to 11. 

The minimum and maximum range of PARSEC design parameters are studied (Padulo 

et al., 2009) as presented in Table 2.1. 

Table 2.1 Minimum and maximum values of PARSEC design variables 

Variables rLE xup xlo zup, zlo zxx,up zxx,lo zte Δzte te te 

min 0.003 0.25 0.191 0.040 - 0.061 - 0.726 0.14 0.0037 0.0001 - 0.28 0.032 
max 0.018 0.46 0.521 0.067 - 0.020 - 0.197 1.00 0.0052 0.0008 - 0.05 0.131 

 

The advantages of the PARSEC method are:  

1. No baseline airfoil is needed to generate airfoil profile  

2. Wide range of airfoil shapes can be generated  

3. Intuitive design variables 

4. Airfoil thickness can be expressed by simple bound or linear constraints 

However, since the number of design parameters is fixed, the PARSEC airfoil may 

reach only a certain geometrical accuracy. Padulo et al. (2009) also found that the 

certain sets of PARSEC design parameters leads to erroneous shapes such as additional 

bumps or overlapping. These errors will be demonstratedin Chapter 3.  
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2.1.6 Class-Shape function Transformation (CST) 

Class-Shape function Transformation (CST) (Kulfan, 2006) is one of the recent 

geometry parameterisation methodsdeveloped with application for aircraft component 

shapes.The author introduces “shape function” which is a simple analytical function 

which provides direct control key geometry parameters e.g. leading edge radius, trailing 

edge boattail angle.A “class function” is also combined to generate wide ranges of 

geometries.A two-dimensional curve is represented as the product of the class function 

C(x/c), and a shape function S(x/c): 

𝜁(𝜓) = 𝐶𝑁2
𝑁1(𝜓) ∙ 𝑆(𝜓)   [‎2.16] 

where𝜓 = 𝑥/𝑐 and 𝜁 = 𝑧/𝑐 

The Class function is given in a generic form by: 

𝐶𝑁2
𝑁1(𝜓) = (𝜓)𝑁1[1 − 𝜓]𝑛2, 0 < 𝜓 < 1  [‎2.17] 

The exponents N1 and N2 range from 0 to 1 which yields arbitrary shape.  

In order to generate a general symmetric airfoil, the exponents N1 and N2 are equal to 

0.5 and 1.0 respectively. The first term,√𝜓, produces round leading edge, while the 

second term, [1 − 𝜓] , makes sharp trailing edge. This selection of exponents N1 and N2 

makes the basis shape of the “airfoil” class. Other airfoils can be derived from this class 

function. 

Equation of airfoil upper and lower profile respectively then becomes: 

    𝜁𝑈(𝜓) = 𝐶1.0
0.5(𝜓) ∙ 𝑆𝑈(𝜓) + 𝜓 ∙ ∆𝜁𝑈 

    𝜁𝐿(𝜓) = 𝐶1.0
0.5(𝜓) ∙ 𝑆𝐿(𝜓) + 𝜓 ∙ ∆𝜁𝐿   [‎2.18] 

The additional last terms define the upper and lower edge thicknesses, respectively. 

To generate arbitrary airfoil shape, Bernstein polynomial was chosen as the shape 

function which is added to the class function. This polynomial has a mathematical 

property of “Partition of Unity”, stating that for any order of the polynomials, the 
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summation of the polynomial values at any point always equals to 1. The Bernstein 

polynomial always keeps the shape of the airfoil when superimposed on the class 

function.  

The definition of a Bernstein polynomial of order n is: 

    𝑆(𝜓, 𝑟) = 𝐾𝑟
𝑛 ∙ 𝜓𝑟(1 − 𝜓)𝑛−𝑟   [‎2.19] 

where n is the order of Bernstein polynomials, K is Binomial coefficient, which directly 

related to the order of the Bernstein polynomials used and it is defined as: 

    𝐾𝑟
𝑛 ≡ (

𝑛
𝑟
) ≡

𝑛!

𝑟!(𝑛−𝑟)!
     [‎2.20] 

The complete equations to represent the upper and lower surface of CST airfoils 

become 

𝜁𝑈(𝜓) = √𝜓 ∙ (1 − 𝜓) ∙ ∑ [𝐴𝑈,𝑖 ∙
𝑁!

𝑖!(𝑁−𝑖)!
𝜓𝑖(1 − 𝜓)𝑁−𝑖]𝑁

𝑖=0 + 𝜓 ∙ ∆𝜁𝑈[‎2.21a]
 

𝜁𝐿(𝜓) = √𝜓 ∙ (1 − 𝜓) ∙ ∑ [𝐴𝐿,𝑖 ∙
𝑁!

𝑖!(𝑁−𝑖)!
𝜓𝑖(1 − 𝜓)𝑁−𝑖]𝑁

𝑖=0 + 𝜓 ∙ ∆𝜁𝐿[‎2.22b] 

From equations 2.21, the coefficients Ai of the shape function will be used as the design 

variables. The number of these coefficients corresponds to the order of the Bernstein 

polynomial. For instance, for polynomials of order 3, which has four terms, the number 

of coefficients is 4.   

Equation 2.21(a) can be rearranged to present the shape function of the upper profile, Su 

as follows: 

  𝑆𝑈(𝜓) = ∑ [𝐴𝑢,𝑖 ∙
𝑁!

𝑖!(𝑁−𝑖)!
𝜓𝑖(1 − 𝜓)𝑁−𝑖]𝑁

𝑖=0 =
𝜁𝑈−𝜓∙∆𝜁𝑈

√𝜓∙(1−𝜓)
 [‎2.23a] 

and similarly for the lower profile, Sl 

The polynomial coefficients Ai of the shape functions can be obtained by performing 

least square fit on the shape functions generated from the original profile. 
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Figure 2-6 provides an example of RAE2822 airfoil with its transformed shape 

functions reconstructed from CST formulation. 

 

Figure 2-6 RAE 2822 profile (top) with corresponding shape functions (bottom) 

Examples of airfoils representing four different shapes are presented in Figure 2-7: top 

left symmetrical NACA 0012, top right: RAE2822 camber airfoil, bottom left: NACA 

63(2) -015 and thebottom right, supercritical NASA SC(2)-0714. The set of CST 

coefficients representing these airfoils with Bernstein Polynomial order 5 are presented 

inTable 2.1. 
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Figure 2-7 Airfoil Profiles [From top left, NACA 0012, top right: RAE2822, bottom 

left: NACA 63(2) -015 and the bottom right, NASA SC(2)-0714] 

 

Table 2.1 CST Airfoil Polynomial Coefficients 

Airfoils Au1 Au2 Au3 Au4 Au5 Au6 

 NACA 0012 0.175228 0.142394 0.173494 0.127051 0.143224 0.141154 

 RAE 2822  0.130016 0.134272 0.164348 0.209591 0.175838 0.21112 

 NACA 63(2)A-105 0.225653 0.241502 0.214564 0.25777 0.157689 0.186596 

 NASA SC(2)-714 0.230561 0.086264 0.285186 0.145279 0.277266 0.319361 

       Airfoils Al1 Al2 Al3 Al4 Al5 Al6 

 NACA 0012 -0.17526 -0.14201 -0.17466 -0.12541 -0.14440 -0.14076 

 RAE 2822  -0.13234 -0.11908 -0.22646 -0.11391 -0.09583 0.05915 

 NACA 63(2)A-105 -0.13410 -0.05420 -0.30965 -0.09450 -0.15613 -0.13046 

 NASA SC(2)-714 -0.23146 -0.07965 -0.18201 -0.30954 0.01190 0.27918 

 

 

By using the polynomials for parameterisation such as PARSEC and CST method, the 

polynomials may end up with coefficients with opposing signs which results in 

oscillating behaviour or wavy curves due to round-off errors (Keane and Nair, 2005). 
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2.2 Surface Parameterisation Methods 

Presented in this section are two famous surface parameterisation methods used in 

conceptual and preliminary design: the Partial Differential Equation (PDE) and Free-

form deformation surface (FFD). 

2.2.1 Partial Differential Equations 

Partial Differential Equations (PDE) were first introduced as a surface generation 

method by Bloor and Wilson (1989a and 1989b). By solving elliptic partial differential 

equation with boundary value, the solution of the PDE describes the blending surface 

between those boundary conditions.  

From elliptic partial differential equation:   

    (
𝜕2

𝜕𝑢2 + 𝑎2 𝜕2

𝜕𝑣2)𝑋(𝑢, 𝑣) = 0    [‎2.24] 

where𝑋(𝑢, 𝑣) = (𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣), 𝑧(𝑢, 𝑣)) is parametric surface of 𝑢and 𝑣 

and0 ≤ 𝑢 ≤ 1, 0 ≤ 𝑣 ≤ 1 

 

Figure 2-8 Blend circular cylinder to a plane (Bloor and Wilson, 1989a) 

 

Figure 2-8 illustrates the PDE surface which blends a circular cylinder to an orthogonal 

plane. The PDE is subjected to the boundary conditions: 

(Curve A)  𝑥(0, 𝑣) = cos 𝑣,       𝑦(0, 𝑣) = sin 𝑣, 𝑧(0, 𝑣) = 𝐻 [‎2.25] 

(Curve B)  𝑥(1, 𝑣) = 𝑅 cos 𝑣,   𝑦(1, 𝑣) = 𝑅 sin 𝑣,𝑧(1, 𝑣) = 0 [‎2.26] 
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By solving Eq.2.24 under boundary conditions 2.25 and 2.26 by the method of 

separation of variables, an analytical solution is obtained:  

𝑥 = (cosh 𝑎𝑢 +
(𝑅 − cosh 𝑎)

sinh 𝑎
sinh𝑎𝑢) cos 𝑣

 

   

𝑦 = (cosh 𝑎𝑢 +
(𝑅 − cosh 𝑎)

sinh 𝑎
sinh 𝑎𝑢) sin 𝑣

 

  

  𝑧 = 𝐻 ∙ (1 − 𝑢)
 

     [‎2.27]
 

       

To generate the surface patch of PDE, uses equation 2.24 with  

boundary conditions:  𝑋(0, 𝑣) = 𝑃1(𝑣),  𝑋(1, 𝑣) = 𝑃2(𝑣) [‎2.28] 

and their corresponding derivatives: 𝑋𝑈(0, 𝑣) = 𝐷1(𝑣), 𝑋𝑈(1, 𝑣) = 𝐷2(𝑣) [‎2.29] 

The surface patch is then described as;  

𝑋(𝑢, 𝑣) = 𝐴0(𝑢) + ∑ [𝐴𝑛(𝑢) cos(𝑛𝑣) + 𝐵𝑛(𝑢) sin(𝑛𝑣)]∞
𝑛=1

 
[‎2.30]

 

with coefficients  𝐴0 = 𝑎00 + 𝑎01𝑢 + 𝑎01𝑢
2 + 𝑎03𝑢

3

 

  𝐴𝑛 = 𝑎𝑛1𝑒
𝑎𝑛𝑢 + 𝑎𝑛2𝑢𝑒𝑎𝑛𝑢 + 𝑎𝑛3𝑒

−𝑎𝑛𝑢 + 𝑎𝑛4𝑒
−𝑎𝑛𝑢 

  𝐵𝑛 = 𝑏𝑛1𝑒
𝑏𝑛𝑢 + 𝑏𝑛2𝑢𝑒𝑏𝑛𝑢 + 𝑏𝑛3𝑒

−𝑏𝑛𝑢 + 𝑏𝑛4𝑒
−𝑏𝑛𝑢 [‎2.31] 

The coefficients in equation 2.29 are determined by imposing the boundary conditions. 

Ugail (2003) demonstrated that it was possible to represent aircraft geometry with small 

set of design variables. The aircraft-like surface can be generated using only 5 PDE 

surface patches, as shown in Figure 2-9. 
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Figure 2-9 Aircraft Representing by 5 PDE surface patch (Ugail, 2003) 

Pasadas and Rodriguez (2008) generated blending surface connecting fuselage to a wing 

geometrical model. The wing is described by polynomials of order 8, while the fuselage 

is described in terms of trigonometric function as follows:.  

𝑓(𝑥, 𝑦) = (𝑦,−4𝑥2 + 159.8𝑥3 − 747.7𝑥4 + 1620.5𝑥5 − 1920𝑥6 + 1195.3𝑥7 −

303.7𝑥8, 0.4(−0.7𝑥 − 41.5𝑥2 + 429.3𝑥3 − 1706.4𝑥4 + 3464.6𝑥5 − 3800𝑥6 +

2140𝑥7 − 485.5𝑥8)), (𝑥, 𝑦) ∈ Ω [‎2.32] 

𝑔(𝑥, 𝑦) = (0.5 cos(2𝜋𝑥) , 𝑦, 0.5 sin(2𝜋𝑥)), (𝑥, 𝑦) ∈ Ω                  [‎2.33] 

A numerical solver is required to solve the partial differential equation (Equation2.24) 

of this problem. 

Figure 2-10 shows the blending surfaces generated with the control coefficients ‘a’equal 

to 1 (middle) and 100 (right). This coefficient described the influence of the tangent at 

boundary conditions to the surface. 

 

Figure 2-10 PDE surfaces joining fuselage and wing section, with a =1 (middle) and 

a=100 (right) (Pasadas and Rodriguez, 2008) 

PDE surfacehas very high level of smoothness and complete accuracy at their 

intersections. It is obvious that, in order to find a solution of PDE, every curve or 

section has to be described by proper mathematical function, which is not always 
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possible. Samareh (1999) pointed out that using PDE approach to parameterise an 

existing complex model can be a time-consuming process. Keane and Nair (2006) also 

stated that: 

The main deficiency of the PDE is the lack of local control. To gain local control of 

PDE generated surfaces for instance, modern airfoil sections which include various 

bulges and curves to control highly non-linear flow such as boundary layer separation, 

it is usually necessary to convert them to piecewise collection of NURBS 

representations and then manipulate these local functions. 

PDE is suitable for surface presentation which is useful for Computational Fluid 

Dynamics rather than modelling the internal parts such as spar or stringers for Structural 

analysis. 

2.2.2 NURBS 

Non-Uniform Rational B-Splines (NURBS) has become standards in CAD industry. 

Similar to splines representation in 2D, the NURBS surface surface is definned by a set 

of control points (𝑷̅𝑖,𝑗) which can be manipulated to change the shape of the surface. 

A NURBS surface of degree p in the u-direction and degree q in the v-direction is a 

piecewise rational function in a form:  

𝑃(𝑢, 𝑣) =
∑ ∑ 𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)𝑤𝑖,𝑗𝑷̅𝑖,𝑗

𝐽
𝑗=0

𝐼
𝑖=0

∑ ∑ 𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)𝑤𝑖,𝑗
𝐽
𝑗=0

𝐼
𝑖=0

   [‎2.34] 

where𝑷̅𝑖,𝑗are the points on control net,𝑤𝑖,𝑗  are the weight, 𝑁𝑖,𝑝(𝑢) and 𝑁𝑗,𝑞(𝑣) are B-

Spline basis functions defined on the knot vector 𝑢 and 𝑣. 

Mastin et al. uses NURBS to construct approximation model of blended wing body for 

CFD analysis.The surface is controlled by sets of control point or a control polygonas 

shown in Figure 2-11. The model can be used by CAD model for further refinement or 

modification of the original geometry.     
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Figure 2-11 NURBS approximation of BWB (Mastin et al., 1996) 

2.2.3 Free Form Deformations 

The Free Form Deformation (FFD) method uses a three-dimensional mesh in which 

each node is considered to be a control point of NURBS volume. Therefore the 

positions of the control points are then used as the design variables. This number of 

design variables can be large in three dimensional representations since the number of 

nodes increases as the cube of number of points placed along the edges of the mesh.  

Figure 2-12 shows FFD surface blending between wing and fuselage of a general 

aircraft. 

 

Figure 2-12 Free-form deformation grids on the wing-body intersection (Samareh, 

2004) 

Anderson et al. (2009) commented that this is a convenient method for multidisciplinary 

design and optimisation where several unrelated meshes need to be modified 

simultaneously. 
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2.3 Parameterisation Methods Comparison 

There are a number of research studies on parameterisation comparison. Samareh 

(1999) has proposed the metrics for comparison for parameterisation methods used in 

high fidelity analysiswhich are basis vector, domain element, partial differential 

equation (PDE), discrete, polynomial and spline, CAD, analytical approach, free-form 

deformation (FFD), and multidisciplinary aero/structural shape optimisation using 

deformation (MASSOUD) approach. The rating was given in three levels: good, fair, 

and poor based on the author’s judgement, as shown in Figure 2-13. For the first 

assessment criterion, “airplane shape design variables”, the analytical and MASSOUD 

methods are rated as “good”, PDE and CAD received “fair, while other methods 

received “poor”. Next assessment on the“compact set of design variables”, discrete 

method received “poor” rating, due to each point is design variable itself, the domain 

element, polynomial and spline, and FFD received “fair” rating, while the remaining 

methods received “good” rating.The assessment criteria continue in smooth geometry, 

local control, etc.For CAD, one obvious deficiency comparing to other methods is that 

the sensitivity can not be calculated analytically. 

 

Figure 2-13 Comparison of parameterisation approaches [Samareh, 1999] 
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This comparison metrics is extended to compare with an assessment numerically for 

each assessment criteria. Literatures on comparison studies are compiled in Table 2.2. 

Table 2.2 Airfoil Parameterisation Comparison Studies 

References: Mesh 

Point 

Ferguson

Curve 

Hicks-

Henne 

B-splines/ 

NURBS 

PARSEC CST 

Wu et al. (2003) *  *  *  

Kumano et al. 

(2006) 
   * *  

Sobester and Keane 

(2007) 
 *  *   

Castonguay and 

Nadarajah (2007) 
*  * * *  

Azamatov et 

al.(2008) 
   *  * 

Wu et al. (2003) performed a comparison on three parametric methods: mesh-point, 

Hicks-Henne shape function, and PARSEC, for the design and optimisation of turbo 

machinery cascades by an adjoint equation method. The results show that the PARSEC 

method is not suitable for representing a blade shape. Comparing between Hicks-Henne 

shape functions and mesh-point method, the authors found that the Hicks-Henne shape 

functions converge to the optimum faster, but the mesh-point method can reach higher 

accuracy.  

Sobester and Keane (2007) used Ferguson Curve for rapid airfoil generation. This yields 

less accurate approximation than B-Spline representations due to its limited number of 

design variables in the formulation yet provides wide range of design alternatives. 

Kumano et al.(2006) also compared B-Spline with PARSEC and found that B-spline 

with 13 control points (26 design variables) yields better approximation than PARSEC.  

Castonguay and Nadarajah (2007) studied the effect of shape parameterisation on 

aerodynamic shape optimisation based on accuracy and evaluation costs. Four methods: 

mesh points, Hicks-Henne bump functions, B-Spline curves and PARSEC method, have 

been studied. The authors found that the Hicks-Henne bump functions are able to 

provide the design space where the target pressure is obtainable, however can obtain 

lower accuracy than mesh point and B-Spline curves. Both Hicks-Henne bump 
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functions and B-Spline curve can be used efficiently in drag minimisation studies 

however the Hicks-Henne bump functions cannot provide necessary shape 

modifications for the inverse design problem. Moreover, the PARSEC method cannot 

capture the leading edge shape of the ONERA M6 to reproduce the target pressure. 

Azamatov et al (2008) proposed a geometry representation algorithm which is a 

combination of the Class/Shape function Transformation (CST) and B-spline. The 

results show thatCST achieves good accuracy in most analytical representations. The 

CST method with 4 control variables can fit the existing airfoil better than NURBS with 

10 control variables. However, it has difficulties to use in complex aircraft geometry 

such as fuselage fairing. The proposed Hybrid method introduces breakpoint to divide 

complex curves into smaller sections. This yields better accuracy, with more control 

parameters for each subdivision required as a trade-off. 

Most of these researches performed only pair-wise comparisons. This leads to a 

systematic review of the parameterisation methods numerically based on the selected 

criteria, which will be presented in Chapter 3. 
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2.4 Geometry Generation Tools 

This section presents geometry generation tools which have been developed for 

multidisciplinary design application and used at conceptual design stage. 

2.4.1 Characteristic Curves 

Trapp and Sobieczky (1999) developed a geometrical representation method for aircraft 

design in an object-oriented manner. Fifteen basic curves were provided in the library. 

Each of these curves is described by algebraic or other explicit functions e.g. 

polynomials, trigonometric, or conic functions. They are defined within a normalised 

unit square with maximum four parameters. The minimum two parameters are the 

slopes at the start and the end of the curve, a andb, respectively. Examples of these 

basic curves are demonstrated in Figure 2-14. 

 

Figure 2-14Characteristic functions (Trapp and Sobieczky, 1999) 

These basic functions are then mapped on the intervals of characteristic curve. The unit 

square can be stretched to fit the intervals as shown in Figure 2-15. In order to ensure 

smoothness of curve, the slopes and curvatures at the connecting borders have to 

correspond. 
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Figure 2-15 Example of curve represented by base functions (Trapp and 

Sobieczky, 1999) 

2.4.2 ICAD Multi-Model Generator 

La Rocca et al. (2002)developed the ICAD Multi-Model Generator for the Blended 

Wing Body (BWB) aircraft. It holds the information about the BWB aircraft and 

generates the consistent models at the different levels of fidelity. A full parametric 

definition of the aircraft has been implemented in the KTI ICAS environment. The tool 

generates the different models for aerodynamics, structure, mass distribution. These 

models are feed to different analysis boxes, mainly finite element analysis and 

computational fluid dynamic. 

For surface modelling, the whole BWB is modelled in object oriented structure. It 

consists of parts such as a fuselage, wings, winglet, etc. The fundamental element is 

called “wing trunk” which is defined by geometrical parameters such as span, sweep, 

twist, and dihedral angle, with reference to leading edge line or quarter chord line. The 

wing trunks are then assembled together via connection element as shown in Figure 

2-16 to form a blended body aircraft. 
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Figure 2-16Wing trunk and connection element (La Rocca et al., 2002) 

This tool has been developed for blended wing body aircraft only therefore there is just 

one component type: wing trunk. More diverse shapes for the conventional aircraft are 

used in two following examples. 

