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SUMMARY

Design techniques are described for the simulation of quadratic functions with
independent control of each coefficient. Rational function approximations, for the
simulation of dead time, are considered. Other typical examples are described
and include the simulation of Butterworth functions, Chebyshev funciions and
orthonormal functions, which have application in self optimizing control systems.
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1. Introduction -

In the equlization of control systems there is often a requirement for networks
having rational transfer functions with the facility of independent control of one or
more coefficients. Again, in many forms of self optimizing control systems these
forms of networks are required, where adjustment of the relevant coefficient is
automatically controlled to meet a certain performance index.

This note is concerned with the design of such networks and their application
to gpecific problems.

(1)

The methods described are an extension of the work by Mathews and Seifert

2. The Generalized Two Port Active Network Arrangement

The derivation of all rational transfer functions given in this note is based
on the arrangement shown in Fig. 2.1.
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Fig. 2.1. The Basic Arrangement

Input terminals 1 1' ; OQutput terminals 3 3' .

Networks A and B are both passive and comprise combinations of linear
. resistors and capacitors.

Network C represents a computing or operational amplifier having an infinite
} driving point input impedance and a zero driving point output impedance. The
forward open circuit voltage transfer function is of the form - K . G‘(s) where

K is a positive constant, and s is the complex frequency {c + jw).

A detailed analysis of the above arrangement is given in Appendix A where
the following result is derived: -

ie. E(s) vy ‘e
. 3 7 21E, ’ (2.1)

t2




1(s)
where ¥ A(s) = = = forward short circuit transfer )
21 E {s) X
1 admittance of network A, )
E(s) =0
y {2.2)
B I?_{s) )
and y (s} = = reverse short circuit transfer
12 E {s) .
3 admittance of network B.
E(s)=0

The derivation of equation 2.1 is based on the following assumptions: -

{a) Networks A and B are initially relaxed (i.e. zero charge on all capacitors), )
(b) X G {s)—> «» over the frequency range of interest. )
() v, %s) = 0, )
C = —
(@ 3. 7(8) = -= B ) (2.3)
B Yoz (s) - Tis (s)
{e) Y, , {g) » % for the frequency range of interest, )
, )
{H Y, 1B€s} and yzja{s) are both finite over the frequency range of interest, )

It should be noted that these assumptions are implied in conventional analogue
computing circuit applications and, in practice, may be achieved without undue
difficulty.

Mathews and Seifert(“ describe synthesis procedures, for rational transfer
functions, based on equation (2.1). They also ocutline a further synthesis procedure,
based on use of an operational amplifier and two gign reversing amplifiers, for the
simulation of a wider range of rational transfer functions than that possible in
the former method. A further advantage of the latier methed is that the number and
range of values of components is reduced, compared with the one amplfier configuration.

As gtated in the introduction, this note describes modifications of these
procedures, which result in rational iransfer functions with coefficients which may
be adjusted independently, within prescribed limits. The methods outlined involve
the use of RC tee networks and some standard forms are described in the next section.
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Standard Forms of T. Network

3.
TABLE 3.1,
NETWQRK ym(s) = «yﬁa(s}
L b Ca Ca i,
o> { “““’“‘” > 2 1 fctg, R, 2, 2" N g51°
o+ . AA=1<<C sl‘)ﬁ__{_(g_)
52 Ie "
T‘ Ry ?2‘ i+82C,R, 2R, \3R, ~1+sT/ 2R \1+sT
11 e o2!
1 niB B
& LR VYWAA—2 .C 2R N sT
! =1<‘c sT)_i(a“
5 : 1 a
1+8CoRp 2R, \ Ry 14T 2R \1+s
1' [y 4l :
R.. R
b e AN —<2 |
1 1 ( 1 )
-«mC - - -
e SCCRC 2RC 1+ 87T
2R 1+
it o el D1 C 2
C_.R
. e e w L CTC .
where T = 2(.ARA = (“BRB = 5 CR

Note: - denominator of each function contains {1 + sT).



3.1.1. Special Case of {(3.1)

2

3.1.1.1. Ns =N =1

R
N1=ﬁ=1 ; N2=-—~§§=1,
T = C, R, = 2Cy R =CCZRC
c
i.e C, =2Cy = -é$=c . (3.1.)
Ry
Let RC"—'Rz—é“- =2RA

Some possible circuit arrangements with their respective transfer functions,
based on the use of these forms of network are given in Table 3. 2.



TABLE 3.2.

NETWORK

K€ &MW'—*% B

é(4€2

denotes an operational amplifier

T = RC ; ks < 1

Assumption: - output resistance of each potentiometer is negligible.




NETWORK CONDITIONS E ()
E,(s)
1+R§T+%§f
All switches closed - P
1+ksT+ksT
4 &
S1, SZ, SA, Ss, Ss, closed _ 1+ ksT
Sy open 1+k,sT + k652T2
+
S,. S, S,, S, closed LrksT
S}, S6 open 1+ k,sT
ks T
S.,S.,S closed 35 *
o5 e PP
S,S,S open 1+ksT
1 2 4 &
S,5,8 closed k1ST
1 5 6 - —— %
2
2 Oy S, open 1+ kﬁsz’l‘
2 S closed _ 1
2 2
o Ss, Sa, Ss open kos T

*
An additional amplitude limiting circuit is required for these cases.

3.1.1.2. N =1; N =2
1 2

RC
N =1 =35= , i.e. R, = 2R, )
1 ZRA C A )
_ 2R , _ )
N2 =2 =_"C , ie. RC = RB )

R
B )
Cele )

T =2CARA=CCRB* 5 = CR ) (3.2.)’
B - _ )
R = RC = RB = 2RA N )
)
C

_c _ )
C =5 =Cg=Cy - )



With combinations of the above forms of networks the transfer functions,
which may be obtained, are the same as those tabulated in Table 3.2 except
that the sT terms in the numerator and denominator is replaced by 2 sT.

