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ABSTRACT
As computing becomes increasingly pervasive, di�erent heteroge-

neous networks are connected and integrated. �is is especially

true in the Internet of �ings (IoT) and Wireless Sensor Networks

(WSN) se�ings. However, as di�erent networks managed by di�er-

ent parties and with di�erent security requirements are integrated,

security becomes a primary concern. WSN nodes, in particular,

are o�en deployed “in the open”, where a potential a�acker can

gain physical access to the device. As nodes can be deployed in

hostile or di�cult scenarios, such as military ba�le�elds or disaster

recovery se�ings, it is crucial to avoid escalation from successful

a�acks on a single node to the whole network, and from there to

other connected networks. It is therefore crucial to secure the com-

munication within the WSN, and in particular, maintain context

information, such as the network topology and the location and

identity of base stations (which collect data gathered by the sensors)

private.

In this paper, we propose a protocol achieving anonymous rout-

ing between di�erent interconnected IoT or WSN networks, based

on the Spatial Bloom Filter (SBF) data structure. �e protocol en-

ables communications between the nodes through the use of anony-

mous identi�ers, thus hiding the location and identity of the nodes

within the network. �e proposed routing strategy preserves con-

text privacy, and prevents adversaries from learning the network

structure and topology, as routing information is encrypted using

a homomorphic encryption scheme, and computed only in the en-

crypted domain. Preserving context privacy is crucial in preventing

adversaries from gaining valuable network information from a suc-

cessful a�acks on a single node of the network, and reduces the

potential for a�ack escalation.
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1 INTRODUCTION
A�acks against smart devices, sensor networks and the Internet

of �ings (IoT) are increasing in both frequency and magnitude.

In particular, malware, intended as malicious so�ware or hard-

ware, poses a signi�cant security threat. As recently discovered by

Kryptowire, a company operating in the cybersecurity �eld, more

than 700 million phones, cars and other smart devices running the

Android operating system were compromised and equipped with

malware capable of stealing every kind of information the device

was able to deal with (including �les stored on the device or the

messages sent from the device to one another) [10]. �e malware,

allegedly developed by Shanghai Adups Technology Company, sent

massive amounts of sensitive data about the devices and their users’

activities back to servers in China. �is latest example proves that

commonly adopted business models in smart devices industry are

inadequate and potentially dangerous, as the devices are usually

not engineered following an e�ective security strategy. As such,

they are a preferred target for cybercrime groups, which can exploit

their ubiquity to build botnets or, in case they are deployed as part

of critical or sensitive infrastructure, to compromise the regular

work�ow of the network and infrastructure itself [17].

�e emerging security threat, however, is not slowing the grow-

ing di�usion of systems and services based on IoT and heteroge-

neous sensor networks, propelled by the relentless advances in the

production of low-cost embedded devices and sensors. As these

technologies are usually deployed in wireless environments, Wire-

less Sensor Networks (WSN) have become a suitable solution for

an increasing number of applications, including health monitoring,

smart agriculture, weather sensing, intrusion detection applica-

tions and industrial control [7, 12]. In urban and suburban contexts,

these networks are o�en connected one to each other, enabling

management control over complex scenarios. However, in spite of

the extensive research in the area, the Internet of �ings and in

particular the interconnection of WSNs still face many security and

privacy challenges [11].
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�e wireless nature of the communication link makes the net-

work inherently vulnerable to eavesdropping. Moreover, IoT and

WSN nodes are o�en deployed in unsecured areas or outdoor, where

they can be subject to tampering, and a potential a�acker might

be able to gain control of one or more nodes. For this reason, the

security of the network should be preserved even in the presence

of internal adversaries. In particular, both the communication be-

tween the nodes and the context information (including the location

of the nodes and the network organization) should be protected

[11].

In order to preserve the privacy of the communication, nodes

can employ encrypted communication protocols when feasible, due

to the low-power nature and limited computational capabilities of

most devices. With regard to context privacy, instead, the primary

aim is to hide the location and identity of the nodes in the network,

as well the overall the network structure and topology [3]. �is is

crucial especially in WSNs, which are in general highly vulnerable

to a�acks targeted at base stations (the nodes collecting the data

gathered by the sensors). In fact, failure of a base station can disrupt

network operation, making it an ideal target for an a�acker. In

order to prevent adversaries from launching both remote, so�ware-

based a�acks and physical a�acks the location of base stations

and the network topology should be therefore concealed [4]. A

basic strategy to achieve this is �ooding and transmissions of fake

or dummy packets, which make network tra�c observation more

di�cult [19]. More complex strategies include the use of random

walks to route packets anonymously [9]. Random walks have been

adopted in a number of designs: Zhang proposed self-adjusting

directed random walks in [20], while GROW (Greedy Random Walk)

[18] introduced a two-way random walk, from both source and

destination, that can reduce the chance of an eavesdropper being

able to collect location information. Finally, layers of encryption

can be used to protect the information at each hop in the walk [5].