2.4.3 Rapid Aerospace Geometry Engine 

There are other tools under development for CAD-free support such as Rapid Aerospace 

Geometry Engine: RAGE (Rodriguez and Sturdza, 2006). This tool contains collection 

of parametrically defined geometry components. These components are created by 

mathematically stacking the lofting crosssections such as airfoils or fuselage cross-

sections. All these subcomponents are mathematically defined by user-provided 

parameters and then lofted together to form a componentas shown in Figure 2-17. 

 

Figure 2-17 Example of RAGE fuselage and wing built by lofting functions 

(Rodriquez and Sturdza, 2006) 
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2.4.4 Vehicle Sketch Pad 

The geometry tool Vehicle Sketch Pad, VSP, was developed by NASA (Hahn, 2010) 

and is openware freely available worldwide. In the US, it has been used in over 100 

universities, aerospace companies, and other government agencies (Fredericks et 

al., 2010). It contains library of 11 aircraft parts e.g. wing, fuselage, jet engine, etc. 

Each component is defined with geometric parameters; for instance the wing component 

is modelled with span, area, sweep, taper ratio, thickness to chord ratio as design 

parameters. The library of NACA 4-digit and 6-series, biconvex and wedge airfoil are 

included, with option for user input airfoil as well. This structure is used for all 11 parts, 

and the wide range of components can be modelled using these parts, for example, a 

landing gear can be modelled using fuselage library. 

The early version of VSP has been developed to work with Flight Optimisation System: 

FLOPS (McCullers, 2011) which is an aircraft designtool used in conceptual design 

stage that requires only text inputs.This text listing has been replaced with an interactive 

graphical user interface which leads to the development of Rapid Aircraft Modeller 

(RAM), which is more user friendly environment.  

 

Figure 2-18Vehicle Sketch Pad parameterised graphical user interface (Hahn, 

2010) 
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One of the main benefits of VSP comparing to CAD software is the amount of time 

used in generating aircraft model. This is primary due to VSP has library of aircraft 

components and user is able to select certain parameters to generate or modify the 

shapes while traditional CAD requires draw-extrude-edit process of parts.The author 

demonstated that the benefit of using parametrically defined parts are: it is more 

intuitive and use less time for designers to model an aircraft comparing to traditional 

CAD software. 

The program has been linked witha vortex lattice solver: VorLax (Miranda et al., 1977) 

via VorView tool which creates a meta-model compatible with this solver. Hahn (2010) 

conclude that “it is possible to manually define certain characteristics on an initial 

model, and then have VorView automatically create similar meta-models after that. 

While not perfect, certain tasks such as sweep optimization may be performed 

effectively”. The example of high lift aerodynamic assessment of a STOL regional jet 

design is shown in Figure 2-19. Eventhough the Vehicle Sketch Pad is freeware, its 

associated aerodynamic solver i.e. VorLax is limited to users due to licence agreement 

of NASA.   

 

Figure 2-19VorLax/Vorview analysis (Hahn, 2010) 
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2.5 Summary and Conclusions 

This chapter presents the survey on shape parameterisation methods with an initial 

focus on airfoil profiles. The previous studies on parameterisation method comparison 

have also been discussed but are inconclusive. This necessitates amore complete 

comparison of the parameterisation methods in order to choose the proper method to be 

extended to aircraft surface generation. Five widely-cited methods are chosen: 

Ferguson's curve, Hicks-Henne bump functions, B-Splines representation, PARSEC, 

and CST method. These methods are based on different formulations and design 

parameters, and will be compared against the proposed metrics containing the relevant 

assessment criteria in Chapter 3. The surface generation method will then be discussed 

in Chapter 4.  
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3 Curve Parameterisation 

 

 

 

Aircraft parameterisation process begins with the parameterisation of 2D curves, which 

is the most detailed level of descriptions required for the aerodynamics analysis. This is 

then followed by the development of methods for 3D surface generation and 

subsequently methods for component modelling and assembly. Validation forms an 

integral part of the process followed by the evaluation of the whole approach with 

regard to aircraft conceptual design. The overview of the research methodology is 

presented in Figure 3-1. 

 
Figure 3-1 Overview of the Research Methodology 

This chapter presents the evaluation of the two dimensional curve parameterisation 

methods. Since the airfoil profile has a direct effect on the aerodynamic efficiency, 

which determines the aircraft performance, the assessment in this chapter first focuses 

on airfoil parameterisation. Five widely cited methods: Ferguson's curve, Hicks-Henne 

bump functions, B-Splines representation, PARSEC, and CST method, were chosen for 

comparison. Amongst these five methods, Hicks-Henne bump functions and PARSEC 

method were developed specially for airfoil parameterisation while Ferguson's curve, B-
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Splines representation, and CST method are applicable to wider configurations. The 

method which is the most efficient will be chosen and used as a base function for the 

parameterisation of the three-dimensional surfaces. 

3.1 Assessment Criteria 

In order to assess the selected methods for parameterisation, a list of desirable criteria 

from three authors: Samareh (1999), Kulfan (2006) and Padulo et al.(2009), are 

compiled in Table 3.1. Similar criteria are listed in the corresponding rows. The 

terminology compiled by Padulo et al. (2009) has been chosen as the assessment criteria 

which covered the properties compiled by the two previous literatures. 

Table 3.1 List of desirable properties for airfoil parameterisation methods 

Samareh, (1999) Kulfan, (2006) Padulo et al. (2009) 

- Compact set of design 

variables  

- Fast and easy to use  

- Requires relatively few variables 

to represent a large enough design 

space to contain optimum 

aerodynamic shape for a variety 

of design conditions and 

constraints.   

- Provides easy control for 

designing and editing the shape of 

a curve. 

- Parsimony: least possible 

number of design 

parameters which can 

represent arbitrary shape 

up to a specific level of 

accuracy 

- Extendable to new 

situation 

- Mathematically efficient and 

numerically stable process that is 

fast, accurate and consistent  

- Completeness: can 

describe any shape,  

up to a specific degree of 

accuracy 

- Shape perturbation 

maintains smooth 

geometry 

- Well-behaved, produces smooth 

and realistic shapes 

- Flawlessness: does not 

generate ill-behaved 

shapes 

- Design variables 

directly related to 

airplane shape design 

variables 

- Allows specification of key 

design parameters.  

- Intuitive: geometry algorithm 

should have intuitive and 

geometric interpretation 

- Intuitiveness: designers 

get the physical meaning 

of the design parameters  

- Sensitivity can be 

calculated analytically 

 

- Robust: the represented curve 

will not change its geometry 

under geometric transformations 

such as translation, rotation and 

affine transformations 

- Orthogonality: each 

airfoil shape corresponds 

to a unique set of input 

parameters 
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3.2 Airfoil Parameterisation Assessment 

From the five assessment criteria, the methodology for assessment of each respective 

property had been formulated as follows: 

A. Parsimony 

The first criterion to be considered is parsimony. It isthe most crucial factor since the 

number of design parameters has a direct influence on the computational speed. The 

evaluation seeks for the method which can capture main airfoil geometrical features 

with the least possible number of design variable.  

Amongst the five methods considered, the Ferguson’s curves and the PARSEC method 

was formulated on the basis of a fixed number of design parameters, while the other 

three methods have varying design parameters according to the formulation of each 

method, as summarised in Table 3.2. 

Table 3.2  Design parameters for each parameterisation methods 

Parameterisation 

Methods 

Degrees of Freedom Design Parameters 

Ferguson’s Curve [fixed] 8 Bu(y), Bl(y), TAu, TAl, TBu, 

TBl, alpha, beta 

PARSEC [fixed] 11 rLE, Xup, Xlo, Zup, Zlo, Zxx,up, 

Zxx,lo, Zte,Zte,te,te 

Hicks-Henne bumps 

function 

[free] Number of bumps - Bumps maximum positions 

- Bumps value 

B-Splines [free] Number of Control 

Points 

(x,z) coordinate of each control 

point 

CST  [free] Order of Bernstein 

Polynomials 

Bernstein polynomials 

coefficientsaui, ali 

 

The algorithm for determining the least number of design variables for the target airfoil 

is summarised in Figure 3-2 and operates as follows: 

1. From the target airfoil, the initial fitting was conducted to achieve the set of design 

parameters which yields the first airfoil approximation. For each parameterisation 

method, the initial set of design parameters can be derived from the target airfoil  
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2. coordinates as follows: 

2.1. The design variables of Hicks-Henne bump functions were determined by the 

maximum height of each bump at its corresponding chord wise position.  

2.2. B-spline curve uses the position of each control points as the design variables. 

In this fitting study, the positions of each point on the chord were fixed, leaving 

all control points free to move in the z-direction, i.e. perpendicular to the chord 

only. 

2.3. For the CST method, the MATLAB curve fitting tool cfit was used to determine 

the Bernstein polynomials coefficients. The fitting was performed on the graph 

of shape function rather than the airfoil geometry since it has less curvature than 

the airfoil geometry itself. This yields better results for least square fit function 

used in the fitting process. By utilising the benefit of shape function concept, 

the fitting process was performed on shape function first (see Figure ‎3-2 

below), the Bernstein polynomial coefficients results from fitting was then used 

to regenerate airfoil geometry (Figure ‎3-2 above). 

 

Figure ‎3-2 Airfoil Geometry and Shape function of RAE2822 Airfoil  

 

3. The next step is to improve the quality of the fitting. The initial set of design variables 

(dv0) is used as a starting point. The regenerated airfoil profile was generated and the 

residuals between the regenerated and the target airfoil were calculated. The root mean 
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square of the residuals is then used as an objective to be minimised with the MATLAB 

optimiser, fminunc. 

 

 

Figure ‎3-3 Parsimony Test 

4. The typical wind tunnel tolerances (Kulfan, 2006) were used as the criteria to determine 

whether the fitting is acceptable or not. The approximated and the target airfoil are 

considered to be “geometrical exact” if the residuals are within the wind tunnel 

tolerance of ± 3.5x10
-4

 from the leading edge to 20% units of chord, and ±7x10
-4

 

elsewhere. 

5. If the wind tunnel tolerance cannot be reached, the number of degrees of freedom for 

each method which summarised in Table 3.2 is increased by one for the next iteration. 

The process repeats until the geometry exactness is attained. 

B. Completeness 

Completeness assesses whether the parameterisation can describe any airfoil up to 

specific level of accuracy. The purpose of this study is to determine how many airfoils 

currently used in industry each parameterisation method is able to capture.   

Most of the procedures repeat the parsimony number determination in the previous 

study but applied to the airfoil database. The methodology for fitting test is summarised 

in Figure ‎3-4. 

MATLAB: fminunc 

input: dv0 

objective: min RMS |ztarget-zapprox| 

Target 

airfoil 
Initial fit 

< Tol? 

Parsimonious number of design variables 

Y 

N 

Increase number 

of design 

variables 
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1. From the airfoil database (UIUC, 2009) containing over 1,500 airfoils used in 

industry, only the airfoils described with more than 60 x-z coordinates were chosen 

for the study. This was to ensure that they can be directly used in the test without 

any pre-smoothing. The number of airfoils chosen for this study was therefore 

reduced to 250 airfoils. 

2. For each selected airfoil, an initial set of design variables was generated through the 

first approximation. The initial fitting followed the same procedure used for three 

parameterisation methods assessed in section 3.1 with the additional two remaining 

parameterisation methods: 

2.1. For the Ferguson’s curves, the trailing edge positions, the tangent vectors at the 

leading and trailing edges were calculated from the airfoil coordinates. 

2.2. For the PARSEC method, all parameters can be derived from the 

coordinates.The maximum crest position, the maximum thickness value on each 

surface, and trailing edge thickness can be determined directly from the 

coordinates. The remaining parameters such as leading edge radius, wedge 

angles, and trailing edge thickness were calculated from the coordinates. 

 

Figure ‎3-4 Airfoil Fitting Test 

Target 

airfoil 

Initial fit 

Database 
over 60 

coordin

Parameterised 

airfoil 

Database 

Determine best fit   

fmincon 

< Tol? 

Fitted airfoil 

Y 

N 
Unable to fit 

Y 
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3. The selected airfoil coordinates are imported into the MATLAB environment where 

the design parameters and parameterised airfoils are generated. The root mean 

square of the residuals of each approximation is used as the objective function for 

the MATLAB optimiser, fmincon.The process continues until the residuals fall 

withinthe standard wind tunnel tolerances oruntil the maximum number of iterations 

is reached.  

4. The design variables which correspond to the fitted airfoil were stored in the new 

database for the future use. If the standard wind tunnel tolerance cannot be reached, 

the method is considered unable to fit that particular airfoil and discarded. 

The result of this fitting test should provide more realistic range of design parameters 

and will be used as a design range for prove of orthogonality described in the next sub-

section. 

C. Orthogonality 

Orthogonality guarantees that each airfoil shape corresponds to a unique set of input 

parameters. This property is particularly relevant to the parameterisation methods on 

which an airfoil is constructed by combining existing sets of airfoils with other 

analytical functions.  

With this regard, Keane and Nair (2005) stressed that  

“...the design functions should be as geometrically orthogonal as possible. Lack of 

orthogonality implies a non-unique mapping of the parameter values to the geometry. 

The resulting spurious multimodality of the objective function can significantly degrade 

the search process” 

Keane and Nair (2005) also pointed out that for the Hicks-Henne formulation, the sine 

bumps which are used as base functions are non-orthogonal, and thus the solutions such 

as the inverse problem of a certain pressure distribution are not guaranteed to be 

attained.  

Ceze et al (2009) have tested the orthogonality of the CST and found that at high degree 

of the polynomials, there exists another set of coefficients which yields the same profile 
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as a set of unitary coefficients, as shown in Figure 3-5. The circles represent an airfoil 

for which all the coefficients are equal to 1, while the stars represent another set of 

polynomial coefficients which produces the same shape function and airfoil profile. 

However, this behaviour starts occurring at the polynomial of order 30 which is far 

beyond the parsimonious polynomials order from 5 to 8 considered in this research. 

The procedure tocheck the orthogonality property of the PARSEC method was 

conducted as follows:  

1. The design spaces were defined from the range of each variable found in section 3.2 

B. 

2. One thousand samples from this design space were generated through Latin 

Hypercube. 

3. The condition number of each sample was calculated. The condition number 

indicates the accuracy of the results from matrix inversion. Large condition number 

means the matrix is ill-conditioned, yields error in solving system of linear 

equations and causes non-uniqueness in the solution. 

 

Figure 3-5 Non-orthogonal set of CST design variables (Ceze et al., 2009) 
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D. Flawlessness 

In some cases, the optimisation might arrive at the solution with non-airfoil-like shapes. 

A previous researchon PARSEC formulation (Padulo et al, 2009) found an undesirable 

bump which occurs at another position of the profile in addition to the defined 

maximum crest location (Figure 3-6) or intersections of the upper and the lower 

surfaces (Figure 3-7). 

 

Figure 3-6 Inconsistent Maximum Crest Locations (Padulo et al., 2009) 

 

Figure 3-7 Intersections between upper and lower surface (Padulo et al., 2009) 

In order to assess flawlessness, the samples generated to prove orthogonality were 

examined for the irregular shapes mentioned above.  
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E. Intuitiveness 

Intuitiveness assesses whether the method relates the design parameters to the physical 

design meaning which in turn simplifies the choice of input bounds or design 

judgement.The design parameters are assessed according to the following criteria:  

1. The design parameters are directly related to the geometrical parameters 

2. Designers can understand the effect on geometry when manipulating one or more of 

these design parameters 

3.3 Results and analysis 

The results from the analysis of the five parameterisation methods: Ferguson Curves, 

Hicks-Henne bump functions, B-Splines, PARSEC, and CST, against five desirable 

criteria, are summarised in this section: 

A. Parsimony 

The minimum number of design variables required for Ferguson’s Curve and PARSEC 

are fixed due to their formulation. The parsimonious numbers of B-Splines and CST 

found agree with literature (Nadaraja, 2005 and Kulfan, 2006). For Hicks-Henne 

bumps, the number of required design variables is determined from fitting airfoils with 

typical wind tunnel tolerance. The effect of number of bumps on representation of the 

RAE2822 airfoil is presented in Figure 3-8. The maximum residuals from the leading 

edge to 20% chord (lower line) are within the tolerance of 3.5x10
-4

, while the residuals 

on the rest of the airfoil fall within the tolerance of 7x10
-4

 when using 16 bumps or 

more. This is the number of bumps required for each upper and lower profile, and 

therefore resulting in total of 32. 
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Figure 3-8 Number of Hicks-Henne bumps on representation of RAE2822 airfoil 

Amongst the five methods, the Ferguson’s curve is the most parsimonious with 8 

variables. The parsimonious numbers of the remaining methods are presented inTable 

3.3. 

  

Maximum residuals (1/10,000)       RAE2822 with RAE100 base

0
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0<x<0.2
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Table 3.3 Parsimonious numbers of design variables 

Method Number of variables Remarks 

Ferguson’s 

Curves 
8 Fixed variables 

Hicks-Henne 32 Depends on number of bumps 

B-Splines 13 Depends on number of control points 

PARSEC 11 Fixed variables 

CST 11 Depends on the order of polynomials 

 

B. Completeness 

Fitting performances were evaluated against the wind tunnel tolerance. Examples of a 

parameterised RAE2822 airfoil with Ferguson’s curve and PARSEC are presented in 

Figure 3-9. As can be seen, Ferguson’s curve shows limitations in capturing the sharp 

curvature on the lower profile, whereas PARSEC, as well as the other three methods 

which perform in the same level of accuracy, achieve better approximation of the 

profile. 

 

 

Figure 3-9 Parameterised RAE2822 airfoil by Ferguson’s curve and PARSEC 

The parameterised airfoil which falls within acceptable tolerance after performing a 

fitting test is considered a good approximation. The number of good approximation 
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airfoils, out of the selected 250 airfoils is summarised in Table 3.4. The results show 

that B-splines method performed best by capturing 98.4 per cent of the total airfoils 

followed by Hicks-Henne bump functions which captured 95.2 per cent. The PARSEC 

and CST perform almost equally with 94 per cent and 93.6 per cent, respectively. The 

Ferguson’s curve which has limited number of design variables did not perform as well 

as the other methods, with only 60 per cent of airfoils captured.  

Table 3.4 Percentage of airfoils with satisfactory fitting approximation 

Methods Number of Good Approximation 

[/250] 

Percentage 

Ferguson’s Curve 150 60.0 

Hicks-Henne 238 95.2 

B-Splines 246 98.4 

PARSEC 235 94.0 

CST 234 93.6 

 

C. Orthogonality 

The Ferguson’s curveis generated based on 4 design parameters. At fix boattail and tail 

closure angles, each a unique set of design parameters representing in a certain airfoil, 

therefore it is orthogonal.   For B-splines, Mason et al. (1993) demonstrated that it is 

possible to construct orthogonal splines based on B-Splines for smoothing applications. 

A conclusion has been drawn from the literature (see section 3.2 C) that Hicks-Henne 

bump functions are non-orthogonal, while CST method is orthogonal when the order of 

polynomials below 30, which is beyond the parsimonious order of 6. 

For PARSEC method, the orthogonality was assessed by examination of the matrix 

condition numbers of 1,000 samples generated from the design range obtained in the 

previous section. The calculated condition numbers of these samples ranged from 3,945 

to 22,137, which were higher than the single digit values. Moreover, since PARSEC 

formulation can be rearranged to polynomials degree 5.5 (see appendix A) which is 

lower than 30, this confirms that PARSEC formulation is orthogonal. 
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D. Flawlessness 

The flaws considered in this paper are additional bump at another location apart from at 

maximum crest position, and compenetration. These behaviours can be observed with 

an interactive tool “PARSEC-Airfoil Generator” which is provided on the webpage of 

DLR (2010) in order to understand the influence of each design parameter to the design. 

By adjusting only a single parameter may result in erroneous shapes as shown in Figure 

3-10. 

Change xu from 0.3 to 0.25

 
An additional bump starts to 

form on the upper profile 

close to the trailing edge side 

 

Change yu from 0.06 to 0.11

 
An additional bump starts to 

form on the upper profile 

closer to the trailing edge 

side 

 

Change xl from 0.3 to 0.65 

An additional bump starts to 

form on the lower profile close 

to the leading edge side. 

 

Change yxxl from 0.45 to 

2.00 

The lower profile intersects 

the upper profile near the 

trailing edge 

 

Change yxxu from -0.45 to -

2.0 

The upper profile intersects 

the upper profile near the 

trailing edge 

 

Change yxxu from -0.45 to 2.0 

This produces an addition bump 

on the upper profile close to the 

trailing edge side. 

 

Figure 3-10 Examples of irregular shapes produced with PARSEC method 

Since CST method is based on the polynomials which proved to be mathematically 

equivalent (see appendix A), this same scenario is also found in CST airfoil 

formulation. The design space could be rendered robust through a procedure based on 

the self-organizing maps, which can be found in the work by Padulo et al.(2009). 
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E. Intuitiveness 

The PARSEC method appears to be the most intuitive amongst all methods compared in 

this research since it directly describes the main geometrical features of the airfoil. All 

the design parameters e.g. the leading edge radius, the trailing edge thickness, boat-tail 

angle, etc., carries geometrical meaning. Designers can understand the change on the 

geometry when manipulating one or more of these design parameters, for instance, 

increase the leading edge radius, reduce the maximum thickness airfoils, or change the 

location of maximum crest position. This is useful for optimization processes, especially 

for non-experienced designer trying to improve the aerodynamic performance of the 

airfoils. 