@

Permutations of the forms in 3.2.1, and 3.2.2 are obviously possible.

A simplified network having many practical applications is shown in
Fig. 3.1.

C R
g AANA =28
S~ 4
@ O

+
€y

Ez(S) o 1+ 8T

Ei(s) ) 1+23sT +s8°T%

{T = RC)



3.2. Txge 2 Form

A further form of T network, which when used in the general active network
gives a factored form of rational {ransfer function is shown in Fig.3.2.1.

{a) Network A (b} Network B
Fig. 3.2.1.

For Network A,
, A {1+ sCR ) (1 + SCRD) {3.2.13

21 [2+5C(RA+RB)J [BC+RD+SCRCRD] + £2+SC{RC+RD}] ERA+RB+SCRARB]
For Network B,

) {3.2.2)

, B _ {1+ sCRB) {1+ sCRC)

a1 [2+SC(R A+RBYJ [R C+RD+SCR CRD] +T 2+sC{R C+RD)] E% A+RB+SCR ARE]

The main feature of these two networks is that the denominator of the
forward short circuit admittance, of each network, is identical.



3.2.1. Reduced Form of Network

The networks shown in Fig. 3.2.1. may be simplified {o the form shown
in Fig. 3.2.2.

{a} Network C {b} Network D
Fig. 3.2.2.
For Network C,
, c (1+SCRA) , 5.2
= - = 9.
21 RA?RB%SVRARB
For Network D,
Ve, - R’ jlfz: g«f%?; R, (3.2.4)
AT g T VR, g

3.2.2. Active Networks

The active network arrangement using networks A and B is shown in
Fig. 3.2.3.

IO ——

Q:;Wu—{) o 'o] T —
%e( NETWORK A NETWORK &
O " - £y W
I
e -5
/ A
I
&
Eacs) . {1 «.Ls(,RA) {1+ s{?aﬁ) , 5.2.5)
E {s) {1+sCR_} {1+ sCR_.J} T
4 B C

Fig. 3.2.3.
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O--*-—-----—~+ —] T £ O
iel NETWORK C NETWORK ©
T S

N/ ‘.,{

E (s) {1+ sCR,)
2 - . AT (3.2.6)
E,(s) {1+ sCRB} t
Fig. 3.2.4.

The arrangement shown in Fig., 3.2.3 permiis independent adjustment of
each factor. This facility requires the use of four matched sections R, RB'

R ok and HD.
Independent adjustment of each factor in the arrangement shown in Fig.3.2.4
requires the use of two matched sections of each of the resistors R A and RB'

A practical version of this latter arrangement has been built in the laboratory and
has been used extensively in the simulation of servo-systems. The practical
circuit details are shown in Fig. 3.2.5.
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Cz

. ~€2
el
S4 O
52
R= 2 ganged Helical-Potentiometer Switches S, and S, are used for
{each matched section 0.47 M Q) the purpose of zero adjustment.

Ri= 1 i ] 1 .

Ez(s) 1+ 8T with s, open, max. value of T, and T, respectively

E (5) = - T sT [ ’ is 0.1 sec. }’

1 2 with s, closed, max. value is increased to 1.0 sec.

Fig. 3.2.5.

3.3. An Oscillator based on the use of T Networks

From Table 3.2 the relevant transfer function is,

Gts) = - =T (3.3.1)
1+k s°T°
6 .
If l\:1 =1; k6=1, then
E (s)
G(s) = - gl . say Ez(s) (3.3.2)
1+ s®T? 4
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If E (s) is the transform of a step function having a magnitude E, then the
inverse transform is given by :

Ea(t) = - E gin wt. (3.3.3)

where w = (3.3.4)

=1 ke

This is the equation of an oscillator.

In practice, slight changes in operating conditions and values of components
result in spurious phase errors and an amplitfude control circuit is necessary.

A practical arrangement which has been investigated is shown in Fig. 3.3.1.
[ C

Gs 2R
o—p—l—ww |
A
+ «;;» -I. AAAA
8,
\
O+
L,
O -5 O
S S —
B il |

OO2M

Dl V¥V b i lRCsT:‘!@
L — AMPLITUDE CONTROL CIRCUIT

o

Q

z
Qo
o 2
z §

Fig. 3.3.1. Amplitude Contirolled Oscillator

A detailed analysis of the optimum amplitude control circuit has not been
completed but results which have been obtained from the arrangement shown in
Fig. 3.3.1. are as follows:-

E‘ volts ) E . volis
0.25 ' . 0.275
2.50 3.0

25.0 30.0

These resulis indicate that the presence of the diodes has a greater effect on
low amplitude signals than that with high amplitude values, as might be expected.
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4, Networks Using the Minimum Number of Components

4.1, General Remarks

The network described in Section 3 may be simplified if the transfer function
to be simulated is one of the following forms ;-

(i) Gis) = - ksT (4.1.1)
1+ asT + bs*T?
or (i) Gls) = - L . | (4.1.2)

1+ asT + bs®T?

where k, a and b are positive constants which do not require to be altered from
their initial value. The time constant T may be required to be adjustable.

The reduction in the number of components is obtained by the incorporation
of extra feedback paths.
4.2, Gls) = - __ES.S.'}.____;_a . (4.2.1)
1+asT+bsT

Consider Fig. 4.2.1.