More recently, advanced anonymity techniques have been applied

to IoT and WSN, and in particular onion routing protocols derived

from Tor [14].

1.1 Contribution
In this paper we introduce a novel anonymous routing mechanism,

based on the Spatial Bloom Filter data structure and homomorphic

encryption. �e proposed construction is targeted at preserving

context privacy within a network composed of a number of in-

terconnected subetworks. In particular, our construction can �nd

direct application in all the se�ings where di�erent networks, such

as wireless sensor networks or networks of smart or embedded

devices, are connected to form a larger network. �e anonymous

routing mechanism achieves the following goals: encrypt communi-

cation between nodes; hide the identity and location of the sending

and receiving nodes in a communication between two di�erent sub-

networks; hide the network structure and topology to all the nodes;

and hide the origin and destination of any communication between

subnetworks to the routing layer (that is, the network infrastructure

that connects the di�erent subnetworks and is responsible for the

routing of packets between them). �ese properties enable context

privacy and security against adversaries who control one or more

nodes within the network, and prevent a�acks aimed at taking over

control of the network.

2 PRELIMINARIES
In the following we present the main building blocks of the pro-

posed routing mechanism: �rst, the Spatial Bloom Filter (SBF)

[2, 15]. Second, the homomorphic encryption operations that make

it possible to compute the SBF in the encrypted domain. For the

la�er, we base our construction on the Paillier cryptosystem [13],

although any equivalent alternative cipher may be used.

2.1 Spatial Bloom Filters
A Bloom Filter (BF) is a data structure that represents a set of ele-

ments in a space-e�cient manner [1]. Bloom �lters are widely used

in networking protocols, and have a variety of network security

applications [8]. Recently, Calderoni, et al. proposed a compact data

structure based on Bloom �lters, designed to store location infor-

mation [2, 15]. �e structure, called Spatial Bloom Filter (SBF), was

originally designed for location privacy applications. Two private

positioning protocols were proposed with the SBF, both aimed at

∆1 :

∆2 :

∆3 :

b# (SBF ) : 0 0 0 0 0 0 0 0 0 0

b#
: 1 0 1 0 1 0 1 0 0 1

b#
: 1 2 1 0 2 0 1 0 2 1

b#
: 1 3 1 0 2 0 1 3 2 3

Figure 1: Sets∆1, ∆2 and∆3 (representing three subnetworks)
are used to construct a SBF. �ree hash functions are used
to map each element into the �lter. In the �rst step of this
example, the identi�ers of two nodes belonging to ∆1 are
processed by the hash functions, resulting in the value ’1’ be-
ingwritten six times into the SBF.�e construction proceeds
likewise for elements of ∆2 and ∆3. Two kinds of collisions
are possible, as highlighted: the �rst is intra set; the second
takes place when elements of sets marked with a greater la-
bel overwrite those with a lower value. �e probability of
both events can be controlled to prevent false positives.
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keeping both the user’s exact position and the provider’s monitored

areas private. �e SBF was recently evaluated in a comparative

assessment with other similar privacy-preserving techniques, show-

ing promising properties in several domains [16]. In particular, the

SBF is suitable for application beyond the location privacy �eld. In

this paper, we use the SBF to build a novel private routing proto-

col for interconnected networks, a typical scenario in the IoT and

distributed sensor networks domain. In the following, we brie�y

review the data structure and its properties relevant to the proposed

construction; a full de�nition and discussion can be found in [2, 15].

A Spatial Bloom Filter extends the original Bloom Filter idea in

order to support several sets composed of elements belonging to

a speci�c domain E. A SBF can be used to perform membership

queries on the originating set of elements without knowledge of

the set itself but, contrary to the BF, a SBF can be constructed over

multiple sets. �erying a Spatial Bloom Filter for an element returns

the identi�er of the speci�c set among all the originating sets in

which the element is contained, minus a false positive probability.

�e SBFs hold several probabilistic properties useful to control the

false positive probability throughout the originating sets.