In CST, a set of geometric parameters are related to the shape functions, in the same 

way as in PARSEC. This allows the designers to directly manipulate the shape of the 

airfoil using these geometric parameters instead of polynomials coefficients which is 

very practical. Therefore, these two methods are considered the most intuitive amongst 

all five methods. CST may or may not be considered intuitive. If the Bernstein 

polynomial coefficients are used, the method is not intuitive for the designer. However, 

if the design parameters which can be determined on shape function curve such as 

leading edge radius, closure thickess, or maximum thickness, as shown in Figure 3-11, 

is used, the method is considered intuitive which designers have direct control over 

airfoil geometry.   

 

Figure 3-11 Shape function and the corresponding design parameters (Kulfan, 

2007) 
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Ferguson’s curve uses tangent vectors, boat tail angle, and camber angle as design 

parameters. Designers can change the shape of airfoils intuitively based on these sets of 

parameters, therefore the method is very intuitive but not as flexible as other method 

due to limited number of design parameters. 

The Hicks-Henne bump functions provide information about the influence of parameter 

change on the profile by manipulating contributions of each base function, while B-

Splines enables designers to manipulate the shape by moving control points. These 

design variables are not directly related to geometry, but still provide the designer with 

a physical meaning of the design change. Therefore, these two methods are considered 

partially intuitive. 

Last, Ferguson’s curve provides only information about the positions and tangent vector 

directions at the starting and ending positions of each profile. Therefore it is considered 

the least intuitive amongst the five methods.  

3.4 Summary 

The performances of the selected airfoil parameterisation methods with respect to the 

five desirable criteria are summarised in Table 3.5. 

Table 3.5Comparison of selected airfoil parameterisation methods 

Methods Parsimony Completeness Orthogonality Flawlessness Intuitiveness 

Ferguson’s Curve 8 60.0 % Y 0 Direct 

Hicks-Henne 32 95.2 % N 0 Partial 

B-Splines 13 98.4 % Y 0 Partial 

PARSEC 11 94.0 % Y error  Direct 

CST 11 93.6 % Y error  Direct*/Not 

*In case of geometric related design parameters used 

Considering all five properties, the B-Spline, PARSEC, and CST methods performs 

well in general. The parsimonious number of design variables for PARSEC and CST 

are lower than B-Splines with some loss in completeness as a trade-off. Considerring 

Orthogonality, all methods except Hicks-Henne bumps function is orthogonal. 

Ferguson’s curve, PARSEC and CST uses intuitive design parameters. In case of CST, 

it can be considered intuitive when the geometric related design parameter is used, if the 

polynomial coefficient is used, the method is not intuitive at all.     
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Even though PARSEC and CST produce some irregular shapes, this can be eliminated 

by setting a proper design bound. In general, the PARSEC and CST are equally 

performs but CST provides more flexibility considering that the degree of polynomials 

can be increased for more accurate results, and therefore chosen as the parameterisation 

method for airfoil. 

3.5 Extension of CST application to Cross-section Parameterisation 

There are number of parameterisation methods commonly used for cross-section shapes 

such as conic curves, spline curves. CST method has also wider application from airfoil 

shape to cross-section shapes. The method is selected due to the following reasons:       

1. The method required only 5 design parameters to generate common shape used 

in fuselage of aircraft.  

- W cross-section maximum width 

- Hu cross-section upper lobe height, measured along the symmetrical 

line from the maximum width line (see Figure 3-12) 

- Hl cross-section lower lobe depth, measured along the symmetrical 

line from the maximum width 

- NCu, NCl  cross-section shape function coefficients  

The cross-section curve is generated through the following equations (Kulfan, 

2006):     

𝑧𝑢(𝜂) = [𝜂𝑁𝐶𝑢(1 − 𝜂)𝑁𝐶𝑢] ∙ 𝐻𝑢    [3-1] 

𝑧𝑙(𝜂) = [𝜂𝑁𝐶𝑙(1 − 𝜂)𝑁𝐶𝑙] ∙ 𝐻𝑙    [3-2] 

 

Figure 3-12 CST Cross section description 
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Comparing to spline-based methods, the bodycross section in Figure 3-12 will 

require minimum 8 control points: 4 to control over total height and total width, 

and 4 to control shape of each quadrant. 

2. The class-shape function has already been selected for airfoil generation. By 

keeping the same concept, the extrusion of cross-section shape to generate 

surfaces of aircraft component would be more convenient. Therefore, CST is 

chosen for cross-section shape, as well.  

3.6 Conclusions 

Presented in this chapter are the evaluations of the selected curve parameterisation 

method. For airfoil profile, PARSEC and CST methods perform best overall. They 

require small number of design parameters when compared to the other methods studied 

in this chapter. The design parameters are intuitive, and can be adjusted in order to 

modify the airfoil profile in wide ranges. CST is chosen as two-dimensional base 

functions: both airfoil-like and cross-section, and will be combined with proper lofting 

functions for the generation of three-dimensional surfaces in the next chapter. 
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4 Aircraft Parameterisation Method 

 

 

 

The parameterisation methods for curves were evaluated in Chapter 3. In this chapter, 

curve parameterisation is extended to surfaces and to major component modelling. A 

methodology for component parameterisation and assembly is presented, followed by 

examples of parameterised aircrafts in three different configurations. 

The aircraft parameterisation follows a bottom-up process, starting from local to global 

descriptions as presented in Figure 3-1.  

 

Figure 4-1 Aircraft components 
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Each surface is generated from a combination of two-dimensional bounded curves with 

a set of selected distribution functions. The surface sections are used to build up the 

components, which are then assembled to a full aircraft configuration. 

4.1 Axes Conventions 

The geometry definition follows the axes conventions as shown in Figure 4-2. The 

Cartesian coordinates corresponding to each axis are denoted as follows: 

axes directions normalised 

mesh  

local 

coordinates 

global 

coordinates 

X longitudinal: parallel to the 

fuselage reference 

linepositive from nose to 

tail 

ψ x X 

Y lateral: perpendicular to the 

plane of symmetryfrom 

root chord to wingtip  

η y Y 

Z vertical, positive upwards, 

perpendicular to the xy 

plane  

ζ z Z 

The normalised meshes are generated in the Cartesian coordinates with two independent 

variables ψ and η, with their corresponding surface function ζ =f (ψ, η). These 

normalised meshes are mapped to the local coordinates, xyz, to produce the actual 

dimensions. These surfaces are translated to the global reference position XYZ for the 

full configuration assembly.  

 

Figure 4-2 Aircraft geometric axis conventions 
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4.2 Geometry Classes 

Corresponding to the component built-up scheme, the geometry classes were 

introducedas shown in Figure 4-3. There are five levels of classes: Aircraft, Component, 

Section, Distribution, and Cross-section.  

 

Figure 4-3 Classes and attributes for full aircraft geometry generation. 

The “Aircraft” class is the highest class in the hierarchy. Each aircraft contains the 

following components: “Wing”, “Tail”, “Fuselage”, and “Nacelle”. Each of these 

components may contain a single or multiple sections. The lifting surface components 
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contain the “Wingsec” class, while the free-from body components contain the 

“Bodysec” class.  

Each section class is generated from two cross-sections with a distribution function. The 

cross-section class contains information with regard to the cross-section shapes e.g. 

“Airfoil” or “Bodycross”. This is the most detailed description considered in this 

research. The surface generation process starts from this level. 

4.2.1 Cross-section 

The cross-section class contains the detailed description of each curve in two 

dimensions. The class can be separated in two main categories as follows: 

a) Airfoil Class 

The “Airfoil” class constructs with the CST functions through the following design 

parameters:  

- chord airfoil chord length. The chord length of each airfoil can be defined by 

the user or calculated through the taper ratio (TR) of that wing section 

with the wing root chord as follows:  

𝑐ℎ𝑜𝑟𝑑𝑖+1 = 𝑐ℎ𝑜𝑟𝑑𝑖 ∙ 𝑇𝑅𝑖   [4-1] 

- tuc thickness to chord ratio. By default, this variable is set to be constant 

for every section along the wing span, or can be specified by user for 

each particular section. 

- inc incidence angle. The incidence angle of each section is calculated 

from wing setting angle at wing root and the wing section twist as: 

𝑖𝑛𝑐𝑖+1 = 𝑖𝑛𝑐𝑖 ∙ 𝑡𝑤𝑖𝑠𝑡𝑖   [4-2] 

- xyzle the leading edge position is defined at the starting point of each airfoil 

section, each variable is calculated through sweep and dihedral angle 

with respect to the wing starting position following the relationships:   

𝑥𝑖+1 = 𝑥𝑖 + 𝑠𝑝𝑎𝑛𝑖 ∙ tan(𝑠𝑤𝑒𝑒𝑝𝑖)   [4-3] 

𝑦𝑖+1 = 𝑦𝑖 + 𝑠𝑝𝑎𝑛𝑖    [4-4] 

𝑧𝑖+1 = 𝑐ℎ𝑜𝑟𝑑𝑖+1 ∙ tan(𝑖𝑛𝑐𝑖 + 𝑡𝑤𝑖𝑠𝑡𝑖) + 𝑠𝑝𝑎𝑛𝑖 ∙ tan(𝑑𝑖ℎ𝑖)    [4-5] 
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 In case of the quarter chord sweep angle, which is defined at quarter 

chord line, the leading edge position in x axes is calculated from: 

𝑥𝑖+1 = 𝑥𝑖 + 0.25 ∙ 𝑐ℎ𝑜𝑟𝑑𝑖 + 𝑠𝑝𝑎𝑛𝑖 ∙ tan(𝑠𝑤𝑒𝑒𝑝𝑖) − 0.25 ∙ 𝑐ℎ𝑜𝑟𝑑𝑖+1

         [4-6] 

- Au, Al  CST Bernstein polynomial coefficients. A CST airfoil profiles are 

generated with the Class-shape Transformation function method 

(Kulfan, 2006):  

𝜁𝑈 = √𝑥(1 − 𝑥)∑ [𝐴𝑢,𝑖 ∙
𝑁!

𝑖!(𝑁−𝑖)!
∙ ψ𝑖(1 − ψ)𝑁−𝑖] + ψ ∙ Δ𝜁𝑈

𝑁
𝑖=0    [4-7] 

𝜁𝐿 = √𝑥(1 − 𝑥)∑ [𝐴𝐿,𝑖 ∙
𝑁!

𝑖!(𝑁−𝑖)!
∙ ψ𝑖(1 − ψ)𝑁−𝑖] + ψ ∙ Δ𝜁𝐿

𝑁
𝑖=0     [4-8] 

 

b) Bodycross Class 

The “Bodycross” class generates a cross-section shape of the free-form body 

surfaces such as fuselage or nacelle through following parameters: 

 - W cross-section maximum width 

- Hu cross-section upper lobe height, measured along the symmetrical line 

from the maximum width line (see Figure 4-4) 

- Hl cross-section lower lobe depth, measured along the symmetrical line 

from the maximum width 

- NCu, NCl  cross-section shape function coefficients  

- XYZc centreline position, where the symmetrical line intersects the 

maximum width line  

The cross-section curve is generated through the following equations (Kulfan, 

2006): 
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𝑦(𝜂) = (1 − 2𝜂) ∙ 𝑊    [4-9] 

𝑧𝑢(𝜂) = [𝜂𝑁𝐶𝑢(1 − 𝜂)𝑁𝐶𝑢] ∙ 𝐻𝑢    [4-10] 

𝑧𝑙(𝜂) = [𝜂𝑁𝐶𝑙(1 − 𝜂)𝑁𝐶𝑙] ∙ 𝐻𝑙    [4-11] 

 

Figure 4-4 Bodycross Description 

Figure 4-5 presents three cross-section shapes corresponding to three cross-section 

coefficients. The upper lobe is kept constant with NCu=0.5, resulting in circular arch. 

The lower lobe varies from 0.5 (left), 0.1 (middle), and 0.05 (right). As the coefficient 

value gets lower, the lobe profile becomes close to rectangular. This type of cross-

section will be used to generate the aircraft cross-sections where the wing is connected 

to the fuselage.   

 

Figure 4-5 Cross-section shapes corresponding to NCl Coefficients 

 

4.2.2 Distribution Class 

The surface is generated with the distribution function along the surface. A set of 

distribution functions was introduced as follows:   
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a) Linear distribution 

The linear distribution is used when the change along the lofting direction is 

linear. The formulation is as follows: 

𝑁𝐶(ψ) = (1 − ψ) ∙ NC𝑖 + ψ ∙ NC𝑖+1  [4-12] 

b) Hermite interpolation 

Hermite interpolation (Ferguson, 1964) was chosen for lofting due to its 

simplicity and sufficient control over the surface lofting.  The cross-section 

shape function coefficientsare interpolated between NC𝑖 and NC𝑖+1 as follows: 

𝑁𝐶(ψ) = (2ψ3 − 3ψ2 + 1) ∙ NC𝑖 + (−2ψ3 + 3ψ2) ∙ NC𝑖+1 + ⋯ 

+(ψ3 − 2ψ2 + ψ) ∙ tanNC𝑖 + (ψ3 − ψ2) ∙ tanNC𝑖+1 [4-13] 

From Equation 4-13, the first two terms produce the blending of the surface between 

the starting and ending positions. The last two terms provide the control of the 

curvature through the tangent vectors at each end. In orderto ensure the continuityat 

each joint section, the tangent vectors of the two connecting surfaces are set to be 

equal. This function is mainly used for the fuselage surface lofting. 

c) Bernstein Polynomials 

The cubic Bernstein polynomial is also used as a lofting function to provide 

more control over the surfaces in three-dimension.  

NC(ψ) = ∑ [𝐵𝑖 ∙
𝑁!

𝑖!(𝑁−𝑖)!
∙ ψ𝑖(1 − ψ)𝑁−𝑖] 𝑁𝐶𝑁

𝑖=0   [4-14] 

Similar to the airfoil parameterisation, the Bernstein coefficients must be 

determined through the fitting process to the engine cowling line. Figure 4-6 

shows an example of engine cowling shape which corresponds to the Bernstein 

polynomial coefficients, B = [1.00    1.24    1.30    1.24   1.12   1.00]. 
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Figure 4-6 Bernstein polynomial (left) with its corresponding engine cowling line 

(right) 

d)  Distribution coefficients  

For the outermost section which required closing of the surface, the distribution 

function of the CST method is imposed on top of the whole surface descriptions 

after the lofting function has been selected. The function is simply in the form 

of: 

𝐹𝐷 = [𝜓𝑁𝐷1(1 − 𝜓)𝑁𝐷2]    [4-15] 

The coefficients, ND, produce the surface edge as follows: 

- ND = 0 Open edge, the form functions becomes one  

- ND = 0.05 Closed Cylindrical edge 

- ND = 0.5 Closed Spherical edge 

- ND = 1.0 Closed Conical edge 

Figure 4-7 presents the corresponding shapes for each distribution coefficient, 

ND1, with ND2 = 0.  
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Figure 4-7 Closed surface form functions 

4.2.3 Surfaces Class 

The “Surface” class produces three-dimensional surface coordinates. Each surface is 

generated with the two bounding curves defined in the cross-section class with a 

distribution function. The surface is separated into two categories: “Wingsec” or the 

lifting surfaces and the body surfaces, denoted by “Bodysec”.  

a) Wingsec 

Each wing section consists of two bounded airfoils which carry the entities from the 

“Airfoil” class, one for the inner airfoil (closer to the wing root) and one for the 

outer airfoil. Both airfoils are set parallel to the streamline. Each wing section is 

defined with a constant sweep, dihedral and twist angle. The Wingsec class contains 

the following attributes: 

- Airfoil (i)  the inner airfoil 

- Airfoil (i+1) the outer airfoil 

- span  span of the section 

- taper  taper ratio 

- sweep sweep angle  

- dihedral  dihedral angle 
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- twist  twist angle 

- startXYZ  section start position 

- Distribution  distribution  

 

Figure 4-8 Wing section definitions 

b) Bodysec 

Similar to the Wingsec Class, Bodysec stores a body surface bounded by two cross-

section curves. The bodysec class contains the followingattributes: 

- Bodycross (i) pointer to the forward cross-section 

- Bodycross (i+1) pointer to the aft cross-section 

- seclength  longitudinal length   

- startXYZ  section start position 

- NDu, NDl   distribution function coefficient 

- distribution type of the blending function describing the transition 

 

Figure 4-9 Body section descriptions 
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4.2.4 Component Class 

The “Component” class describes each aircraft component, which can be separated 

in two categories corresponding to the type of section. 

a) Lifting surfaces 

Lifting surfaces are the components which produce lift e.g. main wing, 

horizontal and vertical tails. Each surface may contain one or more wing 

sections. The standard horizontal and vertical tails contain a single wing 

section, while the main wing consists of two sections: from wing root to crank 

and crank to wing tip. The blended wing body usually contains more than two 

wing sections, as shown in Figure 4-10. 

 

Figure 4-10 Conventional wing (left) and Blended Wing with multiple wing 

sections (right) 

b) Body 

The Body class describes a fuselage or nacelle. The fuselage usually contains 

multiple sections depending on the number of cross-sections defined by the 

designer. The nacelle is constructed with a single section as shown in Figure 4-11. 

 

Figure 4-11 Fuselage (left) and nacelle (right) 
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Each component is defined with its XYZ starting position with respect to the global 

reference frame. For fuselage is the nose position, while for wing and tails is the 

apex. 

4.2.5 Aircraft 

The Aircraft class describes a full configuration with all selected components. This 

class contains two attributes: 

a) Type 

This attribute defines type of an aircraft based on its configuration. The current 

research focuses on three types of aircraft: a generic airliner, blended wing-body, 

and an unmanned aerial vehicle which demonstrates a more unconventional 

configuration.   

b) Component 

There are five main components in a full aircraft configuration: wing, horizontal tail, 

vertical tail, fuselage and nacelle. The components are chosen to be included in the 

design corresponding to each type of aircraft. For instance, a generic airliner 

contains fuselage, wings, the horizontal and vertical tails and the nacelles, while the 

blended wing body contains two main wings joined in the plane of symmetryinstead 

of a fuselage. 
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4.3 Surface Lofting 

Once the geometry parameters have been defined by the user, the surface generation 

may proceed. In this research, the parameterisation is performed in MATLAB® (2007) 

where the surface is generated on the basis of grid meshes. 

The lofting combines two cross-section curves with the selected distribution function. 

The formulations for each type of surface are as follows: 

4.3.1 Wing 

The wing surface class generates all components, and contains airfoil shape cross-

sections such as the main wing, the horizontal tail, the vertical tail. For each wing 

surface, each airfoil section (station) is set parallel to the stream line. The surface for 

each wing section is lofted between the two boundary sections in the span wise 

direction. 

The local coordinates 𝑥, 𝑦, 𝑧 are functions of the chord-wise distribution (𝜓), and the 

span wise distribution (𝜂). 

𝑥(𝜓, 𝜂) = 𝜓 ∙ 𝑐ℎ𝑜𝑟𝑑 ∙ (1 − 𝜂 ∙ (1 − 𝑡𝑎𝑝𝑒𝑟)) + 𝜂 ∙ 𝑠𝑝𝑎𝑛 ∙ tan (𝑠𝑤𝑒𝑒𝑝) [4-16] 

𝑦(𝜓, 𝜂) = 𝜂 ∙ 𝑠𝑝𝑎𝑛     [4-17] 

𝑧(𝜓, 𝜂) = 𝑧𝑙𝑒(𝜂) ∙ (1 − 𝜓) + 𝜁(𝜓, 𝜂) + 𝜂 ∙ 𝑧𝑡   [4-18] 

From equation 4-17, the local coordinates 𝑧(𝜓, 𝜂) consist of three components: 

- the leading edge position,  

𝑧𝑙𝑒(𝜂) = tan (𝑖𝑛𝑐 + 𝜂 ∙ 𝑡𝑤𝑖𝑠𝑡) ∙ 𝑐ℎ𝑜𝑟𝑑   [4-19] 

- the CST airfoil profile, for the upper and lower parts: 

𝜁𝑢(𝜓, 𝜂) = √𝜓(1 − 𝜓) ∙ ∑ [𝐴𝑢,𝑖(𝜂) ∙
𝑁!

𝑖!(𝑁−𝑖)!
∙ 𝜓𝑖 ∙ (1 − 𝜓)𝑁−𝑖]𝑁

𝑖=0 + 𝜓 ∙ ∆𝜁𝑢   [4-20] 
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𝜁𝑙(𝜓, 𝜂) = √𝜓(1 − 𝜓) ∙ ∑ [𝐴𝑙,𝑖(𝜂) ∙
𝑁!

𝑖!(𝑁−𝑖)!
∙ 𝜓𝑖 ∙ (1 − 𝜓)𝑁−𝑖]𝑁

𝑖=0 + 𝜓 ∙ ∆𝜁𝑙     [4-21] 

- and the wingtip position,  

𝑧𝑡 = 𝑠𝑝𝑎𝑛 ∙ tan (𝑑𝑖ℎ)     [4-22] 

The Bernstein coefficient 𝐴𝑢,𝑖(𝜂) is the function of the span-wise position which is 

lofted with a linear distribution (Figure 4-12 left). Equation 4-12 becomes:  

𝐴𝑢(𝜂) = (1 − 𝜂) ∙ 𝐴𝑢,𝑖𝑛𝑖𝑡 + 𝜂 ∙ 𝐴𝑢,𝑓𝑖𝑛𝑎𝑙   [4-23] 

In order to gain control over the wing distribution, the wing surface can be lofted with 

Bernstein polynomial distribution (Equation 4-13), Equation 4-20therefore becomes: 

𝜁𝑢(𝜓, 𝜂) = √𝜓(1 − 𝜓) ∙ ∑ ∑ [𝐵𝑢,𝑖𝑗(𝜓, 𝜂) ∙
𝑁𝑥!

𝑖!(𝑁𝑥−𝑖)!
∙

𝑁𝑦!