Yg
SAVAVAVY
Ya
NV ®
Y Y2

O—AAAL AN O

+
e -+
H
€,

O & I O

Fig. 4.2.1
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E(8)Y,{s)+E.(s)Y,(s) (Y (s)+Y(s)Y(s)) _ _
(Y,(8) + Y000 (T,(s1T s1e¥ () ~ ~ BN
theretore ) Y, (s) Y (s)
ereiore —y o~
E (s) Y, (s) (Y, ()4, (s)+ Y, (s))+Y,(s)¥ ()
- - : I T -1 -
with Y‘(s) = sC1 ; Yzis) = R, Y}(s) = R, Yé(s) = sCé,
E_(s) o sC, R, 3
E(s) = 1+sC(R,+R)+sC CR_R,
E (s) sC R, ksT
G(s) = =2— = - ! z = e ‘
E (s) 1+sC (R +R,)+s°C,C ,R,R, 1+asT+bs

Equating terms:

C R = kT )
ki 3 )
04(324- R}} = a’l‘,2 )
CaCaRzR3 = bT, )
bT
C4 R2 = '1'(""'
R_+R k
2 3 . X8,
and B = 5
2
R, ka - b
i.e — = T
Ra
2
Cs . R, = l,f-.__ .
= 7 5
4 2
C, k* b k®
4 = X = g
C b ka-b ka-b

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

A typical example which has application in Section 5 has values as follows:

1
k=2; a=1; b_3 .
i.e Gis) = - 2sT T
1+ 8T+
3
. R 2-%
-2 2 —— =
Hence " T 5
] s
3
C . & |12
C‘ 2_}__ 5

(4.

(4.

(4.

(4.

.2)

.3)

.4)

.5)

.6)

.7

.8)

. 9)

.10)

.11)

.12)

.13)

.14}

.15)

.186)
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(4.2.17)

£ 2R )
(4.2.18)

= £ .

G =
w
B

g T
1+5T+~—§

|»)
D
i
=
Wi
i

Fig. 4.2, 2.

! Y {4.3.1)

1+ asT+ be’ T*

4.3. Gi{s) = -

Consider Fig. 4.3.1.
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E (s) Y {(s)+E (s)Y (s) Y (sHY (s)+Y (s}+Y (s))
4 1 2 4 2 4 3 4

VT, HTe) T T, T (s T EeeIYLE) .3.2)
E (s) Y (s) Y (s)
2 e (4.3.3)
E (5) ()T (7Y (81T, (177 (5VF T, ()Y, (5)
= - 1 ‘ (4.3.4)

2 2
1+asT+bs T

I Y(s) = = Y(s)= i ; Y(s)=i-; Y(s)=8C ; Y(s)=sC ,  (4.3.5)
] R, 2 Rz ; 4 R‘ 8 5 3 3
then Bls) 1 (4.3.6)
E (s) 2 e
1 1+ sCs(R;l— 2R2) + 8 C:,CsR‘:RZ
= - 1 . . (4.3.7)

1+ asT +bszT2

Equating terms,

C(R +2R ) = aT ; (4.3.8)
C.C R R = bT"
3 5 % 2 )
If 2R, = R, ., (4.3.9)
then 2C,R, = aT , )
4.3.10
c ¢ R = bT* ; ( }
3 2 - ) )
C R . 4bT (4.3.11)
3 k1 a
C z
5 aT a a
— T2 Sl = T s .3.12}
and c, ) ET " 8B (4.5.12)
As a typical example, if a=1; b=1,
then .(.:_f’. - _J_L_ ;
C 8
3 )
R ) {4.3.13)
" =
" 2 )
2 T )
C R = = )
5 4 2 )
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if T = RC, make R, = Rand C, =§ )
) : {4.3.14)
Hence R1 = 2R and C5 = 2C. )

The network which satisfies these conditions is shown in Fig. 4.3.2.

Ez{s) 1
= G{S) = - S i e 3
Ea(s) 1+ 8T+ ssz
T = RC
Fig . 4.3.2.

5. Simulation of Dead Time (Transportation Lag)

5.1. Second Order Rational Function Approximation

If a function f{t) has a Laplace Transform f(s),

i.e. f(t) © #s) | {5.1.1)
then the delayed function
»sTd ‘
flt -T) 2 e (s) . ~ (5.1.2)

-sT
The factor e d may be approximated by a rational function over a limiied range
of frequency. One form of approximation, which is considered in this section, is
the cascade connection of networks having forward transfer functions of the form G(s),
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2 Z
1 -asT+bsT

where G(s) = . {(5.1.3)

1 +asT+ bssz

2 2 .
and G(jw) S -bw T) - jawT . (5.
(1 -bw®TH + jawT
If v = wT , (5.
24 .
then G(jv) = u nb\;) A ' (5.
{1 -bv)+ jav
ie. Glvj) = 1. o929 , 5.
where ) = arctan 2y 2 (5.
1 -bv
i.e. tan ¢ = av , (5.
1 -bv?
3
and sec’d gﬁ = EM"PSE"ZL (5.
v (1 -bv")
d¢ _ a(l + bv? (5
- = 2 3 4
dv (1 - bva)2<1 + ~3—~‘L~52>
{1 -bv)
2
i.e. % = 3(121"21)\’)2 . . (5.
(1 -bv) +a"v
1d% _ (- by + a®v)2bv-(1 + buH(-4bv(l - bv)+2av) .
2 - ®
dv [ - bv) + a2v2] 2
. . "jWTd
Now consider the function Gi(;jw) = e (5.
! Gg(jw)& = 1.
[.G,(jw) =0 = -wTd. {5.
If T =T, . (5.
then v = wTd , {5.
and de _
- - (5.

The latter equation is valid for all values of v. The approximate function cannot

.4)

.5)

.6.)

.7)

. 8)

.9)

.10)

.11)

.12)

.13)

. 14)

.15)
.16)

.17)

.18)

meet this requirement and the question arises, how to choose the best approximating

function. For example, by making v = kwTd it is possible to have a negative and
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positive phase error over a certain frequency range with a zero error between the
two limits. However, if a number of the approximate functions are to be connected
in tandem, it would seem desirable to make the error zero at v = 0. Thus with
reference to equation (5.1.12), to meet this condition

dg }
v iv=0 =-0.5, {(5.1.19)
since
3] {v=0 = 2¢‘v=0 (5.1.20)
Hence a = 0.5 {(5.1.21)
and a* g
wwily=0=0" (5.1.22)
b + 2b - a® =0,
2
. - T T
i.e. b = T 13 {5.1.23)

) {(5.1.24)

dv Vz 2 Va

(5%

e

0.5 (1 + ﬁ)
= , (5.1.25)

( ve v

1+ 'i"'é- +-—-——'14 )
V“
= 0.5 1 - " P {(5.1.286)
v +12v + 144
) 4
Thus the term ( Y ) may be regarded as an error factor.
v+ 12vE + 144
For this error to be < 0.01,
V‘
hen « 0.01, (5.1.27)
viodo12v® o+ 144

Hence  0.99v" - 012v - 144 < O (5.1 28)
put u = oV (5.1.29)

then 0.994° -012u-1.44 =<z O (5.1.30)
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i.e. u < 1.26, {5.1.31)
and v £1.12, {5.1.32)

i.e. the error will exceed 1% if v = wT exceeds 1.12.