An SBF can be de�ned as follows: let E be a domain speci�c set

of elements (in this paper elements represent the IDs of network

nodes) and let S = {∆1,∆2, . . . ,∆s } be a set of subsets such that

∆i ⊆ E and S is a partition of the union set S̄ =
⋃

∆i ∈S ∆i . LetO be

the strict total order over S for which ∆i < ∆j for i < j. We de�ne

the Spatial Bloom Filter over (S,O) as the set of pairs

B# (S,O) =
⋃

δ ∈S,h∈H

〈h(δ ), i〉

s. t. δ ∈ ∆i ∧ @δ∗ ∈ ∆j : h(δ∗) = h(δ ), i < j ,

(1)

where H = {h1, . . . ,hk } is a set of k hash functions such that each

hi ∈ H : {0, 1}∗ → {1, . . . ,m}, that is, the hash functions take

binary strings as input and output a number uniformly chosen in

{1, . . . ,m}.
A spatial Bloom �lter B# (S,O) can be represented as a vector b#

composed ofm values, where the i-th value

b# [i] =

{
l if 〈i, l〉 ∈ B# (S,O)
0 if 〈i, l〉 < B# (S,O)

. (2)

In the following, when referring to a SBF, we refer to its vector

representation b#
.

�e construction of an SBF starts by se�ing all values in b#
to

0. �en, starting from the �rst set ∆1, each element belonging

to the set is processed by each function h ∈ H . Let us suppose

h (δ ) = i: in that case, the i-th value of b#
will be set to 1 (as 1

is the label associated to ∆1). Elements belonging to subsequent

sets (∆2, . . . ,∆s ) are processed likewise. It is important to note

that collisions between two distinct values are subject to the SBF

collision rule: labels with higher value overwrite those with lesser

value. �is procedure is exempli�ed in Figure 1.

In order to check whether or not an element δu is member of

the set ∆i ∈ S , two conditions need to be met:

∃h ∈ H : b# [h(δu )] = i and ∀h ∈ H ,b# [h(δu )] ≥ i . (3)

Substantially, one single b# [h(δu )] = 0 is su�cient to state that

δu is not a member of S̄ . On the contrary, if b# [h(δu )] , 0 for

each hash function, then δu is a member of the set ∆i minus a false

positive probability; i is the lesser value among those returned by

the set of hash functions.

2.2 Homomorphic encryption
�e Paillier cryptosystem [13] is an asymmetric encryption scheme

featuring notable homomorphic properties. Speci�cally, in this pa-

per we rely on the additive homomorphism of the Paillier encryption

function over Zn , which leads to several identities, among which

we recall:

∀m ∈ Zn ,k ∈ N : D(E(m)k mod n2) = km mod n (4)

�is multiplicative property ensures that an encrypted plaintext

raised to the power of a constant k will decrypt to the product of

the plaintext and k .

In the proposed protocol, we apply this multiplicative scheme on

a vector basis, achieving a secure entrywise product (also known

as Hadamard product). We refer to this operation as to Private
Hadamard Product, and we represent it with �.

We note here that the Paillier cryptosystem may not be suitable

for some heavily computationally constrained devices: however,

the proposed protocol can be achieved over any additively homo-

morphic cipher.

3 A SECURE ROUTING STRATEGY
We study a se�ing where di�erent, heterogeneous subnetworks

are interconnected, creating a larger network. �e subnetworks

are connected to each other by the routing layer, that is, the part of

the overarching network infrastructure that manages and routes

inter-network communication. Each subnetwork is composed of

multiple nodes, and can be connected to the routing layer either

directly, or through one or more gateways. In the case of Wireless

Sensor Networks, these gateways could also represent the base

∆1

∆2

∆3

Routinд layer

b# (SBF )

0

1

2

0

0

1

3

0

0

0

2

3

Figure 2: A sample sensor network composed of three sub-
networks ∆1, ∆2 and ∆3. Each subnetwork, composed by a
set of nodes, represents anArea of Interest (AOI) as described
in [2, 15], and is marked with a label. Anonymous routing
of packets between the subnetworks (done by the routing
layer) is achieved using an SBF representing the network.
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stations (where information from the sensor node is collected). �e

aim of our construction is to enable private routing between the

subnetworks. In particular, we want to prevent an a�acker that

controls one or more nodes of the network from being able to learn

the topology and structure of the network. Speci�cally, he should

not be able to: determine the number of subnetworks, other than

those where he controls a node; the location of any node in the

network, that is, to which subnetwork a node belongs. We de�ne

the security of our construction as follows:

Security De�nition. Private routing between di�erent subnet-

works in a wider network is achieved when: any node in the net-

work only needs the ID’s of other nodes in order to communicate

with them, and learns nothing about their position within the net-

work; for each packet received, the routing layer learns only the

subnetwork to which the packet should be routed, and nothing

about the identity of the sending and receiving nodes. Any sub-

network gateway only routes packets transparently between the

subnetwork and the routing layer, and, similarly to other nodes

in the subnetwork, learns nothing about the positions of nodes

outside its subnetwork.