𝑗!(𝑁𝑦−𝑗)!
∙ 𝜂𝑗(1 − 𝜂)𝑁−𝑗 ∙𝑁𝑥

𝑖=0
𝑁𝑦
𝑗=0

…𝜓𝑖(1 − 𝜓)𝑁−𝑖] + 𝜓 ∙ ∆𝜁𝑢   [4-24] 

The coefficients 𝐵𝑢,𝑖𝑗 are to be determined by surface fitting or used as design variables 

in optimisation process. Figure 4-12 (right) presents wing section lofted with Bernstein 

distribution with the span wise coefficients 𝐵𝑢,𝑗=[1.0    1.5    2.75    1.5   0.75  0.25]. 

 

Figure 4-12 Wing section with linear interpolation (left) and Bernstein distribution 

(right) 
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4.3.2 Body Section 

The body section is generated with the combination  

𝑥(𝜓, 𝜂) = 𝜓 ∙ 𝑙𝑒𝑛𝑔𝑡ℎ     [4-25] 

𝑦(𝜓, 𝜂) = [𝜓𝑁𝐷1(1 − 𝜓)𝑁𝐷2] ∙ (1 − 2𝜂) ∙ 𝑊(𝜓)  [4-26] 

𝑧𝑢(𝜓, 𝜂) = [𝜓𝑁𝐷1(1 − 𝜓)𝑁𝐷2] ∙ [𝜂𝑁𝐶𝑢(𝜓)(1 − 𝜂)𝑁𝐶𝑢(𝜓)] ∙ 𝐻𝑢(𝜓) [4-27] 

From Equation 4-26, the lower lobe is constructed by replacing 𝑁𝐶𝑢(𝜓) and 𝐻𝑢(𝜓) 

with 𝑁𝐶𝑙(𝜓) and 𝐻𝑙(𝜓) respectively. 

The width (𝑊(𝜓)), the height (𝐻(𝜓)), and the cross-section shape coefficient (𝑁𝐶(𝜓)) 

are varying in the longitudinal direction. These parameters are lofted with Hermite 

interpolation (Equation 4-13) with the following set up for different surface shapes:  

The nose section (Figure 4-13), which has a close front, is generated from circular 

cross-section NCu = NCl =0.5 with distribution function ND1=0.5 and ND2 =1.0.  

 

Figure 4-13 Nose surface generation 

The cockpit (Figure 4-14) is also defined with circular cross-section (NCu=NCl=0.5).  

Both sides are open, therefore distribution coefficients: ND1=ND2=0. The Hermite 

interpolation is used with the tangent vector at front section of 1.30, and the tangent 

vector at the aft is set to 0. This is for smooth blending of the next section.   
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Figure 4-14 Cockpit surface generation 

The fuselage section can be defined with varying cross section shapes. For instance, the 

section connecting the front fuselage to the wing-joining section (Figure 4-15), the front 

section is defined with circular cross-section (NCu=NCl=0.5) while the aft section has 

circular upper lobe and rectangular lower lobe (NCu=0.5, NCl=0.05). Similar to other 

sections, both sides are open, therefore distribution coefficients: ND1=ND2=0. The 

surface is lofted with Hermite interpolation. For the main fuselage section which has the 

maximum height and width, the tangent vectors at connections are zero, therefore only 

the blending terms the Hermite interpolation is used. 

 

Figure 4-15 Fuselage surface generation 

  



86 

4.3.3 Grid discretisation 

The parameterisation is performed in MATLAB (2007) where the surface is generated 

and plotted on the basis of the grid mesh. 

Mesh size determines the accuracy of the surface parameterisation and the aerodynamic 

analysis. The standard mesh is distributed linearly throughout the xy plane. However, 

this distribution does not capture the curvature at the leading edge and trailing edge 

where important flow phenomena take place.  

The cosine distribution is set as follow:  ψ =
1

2
(1 − cos (

𝜋𝑖

𝑛
)),i =1...n, 

wheren=total number of points 

Figure 4-16 shows a wing sections and the airfoil cross section generated with the same 

number of panels, with linear distribution (left) and cosine distribution (right). As 

clearly shown in the figure, the airfoil with a cosine distribution has a larger number of 

points describing the leading and trailing edge region. 

 

Figure 4-16 Wing surface: linear distribution (left) and cosine distribution (right) 

Similar distribution has also been applied to fuselage distribution in the lateral direction 

(y) which puts more number of the panels in the maximum width region, as shown in 

Figure 4-17. 
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Figure 4-17 Fuselage nose surface: linear distribution (left) and cosine distribution 

(right) 

The optimal number of panels in each dimension is determined by the convergence 

study during aerodynamic analysis and optimisation process described in Chapter 5. 

 

4.4 Intersection of surfaces 

The process of intersectingthetwo main components i.e. wing or tail components to the 

fuselage starts at determining the intersecting lines.The algorithm for connecting the 

wing surface to the fuselage surface has been proposed as follows: 

1. Determine the fuselage section to be joined. Set the boundary of the fuselage section 

corresponding to the wing leading edge and trailing edge (Figure 4-18 left). 

2. For all the panel edges of wing surface protruding into the corresponding fuselage 

surface panels, determine the XY coordinates on the wing panel where it intersects 

the fuselage surface plane. This is implemented by the curveintersect function 

(Holzt, 2006) written in the MATLAB.  

3. For each intersecting point in XY coordinates, interpolate for the Z position on the 

protruded surface panel. This generates the intersecting line on the fuselage surface.  
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4. Update the wing root edge and delete the protruded surface inside the fuselage. The 

wingsec xyz surfaces now contain only actual panels outside the fuselage as shown 

in Figure 4-18 right. The wetted area of the wing can then be computed from this 

updated geometry. 

5. Update the panel distribution on the fuselage to be coincided with the panel on the 

intersection line. 

 

Figure 4-18Intersecting of the horizontal tail to therear fuselage; pre-

intersection(left) and post-intersection (right) 
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4.5 Surface Area Calculation 

Each panel on the surface is a quadrilateral and its surface area is calculated from 

Varignon’s parallelogram theorem (Coxeter and Greitzer, 1967).  

The figure formed when the midpoints of the sides of quadrangle area joined in order is 

a parallelogram, and its area is half that of the quadrangle.  

Consider Figure 4-19, the quadrilateral V0V1V2V3 has four midpoints: M0,M1,M2, 

andM3,one on each side. Thequadrilateral M0M1M2M3 formed by these four midpoints 

as its vertices is always a parallelogram.  

 

Figure 4-19 Arbitrary quadrilateral and the midpoint parallelogram (Softsurfer, 

2012) 

The area of the quadrilateral V0V1V2V3 can be computed from the area of the 

parallelogram M0M1M2M3 as: 

𝑨(𝑽𝟎𝑽𝟏𝑽𝟐𝑽𝟑) = 𝟐𝑨(𝑴𝟎𝑴𝟏𝑴𝟐𝑴𝟑) 

= 𝟐|(𝑴𝟏 − 𝑴𝟎) × (𝑴𝟑 − 𝑴𝟎)| 

=
𝟏

𝟐
|(𝑽𝟐 − 𝑽𝟎) × (𝑽𝟑 − 𝑽𝟏)|   [4-28] 

The total surface area of each component is computed and used for skin friction drag 

calculation in aerodynamic analysis in Chapter 5. 
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4.6 Examplesof the Parameterised Aircraft Models 

The full aircraft configurations are constructed from the main five components: 

fuselage, wing, horizontal tail, vertical tail, and nacelle. Three types of aircraft have 

been chosen to demonstrate the capability of the parameterisation to represent wide 

range of configurations. These are:  

1. The generic tranport are presented by a twin-engine generic airliners: A320 

(Airbus, 2010) 

2. Blended Wing-Body: MOB (Smith, 1999).  

3. A small unmanned aerial vehicle: UAV-KU4 (In-noi et al., 2004) 

4.6.1 Conventional transport 

The Airbus A320 was chosen as the example for the conventional transport aircraft. 

This aircraft features single aisle fuselage with twin engines as shown in Figure 4-20. 
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Figure 4-20 Airbus A320 3-View Configuration (Airbus, 2010) 
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The design parameters for each component are summarised below.The main geometry 

parameters such as span, chordaretaken from Jane’s all world aircraft database and the 

information from the manufacturer (Airbus, 2010). However, 

sincetheinformationabouttheairfoilsectionisnotavailable for thisaircraft, theairfoil is 

modelled with unitary set of CST coefficients for demonstration purpose here. A refined 

example will be presented in Chapter 6 where the airfoil section is used for 

optimization. Please note that all the dimensions listed in this example are in metric 

system. 

Wing section parameters 

section taper sweep twist dih XYZ_pos 

1    0.6  24.7 -  1.0     3.3  [11.5, 0.0, -1.00] 

2    0.3  24.7 -  1.0     3.3   

 

Wing partition parameters  

position remarks chord inc tuc span 

R Root    6.5     3.0     0.1  0.0 

C Crank    4.0     2.0     0.1     4.4  

T Tip    1.3     1.0     0.1   17.1  

 

Horizontal tail section parameters 

section taper sweep twist dih XYZ_pos 

1    0.4 27.5    0.0    3.0 [31, 

0.6583, 

0.9875] 

 

Horizontal tail partition parameters  

position Remarks chord inc tuc span 

R Root 4.0 0.0    0.1  0.0 

T Tip    0.8    0.0     0.1  10.44 

 

Vertical tail section parameters 

section taper sweep twist dih XYZ_pos 

1    0.6  34.0     0.0     90 [29.67, 0, 1.90] 

 

Vertical tail partition parameters  

position remarks chord inc tuc span 

R Root 5.0 0.0    0.1    0.0 

T Tip    2.1    0.0     0.1  6.26 

 

Nacelle parameters  

diameter 1.7 

length 4.4 



93 

XYZpos [0  5.4 -2.2] 

 

 
Fuselage cross-section parameters 
section remarks ncu ncl x_pos z_pos width height 

1 cockpit 0.50 0.50 1.49 -0.55 1.96 1.96 

2 fuse front 0.50 0.50 5.22 0.00 3.92 3.92 

3 wing box front 0.50 0.05 12.67 0.00 3.92 3.92 

4 wing box aft 0.50 0.05 18.63 0.00 3.92 3.92 

5 fuse rear 0.50 0.50 25.14 0.00 3.92 3.92 

6 tail front 0.40 0.50 28.50 0.20 3.53 3.53 

7 tail aft 0.10 0.10 35.02 1.10 1.96 1.76 

8 fuse aft 0.50 0.50 37.25 1.33 0.98 0.59 

 

The parameterised aircraft generated with the design parameters defined above is shown 

in Figure 4-21. 
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Figure 4-21 Parameterised A320 in 3 View 

4.6.2 Blended Wing Body 

The Blended wing body consists of two symmetrical wings, each defined with multiple 

sections, joined at the middle to form the fuselage. This design was originally created 

for the Aerospace Vehicle Design project at Cranfield College of Aeronautics (Smith, 

1999). A modifiedversion has later been used as a basic configuration for the MOB 

(Multi-Objective Blended wing body) project (Morris et al., 2004).  

The MOB contains 9 sections. Sections 1 to 6 form 

the main fuselage, while sections 7 to 9 form the 

control surface.  Each section is described with the 

following parameters: 

Wing section parameters 

section taper sweep inc twist dih 
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1 0.957 64 -1.6 0 4.4 

2 0.91 64 -1.6 0 4.4 

3 0.853 64 -1.6 0.2 4.4 

4 0.885 64 -1.4 0.2 4.4 

5 0.87 64 -1.2 0.2 4.4 

6 0.78 64 -1 0.5 4.4 

7 0.63 38 -0.5 0.5 4.4 

8 0.69 38 0 1 5.9 

9 0.42 38 1 -3.5 7.4 

 

Wing cross-section parameters: Upper surface 
section chord span Bu1 Bu2 Bu3 Bu4 Bu5 Bu6 

1 48 0 0.2307 0.2916 0.1678 0.255 0.1871 0.208 

2 45.9 1 0.2421 0.2829 0.1874 0.2435 0.1918 0.209 

3 41.8 3 0.2582 0.2621 0.2254 0.2143 0.203 0.2058 

4 35.7 6 0.2611 0.2363 0.2557 0.1778 0.2086 0.2004 

5 31.6 8 0.2526 0.2193 0.2591 0.1579 0.2059 0.1937 

6 27.5 10 0.2355 0.1981 0.2468 0.1415 0.1949 0.1848 

7 21.4 13 0.1714 0.164 0.1602 0.1342 0.1483 0.1574 

8 13.5 17.5 0.1364 0.0781 0.1412 0.1133 0.1437 0.1469 

9 9.3 23.5 0.121 0.0699 0.1246 0.1018 0.127 0.1309 

10 3.906 38 0.121 0.0699 0.1246 0.1018 0.127 0.1309 

 

Lower surface 
section Bl1 Bl2 Bl3 Bl4 Bl5 Bl6 

1 0.2143 0.1791 0.1637 0.2386 0.2126 0.2952 

2 0.2219 0.1853 0.1951 0.202 0.256 0.2845 

3 0.2362 0.2062 0.2141 0.2101 0.2506 0.2803 

4 0.2553 0.214 0.265 0.1683 0.268 0.2531 

5 0.2521 0.2141 0.2774 0.1442 0.2614 0.2411 

6 0.2295 0.2104 0.2534 0.1349 0.2359 0.2136 

7 0.1612 0.174 0.1548 0.1179 0.1564 0.1512 

8 0.1312 0.0972 0.0898 0.1972 0.0305 -0.0964 

9 0.1166 0.0869 0.0789 0.1763 0.0263 -0.0854 

10 0.1166 0.0869 0.0789 0.1763 0.0263 -0.0854 

 

The parameterised MOB is presented in Figure 4-22 
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Figure 4-22 Parameterised MOB 
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4.6.3 Unmanned Aerial Vehicle 

The Unmanned Aerial Vehicle: UAV-KU 4 (In-noi et al., 2004), has been developed by 

the Department of Aerospace Engineering, Kasetsart University, Bangkok, Thailand. 

This H-tail pusher UAV has a 3.95-meter span with an empty weight of 25 kg plus a 10-

kg payload. The half-scale aircraft model has been built for pilot training mission and 

completed its test flight in 2004. The dimensions of this UAV are presented in Figure 

4-23.  

 

Figure 4-23 Unmanned Aerial Vehicle (In-noi et al., 2004) 
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The design parameters are summarised below.The airfoil section is modelled with 

airfoil NACA 632-415.  

Wing section parameters 

section taper sweep twist dih XYZ_pos 

1 1.0 0 -1.2 1 [0.93, 0.0, 0.174] 

2 0.6 0 -1.8 1 - 

 

Wing partition parameters  

position remarks chord inc tuc span 

R Root 0.43 3.0 0.085 0.0 

C Crank 0.43 1.8 0.085 0.41 

T Tip 0.26 0.0 0.085 1.465 

 

Horizontal tail section parameters 

section taper sweep twist dih XYZ_pos 

1   1.0 0.0    0.0    0.0 [2.264, 0.0, 0.174] 

 

Horizontal tail partition parameters  

position remarks chord inc tuc span 

R Root 0.3 0.0    0.06 0.0 

T Tip    0.3    0.0     0.06 0.526 

 

Vertical tail section parameters 

section taper sweep twist dih XYZ_pos 

1 1.0 0.0    0.0     -15 [2.264, 0.526, 0.174] 

 

Vertical tail partition parameters  

position remarks chord inc tuc span 

R Root 0.3 0.0    0.06   0.0 

T Tip    0.3    0.0     0.06 0.36 

 

Fuselage cross-section parameters 

section Remarks ncu ncl x_pos z_pos width height 

1 Nose 0.05 0.05 0.07 0.00 0.23 0.18 

2 fuse front 0.05 0.05 0.48 0.09 0.23 0.30 

3 wingbox front 0.05 0.05 1.04 0.09 0.23 0.30 

4 wingbox aft 0.05 0.05 1.24 0.09 0.23 0.30 

5 fuse aft 0.05 0.05 1.54 0.15 0.23 0.18 

 

Boom (connecting the empennage to the main wing) 

radius 0.017 

length 1.047 

XYZ-pos [1.268, 0.360, 0.174] 
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Airfoil 632-415 CST parameters: 

Au1 = 0.2126     Al1 =  0.2126     

Au2 = 0.1678     Al2 = -0.1565    

Au3 = 0.3527     Al3 = -0.0511    

Au4 = 0.2240     Al4 = -0.2536    

Au5 = 0.2404     Al5 = -0.1048    

Au6 = 0.1940    Al6 = -0.0744 

 

The parameterised UAV-KU4 is presented in Figure 4-24. 

 

Figure 4-24 Parameterised UAV-KU4 
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4.7 Summary 

Presented in this chapter is a surface generation framework for aircraft design and 

optimisation. The geometrical model is generated with design parameters describing the 

geometry and configurations of a level of detailed considered in the conceptual design 

stage. Kulfan’s CST method has been chosen for curve generation due to its simplicity 

and small number of design parameters required (11 parameters for each airfoil and 6 

parameters for each fuselage cross-section). These functions have been combined with a 

set of selected lofting functions by the authors, resulting in the analytic surfaces 

describing each component of the aircraft. An algorithm to determine intersections 

between two intersecting surfaces will be described.  

Three configurations of aircraft have been regenerated with the proposed method 

through the defined set of parameters. The baseline configurations can be directly 

manipulated through this set of parameters. The parameterised models are now ready 

for the aerodynamics analysis and optimisation, which will be presented in chapter 5 

and 6, respectively.  
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5 Aerodynamic Analysis and Validation 

 

 

 

This chapter presents the aerodynamics analysis of the proposed three-dimensional 

aircraft parameterisation. Two levels of fidelity are considered: the level of detail of the 

geometrical model descriptions and the fidelity of the aerodynamic analysis tools. 

Figure 5-1 presents the mapping of CFD tools to the different levels of model 

descriptions. In low to medium fidelity analysis, the solvers are based on potential flow 

i.e. Vortex Lattice Method (VLM) and Panel Method.These solvers calculate the flow 

forces by putting vortices on the discretised geometrical surfaces (panels). Both 

methods provide satisfactory induced drag results, but are limited to the inviscid 

incompressible flow region. The main difference between VLM and Panel Method is 

that the VLM does not take geometrical thickness into calculation, and the model used 

in VLM is therefore referred to as a “semi-3D” model. 

 

Figure 5-1 CFD fidelity with corresponding level of Geometry descriptions 

(Adapted from Rizzi et al, 2010, CAD model from WIPD-Pro CAD 2010) 
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In high fidelity analysis, the solvers are based on Euler and Navier-Stokes equations 

which use the detailed geometrical surfaces with unstructured mesh. This requires both 

time and expertise in preparing the model. The proposed geometrical model in this 

research is positioned in the medium fidelity levelwhich is expected to contain 

sufficient geometrical details for the medium fidelity analysis (Panel Method). It also 

provides flexibility to (1) flattenthe model to semi-3D model for a Vortex Lattice 

Method or (2) export model in the standard geometry format for a high fidelity analysis. 

The work is structured in four parts:  

1. Convergence study on the geometry to determine an optimal number of grids 

required for aerodynamics analysis 

2. Validation of the wetted surface area calculation of the proposed model  

3. Solving for the lift and drag coefficients  

4. Validation of these coefficients with CFD results or wind-tunnel data 

5.1 Aerodynamic Coefficients 

The aerodynamic coefficients determine the performance of the aircraft. The two main 

coefficients are the total lift and drag coefficients which together are combined as lift to 

drag ratio. This parameter is used to determine the optimal lift coefficients in the 

conceptual design stage. 

5.1.1 Lift 

In an empirical calculation, the lift coefficient is a function of the aircraft total weight at 

a certain position in flight e.g. take-off, climb, landing. Whereas in a potential based 

flow solver, the lift is calculated through flight condition specified by the flight altitude 

and speed with theangle of attack at each position, where the induced drag is also 

calculated at the same time. The formulation of potential flow is discussed in section 

5.2.   

5.1.2 Drag 

The drag of a blunt body in flow contains two main components: induced drag and 

parasite drag, as presented in Figure 5-2. The induced drag or drag due to lift is 
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generated from vorticity shed into wake. The parasite drag composed of three 

components: friction/form drag, interference drag, and wave drag.  

Total Drag 

Induced Parasite 

Due to lift 

generated 

vorticity 

into wake 

Friction/Form 

Interference 

(due to 

intersection) 

Wave 

(due to shock 

waves) 

Skin 

friction 

Form/ 

Pressure 

Additional 

profile 

drag due 

to lift 

Due to 

intersection 

Due 

to 

lift 

Due to 

volume 

Due 

to 

lift 

Figure 5-2 Drag Component (Gur et al., 2010) 

The friction/form drag is generated due to viscosity. The pressure drag or form drag is 

generated due to compressibility effect. The airfoil at lift also generates the additional 

profile drag but is relatively small comparing to the first two components. The 

interference drag is generated due to the intersection between main components such as 

wing and fuselage. The wave drag is generated due to shock waves at critical Mach 

number.  

The induced drag is an important component in total drag since it contributes about half 

of the entire vehicle drag (Gur et al., 2010). There are several methods to calculate the 

induced drag coefficient, for instance: Trefftz plane analysis, Prandtl’s lifting line, 

Vortex Lattice Method, Panel Method. All methods mentioned are based on linear 

equations which limit their validity to the flow in the low speed region. The common 

approach is to use Weissinger non-linear lifting line method with Prandtl-Glauert 

correction for 2D lift-slope. 

Since a potential flow solver does not take viscosity effect into calculation, the friction 

drag is modelled with flat-plate skin friction model coupled with form-factor models. 

The actual wetted area is calculated through the generated aircraft geometry.The other 

two components, wave drag and interference drag, cannot be modelled through the low-

medium fidelity analysis. In order to achieve more accurate total drag value, these two 

components are calculated through empirical formulae (Gur et al., 2010). The wave 
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drag is interpolated between Lock’s forth order law and Korn equation. The interference 

drag is interpolated between the CFD response surface for thin wing (t/c <0.075) and 

the Hoerner model for thick wing (t/c > 0.4). 