The transfer function of the approximate network, witha = 0.5 and b = 112. ,
is ‘
2,2
1-5 5y
Gis) = I . {(5.1.33)
sT s T
224 B2
1+5 7 33
i.e.
Gls) = 1 - —S2L . (5.1.34)
sT,sT
L5t 13
Since T =T,
d
sTd
G{S) = 1 - ST S‘th ¥ (5.1.35)
1+ . + —d
2 12
If Td = 2'1} ,
253’1’i
then G{s) = 1 - e {5.1.36)
L+8T, + —3

. (2
Equation 5.1.33 is known as the fourth order Pade rational polynomial fraction .

A good review of time delay approximation and relevant networks is given
by King and Hideoutm).

2sT
5.2. Simulation of approxlimate Function G(s) = - (1‘ ! e
1+ 8T, +
! 3
2sT, E(s)
If - ~ = » {5.2.1)
S22 E*(S)
1+8T, + 3

‘the network which satisfies this function has been discussed in section 4, and
is shown in Fig. 4.2.2, where in this case T1 = RC.

The complete simulation of G(g) = - 1 - 1

is shown in Fig. 5.2.1.
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E (s) 2sT E {s) 2sT
-.3.--. E ! 3 1 - !
E‘(S} SaT: Ei(s) szT:
1+8T, + 3 1+8T, + 3
Td
T, = RC = 5 {where Td is the dead time)} ,
Fig. 5.2.1. Simulation of Network Approximating Dead Time

in Fig. 5.2. 2.

{3)

A similar network has been suggested by King and Rideout

and is shown

1
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E (s) ) g‘l ) -
Ejis} 1"5’:?4. S'E‘&
2 12
Td = T where Td is dead time ,
Fig. 5.2.2.
5.3. Tandem Arrangement of Approximate Functions to Simulate Dead Time
a =2
i - sTﬂ + S:;I“
If G(S) = SET12 ’
1+ ST1 + 3
then with n such functions connected in tandem as shown in Fig. 5.3.1.,
n E {s)
. n+ 1
[G{S.‘P j = “‘W {5.3.2)
No.1 No. 2 No.{(n-1) No.n
E (s) E(s) E,(s) En~1€8) Encis) i E .08
>t Gl8) ] Gls) > -~ - L5 Gls) G(s)

Fig. 5.3.1

{5.3.1)
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The choice of T, is now governed by the number of networks used.

For one network, T

d
T‘ =5 {5.3.3)

where Td ig the dead time.

Hence, for n networks in tandem,
T

d
Ti—é;;

. {5.3.4)
Under these conditions the error will be less than 1%, provided

ve 1.12n, {(5.3.5)

where . v =wT, , {5.3.86)

An éﬁ‘zernative arrangement for cascading sections is given by King and
Rideout'®’, in which n sections connected in tandem only require n + 1 amplifiers.

6. Butterworth and Chebyshev Approximations of Low Pass Filter
(4,5)

6.1. Introductory remarks

If F(jw) represents the square of the magnitude of a network function, then,

2

F(iw) = | G{ijw)| = G{iw) . Gl-jw) , ' {6.1.1)

where G{jw) is the given frequency response network function.
Also,
F(s) = G(s) . G(-s), (6.1.2)

which is valid for all values of s, but F(s) is not equal tc the square of the magnitude
of G{s), except for s = jw.

Now if, v = wT , {T is a positive constant) {(6.1.3)
and Piv) = G(jv) , G(-jv) , {6.1.4)
then F(sT) = G{sT) . G{-sT} . {6.1.5)

If now, consideration is given to the ideal lowpass filter characieristics shown
in ¥ig. 6.1.1(a), there are two well known approximations to this ideal function.
The characteristic for the first is shown in Fig. 6.1.1.(b) and is known as a
"maximally -flat’ or Butterworth approximation, with
z

1

i+ V2n

F{iv) = | G{jv) (6.1.6)




The second characteristic is shown in Fig. 6.1.1.{c) and is known as
"an equal-ripple" or Chebyshev approximation with

.1 (6.1.7)

G{iv){ =
1+ a"‘c; {v)

F(jv) =

in which a <1 is a real number which controls the ripple amplitude, and where
v = 1, corresponds to the edge of the pass band.

Cn(v) is a Chebyshev polynomial defined by

C (v} = Cos. nlarc. cosine v)for |v|<l . {6.1.8)

F(iv) F(iv) Fiv) n odd

V=1
B Y
(a) Ideal low pass {b) Butterworth {c) Chebyshev
function approximation approximation

Note A iz a scale facior.

Fig. 6.1.1.