�e security of the construction is analysed in Section 4.

3.1 Routing strategy
Each node of the network is identi�ed by a unique, random ID.

Contrary to the IP address, the ID does not contain or imply any

information regarding the network structure. Within the network,

nodes communicate using their respective IDs, following a tunnel-

ing and encapsulation strategy for lower level protocols (such as

TCP/IP) similar to the one used in other private-preserving pro-

tocols, including onion routing [6]. In practice, communication

between nodes of the network is �rst tunneled to the local gateway,

then from the gateway to the routing layer, from then to the destina-

tion gateway and �nally to the destination node. Gateways do not

have an active role, and they only relay communication between

the nodes in their subnetwork and the routing layer transparently.

In general, each party in the communication will not reveal un-

necessary information to the following one. �e gateway of the

sending node, in particular, will not communicate the ID of the

node to the routing layer. As the receiving gateway does not know

to which node in its subnetwork the communication is destined to,

it broadcasts the packets to all nodes in the receiving subnetwork.

Since communication is encrypted (as explained in the following),

only the intended receiver will be able to decrypt the information.

An example of network structure is presented in Figure 2.

3.2 Packets and routing information
Messages transmi�ed through the network using the anonymous

routing protocol are composed of two parts: a header, which con-

tains routing information; and a payload, which is encrypted and

encapsulates the communication being anonymously routed (in

practice, the payload contain packets of lower layer protocols such

as UDP or TCP).

In order to encrypt the payload, we assume that each node in

the network has a public/private key pair, and a key distribution

mechanism exists between the nodes, so that each node knowing

another node’s ID either knows or can retrieve the node’s public

Table 1: Information available to each stakeholder. �e �rst
row identi�es cryptographic keys owned by the stakeholder
and information related to the �lter; the second row routing
information and IDs of the nodes in the network.

Node j Routing Layer Network Mainteiner

EncPk# (b#) Sk# b#

Hash set Pk#, Sk#
(homomorphic key pair)

Pkj , Skj Hash set

Node ID Public key Subnetwork IP Area Node IP Node ID Area Key pair
ID1 Pk1 122.200.64/24 1 IP1 ID1 1 Pk1, Sk1

. . . . . . . . . . . . . . . . . . . . . . . .

IDi Pki 122.200.43/24 k IPi IDi k Pki , Ski

key as well. Encryption of the payload is performed by the sending

node s using the public key Pkr of the receiving node r , which

can then decrypt the transmission using its secret key Skr . As

communication is routed anonymously, the ID of the sender is

included in the encrypted payload as well, in order for the receiving

node to be able to respond.

�e use of random IDs to identify the nodes removes the need to

know the destination IP address in order to initiate communication,

and hides the originating IP. It also means that no communication

is possible without knowledge of the ID of the destination node.

However, in order for the routing to be anonymous, the header

does not include the ID of the sending and receiving nodes, but only

routing information in the form of an homomorphically encrypted

SBF. In particular, the network maintainer builds an SBF represent-

ing all the nodes in the network and their respective subnetwork.

As shown in Figure 1, the elements of the set over which the SBF is

built are the IDs of the nodes, while the sets are the subnetworks,

each represented by a label. �e SBF built this way, b#
, is encrypted

using a homomorphic encryption scheme, as explained in Section

2.1. In this construction we use the Paillier cryptosystem [13], but

any cipher with equivalent homomorphic properties can be used.

In particular, other more lightweight cryptosystems could be more

suitable for resource-constrained devices. �e secret key Sk#
of the

homomorphic key pair is known by the routing layer, while the

public key Pk#
and the encrypted �lter EncPk#

(
b#

)
are distributed

to all the nodes. �e nodes also know the set of hash functions used

in constructing the �lter.

Table 1 summarizes the information that each party in the pro-

tocol needs in order to communicate. �e information is divided in

two sets: information related to the encryption mechanism (such as

public keys), in the upper row; and information related to network

communication (including IDs and IP addresses), in the lower row.

In this paper, we assume that knowledge of the ID of a node equates

to knowledge of its public key: any suitable key distribution scheme

can be applied to achieve this.