5.2 Potential Flow 

The potential flow follows the fundamentals of inviscid, incompressible flow. The 

formulation in this section follows the work of Filkovic (2009). 

From the law of conservation of mass: 

𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝜈𝑖)

𝜕𝑥𝑖
= 0    [5.1] 

For inviscid flow, the density (𝜌) is constant, equation 5.1 becomes: 

𝜕𝜈𝑖

𝜕𝑥
= 0      [5.2] 

where𝜈𝑖 is scalar speed potential, given as a derivative of scalar potential𝜑 with respect 

to coordinate 𝑥𝑖: 𝜈𝑖 =
𝜕𝜑

𝜕𝑥𝑖
 

Equations 5.2 now becomes 

𝜕2𝜑

𝜕𝑥𝑖
2=0      [5.3] 

which is called the Laplace equation. 

From the law of conservation of momentum: 

𝜕(𝜌𝜈𝑖)

𝜕𝑡
+

𝜕(𝜌𝜈𝑗𝜈𝑖)

𝜕𝑥𝑗
= 𝜌𝑓𝑖 +

𝜕𝜎𝑗𝑖

𝜕𝑥𝑗
    [5.4] 

For irrotational and inviscid flow for steady flow: 

𝜈2

2
+

𝑝

𝜌
+ 𝑔𝑧 = 𝑐𝑜𝑛𝑠𝑡     [5.5] 

which is called the Euler-Bernoulli equation.  
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By solving equation 5.3 and 5.5, the velocity field and the pressure field can be 

determined. The total force and moment on the body is calculated from: 

𝐹𝑖 = −∫ 𝑝𝑛𝑖𝑑𝑆
𝑆

     [5.6] 

wherep is the pressure, 

nk is the normal unit vector,  

𝑆is the surface area 

subscript i denotes the direction X (longitudinal), Y (lateral), or Z (normal to XY plane) 

The force and moment coefficients are calculated as a function of Force (Fi) in each 

direction as follow: 

𝐶𝑋 =
𝐹𝑋

𝑞𝑆𝑟𝑒𝑓
     [5.7] 

𝐶𝑌 =
𝐹𝑌

𝑞𝑆𝑟𝑒𝑓
     [5.8] 

𝐶𝑍 =
𝐹𝑍

𝑞𝑆𝑟𝑒𝑓
     [5.9] 

whereq is dynamic reference pressure, Srefis wing reference area 

The lift and drag coefficients (CL, CD) are calculated through transformation of the 

coordinate system with respect to the angle of attack (𝛼): 

[
𝐶𝐿

𝐶𝐷
] = [

𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼

] [
𝐶𝑍

𝐶𝑋
]    [5.10] 

In this research, a non-commercial potential flow solver TORNADO (Melin, 2001) 

based on the vortex lattice method (VLM) is chosen for aerodynamic analysis. It 

calculates aerodynamics variables such as lift, drag, bending moment and shear forces 

along with their coefficients. The vortex horseshoes and collocation point are placed on 

each panel of the parameterized model, as shown in Figure 5-3.  
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Figure 5-3The vortex horseshoe position and the collocation point (Melin, 2010) 

The VLM method is limited to thin airfoil theory which means that the thickness is not 

taken into calculation but the method uses the camber line of the airfoil profile to 

calculate the normal vectors of each panel. The wing geometry is flatten through the in 

to form semi 3d panels. The CST airfoil was used to generate the camber line.The wake 

used by the solver can be either fixed wake (standard vortex lattice) or free stream 

following wake (Tornado method) of which the wake is influenced by the angles of 

attack and side slip. 

For validation, the results are compared with NASA TN D-5971 report (Capone, 

1970).Figure 5-4 and Figure 5-5 present the drag polar calculated by the VLM method 

for the NASA (TN D-5971) and the A320, respectively. The calculation was performed 

from low Mach number to critical Mach number and shows that for both configurations 

thedrag polars are shifted with respect to the Mach number, but all the induced drag 

polars follow the same curve. Therefore the induced drag can be calculated at a single 

value of Mach number, which is the design Mach number in thisresearch. 
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Figure 5-4 TN D-5971 in Vortex Lattice analysis with Mach numbers from 0.55 to 

0.85 

 

Figure 5-5 A320 in Vortex Lattice analysis with Mach numbers from 0.55 to 0.85 

5.3 Friction/ Form Drag Model 

Even though the vortex lattice method and the panel method yield acceptable induced 

drag, the main limitation is the lack of viscosity effect consideration. Models for skin 

friction drag prediction are therefore included to improve the drag prediction. These 

methods are based on the theory of Friction/Form drag which is composed of two 

components: 

1. Semi-empirical flat plate skin friction models 

2. Form-factor model 

The form drag (sometimes referred to as pressure drag) is influenced by the frontal area 

of each section. The friction drag is due to the movement of the air on the surface which 

generates boundary layers.  

The skin friction drag is a product of skin friction coefficient and the ratio between 

component wetted area and the reference area. The pressure drag is the product of the 

form factor and the skin friction coefficient.  
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The complete formula for friction and form drag is: 

 

𝐶𝐷,𝐹 = 𝐶𝐹𝐹𝐹
𝑆𝑤𝑒𝑡

𝑆𝑟𝑒𝑓
    [5.11] 

where 𝐶𝐹 is a flat-plate skin-friction coefficient 

𝐹𝐹is a form factor of the component 

𝑆𝑤𝑒𝑡and𝑆𝑟𝑒𝑓 are the wetted area and the reference area, respectively 

The calculation uses the standard flat plate skin friction theory and compressibility 

effect on skin friction.  The coefficients are calculated at two flow conditions: laminar 

and turbulent. The detailed formulation of each coefficient can be found in (Mason, 

2011). The composite formula is then used to combine the two coefficients to compute 

the total skin friction drag coefficients. 

5.3.1 Composite formula 

The transition flow between the laminar and turbulent flow can be modelled using the 

Schichting’s formula (Schichting, 1979). For the given transition position, 
𝑋𝐶

𝐿
, the 

composite Reynolds number is calculated through 

𝑅𝑒𝐶 = (
𝑥𝐶

𝐿
)𝑅𝑒𝐿    [5.12] 

The laminar flow skin friction coefficient is then computed at 𝑅𝑒𝐶 and the turbulent skin 

friction coefficients are computed at both 𝑅𝑒𝐶and 𝑅𝑒𝐿. The total skin friction coefficient 

is calculated through:  

𝐶𝐹 = 𝐶𝐹,𝑇𝑢𝑟𝑏(𝑅𝑒𝐿) − (
𝑥𝑐

𝐿
) [𝐶𝐹,𝑇𝑢𝑟𝑏(𝑅𝑒𝐶) − 𝐶𝐹,𝐿𝑎𝑚(𝑅𝑒𝐶)]  [5.13] 

The determination of the transition position is difficult at low-medium fidelity analysis. 

For the cases with fixed transition, such as the wind tunnel models, the transition 

position 
𝑥𝑐

𝐿
should be set to the appropriate location; however, for commercial aircraft, 

the value 
𝑥𝑐

𝐿
can be approximated quite accurately as zero (March, 2008). 
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5.3.2 Form factor 

In order to model the effect of thickness, the form factor is included. There are two 

types of the form factor: of the wing and of the body of revolution. Gue et al. (2010) has 

compared the formulae to calculate form factor from various authors. These are in the 

similar equations with different coefficients. For wing or planar surface, the form factor 

depends on the thickness to chord ratio, 
𝑡

𝑐
 and follows the equation: 

𝐹𝐹𝑤𝑖𝑛𝑔 = 1 + 2.7
𝑡

𝑐
+ 100 (

𝑡

𝑐
)
4

   [5.14] 

For the body shape, the form factor is a function of the ratio between diameter and 

length, 
𝑑

𝑙
 which is the inverse of the fineness ratio, 

𝑙

𝑑
 

𝐹𝐹𝑏𝑜𝑑𝑦 = 1 + 1.5 (
𝑑

𝑙
)
1.5

+ 7(
𝑑

𝑙
)
3

   [5.15] 

5.3.3 Wetted area calculation 

In the sizing process, a wetted area is usually calculated through empirical models. This 

limits the accuracy as the design moves away from the conventional configuration.  

In order to demonstrate this, the calculated wetted areas from an industrial test case 

(Guenov et. al,2010) and the actual surface areas from the parameterised model are 

compared against the data provided by NASA TN D-5971 wind tunnel test (Capone, 

1970). The two models are shown in Figure 5-6. 

 

Figure 5-6 TN D-5971 Wind Tunnel Model (left) (Capone, 1970) and 

Parameterised Model (right) 
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The wetted area of each component and the corresponding errors are presented in Table 

5.1. Note that all surface areasare calculated based on the full scale model. 

Table 5.1 Calculated Wetted Area [m
2
] 

Components TN D-

5971 

Empirical % Error Parameterised % Error 

wing 149.16 147.04 -1.4% 149.67 0.3% 

fuselage 266.85 280.30 5.0% 269.39 0.9% 

horizontal tail 47.36 51.00 7.7% 48.20 1.8% 

vertical tail 42.96 48.11 12.0% 42.22 -1.7% 

nacelle 38.48 30.60 -20.5% 37.76 -1.9% 

 

As seen from the table, the wetted area for each component calculated through the 

parameterised model has an error within 2 per cent which is more accurate than the 

empirical model. The errors in the empirical model are due to the following reasons: 

 The fuselage wetted area is calculated from the defined length and diameter. Since 

nose and tail section is not actually modelled, the approximation of the wetted area 

from the empirical method yields higher error than from the parameterised one. 

 The wetted area of the wing is calculated from the reference wing area without any 

information concerning wing thicknesses or airfoil curvatures. This yields a 

difference between the calculated and the actual surface area. Similar to the wing, 

the wetted areas of the horizontal and vertical tail are also calculated from the 

reference area. However, since the reference area of each component is 

approximated based on the wing reference area and fuselage length rather than the 

actual geometrical design parameters.This yields a higher error comparing with the 

wing wetted area. 

 The nacelle area is the function of its diameter only. For this chosendesign, the 

nacelle is longer than the usual conventional design therefore the error is more 

significant.  

By modelling the actual surface yields more accurate surface wetted area for each 

component which is an important parameter in friction/form drag calculation. The 

friction model (Mason, 2011) is used to calculate the friction drag coefficient. The 

results are validatedwith the wind-tunnel results, as presented in Table 5.2.The friction 
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model demonstrates good agreement with the wind tunnel results at low Mach number 

(0.1 per cent error at Mach 0.55). The error grows as the flow moves to the transonic 

region. This is mainly due to an error in transition positions which were determined 

under the assumption of transition position rather than the exact location which has to 

be determined through CFD analysis.  

Table 5.2 Friction Drag Model Validation 

Mach Number NASA 
TN D-5971 

FRICTION 
model 

Nominal Error % Error 

0.550 0.02093 0.02096 0.00003 0.1% 

0.625 0.02055 0.02062 0.00007 0.3% 

0.725 0.02016 0.02026 0.00010 0.5% 

0.775 0.01996 0.02007 0.00011 0.6% 

0.850 0.01964 0.01977 0.00013 0.7% 

For an unconventional design such as Blended Wing Body, the transition position can 

be estimated by the interpolation between the results from the F-14 variable sweep 

transition flight experiment and the wind-tunnel test data from NASA TN D-338. The 

detailed work can be found in Leifsson, et al. (2005). 

5.4 Convergence Study 

The convergence test was performed in order to determine the optimal number of panels 

on each direction for the configuration being studied. This section follows the mesh 

density study by Filkovic (2009), which was performed on a wing with a single sweep 

and constant taper ratio. The analysis is performed on a series of number of panels 

chord wise and span wise. The selected three sets of grid density are: “coarse” (10 

panels span wise, 24 panels chord wise), “medium” (20 panels span wise, 40 panels 

chord wise), and “fine” (40 panels span wise, 60 panels chord wise). The corresponding 

computation time increases exponentially from 1 second to 1.8 seconds and 15 seconds 

for the course, optimal and fine mesh, respectively. 

In this section, the Multi-Objective Blended wing body (Morris et al., 2004) has been 

used to perform grid convergence study. The numbers of panels chord wise and span 

wise are set as follows: 
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The number of panels along chord wise is constant throughout the wing and varies from 

4, 8, 12, 16, 20, 24, 28, and 32. When the number of panel reaches 36, the solver is out 

of memory and can no longer solve for the aerodynamics coefficients. 

From Figure 5-7, the lift and drag coefficients are presented according to the number of 

panel chord wise. Taking the wind-tunnel exactness criteria of 0.0001 (Kulfan, 2007), 

convergence is achieved when the number of panels per chord reaches 16, where the 

changes fall within the required tolerance of 0.0001.  

 

Figure 5-7 Lift and Drag coefficients with respect to number of panels (chord wise) 

The computational times corresponding to the number of panelsare presented in Figure 

5-8. The computational time significantly increases as the number of panel increases. 

The selected value of the panels is 16, which takes 13.3 seconds per analysis.   

 

Figure 5-8 Computation time with respect to number of panels (chord wise) 

The number of the panels span wise is normalised according to the span of each section. 

For this configuration, the spans of section are 13.0, 4.5, 6.0, and 14.5(starting from 

inboard to outboard). The number of panels on each section is summarised in Table 5.3. 
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Table 5.3 Number of span wise panels on each section 

Case ny1 ny2 ny3 ny4 

1 3 1 1 3 

2 5 2 2 6 

3 8 3 4 9 

4 10 4 5 12 

5 13 5 6 15 

section span (m) 13.0 4.5 6.0 14.5 

The number of span wise panels is proportional to the span of each section. First, the 

panel numbers are defined by rounding the span length, resulting in case 5 in Table 5.3. 

Once the number of panel is increased the solver is out of memory, therefore case 5 is 

set as the maximum number of panels. The other setsare derived from this set by 

proportionally reducing number of panels by 20% at each step until the minimum 

number, 1 is reached (case 1). 

The lift and drag coefficients are presented in Figure 5-9. Both coefficients start to 

converge at case 3, where the change in induced drag coefficient between the two cases 

is reduced to 0.0002.  

 

Figure 5-9 Lift and Drag coefficients with respect to the number of panel (span 

wise) 

The computation time for each case is presented in Figure 5-10. For the chosen case 

(case 3), the computation time is 17.20 seconds per run.  
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Figure 5-10 Computation time with respect to the number of panel (span wise) 

5.5 Aerodynamic Analysis Models from the Selected Test Cases 

Two test cases developed for aircraft conceptual design have been studied in this 

research. Each test case contains a set of models in various disciplines, sufficient for 

aircraft performance and sizing study. In this section, only the models which are related 

to aerodynamic analysis are discussed as follows: 

5.5.1 USMAC 

The Ultra Simplified Model of Aircraft (USMAC) (see appendix B) is an aircraft sizing 

test case provided by an industrial partner and has been extensively used by the 

Engineering Design Group at Cranfield University (Guenov et al., 2010). It contains97 

models and 125variables. Most of the models are based on empirical or statistical data. 

The USMAC models which are involved in aerodynamic analysis are presented in and 

can be separated into four sub-modules: Lift, Friction drag, Induced drag, and Pressure 

drag. In the test case, all the models are calculated at three flight conditions: climb, 

cruise, and static thrust. For simplification, only the models for cruise condition are 

presented here. 

The lift coefficient is calculated from mass, speed, gravitational acceleration, Mach 

number and pressure at each flight condition. The induced drag models are based on the 

empirical relationship between the lift coefficient and the wing aspect ratio. The friction 

drag is calculated based on the considered flight condition and the wetted areas, while 

the pressure drag is calculated through the flight Mach number and the characteristic 

Mach number. 
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5.5.2 FLOPS 

Flight Optimisation System: FLOPS (McCullers, 2011) is a computational program for 

multidisciplinary aircraft design in conceptual and preliminary design stage. The 

analysis can be separated into nine primary modules: 1) weights, 2) aerodynamics, 3) 

engine cycle analysis, 4) propulsion data scaling and interpolation, 5) mission 

performance, 6) take-off and landing, 7) noise footprint, 8) cost analysis, and 9) 

programme control. 

The aerodynamic module uses Empirical Drag Estimation Technique: EDET (Feagin 

and Morrison, 1978) as summarised in Table B.2 in appendix B. These models can be 

divided into 6 sub-groups: Lift, Mach number, induced drag, friction drag, pressure 

drag, and compressible drag.  

The friction drag model follows the standard skin friction calculation method discussed 

in section 5.3. The inputs are: skin friction coefficients, wetted area of each component, 

form factors, finess ratio, and wing reference area. The friction drag coefficients are 

calculated at a vector of predefined Mach numbers. This vector is defined by FLOPS, 

usually in the range between 0.2 - 0.85, with a refined distribution in the transonic 

region at Mach number between 0.75 - 0.80. 

The pressure drag coefficients are calculated at the defined set of lift coefficients and 

Mach numbers which together form a matrix of drag coefficients. Each row of these 

drag polars varies with the lift coefficients and each column varies with the Mach 

numbers. 
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5.6 Results and Analysis 

Three representativeaircraft configurations,conventional transport, blended wing body, 

unmanned aerial vehicle, have beenused for aerodynamic analysis. 

5.6.1 Conventional 

The A320 geometrical model is analysed with USMAC and FLOPS aerodynamic 

models and VLM. The lift and induced drag polar shows agreement between FLOPS 

and VLM as shown in Figure 5-11. Both methods yield close results in the low lift 

coefficient region. However, the drag polar calculated with VLM shows small drop at 

lift coefficient around 0.65 due to the compressibility effect.  

 

Figure 5-11 A320 lift and induced drag coefficients with VLM and FLOPS 

The lift and drag coefficients fromthe USMAC, FLOPS, and VLM are presented 

inTable 5.4, the VLM result is integrated with Mason’s drag model (Gur et al., 2010) 

for comparison purpose. In this work, the drag polar is calculated at the design Mach 

number of 0.797 with the lift coefficient of 0.5411.As seen from, this table, all methods 

show good agreement in each component of drag. 

Table 5.4 Aerodynamic Coefficients Comparison 

Coefficients Remarks USMAC FLOPS VLM + 
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Mason 

CL lift 0.5411 0.5411 0.5411 

CDi induced drag 0.0098 0.0098 0.0108 

CDf friction drag 0.0170 0.0174 0.0170 

CDp pressure drag 0.0025 0.0025 0.0025 

CDd compress drag - 0.0015 0.0013 

CD total drag 0.0293 0.03135 0.03176 

The friction drag model contributes approximately half of the total drag; therefore, it is 

crucial to determine the friction drag accurately. The friction drag models used in 

USMAC and FLOPS are based on the same formulation used in the friction model by 

Mason (Section 5.3) and therefore yield similar results. 

The pressure drag and compressibility drag are calculated based on the empirical 

models to form the total drag. In the USMAC test case, compressibility drag model is 

not included; therefore the total drag coefficient from USMAC aerodynamic models is 

slightly lowerthan the other methods. The results from FLOPS and VLM + Mason 

methods are both within 1%. The VLM has slightly higher due to a higher value of 

induced drag. 

The drag polar from FLOPS’ aerodynamic models and VLM with friction drag model at 

transition Mach numbers from 0.7 to 0.825 are presented in Figure 5-12. The results 

from VLM show good agreement with FLOPS for all Mach numbers considered. This 

result is expected since the FLOPS’ aerodynamic models are validated on the 

conventional configuration and therefore should yield very accurate solution. The 

integration of VLM will become beneficial as the design moves toward unconventional 

configuration, which is presented in the next section. 
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Figure 5-12 A320 Drag Polar at various Mach numbers with VLM (left) and 

FLOPS (right) 

5.6.2 Blended Wing Body 

The current version of FLOPS contains models for more accurate weight estimations of 

the blended wing body. However only a single set of models are provided in 

aerodynamic analysis module which are based on validated data with conventional 

aircraft. Bradley (2004) has modified the module which calculates the wetted area by 

using the detailed wing station data and used an interpolation between curve fits of 

average friction vs. Reynolds number to determine the skin friction coefficient. In this 

thesis, the actual aircraft surfaces have been generated which provide more realistic 

wetted area values. 

The Blended Wing Body configuration of the MOB project (Morris et al., 2004) is 

analysed. An induced drag is calculated through FLOPS and VLM, of which the VLM 

yields higher values. In order to validate the results, the total drag is required. The 

induced drag coefficients are added to the friction drag and pressure drag, resulting in 

the total drag coefficient. These coefficients are then compared with the Reynolds 

Averaged Navier-Stokes (RANS) results from Qin et al.(2002) as presented in Table 

5.5. 

. 
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Table 5.5Lift and drag coefficients for BWB 

CL 

CDi 

CDf CDp 

CD total 

FLOPS VLM FLOPS VLM+ 
Mason 

RANS 

0.0363 0.0001 0.0020 0.0080 0.0006 0.0087 0.0106 0.0181 
0.1427 0.0009 0.0039 0.0079 0.0003 0.0091 0.0121 0.0197 
0.2493 0.0029 0.0075 0.0078 0.0013 0.0120 0.0166 0.0223 
0.3560 0.0059 0.0130 0.0076 0.0024 0.0159 0.0230 0.0290 
0.4625 0.0099 0.0202 0.0074 0.0061 0.0235 0.0337 0.0395 
0.5687 0.0150 0.0293 0.0073 0.0114 0.0337 0.0480 0.0620 

 

The drag polar of the BWB calculated with FLOPS, VLM and RANS are presented 

inFigure 5-13. Comparing FLOPS and VLM methods, the latter yields overall results 

closer to the RANS.  