6.2. Butterworth Functions

! — 6.2.1.)
1+ {-1)n(sT) n

F(sT) = G{sT}) . G{-sT) =

The poles of F{sT) are

. w
i2k-1 + n) o

p, = e . k=1,2..... 2n {6.2.2}
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Forn = 4, the left hand poles are :

. S K BT . 117r
i i i= e
8 8 8 8
p, = € i P, T e ;op, = e i p, = e . (6.2.3)
Thus for n =4,
G(sT) = L (6.2.4)
{(sT - p,) (8T ~p,) {sT - p,y (sT - p,J
~ 1 1 R
= jzﬂ' 3?;3: - 3:% jll'nf {6.2.5)
(sT-e 8 <ST~—e 8) [\sTw-e 8/<5T-e 8)
1 1
= T . P 3w {(6.2.6)
1+sT<e 8 ie g)«z-sg"z‘z Em‘rs’{‘(e ®te 8) +8T
- 1 ,, L 6.2.7)
{1 +1.8478sT + s°T% 1+ 0.76548T + 8°T°
- ! . (6.2.8)

1+ 2.6131sT + 3.414%8"°T°+ 2.6131s° 7% s*T*

6.2.2. n=5

in & similar menner o thet used in 6.2.1., the factors of G{sT) may be
derived. These factors are found ic be :~

1
{1+ sTH1 + 0.618048T + s*T*)1 + 1.61804sT + s°T )

G{sT) (6.2.9)

i

1
, L ~+ (6.2.10)

1 +3.93681sT + 5.2361s° T 5.23618 T+ 3.2361s"T%+ &°T°

(1+1.931868T + s TN1 + 1.414226T + 8T )1 + 0.51764sT + 8 T)
..... 6.2.11)

G(sT)

H

1

= 2

143 .8637sT+7.4641 s T°+0.14168°T°+7.4641s*T*+3.86378 T +s°T°
..... (6.2.12)




T

6.2.4. n

it
<V}

G{sT) ! e (6.2.13)
(1+sT)(1+sT+sT)

H

- 1 . (6.2.14)
1+28T +23T +8 T

H]

G{sT) 1 o {6.2.15)
1+ 1.41428T + &°T°

6.3. Simulation of Butterworth Functions

The method of simulating Butterworth functions is apparent from the preceding
analysis.

Thus for n even, the function may be synthesized by the cascade connection
of quadratic factors.

1

Trsm and quadratic factors results.

For n odd, the cascade connection of

may be obtained as shown in Fig. 6.3.1.

1
1+ 8T

The terms -

RC = T
E (s8) i 1
E (s) 1+ sT
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Each of the quadratic factors are of the form:-

G(sT) = 1 : (6.3.2)

1+ksT+8T"

where k is a constant,

The simulation of - L is shown in Fig. 6.3.2.

1+k2sT+s T

Ki€z
R R
+
€1 i R
C 3 §§e
Note: Qutput
impedance of
potentiometer
assumed to be
negligible.
+
%32
-0
Ea(s) ]
Efs) =~ T+k2sT+s1° i T=RC ;5 kg <1.

Fig. 6.3.2.

Adjustment of T is obtained by the simultanecus adjustment of all resistors
or all capacitors or both. A practical arrangement would result if all resistors
were in the form of precision ten turn potentiometers, used as variable resistors,
and fixed values of capacitances. This arrangement would require the use of a
six gang potentiometer for each quadratic factor. If n such factors were
connected in cascade, then a 6n gang potentiometer would be required or
alternatively arrangements would have to be made to gang individual six gang
potentiometers.

In view of these difficulties an arrangement of switched resistors on a
decade scale may be preferable.

The cascade connection of quadratic factors is shown in Fig. 6.3.3. which
illustrates as a typical example the simulation of a Butterworth Function with n=4.
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Ejs?\ 1 Eés)

1

E,(s)

b - - -

1+k2sT+8 T

1+k2sT +8 T

k1 = 0.9239

1 Esis)

- - . -

‘ 1+k2sT +sT°  Tel®)

3 1

k= 0.3827
2

1

2 2
1+k2sT+8 T

Fig. 6.3.3.

2 2 2z 2
(1 +k2sT+sT ML +k 28T +sT)

Simulation of Butterworth Function {n = 4)

8.4, Chebyshev Functions

2 i

Fljv) = ———
1+ aZC; {v)

G {jv)

and Cnﬁv) = cos. nfarc cosine v) for | v |

If jv is replaced by » , where A = g7, then
Ay

(%) = cosgh {n cssh”:t

If now a new variable z = x + jy s defined

and A = jcoshz =jcosh{x+jy),

then C (;?:) = cosh nz =
nj

)
)
)
)

<1

2

coshnf{x + jy) = ¥ é—- .

«

{6.4.1)

(6.4.2)

(6.4.3.)

{6.4.4)

By expanding cosh nz and equating real and imaginary parts, the values of x

and y may be determined.

If these values of x and y are substituted into

equation 6.4, 3., the corresponding values of A are given, which are the pole

locations, i.e. }”k =0 + vy
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The result of these operations will be :~

o. = sinh @ . sin sl {6.4.5)
k 2n
and _ {2k - )=
Ve = cosha . cos o R {6.4.6)
where 6 = %; smh_1 (i«) )
) (6.4.7)
k=1,2,3...... 2n . )
This result leads to the expression
o 2 2
LS S (6.4.8)
sinh®a cosh® «

This is the equation of an ellipse in the A -plane, with the major axis coincident
with the jv axis.

Van Valkenburg(ﬁ) hag described a procedure where the poles of the Chebyshev

function may be derived from those of the Butterworth function of the same order.
This procedure is as follows:~

Locate poles for the Butterworth case and reduce the real part by multiplying
by tanh « to give the real part of the equivalent pole of the Chebyshev case.
The imaginary part in both cases remains the same.

If necessary the frequency may be inversely scaled by the cosh a  factor
to give the ellipse equation 6.4.8.

To illustrate this procedure, the case for n = 4 is considered.