 

Figure 5-13 BWB Drag Polars with RANS, FLOPS, and VLM 

5.6.3 Unmanned Aerial Vehicle: UAV-KU4 

The unmanned aerial vehicle: UAV KU-4 model is analysed with TORNADO VLM 

and compared with the wind tunnel results (In-noi et al., 2004). The model is tested at 

theair speedof 30 m/s (Reynolds number of 249,000). The lift coefficients with respect 

to angles of attack are presented in Figure 5-14. The result from VLM is in good 

agreement with the wind tunnel result in the region of low angle of attack up to 8 

degrees where the separation occurs. Even though VLM cannot capture the stall 

behaviour, it is still applicable for the analysis at conceptual stage where the design is 



120 

mostly evaluated at the cruise condition. FLOPS result is excluded since it does not take 

the angle of attack into the calculation. 

 

Figure 5-14 Lift coefficient versus angle of attack 

 

As seen from Figure 5-15, both VLM, combined with the Mason method, and FLOPS 

under-predict the drag coefficients compared to the wind tunnel results. The combined 

VLM Mason method performs slightly better than FLOPS due to the actual modelling 

of aircraft components for the friction drag calculation, yet still yields high error from 

the wind tunnel results. This demonstrates the limitations of the model for analysing a 

small aircraft due to the scaling effect which results in less accurate Reynolds number 

for friction drag predictions. 

 

Figure 5-15 UAV-KU4 Drag Polar 
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5.7 Conclusions 

In this chapter, the parameterised aircraft model has been tested inthe medium fidelity 

aerodynamics analysis. The results have been compared with high fidelity or wind 

tunnel test data according to availability. There are two improvements in the 

aerodynamic calculation: 

1. Potential flow solver can be introduced for lift and drag calculation, which takes the 

geometry into calculation. For a conventional configuration, VLM show non-

significant improvement comparing to the empirical models which have been 

validated with data of actual aircraft. However, for unconventional design, such as 

Blended Wing Body, the VLM yields more accurate results than the empirical 

model. For the modelling of the UAV which has unconventional arrangements of 

the empennage, the VLM combined with Mason method slightly improves the drag 

prediction, but not as satisfactory as the blended wing body. 

2. The friction drag calculation uses the empirical formula based on the wetted area of 

the parameterised surface. The modelling of actual surfaces gives more accurate 

wetted area and therefore improves the accuracy of the friction drag coefficients. 

The combined VLM and Mason’s friction drag model show promise for practical 

applications and will be evaluated in an industrial test case in the Chapter 6. 
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6 Applications in Optimisation and Evaluations 

 

 

 

This chapter aims to evaluate the trade-offs of the proposed approach in terms of 

computational efficiency and extension of scope with regard to geometrical description 

at early design stage.  

The work in this chapter is based on the following tasks: 

1. Integration of the prototype geometry generation tool ,VS Geo (developed by the 

author) and Vortex Lattice Method (TORNADO) 

2. Match design parameters required by the VS Geo model and VLM with two 

different test cases of industrial relevance, both for the geometry and aerodynamic 

modules. If a certain parameter is not used in the test cases, such as wing twist or 

CST airfoil coefficients, that particular parameter is added to the computational 

workflow 

3. Disconnect the original geometry and aerodynamic models which calculate the lift 

and induced drag coefficients in the test case, replacing them with VS Geo model 

and VLM model, respectively  

4. Perform optimisation studies based on the geometrical design parameters  

6.1 Integration into Model-Based Design Tool 

The considered test cases have been integrated in the program developed by Cranfield 

University Advanced Engineering Design Group: “Aircadia” (Guenov et al., in 

preparation). This is a model-based design tool which dynamically assembles 

computational processes. It has the capabilities of performing multi-disciplinary, multi-

objective deterministic and / robust design optimisation. It also allowsthe integration of 

models written in different languages such as MATLAB or C#. 
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Figure 6-1demonstrates the flow of the design variables in the USMAC test case 

(Guenov et al., 2010) with the two main modules: geometry (orange square), and 

aerodynamic analysis (blue square). The models which are associated with the 

calculation of lift and induced drag are replaced by the geometry generator VS Geo and 

the VLM solver. 

 

Figure 6-1Subset of USMAC Workflow (geometry and aerodynamic modules) 

 

After replacing the geometry and aerodynamic models, the computational flow in 

Figure 6-1 is transformed into the one presented in Figure 6-2. The VS Geo model 

replaces 7 models in the geometry module and keeps all the corresponding inputs and 

outputs. The VLM model replaces the lift and induced drag models, with angle of attack 

(AoA) and thickness to chord ratio (TuC) included asadditional design parameters. 



124 

 

Figure 6-2Integration of USMAC with VS Geo and VLM 

The wetted area calculations for the original USMAC model and VSGeo, and the 

aerodynamic analysis results between the USMAC model and VLM have been 

compared, as presented in Chapter 5. The integration of VSGeo and VLM provides an 

example of integrating foreign models which are written in different languages.Such 

integration requires model merging which involves matching of variables.This process 

forms the basis for the integration of the FLOPS test case which contains a larger 

number of models and design variables. 

The aircraft sizing code FLOPS was provided by the code developer. The subset of 

FLOPS related to transport aircraft configurations wastranslated to a C# library by Riaz, 

(2012) to be used in the Aircadia environment. This subset contains 171 models, and 

317 design variables.  The aerodynamic analysis module of this test case was replaced 

with the VLM solver in a MATLAB.dll format. 

The design inputs and outputs of the VLM model, which is considered as ‘foreign’ 

model (requires merging), are mapped to the original design variables in FLOPS 

through the Aircadia architecture, as summarised in Table 6.1. The remaining three drag 

components: friction, pressure, and compressible drag, are calculated through the 

original FLOPS model. The total drag polars are stored in a matrix form which will be 

used in the performance analysis module. 
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Table 6.1 Induced Drag Models Merging 

 model inputs outputs 

Disable: LiftCoeffs desLiftCoeff noOfLiftCoeff, 
liftCoeffs[] 

Disable: IndDragCoeff noOfLiftCoeff, liftCoeffs[ ], noOfMachNum, 
machNums[ ], wingAsp_R, wingTap_R, 
wingSweep, EO 

CDITAB[ ] 

Merge: VLM noOfLiftCoeff, wingSpan, horTailAspR, 
horTailArea, verTailAspR,verTailArea, 
wingSwp,wingTapR, 
dihedAng, wingRefArea, 
horTailSwp, horTailTapR, 
verTailSwp, verTailTapR, 
fuseDia, desMachNum, 
maxCrzAlt 

liftCoeffs[], 
CDITAB[ ] 

 

The main difference between FLOPS and VLM is the way the lift coefficient is 

calculated. While VLM uses the angle of attack as input for lift and drag, FLOPS does 

not consider the angle of attack, but uses a set of predefined lift coefficients instead. 

This vector of lift coefficients is then used to calculate the induced drag coefficients. 

In the FLOPS mission analysis module, the drag polars at various Mach numbers are 

required. The standard model therefore computes a predefined vector of eight Mach 

numbers. In this analysis the VLM computes lift and induced drag polar at a single 

Mach number, which reduces computational time. 

6.1.1 Optimisation Study #1 

The formulation of the first optimisation study is based on Nunez et al, (2011). The aim 

of the study is to minimise both ramp weight (rampW) and landing field length 

(lndFldLen). The take-off field length and approach speed are chosen as constraints. 

The Mach number and altitude at cruise are set as constants. The design variables are 

chosen to reflect the inputs of the VLM model in Table 6.1. 

objectives: min  rampW [lbs] 

 min lndFldLen [ft] 

subject to: takoffFldLen ≤9000 [ft] 

 apprSpeed ≤140 [kts] 
constant: crzMachNum = 0.8 

 maxCrzAlt = 35000 [ft] 
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variables:   wingSpan = [90,130] [ft] wingAspR = [8,8.5] 

wingTapR = [0.25, 0.28] wingThkChdR = [0.09, 0.12] 

wingSwp = [30,32] [deg] dihedAng = [0,4] [deg] 

 thrust = [29200, 32000] [lbf] desRange = [2500,3000] [nm] 

The optimiser used in Aircadia is based on a genetic algorithm (Deb et al.,2002). In this 

study, the optimisation setup consists of a population size of 40 individuals and 20 

generations. The recommended population size and number of generations are based on 

previous studies. The results of the optimisation study are visualised in Aircadia and the 

screenshots are presented in Figure 6-3 and Figure 6-4. The top-left plot of these two 

figures presents the objective space, where in this case, the ramp weight and landing 

field length are both to be minimised. The green dots represent the design points that 

satisfy all the constraints. The grey dots represent the design points which violate at 

least one of the constraints. The yellow squares around green dots identify the non-

dominated solutions. The values of each design parameter are also plotted in the parallel 

coordinates plot in the bottom section of the screen by considering the same 

aforementioned colour notation. For this particular optimisation study, the total 

computation time for the original FLOPS test case is 14 minutes while the time forthe 

integrated test case FLOPS+VLM is 4 hours and 10 minutes. 
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แ  

Figure 6-3 Optimisation study: FLOPS 

 

Figure 6-4 Optimisation study: FLOPS + VLM 

For comparison purposes, Figure 6-5 presents only the Pareto front of the original 

FLOPS (in white squares) and FLOPS integrated with VLM (in yellow squares). The 
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Pareto front of FLOPS+VLM has progressed further left from the results of the original 

FLOPS. Three sample points (white-filled) have been highlighted to demonstrate that 

with the same design parameters, the model with VLM results in lower ramp weight and 

landing field length, approximately 1000 lbs and 20 ft, respectively. 

 

Figure 6-5 Objectives Space [Original FLOPS (white) and FLOPS+VLM (yellow)] 

The difference in the Pareto fronts results from the introduction of a more detailed 

geometrical representation of airfoils to estimate the corresponding aerodynamic 

coefficients to a higher accuracy, as discussed in Chapter 5.  

As demonstrated in Section 5.6.1, FLOPS aerodynamic analysis model and 

FLOPS+VLM have similar level of accuracy for aircraft with conventional 

configuration. Therefore, the results from both optimisation cases should be similar. 

The possible explanation to the different in results is that in FLOPS+VLM case, 

detailed drag is calculated based on wetted area from the generated geometry. By this, 

the results from FLOPS+VLM case should be more accurate.    

In order to demonstrate the importance of introducing higher fidelity tools at conceptual 

stage to assess the impact of design estimations on different design levels, the airfoil 

description has been included in the next study. 
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6.1.2 Optimisation study #2 

The first optimization study has been extended to demonstrate the capability to include 

lower level design parameters (e.g., airfoil parameterisation variables) in the 

formulation of design studies at early stage. This study follows the same formulation in 

optimisation study #1, but the design parameter “wingThkChdR”(thickness to chord 

ratio) has been replaced by the CST airfoil coefficients. 

It is important to note that the VLM computes the lift and drag coefficient of airfoils 

based on the normal vectors of the corresponding camber surfaces, without accounting 

for the entire profile geometry. Therefore, in order to demonstrate the effect of airfoil 

parameterisation in the aircraft conceptual design process, the upper profile is chosen to 

be fixed while the lower profile is allowed to change within the defined range. The 

airfoil profile of Boeing 737 at root is chosen as the baseline airfoil to be optimised. The 

CST airfoil coefficients for the upper profile (A1-A6) are set as constants, while the 

design bounds for the lower airfoil (A7-A12) are defined as ± 20% of the baseline 

airfoil. 

objectives: min  rampW [lbs] 

 min lndFldLen [ft] 

 

subject to: takoffFldLen ≤9000 [ft] 

 apprSpeed ≤140 [kts] 

 

constants: crzMachNum = 0.8     A4 = 0.885 

 maxCrzAlt = 35000 [ft]    A4 = 0.885 

 A1 = 0.480      A5 = 0.635 

 A2 = 0.682      A6 = 0.859 

  

variables:   wingSpan = [90,130] [ft]  wingAspR = [8,8.5] 

wingTapR = [0.25, 0.28]  wingSwp = [30,32] [deg]

 dihedAng = [0,4] [deg]  thrust = [29200, 32000][lbf]

 desRange = [2500,3000] [nm]  A7 = [0.037, 0.460] 
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  A8 = [0.557, 0.582]  A9 = [0.342, 0.933] 

 A10 = [0.922, 0.964]  A11 = [0.589, 1.053] 

 A12 = [0.481, 0.667] 

 

The results of this study are presented in Figure 6-6. The values of the 6 parameters 

describing the lower airfoil profile (A7-A12) andthe two objectives are shown in the 

parallel coordinates plot in the bottom part of the figure.  

 

Figure 6-6 FLOPS + VLM with airfoil design parameters (A7-A12) 

Examples of airfoil profiles on the Pareto front are presented in Figure 6-7. The baseline 

airfoil is plotted in red, while the non-dominated solutions are plotted in green, blue, 

cyan, and pink.  



131 

 

Figure 6-7 Airfoil shapes at the Pareto front 

The above optimisation study provides an example of the benefits derived by enabling 

higher fidelity geometrical representation of the aircraft and its components at early 

design stage. In this particular case, the full exploitation of such benefits can be 

achieved through the deployment of alternative airfoil analysis methods (such as 

Viscous Garabedian-Korn: VGK (ESDU, 2004)) capable of capturing more detailed 

airfoil representations, as discussed in Padulo et al. (2009). 

6.1.3 Optimisation study #3 

The optimization problem for UAV-KU4 (In-noi et al., 2004),with a focus on wing root 

and tip airfoil has been studied as follow: 

 

objective: min  CD 

subject to: (t/c) tip ≥ 0.09 

 (t/c) root ≥ 0.12 

constant:  CL = 0.66 

 Re = 249,000 

variables:    

A1 = [ 0.0859, 0.2148] 

A2 = [ 0.0780, 0.1950] 

A3 = [ 0.1290, 0.3224] 

A4 = [ 0.0948, 0.2371] 

A5 = [ 0.0890, 0.2224] 

A6 = [ 0.0740, 0.1851] 
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A7 = [-0.0748, -0.0075] 

A8 = [-0.2308, -0.0923] 

A9 = [-0.1110, -0.0333] 

A10 = [-0.0597, -0.0239] 

A11 = [ 0.0317, 0.0792] 
 

The objective is to minimize drag for a given lift, in other word, to maximise lift to drag 

(L/D). The optimisation problem deals with unit chord airfoil section with fixed lift 

coefficient of 0.66 at cruise condition or at Reynolds number of 249,000. 

The prototype UAV uses NACA632-415 airfoil for the wing. The structural limitations 

result in two constraints i.e. wing thickness to chord ratio at root chord and tip chord 

must be greater than or equal to 9% and 12%, respectively.   

Since the objective is to minimise drag, the eleven CST design parameters uses airfoil in 

the prototype as the baseline airfoil and also upper bound,where as the lower bound  is 

chosen to be 40%less to accommodate the reduced thickness from 15% to 9% chord 

length. 

The optimisation problem uses XFOIL solver at a constant lift coefficient of 0.66 for 

viscous analysis, and FMINCON function in MATLAB® is usedas an optimiser. The 

thickness is evaluated at each run to ensure the structural constraints have been met.  

The results for optimal airfoil at root and tip are shown in Figure 6.8. The drag 

coefficient of the optimal airfoils at root and tip are lower than the prototype airfoil 

(632-415) about 10% and 30%, respectively. 

Airfoil 

Section 

A1 A2 A3 A4 A5 A6 

Prototype 0.2148 0.1950 0.3224 0.2371 0.2224 0.1851 

Root 0.1770 0.1600 0.2792 0.1943 0.2020 0.1759 

Tip 0.1305 0.0865 0.2230 0.1125 0.1417 0.0996 

 

Airfoil 

Section 
A7 A8 A9 A10 A11 CD 

Prototype -  0.0748 -  0.2308 -  0.1110 -  0.0597 0.0792 0.0122 
Root -  0.0218 -  0.2013 -  0.0688 -  0.0287 0.0766 0.0110 
Tip -  0.0084 -  0.1962 -  0.0371 -  0.0284 0.0328 0.0086 
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Figure 6-8Prototype 632-415 airfoil (black-dashed), optimal section at root (blue), 

and optimal section at tip (red) with the corresponding CST parameters 
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6.2 Evalutions 

The trade-offs of introducing more detailed geometry representations in the early design 

stages are summarised in Table 6.2. The computational speed decreases due to the 

deployment of higher fidelity aerodynamics analyses (with a factor of ~17 when 

adopting the VLM solver), although this is still acceptable as more robust solutions can 

be identified due to a higher level of analysis at the conceptual design stage. 

Table 6.2 Evaluations of the integration of VSGeo and VLM into FLOPS 

Criteria 

 

Gain / Loss Achievements 

Computation 

Speed 

 For 40 individuals 10 generations 

FLOPS:14 mins / FLOPS+VLM:4 hrs 10 mins 

Accuracy  Improved accuracy of design analyses at conceptual 

stage 

Scope  Expanded scope of early design studies by: 

- including airfoil design coefficients 

- providing more detailed information at various 

design levels (e.g. flight mission, aircraft 

performance, weights, etc.) 

 

It has also been demonstrated in this chapter how the airfoil design coefficients can now 

be considered at the conceptual design stage, which extends the scope of the study. In 

general, the detail of geometrical representations can be increased both at an aircraft and 

components level, depending on the design study to be conducted. An example based on 

an optimisation problem was considered to demonstrate the possibility of conducting 

multilevel design activities (e.g., maximisation of aircraft performance at a higher level, 

while optimising the airfoil aerodynamics at a lower level), as well as supporting 

decision making processes (e.g., obtaining a better estimation of the ramp weight 

resulting from the use of a given airfoil). In both cases, the expected benefits are the 

reduction of subsequent design iterations and/or rework through more informed 

decisions at early stage.  
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The key original contributions of this chapter are integrating high fidelity aerodynamic 

analysis tool and more accurate wetted area calculation to conceptual design analysis 

tools. For the conventional aircraft, the test case may not obviously show improvement 

in accuracy, since the low fidelity model has been validated with the similar aircraft 

configuration. However, this demonstrates possibility to extend and included more 

detail such as airfoil description into early design stage. Combining with the findings 

from Chapter 5 that the high fidelity analysis tools: Tornado VLM, in this thesis, yields 

better accuracy for more unconventional configurations such as Blended Wing Body 

(BWB), or UAVs, the expected optimisation results should reflects more reality. These 

contributions are applicable in engineering design practice by use the integrated 

FLOPS+VLM module to perform design space exploration in conceptual design stage, 

or replacing some of the empirical models in FLOPS for accommodate unconventional 

design with the developed geometrical model proposed in this thesis.   
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7 Summary and Conclusions 

 

 

 

Presented in this thesis is an advance shape parameterisation framework for aircraft 

geometrical representations which captures sufficient detail suitable for efficient 

aerodynamic analysis and optimisation at early design, in order to close the gap between 

conceptual and preliminary design stages. 

This chapter presents the summary and conclusions from the literature review, followed 

by the comparison of airfoil parameterisation methods, the proposed surface 

parameterisation methodand its evaluation and integration with aerodynamic analysis 

tools. Finally, current limitations and suggested future work are discussed. 

7.1 Literature Survey 

Widely cited shape parameterisation methods wereselected for comparison. Since the 

most basic level of geometry description in this research is airfoil, the literature survey 

has been focused on airfoil parameterisation. The mathematical formulation for each 

method has been summarised and the relevant advantages and disadvantageshave been 

discussed.The previous comparison studies have been compiled and it was shown that 

most of these studies were pair-wise and hence the results were inconclusive. From this, 

a systematic comparison of airfoil parameterisation was conducted. 

7.2 Airfoil Parameterisation Method Comparison 

Five widely-cited airfoil shape parameterisation methods have been selected for a 

comparison study. Relevant metrics have been selected andan assessment methodology 

corresponding to each criterion has been proposed. The main assessmentshave been 

based on airfoil fitting tests which determine the least number of design parameters 
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necessary for shape generation at the required accuracy and the number of airfoils 

configurations that each method is able to capture. The Class-Shape function 

Transformation (CST) method has been chosen for curve generation due to its 

simplicity and required parsimonious number of design parameters. 

7.3 Surface Parameterisation Method 

The geometrical model has been generated with design parameters describing the 

geometry and configurations at the level of detailed considered in the conceptual design 

stage. The CST functions have been combined with a set of lofting functions proposed 

by the author, resulting in analytical surfaces representingaircraft components. A joining 

algorithm between two intersecting surfaces has also been proposed. An object-oriented 

structure has been proposed for the surface generation and assembly of components. 

Three aircraft configurations, a twin-jet airliner, an unmanned aerial vehicle and a 

blended wing body, have been generated with the proposed parameterisation method, 

covering both conventional and unconventional configurations. The proposed 

parameterisation method is able to generate these aircraft geometrical representations 

with a parsimonious number of design parameters. The baseline configurations can be 

directly manipulated through a set of design parameters. 

7.4 Aerodynamics analysis 

The selected potential flow solver has been used to perform the aerodynamic analyses 

due to its affordable computational cost for early design. The vortex lattice method 

provides lift and induced drag based on the potential flow solution. The induced drag 

coefficient is added with friction, pressure, and compressible drag coefficients to 

provide the total drag coefficient. 

The aerodynamic analysis results have been validated with high fidelity models and/or 

wind-tunnel data according to availability. Introducing higher fidelity tools in the 

aerodynamic module ofan aircraft sizing code, such as FLOPS, improves the accuracy 

of design analyses, especiallyfor the unconventional design. 
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7.5 Evaluation 

The ultimate aim has been to close the gap between conceptual and preliminary design 

stages. This has been demonstrated by the integration of a higher fidelity modelsinto 

industrially validated test cases to identify more robust solutions, which will lead to a 

reduction of subsequent design iterations and/or rework. 

7.6 Novelty and Contribution to knowledge 

In order to assess airfoil parameterisation methods, analysis metrics have been 

proposed. The methodology to assess each desirable property has been developed based 

on airfoil fitting tests. 