The Butterworth function for n = 4, is

GB(ST} = .
{sT+0.9239+j0.3827)(sT+0.9239-j0.3827)(sT+0.3827+j0.9239)(sT+0.3827~j0.9239)
..... {6.4.10)
For the Chebyshev Function,
Taken =4, a = 0.1
o = 3» sinh™* 10 = 0.75. )
1 \
tanha = 0.6352 ) (6.4.11)
)
Cosh& = 1.295 )
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Multiplying the real parts of the roots by 0.6352 then

G'{sT}) =
1
{sT+0.587+j0.3827}{sT+0.587 “j0.3827)(ST+0.243+30.9239)(ST+0.243—30.3827)

..... (6.4.12)

If the frequency scaling is now incorperated, then neglecting the amplitude
scale factor

<) = 1 3
G(sT) = . (6.4.13)

(s°T% + 0.63sT + 1.46)(s"T" + 1.51sT + 0.76)

{slide rule accuracy) ,
Seshu and Balabanianqé} give the expression

1

GC(ST) = — . (6.4.14)
{e*T% + 0.68445T + 1.534Ms*T% + 1.519sT + 0.823)
From 6.4.14.
29/
Gcés'r) = 0.652 . 1.21 . {6.4.15)
1+ 0.428T + 0.652 ¢°T® 1+ 1.84sT + 1.21°T%

If the numerator terms are made unity in each case, then,

G;(s'm = ! rar 1 — (6.4.186)
i+ 0.428T + 0.655 T 1+1.84sT +1.21s T

Thus for n even, as in the Chebyshev use, the function comprises quadratic
1

kaal 2 2
1+ k@si +k23 T

factors of the form

6.5. Simulation of Chebyshev Functions

The functions 1o be simulated are of the form

G(sT) = - ! : (6.5.1)

1+ kST + kzssz

This transfer function may be realized as one of the special cases of those
shown in Table 3.2.

Alternatively the arrangement discussed in 4.3. might be preferable if the
minimum number of components is to be used.



-~ 31 -

7. Orthonormal Functions

Orthonormal Approximation Functions are widely used in the synthesis of
linear systems.

(6)

For example, ' the impulse response of a linear system may be approximated
by a sum of pre-determined orthonormal functions frét) so that
n

wHt) = Z‘a £ (1) (7.1.1)
r r
=l

where a is a constant and w™(t) is the approximate impulse response.

The functions are chosen by varying the a, to make the integral square
error a minimum.

Thus if w{t) is the true impulse response, then the error e(t) is

n
0© — @ P oo 2 -y P
elt) =[ kv(t) —w*{t)} dt =j w(t) dt - 2 ZJ a_ ] wit) £ (1) dt
) Y 1 P
n n
} ) L
+ ZJ 2, ap [mfr(t) fp(t) dat ,
r=1 p=1 ,
..... (7.1.2)
When the functions i’r(t) are orthonormal they satisfy the relation,
e
j f(Yf{t) = 0 forr fp )
w T P ) (7.1.3)
=1 forr=p y -
. Thus{7.1.2) becomes,
n n
o« " F-") =y
e(t) = / wit)at - 2 > a j wit). £ {t)dt+ Z./ a? (7.1.4)
- VATRERE S r r.
r=1 r=1
Maki ae(t) _ s ,
aking 8 0 for all r to minimize e{t) in 7.1.4 gives
I
a_ = [ wit) £ (t) dt, (7.1.5)
T d oo r
and the minimum integral square error is given by
. oo n
eft) . = j wit) dt - a® (7.1.6)
min 0 , r

r=1
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The transfer function of the approximate function is given by

n
.
w¥(s) = Z a_f () S {7.1.7)
r=1
where ; w¥t) o w¥g) {7.1.8)

and 8§ is the complex variable o + jw.

For discrete parameter systems w*(s) and f_(s) will be rational functions of s.
Now by Parsevalis Theorem t

o 1 it L
{ e : -
fr"a) fp(t) dt fr(gw)* fp( jw) dw

2w | o ; = 1 for r

il

0 forr # p )
:p)

Since fr(jwi fp€ ~jw) goes to zero more rapidly then J%V— as w ~ = equation 7.1.9

. {7.1.9)

J

may be expressed as a contour integral where the contour encircles the entire
right half s-plane. ~

Thus JHie
L _ , )
5y ) LEiPe - o | 1e ti-sas )
c =Jeo }
. )
= Z residues of f r{s) . f’p(——s} in right half 3 (7.1.10)
plane )
= 0 forrfp )
= 1lforr = . g

Various forms of orthonormal functions are used and typical examples are
given in Refs. 6 and 7. The functions considered in this note have particular
application in model approximations of control systems and this topic will be
the subject of a further note.

¥.2. Simulation of certain types of Orthonormal Functions

The functions considered, as staied in the last paragraph, have particular
application in the synthesis of approximate mathematical models of control systems.
Such models form the basis of some types of self-optimizing systems.

It should be noted that all ganged potentiometers used in the networks are
adjusted, manually or automatically, to minimize a certain error or performance
index.

E{S) Nicy
2 - alg) = - 22
.21 g = Gle) = - = 7.2.1.1)

where a’ ig a positive constant which should be capable of adjustment.
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For simulation purposes, if a> 1, it is convenient to express a in the form

1
a = o= {7.2.1.2)

where T is a pre-determined positivé integer and k is a positive variable
coefficient with

ks, (7.2.1.3)

T is chosen so that it exceeds the largest time constant in the system under
consideration.

T vV 2
Thus E{‘f_) . Ya  _ _ V2kT | (7.2.1.4)
E (s) 1 2 1+skT _

The instrumentation of equation 7.2.1.4 is shown in Fig. 7.2.L.1.

//M .:i: /Z—-—wADJUSTMENT
oF VK & K
/ /
C.F. C.F
_R
B/t Kes
+ \/ﬁez. +
e -
! ;\%\ . €a
+.
e3
& -0
C.F. denctes cathode follower.
E (s) VT
2 2kT ¥ 2a
T = RC S $757 " 7 fvekr = sta (7.2.1.5)



A special case of this network is given when C = 1 x lﬂuifarad and
R =Tx 10% ohm. This results in R, = T x 10° ohms and R,=/ 5T x 10% ohms,

if the time constant T is expressed in seconds.