Also proposed in this research is an efficient surface parameterisation framework for 

aircraft surface geometry which includes the following components developed by the 

author: 

1. An object-oriented structure of aircraft components which are based on 

geometry-related design parameters 

2. A surface generation method through a set of proposed and selected distribution 

and lofting functions 

The method is able to capture the surface descriptions of main aircraft components e.g. 

wing, tail, fuselage, and nacelle with a parsimonious number of design variables, for 

both conventional and unconventional configurations. 

A potential flow solver has been integrated with the proposed geometry generation 

tools. This provides more reliable aerodynamic analysis results for unconventional 

design at affordable computational cost. 

The proposed framework has been integrated into industrially relevant test cases which 

demonstrate extending its scope, such as airfoil analysis in the early design stage. 
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7.7 Current Limitations 

1. Geometrical Parameterisation 

- The proposed framework has been developed for surface parameterisation only. 

The object-oriented structure allows fast computation, but currently supports only 

the main aircraft components such as wing, horizontal and vertical tail, fuselage and 

nacelle. 

-The parameterisation has been developed for surfaces and currently produces 

quadrilateral panels “on-the-fly” which are suitable only for the panel method 

analysis.  

2. Aerodynamic analysis 

- The selected aerodynamic solvers are based on the potential flow which allows fast 

computation compared to the high-fidelity tools which are based on Navier-Stokes 

or Euler equations. However, this is limited only to inviscid, incompressible flow. 

Therefore, the friction drag cannot be determined and still requires empirical models 

to calculate its value. 

7.8 Future work 

1. Geometrical Parameterisation 

The current framework for geometry generation can be extended in the following 

directions: 

- The definition of more detailed parts and components such as control surfaces can 

be introduced for more detailed mission analysis, e.g., at take-off and landing which 

is required for noise prediction. 

- The geometric parameterisation method can provide the basis for structural 

modelling and aeroelastic analysis. 

- The geometry can be exported as “cloud of points” in the standard “.stl” format 

(McDonald, 2004) which requires a mesh generation tool for CFD analysis. 
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2. Programming / Architecture  

Currently, the geometry generation tool and visualisation is developed in 

MATLAB® environment. Aninteractive graphical user interface will enhance the 

capabilities of the geometry generation tool, e.g. allow easy integration and 

operation between various disciplines. 

3. Aerodynamic analysis 

In order to improve the accuracy of aerodynamic analysis, alternative solvers which 

consider the viscosity effects could be introduced, providing that it is 

computationally affordable for design exploration in the early design stages. 
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APPENDICES 

Appendix A PARSEC-CST Equivalent form 

PARSEC airfoil is constructed from the polynomial:  
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For upper surface, the equation can be expanded to 
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where 1 2 3 4 5, , , ,a a a a a  are polynomial coefficients   

For CST with Bernstein Polynomial order 4 and class function of airfoil, N1= 0.5, N2 

=1.0: 
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Expanding the class function terms, Equation B-3 becomes: 
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It can be seen from equation, CST parameterization with Bernstein polynomials of order 

4 results in the polynomial highest degree of 5.5 which equals to the highest degree of 

polynomials in PARSEC. This means PARSEC can reach the same level of accuracy as 

the CST with Bernstein Polynomials of order 4. and the coefficients bi of CST airfoil in 

equation B-4 can be transferred to coefficients aiof PARSEC in Equation B-2. 
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Appendix B Empirical Model from Industrial Cases 

Table B.1USMAC Aerodynamic models 

module model Inputs  Outputs  

Lift 
 

level_flight_crz mass_crz, g_crz, Mach_crz, Pamb_crz, Aref cz_crz 

Friction 
drag 

fric_drag_factor - Kcx0 

friction_drag_crz cz_crz,Mach_crz,Pamb_crz,Tamb_crz,wAwing,
wAht,wAvt,wAfus,wAnac,lfus,Aref,Lref,ne,Kcx0 

cx0_crz 

Induced 
drag 

ind_drag_factor - Kind 

induced_drag_crz cz_crz, ar, Kind cxi_crz 

Pressure 
Drag 

press_drag_factor - Kcxp 

pressure_drag_crz Mach_crz, Mchar,Kcxp cxc_crz 

Total drag drag_factor_crz cx0_crz,cxi_crz,cxc_crz cx_crz 

 

Nomenclatures  

span span 

Awing wing planform area 

dfus, fuselage diameter 

lfus fuselage length 

Aht horizontal tail area 

Avt vertical tail area 

dnac nacelle diameter 

ar aspect ratio 

ne number of engine 

wAwing wing wetted area 

Aref wing reference area 

Lref reference length 

wAfus fuselage wetted area 

wAht horizontal tail area  

wAvt vertical tail area 

wAnac nacelle wetted area 

mass_crz total mass at cruise 

g_crz gravitational acceleration at 

cruise 

Mach_crz Mach number at cruise 

Pamb_crz Ambient pressure at cruise 

Tamb_crz Ambient temperature at 

cruise 

cx0_crz friction drag coefficient 

cxi_crz induced drag coefficient 

cxc_crz pressure drag coefficient 

Kind induced drag factor 

Kcx0 friction drag factor 

Kcxp pressure drag factor 
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Table B.2 Aerodynamic analysis models in FLOPS 

module Models Inputs Outputs 

Lift 
DesLiftCoeff wingThkChd_R, wingAsp_R, wingSweep, wingCamber  desLiftCoeff 

LiftCoeffs desLiftCoeff  noOfLiftCoeff, liftCoeffs[ ] 

Mach 
number 

DesMachNum wingAsp_R, wingThkChd_R, wingTap_R, wingSweep, AITEK, desLiftCoeff, maxV desMachNum 

MachNums desMachNum, wingThkChd_R noOfMachNum, 
machNums[ ] 

Induced 
drag 

IndDragCoeff noOfLiftCoeff, liftCoeffs[ ], noOfMachNum, machNums[ ], wingAsp_R, wingTap_R, wingSweep, EO CDITAB[ ] 

Friction 
drag 

WingFormFac wingFine_R, AITEK wingFormFac 

WingSkinFricCoeff alt, crzMach, wingCharacLen, TRUW, TRLW wingSkinFricCoeff, 
wingReynoldsNum 

WingSkinFricDrag
Coeff 

wingWetArea, wingSkinFricCoeff, wingFormFac, wingRefArea wingSkinFricDragCoeff 

(Repeat above 3 models: WingFormFac, WingSkinFricCoeff, WingSkinFricDragCoeff,  
for horTail, verTail, fuse, nac, can) 

SkinFricDragCoeff  alt, noOfMachNum, machNums,  
wingWetArea, wingCharacLen, TRUW, TRLW, horTailWetArea, horTailCharacLen, TRUH, TRLH, 
perVerTailWetArea, verTailCharacLen, TRUV, TRLV, perFuseWetArea, fuseCharacLen, TRUB, 
TRLB, perNacWetArea, nacCharacLen, TRUN, TRLN, canWetArea, canCharacLen, TRUC, TRLC,  
wingFormFac, horTailFormFac, verTailFormFac, fuseFormFac, nacFormFac, canFormFac, 
wingRefArea, noOfVerTail, noOfFuse, noOfEng 

CDFTAB[ ] 

Pressure 
drag 

PressDragCoeff wingAsp_R,  wingThkChd_R, wingCamber,  liftCoeff, desLiftCoeff,  machNum,  desMachNum pressDragCoeff 

PressDragCoeffs noOfMachNum, machNums[ ], desMachNum 
noOfLiftCoeff, liftCoeffs[ ], desLiftCoeff 

CDPTAB[ , ] 

Compres-
sible 
drag 

CompDragCoeff wingAsp_R, wingThkChd_R, wingTap_R, wingSweep, wingCamber, wingRefArea, 
fuseCrossSecArea, fuseLenDia_R, fuseDia_wingSpan_R, aircraftBaseArea, MachNum, 
desMachNum 

pressDragCoeff 

CompDragCoeffs noOfMachNum, machNums[ ], wingAsp_R, wingThkChd_R, wingTap_R, wingSweep, wingCamber, 
wingRefArea, fuseCrossSecArea, fuseLenDia_R, fuseDia_wingSpan_R, aircraftBaseArea, 
desMachNum 

CDCTAB[ ] 
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Nomenclature 

aircraftBaseArea aircraft base area  

apprSpeed maximum allowable landing approach velocity 

canFormFac canard form factor 

canWetArea canard wetted area 

canCharacLen canard characteristic length 

CDITAB[] vector of induced drag coefficients 

crzMachNum cruise Mach number 

designRange design range 

desLiftCoeff design lift coefficient 

desMachNum design Mach number 

dihedAng dihedral angle 

fuseCrossSecArea fuselage cross-section area 

fuseFormFac fuselage form factor 

fuseDia fuselage diameter 

fuseDia_wingSpan_R fuselage diameter/wingspan ratio 

fuseLenDia_R fuselage length /diameter ratio 

horTailCharacLen horizontal tail characteristic length 

horTailFormFac horizontal tail form factor 

horTailWetArea horizontal tail wetted area 

horTailSwp horizontal tail sweep 

horTailTapR horizontal taper ratio 

ldnFldLen maximum allowable landing field length 

liftCoeffs []  vector of lift coefficients 

machNums[]  vector of Mach numbers 

maxCrzAlt maximum cruise altitude 

nacFormFac nacelle form factor 

nacWetArea nacelle wetted area 

nacCharacLen nacelle characteristic length 

noOfLiftCoeff number of lift coefficients 

noOfMachNum number of Mach numbers 

noOfVerTail number of vertical tail 

noOfFuse number of fuselage 

noOfEngine number of engine 

rampW ramp weight 

takoffFldLen maximum allowable take-off field length 

verTailCharacLen vertical tail characteristic length 

verTailFormFac vertical tail form factor 

verTailSwp vertical tail sweep 

verTailTapR vertical tail taper ratio 

verTailWetArea vertical tail wetted area 

wingAsp_R wing aspect ratio 

wingCamber wing camber 

wingCharacLen wing characteristic length 

wingFine_R wing finess ratio 

wingFormFac wing form factor 

wingRefArea wing reference area 

wingSkinFricCoeff wing skin friction coefficient 
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wingSweep wing sweep 

wingTap_R wing taper ratio 

wingThkChd_R wing thickness to chord ratio 

wingWetArea wing wetted area 
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Appendix C MATLAB code for Geometry Generation 

function mainVSgeo 

% VSGeo - generating aircraft surface geometry 

% through design parameters 

% Vis Sripawadkul,Cranfield University MAR 2012 

% Cross-sections based on CST method (B.M.Kulfan, 2007) 

clearall 

clc 

 

%% global design parameters 

%fuselage 

lfus=37.25; 

wfus=3.92; 

hfus=wfus;    % default 

%wing 

span=35.8; 

wingxyz=[11.5 0 -1.50]; 

chordroot=5.8; 

chordcrank=4.0; 

taper=0.2; 

sweep=24.7; 

inc=3; 

twist=-1; 

dih=3.32; 

tuc=0.085; 

crankpos=4.36; % from centreline 

%htail 

htailxyz= [31 0.6583 0.9875]; 

htailchord= 4; 

htailtaper= 0.40; 

htailsweep= 27.500; 

htaildih= 3.3200; 

htailtuc= 0.0850; 

htailspan= 11.44; 

%vtail 

vtailxyz= [29.67 0 1.90]; 

vtailchord= 5; 

vtailtaper= 0.4130; 

vtailsweep= 34; 

vtailtuc= 0.0850; 

vtailspan= 6.26; 

%nacelle 

lnac=4.44; 

dnac=2.0; 

nacxyz=[0  5.4 -2.7]; 

 

%% VSgeo init 

% fuselage distribution by default 

fusecross(1).ncu= 0.5000; 

fusecross(1).ncl= 0.5000; 

fusecross(1).x= 0; 

fusecross(1).z= -0.14*hfus; %-0.5488;  

fusecross(1).W= 0.5*wfus;   % 1.9600; 

fusecross(1).H= 0.5*hfus;   % 1.9600; 

 

fusecross(2).ncu= 0.5000; 

fusecross(2).ncl= 0.5000; 

fusecross(2).x= 0.04*lfus;  % 1.4900; 

fusecross(2).z= -0.14*hfus; %-0.5488; 

fusecross(2).W= 0.5*wfus;   % 1.9600; 

fusecross(2).H= 0.5*hfus;   % 1.9600; 

 

fusecross(3).ncu= 0.5000; 

fusecross(3).ncl= 0.5000; 

fusecross(3).x= 0.14*lfus; % 5.2150; 

fusecross(3).z= 0; 

fusecross(3).W= wfus;       %3.9200; 

fusecross(3).H= hfus;       %3.9200; 

 

fusecross(4).ncu= 0.5000; 

fusecross(4).ncl= 0.0500; 



154 

fusecross(4).x= 0.34*lfus;  %12.6650; 

fusecross(4).z= 0; 

fusecross(4).W= wfus;       %3.9200; 

fusecross(4).H= hfus;       %3.9200; 

 

fusecross(5).ncu= 0.5000; 

fusecross(5).ncl= 0.0500; 

fusecross(5).x= 0.5*lfus;   %18.6250; 

fusecross(5).z= 0; 

fusecross(5).W= wfus;       %3.9200; 

fusecross(5).H= hfus;       %3.9200; 

 

fusecross(6).ncu= 0.5000; 

fusecross(6).ncl= 0.5000; 

fusecross(6).x= 0.675*lfus; % 25.1438; 

fusecross(6).z= 0; 

fusecross(6).W= wfus;       %3.9200; 

fusecross(6).H= hfus;       %3.9200; 

 

fusecross(7).ncu= 0.4000; 

fusecross(7).ncl= 0.5000; 

fusecross(7).x= 0.765*lfus; %28.4963; 

fusecross(7).z= 0.05*hfus;  %0.1960; 

fusecross(7).W= 0.9*wfus;   %3.5280; 

fusecross(7).H= 0.9*hfus;   %3.5280; 

 

fusecross(8).ncu= 0.4000; 

fusecross(8).ncl= 0.5000; 

fusecross(8).x= 0.94*lfus;  %35.0150; 

fusecross(8).z= 0.28*hfus;  %1.0976; 

fusecross(8).W= 0.5*wfus;   %1.9600; 

fusecross(8).H= 0.45*hfus;  %1.7640; 

 

fusecross(9).ncu= 0.5000; 

fusecross(9).ncl= 0.5000; 

fusecross(9).x= lfus;       %37.2500; 

fusecross(9).z= 0.34*hfus;  %1.3328; 

fusecross(9).W= 0.25*wfus;  %0.9800; 

fusecross(9).H= 0.15*hfus;  %0.5880; 

 

% main wing 

if wingxyz(1)==0 

wing(1).x_pos= 0.308*lfus; % wingxyz(1); 

else wing(1).x_pos =wingxyz(1); 

end 

wing(1).y_pos= wfus/2.2; 

wing(1).z_pos= wingxyz(3); 

wing(1).chord= chordroot; 

wing(1).taper= chordcrank/chordroot; 

wing(1).sweep= sweep; 

wing(1).inc= inc; 

wing(1).twist= twist; 

wing(1).dih= dih; 

wing(1).tuc= tuc; 

wing(1).station= 0; 

wing(1).Bu1= 1; 

wing(1).Bu2= 1; 

wing(1).Bu3= 1; 

wing(1).Bu4= 1; 

wing(1).Bu5= 1; 

wing(1).Bu6= 1; 

wing(1).Bl1= 1; 

wing(1).Bl2= 1; 

wing(1).Bl3= 1; 

wing(1).Bl4= 1; 

wing(1).Bl5= 1; 

wing(1).Bl6= 1; 

 

wing(2)=wing(1); 

wing(2).x_pos= 0; 

wing(2).z_pos= 0; 

wing(2).chord= chordcrank; 

wing(2).taper= taper/wing(1).taper; 

wing(2).sweep= sweep; 
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wing(2).inc= wing(1).inc+wing(1).twist; 

wing(2).twist= twist; 

wing(2).dih= dih; 

wing(2).tuc= tuc; 

wing(2).station= crankpos; 

 

wing(3)=wing(2); 

wing(3).x_pos= 0; 

wing(3).z_pos= 0; 

wing(3).chord= wing(2).taper*wing(2).chord; 

wing(3).taper= 0; 

wing(3).sweep= 0; 

wing(3).inc= wing(2).inc+wing(2).twist; 

wing(3).twist= 0; 

wing(3).dih= 0; 

wing(3).tuc= tuc; 

wing(3).station= span/2; 

 

[wing]=xzpos3(wing); 

 

if htailxyz(1)==0 

htail(1).x_pos= 0.832*lfus;  %htailxyz(1); %31; 

else htail(1).x_pos= htailxyz(1);  

end 

htail(1).y_pos= htailxyz(2); %0.6583; 

htail(1).z_pos= htailxyz(3); %0.9875; 

htail(1).chord= htailchord;  %4; 

htail(1).taper= htailtaper;  %0.4000; 

htail(1).sweep= htailsweep;  %27.500; 

htail(1).inc= 0; 

htail(1).twist= 0; 

htail(1).dih= htaildih; % 3.3200; 

htail(1).tuc= htailtuc; % 0.0850; 

htail(1).station= 0; 

htail(1).Bu1= 1; 

htail(1).Bu2= 1; 

htail(1).Bu3= 1; 

htail(1).Bu4= 1; 

htail(1).Bu5= 1; 

htail(1).Bu6= 1; 

htail(1).Bl1= 1; 

htail(1).Bl2= 1; 

htail(1).Bl3= 1; 

htail(1).Bl4= 1; 

htail(1).Bl5= 1; 

htail(1).Bl6= 1; 

 

htail(2)=htail(1); 

htail(2).x_pos= 0; 

htail(2).y_pos= 0; 

htail(2).z_pos= 0; 

htail(2).chord= htail(1).taper*htail(1).chord;0.8; 

htail(2).taper= 0; 

htail(2).sweep= 0; 

htail(2).inc= 0; 

htail(2).twist= 0; 

htail(2).dih= 0; 

htail(2).tuc= htailtuc; 

htail(2).station= htailspan/2;  %5.72; 

 

if vtailxyz(1)==0 

vtail(1).x_pos= 0.797*lfus;  %vtailxyz(1); %29.67;  

else vtail(1).x_pos=vtailxyz(1); 

end 

vtail(1).y_pos= vtailxyz(2); %0; 

vtail(1).z_pos= vtailxyz(3); %1.90; 

vtail(1).chord= vtailchord;  %5; 

vtail(1).taper= vtailtaper;  %0.4130; 

vtail(1).sweep= vtailsweep;  %34; 

vtail(1).inc= 0; 

vtail(1).twist= 0; 

vtail(1).dih= 0; 

vtail(1).tuc= vtailtuc;     %0.0850; 

vtail(1).span= vtailspan;   %6.26; 
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nacin.l= lnac; % 4.4400; 

nacin.d= dnac; % 2; 

nacin.x= nacxyz(1); %5.4000; 

if nacxyz(1)==0 

    nacin.x=wing(2).x_pos-0.5*nacin.l; 

end 

nacin.y= nacxyz(2); %5.4000; 

nacin.z= nacxyz(3); %-2.7000; 

 

pylin.x_pos=nacin.x; 

pylin.y_pos=nacin.y; 

pylin.z_pos=nacin.z+0.42*nacin.d; % was 0.5 

pylin.span=wing(2).z_pos-pylin.z_pos; 

pylin.chord=nacin.l; 

pylin.sweep=atand((wing(2).x_pos-pylin.x_pos)/pylin.span); 

pylin.tuc=0.085; 

pylin.taper=1-(wing(2).x_pos-pylin.x_pos)/pylin.chord; 

 

%% fuselage 

[fusesec,fusewidth,wAreaFus]=fuse_surf3(fusecross); 

 

%% wing 

[wingsurf,wAwing,wRootarea]=CST_Wing4(wing); 

% search for fuselage section where main wing join 

for i=1:length(fusesec) 

if fusesec(i).x(1,1)> wingsurf(1).x(1,1) 

njointsec=i-1; 

break 

end 

end 

[wingsurfmod,wAwingdel]= 

fus_wing_join(fusesec(njointsec),fusesec(njointsec+1),wingsurf);  

 

%% htail and vtail 

[htailsurf,wAhtail,htRootArea]=CST_Wing4(htail); 

% search for fuselage section where htail and vtail join 

for i=1:length(fusesec) 

if fusesec(i).x(1,1)> htailsurf.x(1,1) 

njointsec=i-1; 

break 

end 

end 

[htailsurfmod,wAhtaildel]= 

fus_tail_join(fusesec(njointsec),fusesec(njointsec+1),htailsurf);  

[vtailsurf,wAvtail,vtRootArea]=VTail4(vtail);    % width & height of fuselage 

 

%% nacelle and pylon 

[nacsurf,nacintsurf,wAnac]=nacelle3(nacin); 

[pylsurf,wApyl,pylrootarea]=VTail4(pylin); 

 

%% plotting 

figure 

axisequal 

axisauto 

holdon 

fus_plot(fusesec) 

wingplot(wingsurf) 

wingplot(htailsurf) 

vtailplot(vtailsurf) 

nacplot(nacsurf,nacintsurf) 

pylplot(pylsurf) 

holdoff 

 

%% wetted area 

wAfus=wAreaFus-wRootarea-htRootArea-vtRootArea 

wAnacs=2*(wAnac-pylrootarea) 

wApyls=2*wApyl 

end 
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function [fus,wfus,farea]= fuse_surf3(cross) 

% generate fuselage surfaces 

farea=0; 

wfus=0; 

nsec=length(cross)-1; 

for i=1:nsec % number of sections 

C1=cross(i); 

C2=cross(i+1); 

 

if C2.W>wfus 

wfus=C2.W; 

end 

secL=C2.x-C1.x; 

nx=round(secL/0.5); 