E {s) :
?.2«2- 2 _ - . s-~a » IS
m = G(S} = Ws+a (7. 2.2. 1}

a 1s to be capable of variation and may be > or < 1.
If a = 1/kT (7.2.2.2)

where T is a positive integer and a pre-determined value and k is a variable
coefficient

E (s) Z-1
then m— = {7.2.2.3)
E*a(S) A-S~+1
a .
- _(1 .2 > (7.2.2.4)
5.1
a
= (1 2 (7.2.2.5)
h “< “Wf) T
The instrumentation of equation 7.2.2.5 is shown in Fig. 7.2.2.1.
E (s}
=T, =t I . 8-a,
RC = T5 75 (1 o = — (7.2.2.8)
g

Fig. 7.2.2.1.
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An alternative arrangement is shown in Fig. 7.2.2.2. in which the function

v2a

-~ —— E (s) is also available as an output.

s+a
R
R
VT
+
1]
e £
e
I N S T W i (r- 2
*E(s) 1+ skT s+a ’~ E/ls) V2T(1+skT)
8 -a,
= - ST a (7.2.2.7)

Fig. 7.2.2.2.

In Fig. 7.2.2.2. a two-ganged potentiometer is required to give the variable
coefficients Yk and k respectively. :

E{S) er

1.2.3. = = Gls) = - —2ealsrbl (7.2.3.1)
E {s) 2 2
4 s + 2bas + b

where b and a are io be adjusted.

b canbe > or < 1 buta < 1. ; {(7.2.3.2)
1
Let b = o {7.2.3.3)
where T is a positive integer » 1 and fixed and k ig a variable coefficient where
k< 1.
£ (s) 272 (1+8)
Then, —® - (7.2.3.4)
E (s) 2
1 , 2a s
1+ "f‘b""' s + ?

2 v aktl {1 + skT)

2, 2,2

1+ 2sakT+sk T

’ {7.2.3.5)

The instrumentation of equation 7.2.3.5. is shown in Fig. 7.2.3.1.
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INPUT

+a'

= oy [m—mo;33~o~4P K CHANNEL
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OUTPUT

A P

T = RC

E;(s)

, 2¥ab (s + b)
" E(s)

. ekl Q+ekD) ,  2ab(s+b) (7.2.3.6)
1+ 28akT + s k'T" g* + 2bas+ b’

Fig, 7.2.3.1.
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Referring to Fig. 7.2.3.1 it will be noted, that to achieve the appropriate
transfer function with variation of k, a seven ganged potentiometer is required.
The variation due to a is oblained with a three ganged potentiometer.

The time constant T = RC would be chosen to exceed that of the largest
time constant of the system under investigation.

7.2.4. Tandem Connection of Networks

In many applications there is a requirement for the following types of
orthonormal transfer functions

: ¥ea 8 -b §-c s -g '
(1) st a " s+b . P AR s+g B (?.2_4_1)
apy L 5 - b efls+ ) (7.2.4.2)

=T 5TH e P 2
© g + Zefs +f

It will be apparent that these transfer functions may be obtained by the tandem
connection of the networks discussed, taking due account of signs.

8. Conclusions

Rational second order transfer functions, with coefficients capable of
independent adjustment, may be synthesized with relative ease by the use of
computing amplifiers associated with passive RC networks. The methods
described in the note result in the use of the minimum number of amplifiers but,
in general,the number of passive components used is increased compared with
the number resulting from design methods in which there is no restriction on the
number of amplifiers used.
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APPENDIX A

Analysis of the Generalized Two Port Active Network(1’4’ 8)

Description

Use is made of a computing or operational amplifier associated with

passive linear two port networks. The use of one-port networks may be
considered as a special case.

The general arrangement is shown in Fig. 11.1.

i, i, ig
T“““‘)‘N —1¢ Passive © > y T © Pagsive * > {’1\
e e e
@—1—-——-\0 Netxork o : o Network o 0 ?

o Active o

Network
~ C

Fig, 11.1

Network B is a two port network placed in parallel with the computing
amplifier, i.e. Active network C.

For the specific purpose considered in this note the above arrangement may
be simplified since the inpui and ouiput voltages of each network are referred to

a common reference line {earth potential). This results in the simplified diagram
shown in Fig. 11.2.
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- Pasgsive o

Gl Pagsive o- @
& Network )
‘?‘ e s A 1\ e:
E‘ o I
F
S
ig. 11.2

Anaizsis

For any linear two port network we have,

I(s)
L(s)

where

y11{s) Y”;(S)

%08 v, o)

E{(s)

E (s}
2

E (s} is the transformed input voltage,

E, (s) is the transformed output voltage,

I 1;(s) is the transformed input current,

Iz(s) is the transformed output current,

I‘is)

and, yﬂis) = m

11€s)

Y”(S) = é:{g)“

i

yﬂ(s)

E (s)}=0

E‘(SH)

B (s)=0

E1{s}=0

"

short circuit admittance of input port )

- reverse short circuit transfer

admittance

forward short circuit transfer

admittance

Network
B

o &

Active

™ Network

¥
4!}«{0
&

- short circuit admittance of output

port

R g N .

(11.1)

(11.2)
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For the parallel arrangements of networks B and C in Fig. 11.2,

—~ B+C B+C
1,(s) Y., (s Yo (8) E(s)
= , (11.3)
B+C B+C
L(s) Y (s) y,, (s E (s)
L
where
- B+C B+C B B C C
L (8) y, (8) Y t8) v, s 7 (8) 3,.(s)
= -+ R (11-4)
B+C B+C B B C C
v, (8 v, (s %, (8) v fs) | | v {s) v, (s}

Since network C represents a computing amplifier the following assumption
is made:

C -
i.e. yﬂis) =0 . {11.5)

This is a reasonable assumption for a linear thermionic value amplifier.

If yg(s} = 0, then yi(s) = 0. (11.86)
If a,(s) represents the reciprocal of the forward voltage transfer function,
then, ‘
B+
E(s) 7o s
BC 2 21
5 ) = F51) ST TEeE (1.1
s =
I{s)=0 Y., {s)
. 1 ] \
It = =K Gq(s) {11.8)
331(3)

where K is a positive constant and G{s) is a rational function of s, resulting
from the poles and zeros of the amplifier,

then
C . C
vy {s) = K G(s) y (s}, {(11.9)
2% 4 22
This results in,
- _B+C, _, +C B B
yB “s) yB {ﬂ y (s) ¥ (s)
11 42 11 12
= (11.10)
S %) Be) + KG () y5s) yols) + y(s)
24 2z 2% ] 22 22 22
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Thus, . E (s) yB(s) + K.G (s). yB(s}
i _ o e 1 » (11.11)
aﬁc(s) Ea(S) IS(S}:Q yig;(S) + yacz(S)

The transmission matrix ﬁ‘iB

is given by:~

\fi}sc 3

rE,(s)

i,11 {s)

V}%BC

where

The transmission matrix 54

A Ar

E,(s) |

|

I,(s)

A A,
}L a (8} am(s)
. aﬁ(s) ai{s)
i ai'sS) aiz(S)
= azss) aaés)
- ok

¢ for the parallel connection of networks B and C

2,{s) am(s?-? ) (11.12)
a (s) a (s) 1

ma 8) {s) E (s}w
e A o, (11.13)
afs) afe)| | L(s)

1 [ nyi+cis) i }
BrC s {11.14
Yo, (s) L —det yB%»C{S) yﬁ+c(s)

1 (s +y sy 1
B . C .
5, (8) + K.G (s) y, (s) _det yB+C(s) yfiﬁ)
..... (11.15)
of the complete arrangement is given by
SR (11.16)
1T E(s) ;
- ;f};A ;!LBC ¢ , (11.17)
: I, {s)

A A

a (s) a (s)

" e ) (11.18)

aﬁ*(sb aA’(s}

2% 2e ‘

~(y§(5) + y;ca(s}} 1 A |
~aet 7y | yhte) + KG () yp(e)
..... (11.19)
(11.20)
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Hence, .
1 A :
a(s) = — AN { -2, (8) (yﬁ{s} + yi{s)) «ai(s). det[yB+C‘](s) } .
Y, (s) + KG (s} v, (s) :
..... {11.21)
Thus the forward opén circuit voltage transfer function of the complete
arrangement is given by,
1 yBés) +KG (8) };’C(s}
2% % az
Gis) = = * {11.22)
a (s) A
§% y (8} : B+C
A - e %z A
%1(5) YQJS}
- 1 ‘
Since am(s) = . ‘ (11.23)
ym(s)
Now det yB Cﬁs) = y?jc{s) :yiw(s) - y?’:C{s) y§+C(s§ : {11.24)

it

B B C B B C
y“(s) ﬁygzis} + y“(s)) 'ym(s) (yM(S) + KGiis} ym{s)) .

..... {11.25)
Since from equation 11.6,
yi(SP = 0 )
. o (11.28)
and ymis) =0 )

Equation 11.22 may be simplified if it is assumed that the output impedance
of the amplifier is zero,

fe. yAs) = - | (11.27)
This.condition may be achieved, to a high degree of approximation, in a high
quality computing amplifier by employing a cathode follower output stage with

internal voltage feedback.

Assuming equation 11.27 is valid, then

G(s) = s (11.28)
T A B, B 4.
y&(s) ) Y, fns)! - 522(5} KG*(S}
A A
}’2%(5) ym(s)
Es(s} K G(s) yﬁis}
G(s) = = {11.29)
E(e) Ay - yBs) + y(s) KG (s)
2z 414 18 4
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Equation 11. 29 is valid over a finite frequency range, from zero frequency

upwards, provided that, yg(s) and yg(s} are both finite over this frequency range.

This condition is valid for RC passive networks, and attention is confined
to these networks for the remainder of the analysis.

If now, the poles and zeros of the amplifier network C are far removed
from those of networks A and B then over the frequency range of interest,

Gfsd= 1 . (11.30)
This means that the computing amplifier must have a frequency response function
which extends over a much wider frequency range than the frequency range of

interest.

Using assumption 11.30., equation 11.28 is simplified to

E (s) yi(s)
) = Gs) = B - {11.31)
1 v, (8) -y (s) B
7 + yw(s)

Now for an RC passive network yi(s) or yf(s) may approach infinity

as 5 approaches infinity.

The desired form of G{s) is given by,

G(s) = "B‘ . (11.32)
y“(s)

A B
¥ 2€s) - fn(s)

The factor may, therefore, be congidered as an error function.

K
In order to keep this function small,
A B
B v,48) -y (8)
Y, 2(s) >> " ’ (11.33)

for all values of s.

B
Thus, if yj:(s) or y“(s} approach infinity at infinite value of s, then yi
should also approach infinity as s approaches infinity.

Over the frequency range of interest yi(s) and yﬁ(s) will be finite and

thus,to achieve a small error, K must be large,
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We may therefore write,

ya-z(S)
Lig o Gls) = —— (11.34)
v (8}
12
E (s) ¥(s)
i o g = = 7
i.e. E1(8> G{s) B(s) {11.35)
Yy
over a finite frequency range as K P

The effect of a finite value of K may be calculated from equation 11.31.

The assumptions which have been made in the derivation of equation 11.35
may be summarised as follows:-

#

() yfi(s) 0.

(W yfs) = - =

{iii} yi(s) and yﬁ{s) are both finite over the frequency range

of interest. {This condition is satisfied by RC passive
networks). ;

{iv} Giés} % 1 over the frequency range of interest. {11.36)

A B
yza{s) - Y Q{S)‘
K

{v) yi{s) >> for the frequency range of interest,

(vi) If yi(s) or };]?(s) —%eo af S—Ypw , then yi(s) should —3p
a8 8 me— o0 .

D i e R gl

{vii) K-—3> = over the frequency range of interest.

Note:- These assumptions are implied in conventional analogue computer
studies and, as already stated, may be approximated to a high degree of accuracy
with modern computing circuits.

Similar results, taking due account of the different sign convention used,
are given in Ref. 1. :