 

if i==1 

    nd1=0.5; % nose term 

nx=nx*2; 

else 

    nd1=0; % open front 

end 

 

if i==nsec 

    nd2=0.05; % aft term 

nx=nx*2; 

else 

    nd2=0; % open aft 

end 

%fuseside cosine spacing 

phi = linspace(0,1,nx);  % phi=linspace(0,1,50); 

etacons = linspace(0,1,30); 

eta=0.5*(1-cos(etacons*pi)); 

[phi,eta]=meshgrid(phi,eta); 

 

ncu=blend(C1.ncu,C2.ncu,phi); 

ncl=blend(C1.ncl,C2.ncl,phi); 

scu=1; 

ccu=eta.^ncu.*(1-eta).^ncu; 

scl=1; 

ccl=eta.^ncl.*(1-eta).^ncl; 

% normalised to unit shape 

ccu=normal(ccu); 

ccl=normal(ccl); 

% determine max position 

if i==2 

W=halfblend2(C1.W/2,C2.W/2,phi); 

H=halfblend2(C1.H/2,C2.H/2,phi); 

H2=linear(C1.H/2,C2.H/2,phi); 

y1=-(1-2*eta).*(W); 

zu1=(scu*ccu).*(H); 

zl1=-(scl*ccl).*(H2); 

elseif i==nsec 

W=linear(C1.W/2,C2.W/2,phi); 

H=linear(C1.H/2,C2.H/2,phi); 

H2=linear(C1.H/2,C2.H/2,phi); 

y1=-(1-2*eta).*(W); 

zu1=(scu*ccu).*(H); 

zl1=-(scl*ccl).*(H2); 

else 

W=linear(C1.W/2,C2.W/2,phi); 

H=linear(C1.H/2,C2.H/2,phi); 

y1=-(1-2*eta).*(W); 

zu1=(scu*ccu).*(H); 

zl1=-(scl*ccl).*(H); 

end 

 

%% distribution part 

sd=1; 

cd=phi.^nd1.*(1-phi).^nd2; 

zshift=linear(C1.z,C2.z,phi); 

fus(i).x=phi*secL+C1.x; 

fus(i).y=-(sd.*cd).*y1; 

fus(i).zu=(sd.*cd).*zu1+zshift; 

fus(i).zl=(sd.*cd).*zl1+zshift; 
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area_i=area3dsum(fus(i).x,fus(i).y,fus(i).zu)+area3dsum(fus(i).x,fus(i).y,fus(i).zl); 

farea=farea+area_i; 

end 

end 

 

function linvec=linvar(initvec,finvec,grid) 

linvec=ones(length(initvec),length(grid)); 

for i=1:length(initvec) 

for j=1:length(grid) 

        linvec(i,j)=(1-grid(j))*initvec(i)+grid(j)*finvec(i); 

end 

end 

end 

 

function [nc]=linear(nc1,nc2,phi) 

nc= (1-phi).*nc1+phi.*nc2; 

end 

 

function [nc]=halfblend2(nc1,nc2,phi) 

tannc1=1.5; 

nc=(1-3*phi.^2+2*phi.^3).*nc1+(-2*phi.^3+3*phi.^2).*nc2+(phi-2*phi.^2+phi.^3).*tannc1; 

end 

 

function [nc]=blend(nc1,nc2,phi) 

nc=(1-3*phi.^2+2*phi.^3).*nc1+(-2*phi.^3+3*phi.^2).*nc2; 

end 

 

function [cnorm]= normal(cn) 

[row,col]=size(cn); 

cnorm=zeros(row,col); 

for i=1:col 

height=max(cn(:,i)); 

cnorm(:,i)=cn(:,i)/height; 

end 

end 

 

function area=area3d(A,B,C,D) 

AB=B-A; 

AD=D-A; 

CB=B-C; 

CD=D-C; 

area=0.5*norm(cross(AB,AD))+0.5*norm(cross(CB,CD)); 

end 

 

function areasum=area3dsum(x,y,z) 

% compute surface area 

[ni,nj]=size(x); 

area=zeros(ni-1,nj-1); 

areasum=0; 

for i=1:ni-1 

for j=1:nj-1 

        A=[x(i,j),y(i,j),z(i,j)]; 

        B=[x(i,j+1),y(i,j+1),z(i,j+1)]; 

        C=[x(i+1,j+1),y(i+1,j+1),z(i+1,j+1)]; 

        D=[x(i+1,j),y(i+1,j),z(i+1,j)]; 

area(i,j)=area3d(A,B,C,D); 

areasum=areasum+area(i,j);     

end 

end 

end 

 

function [wingpan,wAwing,xrootarea]=CST_Wing4(wing) 

nsec=length(wing)-1; 

wAwing=0; 

nx=round(wing(1).chord/0.5); 

for i=1:nsec 

SPAN = wing(i+1).station-wing(i).station;           

CR = wing(i).chord;                 % root chord (m) 

DIH = wing(i).dih;                  % dihedral angle (deg) 

SWEEP = wing(i).sweep;              % wing sweep angle (deg) 

TWIST = wing(i).twist;              % twist anngle (deg) 

INC = wing(i).inc;                  % wing incidence angle (deg) 

TCA = wing(i).tuc;                  % thickness to chord ratio 

TR = wing(i).taper;                 % taper ratio 
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x_pos = wing(i).x_pos;              % root setting x-position 

y_pos = wing(i).y_pos; 

z_pos = wing(i).z_pos;              % root setting z-position 

 

ny=round(SPAN); 

phicons = linspace (0,1,nx);        % phi = linspace (0,1,20); 

phi=0.5*(1-cos(phicons*pi)); 

eta = linspace (0,1,ny);            % eta = linspace (0,1,20); 

 

%% modified variable for calculation 

L=CR*(1-(1-TR)*eta);  

H=TCA*L/2; 

Zt=tand(DIH)*SPAN;                  % wingtip up distance  

Zle=(tand(INC+TWIST*eta)).*L;       % incidence angle 

swle=tand(SWEEP)*SPAN;              % xle sweep distance 

NC1=0.5; 

NC2=1.0; 

% airfoil cross-section 

n=5; 

bp=BPO(n,phi); 

 

%% inputs for CST design parameters 

% designer's choice of airfoil section 

Au=[wing(i).Bu1 wing(i).Bu2 wing(i).Bu3 wing(i).Bu4 wing(i).Bu5 wing(i).Bu6]; 

Al=[wing(i).Bl1 wing(i).Bl2 wing(i).Bl3 wing(i).Bl4 wing(i).Bl5 wing(i).Bl6]; 

 

Auf=[wing(i+1).Bu1 wing(i+1).Bu2 wing(i+1).Bu3 wing(i+1).Bu4 wing(i+1).Bu5 

wing(i+1).Bu6]; 

Alf=[wing(i+1).Bl1 wing(i+1).Bl2 wing(i+1).Bl3 wing(i+1).Bl4 wing(i+1).Bl5 

wing(i+1).Bl6]; 

 

Au_lin=linvar(Au,Auf,eta); 

Al_lin=linvar(Al,Alf,eta); 

 

Scu=bp*Au_lin; 

Scl=bp*Al_lin; 

 

x=zeros(nx,ny); 

y=zeros(nx,ny); 

Cc=zeros(nx,1); 

psiu=zeros(nx,ny); 

psil=zeros(nx,ny); 

for k=1:nx 

for j=1:ny 

x(k,j)=(phi(k)*L(j))+swle*eta(j); 

y(k,j)=eta(j)*SPAN;  

        Cc(k)=((phi(k))^(NC1))*((1-phi(k))^(NC2)); 

psiu(k,j)=Scu(k,j)*Cc(k); 

psil(k,j)=-Scl(k,j)*Cc(k); 

end 

end 

 

maxu=max(psiu); 

maxl=-min(psil); 

 

Zu=psiu/max(maxu); 

Zl=psil/max(maxl); 

 

for m=1:nx 

for j=1:ny  

        Zu(m,j)=Zle(j)*(1-phi(m))+Zu(m,j)*H(j)+Zt*eta(j); 

        Zl(m,j)=Zle(j)*(1-phi(m))+Zl(m,j)*H(j)+Zt*eta(j); 

end 

end 

 

% translate the wing to ref position (x_pos,z_pos) 

wingpan(i).x = x+x_pos; 

wingpan(i).y = y+y_pos; 

wingpan(i).zu = Zu+z_pos; 

wingpan(i).zl = Zl+z_pos; 

 

wingpan(i).wAwU=area3dsum(wingpan(i).x,wingpan(i).y,wingpan(i).zu); 

wingpan(i).wAwL=area3dsum(wingpan(i).x,wingpan(i).y,wingpan(i).zl); 
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wAwing=wAwing+(wingpan(i).wAwU+wingpan(i).wAwL)*2; 

end 

rootx=wingpan(1).x(:,1); 

rootzu=wingpan(1).zu(:,1); 

rootzl=wingpan(1).zl(:,1); 

 

xrootareau=polyarea(rootx,rootzu); 

xrootareal=polyarea(rootx,rootzl); 

xrootarea=2*(xrootareau+xrootareal); 

end 

 

function [B]=BPO(n,x) 

K=zeros(n); 

B=zeros(length(x),n); 

for r=1:n+1 

    K(r)=mfun('binomial',n,r-1); 

B(:,r)=K(r)*x.^(r-1).*((1-x).^(n-r+1)); 

end 

end 

 

function [vtailsurf,wAvt,vtrootarea]=VTail4(vtail) 

SPAN=vtail(1).span;          % wing span (m) 

CR=vtail(1).chord;          % root chord (m) 

DIH=0;                      % dihedral angle (deg) 

SWEEP=vtail(1).sweep;       % wing sweep angle (deg) 

TWIST=0;                    % twist anngle (deg) 

INC=0;                      % wing incidence angle (deg) 

TCA=vtail(1).tuc;           % thickness to chord ratio 

TR=vtail(1).taper;          % taper ratio 

x_pos=vtail(1).x_pos; 

y_pos=vtail(1).y_pos; 

z_pos=vtail(1).z_pos; 

 

nx=round(CR/0.5); 

ny=round(SPAN); 

if SPAN<1 

nx=nx*2; 

ny=2; 

end 

phicons = linspace (0,1,nx);        % phi = linspace (0,1,20); 

phi=0.5*(1-cos(phicons*pi)); 

eta = linspace (0,1,ny);  

 

L=CR*(1-(1-TR)*eta); % chord length spanwise 

H=TCA*L/2; 

 

Yt=tand(DIH)*SPAN;              % wingtip up distance 

Yle=(tand(INC+TWIST*eta)).*L;   % incidence angle 

swle=tand(SWEEP)*SPAN;   % xle sweep distance 

 

NC1=0.5; 

NC2=1.0; 

 

n=5; 

bp=BPO(n,phi); 

Aui=ones(6,ny); 

Sc=bp*Aui; 

 

x=zeros(nx,ny); 

Z=zeros(nx,ny); 

Cc=zeros(nx,1); 

psiu=zeros(nx,ny); 

psil=zeros(nx,ny); 

for i=1:nx 

for j=1:ny 

x(i,j)=(phi(i)*L(j))+swle*eta(j); 

Z(i,j)=eta(j)*SPAN; 

        Cc(i)=((phi(i))^(NC1))*((1-phi(i))^(NC2)); 

psiu(i,j)=Sc(i)*Cc(i); 

psil(i,j)=-psiu(i,j); 

end 

end 

 

maxu=max(psiu); 
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maxl=-min(psil); 

 

Yu=psiu/max(maxu); 

Yl=psil/max(maxl); 

yr=zeros(nx,ny); 

yl=zeros(nx,ny); 

for i=1:length(phi) 

for j=1:length(eta)   

        yr(i,j)=Yle(j)*(1-phi(i))+Yu(i,j)*H(j)+Yt*eta(j); 

        yl(i,j)=Yle(j)*(1-phi(i))+Yl(i,j)*H(j)+Yt*eta(j); 

end 

end 

 

% translate 

x = x+x_pos; 

yr= yr+y_pos; 

yl= yl+y_pos; 

z = Z+z_pos; 

 

wAvtR=area3dsum(x,yr,z); 

wAvtL=area3dsum(x,yl,z); 

wAvt=wAvtR+wAvtL; 

 

vtailsurf.x=x; 

vtailsurf.yr=yr; 

vtailsurf.yl=yl; 

vtailsurf.z=z; 

 

rootx=vtailsurf.x(:,1); 

rootyr=vtailsurf.yr(:,1); 

 

vtrootareau=polyarea(rootx,rootyr); 

vtrootarea=2*(vtrootareau); 

end 

 

function [nac,int,nacArea]=nacelle3(nacin) 

 

%% inputs 

xnac=nacin.x; 

ynac=nacin.y; 

znac=nacin.z; 

lnac=nacin.l; 

dnac=nacin.d; 

nx=round(lnac/0.25); 

phi=linspace(0,1,nx); 

ny=round(dnac/0.2); 

etacons=linspace(0,1,ny); 

eta=0.5*(1-cos(etacons*pi)); 

% default nacelle shape 

rout=0.6*phi.^3-1.8*phi.^2+1.2.*phi+1; 

nyi=ones(ny,1); 

sd=nyi*rout/max(rout); %%mod here 

 

%% cross-section shapes 

C1.ncu=0.5; 

C1.ncl=0.25;  

C2.ncu=0.5; 

C2.ncl=0.5; 

[phi,eta]=meshgrid(phi,eta); 

ncu=blend(C1.ncu,C2.ncu,phi); 

ncl=blend(C1.ncl,C2.ncl,phi); 

 

scu=1; 

ccu=eta.^ncu.*(1-eta).^ncu; 

scl=1; 

ccl=eta.^ncl.*(1-eta).^ncl; 

 

% normalised to unit shape per length 

ccu=normal(ccu); 

ccl=normal(ccl); 

 

y1=-(1/2-eta); 

zu1=(scu*ccu); 

zl1=-(scl*ccl); 
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%% distribution part 

nac.x=phi*lnac+xnac; 

nac.y=(sd).*y1*dnac+ynac; 

nac.zu=(sd).*zu1*dnac/2+znac; 

nac.zl=(sd).*zl1*dnac/2+znac; 

nacArea=area3dsum(nac.x,nac.y,nac.zu)+area3dsum(nac.x,nac.y,nac.zl); 

 

%% inner tube 

lnacint=lnac/4; 

phi=linspace(0,1,(nx/4)); 

etacons=linspace(0,1,ny); 

eta=0.5*(1-cos(etacons*pi)); 

rint=-0.5*phi.^3+phi.^2-0.5.*phi+1; 

sdint=nyi*rint/max(rout); 

C1.ncu=0.5; 

C1.ncl=0.25; 

C2.ncu=0.5; 

C2.ncl=0.5; 

 

[phi,eta]=meshgrid(phi,eta); 

ncu=blend(C1.ncu,C2.ncu,phi); 

ncl=blend(C1.ncl,C2.ncl,phi); 

 

scu=1; 

ccu=eta.^ncu.*(1-eta).^ncu; 

scl=1; 

ccl=eta.^ncl.*(1-eta).^ncl; 

 

% normalised to unit shape 

ccu=normal(ccu); 

ccl=normal(ccl); 

 

y1=-(1/2-eta); 

zu1=(scu*ccu); 

zl1=-(scl*ccl); 

 

%% distribution par 

int.x=phi*lnacint+xnac; 

int.y=-(sdint).*y1*dnac+ynac; 

int.zu=(sdint).*zu1*dnac/2+znac; 

int.zl=(sdint).*zl1*dnac/2+znac; 

end 

 

function af=xzpos3(af) 

for i=1:length(af)-1 

    af(i+1).x_pos=af(i).x_pos+(af(i+1).station-af(i).station)*tand(af(i).sweep); 

af(i+1).y_pos=af(i).y_pos+(af(i+1).station-af(i).station); 

    af(i+1).z_pos=af(i).z_pos+(af(i+1).station-af(i).station)*tand(af(i).dih); 

end 

end 

 

function fus_plot(fus) 

for i=1:length(fus) 

    surf(fus(i).x,fus(i).y,fus(i).zu) 

    surf(fus(i).x,fus(i).y,fus(i).zl) 

end 

end 

 

function wingplot(wing) 

 

for i=1:length(wing) 

    surf(wing(i).x,wing(i).y,wing(i).zu) 

holdon 

    surf(wing(i).x,wing(i).y,wing(i).zl) 

surf(wing(i).x,-wing(i).y,wing(i).zu) 

surf(wing(i).x,-wing(i).y,wing(i).zl) 

end 

end 

 

function vtailplot(vtailsurf) 

surf(vtailsurf.x,vtailsurf.yr,vtailsurf.z) 

holdon 

surf(vtailsurf.x,vtailsurf.yl,vtailsurf.z) 
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end 

 

function nacplot(nac,int) 

surf(nac.x,nac.y,nac.zu) 

surf(nac.x,nac.y,nac.zl) 

surf(nac.x,-nac.y,nac.zu) 

surf(nac.x,-nac.y,nac.zl) 

 

surf(int.x,int.y,int.zu) 

surf(int.x,int.y,int.zl) 

surf(int.x,-int.y,int.zu) 

surf(int.x,-int.y,int.zl) 

end 

 

function pylplot(pylsurf) 

surf(pylsurf.x,pylsurf.yr,pylsurf.z) 

surf(pylsurf.x,pylsurf.yl,pylsurf.z) 

surf(pylsurf.x,-pylsurf.yr,pylsurf.z) 

surf(pylsurf.x,-pylsurf.yl,pylsurf.z) 

end 

 

function [wingsurfmod,wAwingmod]= fus_wing_join(fus1,fus2,wingsurf) 

wingsurfmod=wingsurf; 

 

xjoin=[fus1.x(2,:), fus2.x(2,:)]; 

yjoin=[fus1.y(2,:), fus2.y(2,:)]; 

 

wingx=wingsurf(1).x; 

wingy=wingsurf(1).y; 

wingzu=wingsurf(1).zu; 

wingzl=wingsurf(1).zl; 

 

nxint=length(wingx); 

xint=zeros(nxint,1); 

yint=zeros(nxint,1); 

zuint=zeros(nxint,1); 

zlint=zeros(nxint,1); 

 

for i = 1:nxint 

xwing=[wingx(i,1) wingx(i,2)]; 

ywing=[wingy(i,1) wingy(i,2)]; 

[xint(i),yint(i)]=curveintersect(xjoin,yjoin,xwing,ywing); 

zuint(i)=(yint(i)-wingy(i,1))/(wingy(i,2)-wingy(i,1))*(wingzu(i,2)-

wingzu(i,1))+wingzu(i,1); 

zlint(i)=(yint(i)-wingy(i,1))/(wingy(i,2)-wingy(i,1))*(wingzl(i,2)-

wingzl(i,1))+wingzl(i,1); 

end 

%original geo 

wingxmod=wingx; 

wingymod=wingy; 

wingzumod=wingzu; 

wingzlmod=wingzl; 

 

%% delete inside 

for i=1:nxint 

wingxmod(i,1)=xint(i); 

wingymod(i,1)=yint(i); 

wingzumod(i,1)=zuint(i); 

wingzlmod(i,1)=zlint(i); 

end 

wingsurfmod(1).x=wingxmod; 

wingsurfmod(1).y=wingymod; 

wingsurfmod(1).zu=wingzumod; 

wingsurfmod(1).zl=wingzlmod;  

 

wareau=area3dsum(wingsurfmod(1).x,wingsurfmod(1).y,wingsurfmod(1).zu); 

wareal=area3dsum(wingsurfmod(1).x,wingsurfmod(1).y,wingsurfmod(1).zu); 

wAwingmod=2*(wareau+wareal); 

 

for n=2:length(wingsurf) 

wingsurfmod(n).wAwU=area3dsum(wingsurfmod(n).x,wingsurfmod(n).y,wingsurfmod(n).zu); 

wingsurfmod(n).wAwL=area3dsum(wingsurfmod(n).x,wingsurfmod(n).y,wingsurfmod(n).zl); 

 

wAwingmod=wAwingmod+(wingsurfmod(n).wAwU+wingsurfmod(n).wAwL)*2; 
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end 

end 

 

function [tailsurfmod,hWarea]= fus_tail_join(fus1,fus2,tailsurf) 

 

xjoin=[fus1.x(1,:), fus2.x(1,:)]; 

yjoin=[fus1.y(1,:), fus2.y(1,:)]; 

 

htx=tailsurf.x; 

hty=tailsurf.y; 

htzu=tailsurf.zu; 

htzl=tailsurf.zl; 

 

nxint=length(htx); 

xint=zeros(nxint,1); 

yint=zeros(nxint,1); 

zuint=zeros(nxint,1); 

zlint=zeros(nxint,1); 

 

for i = 1:nxint 

xht=[htx(i,1) htx(i,2)]; 

yht=[hty(i,1) hty(i,2)]; 

[xint(i),yint(i)]=curveintersect(xjoin,yjoin,xht,yht); 

zuint(i)=(yint(i)-hty(i,1))/(hty(i,2)-hty(i,1))*(htzu(i,2)-htzu(i,1))+htzu(i,1); 

zlint(i)=(yint(i)-hty(i,1))/(hty(i,2)-hty(i,1))*(htzl(i,2)-htzl(i,1))+htzl(i,1); 

end 

%original geo 

htxmod=htx; 

htymod=hty; 

htzumod=htzu; 

htzlmod=htzl; 

 

%% delete inside 

for i=1:nxint 

htxmod(i,1)=xint(i); 

htymod(i,1)=yint(i); 

htzumod(i,1)=zuint(i); 

htzlmod(i,1)=zlint(i); 

end 

 

hareau=area3dsum(htxmod,htymod,htzumod); 

hareal=area3dsum(htxmod,htymod,htzlmod); 

hWarea=2*(hareau+hareal); 

 

tailsurfmod.x=htxmod; 

tailsurfmod.y=htymod; 

tailsurfmod.zu=htzumod; 

tailsurfmod.zl=htzlmod;    

 

end 

 