3.3 Routing protocol
In the follwing, we describe the communication between a sender

node s and a receiver node r in two di�erent subnetworks (∆s and

∆i respectively) over the anonymous routing protocol. �is process

is visible in Figure 3.

Communication happens as follows:
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Node s Routing layer Node r

z

H (IDr ) �EncPk# (b#) = e#

b#

r

1

0

1

0

0

EncPkr (IDs |msд)

Payload

shuf f le (e#)

z

Header

count(i) = z?

DecSk# (ẽ#) =

0

0

0

i
i

ẽ#

z

Header

EncPkr (IDs |msд)

Payload
To subnetwork i

IDs ,msд = DecSkr (EncPkr (IDs |msд))

EncPkr (IDs |msд)

Payload

Figure 3: Operation of the private routing protocol. Node s wants to securely transmit messagemsд to node r . Node r belongs
to subnetwork i, but s only knows r ’s ID (IDr ). Communication proceeds as follows: s generates the SBF related to IDr and
counts the number z of non-zero values in it; the �lter is then multiplied (through an homomorphic encryption operation) by
the shared encrypted �lter b#. �e resulting �lter is then sent to the routing layer, together with z. �e routing layer decrypts
it, and computes the destination subnetwork i. �e payload (that is, the encrypted message) is then routed to the subnetwork
i and node r , either through a gateway or by broadcast. r receives the message and decrypts it.

(1) �e sender node s identi�es the anonymous identi�er IDr
of the receiving node r . s then builds an SBF with IDr as

only element, using the set of hash functions and counting

the number z of non-zero values in the resulting �lter. �en,

the node multiplies the �lter it just built by the encrypted

�lter EncPk#

(
b#

)
, using the multiplicative properties of the

cryptosystem. We call the resulting combined encrypted

�lter e#
. �e sender shu�es e#

, and sends it to the gateway,

with z and the encrypted payload EncPkr (msд).
(2) �e sending gateway relays transparently the information

received by s to the routing layer.

(3) �e routing layer decrypts e#
: the decrypted �lter is com-

posed of zeros, and a number of non-zero values i . If the

number of i’s is equal to z, then the receiving node r exists.

�e value i identi�es the correct subnetwork to which the

communication will be routed. In case of di�ering values,

the smallest is used (see Section 2 for an explanation). Fi-

nally the routing layer transmits the encrypted payload

EncPkr (msд) to the correct subnetwork ∆i .
(4) �e gateway of ∆i receives the encrypted payload and

brodcasts it to all the nodes in the subnetwork.

(5) �e intended receiver r receives EncPkr (msд) and decrypts

it using its secret key Skr .

�e properties of the Spatial Bloom Filters introduce the possibil-

ity of false positives, with two possible scenarios: �rst, an element

outside the sets over which the �lter has been built could be rec-

ognized as member of a set; second, an element that is a member

of a set X could be recognized as member of set Y . �e former

case has no real implications for the proposed protocol: it would

only apply to the case of a node in the network using non-existing

or unknown IDs. But as no public key is associated to these IDs,

communication is impossible. �e la�er case could result in the

wrong routing being applied to the communication: however, we

note that the probability of this event can be calibrated through the

use of appropriate parameters (such as the length of the �lter and

the number of hash functions) during the �lter construction, and

a �lter can be tested a�er it has been built to verify that no false

positive (in the sense of wrong recognition) is possible.

4 SECURITY ANALYSIS
In order to analyse the security of our construction, we discuss

three separate scenarios: in the �rst, an a�acker gains control

over a node in the network; in the second, the a�acker controls

a subnetwork gateway, and in the third, the a�acker controls the

routing layer (or part of it). In all three cases, we assume the a�acker

will not actively disrupt network tra�c, but will limit himself to

observing tra�c visible to him in order to learn information on the

network structure and topology (context information). �is is called

a semi-honest behaviour. In the following, we show how in each

of the three cases the a�acker is unable to learn any meaningful

information on the network structure, and therefore the security

de�nition is satis�ed. Security cannot be guaranteed in case the

a�acker controls simultaneously 1) the routing layer and 2) either

one or more nodes, or one or more gateways, or a combination of

the two. �e extent to which security is compromised in this case

depends on the number of nodes and gateways controlled, and is

limited to the parts of the network the a�acker has visibility of.

A�acker controlling a node. In this case, the a�acker can read

all information sent and received by the node, and learns the IDs

of all the other nodes with which the controlled node can com-

municate. �e a�acker also learns the encrypted �lter, but has no

information to decrypt it. �e a�acker cannot learn the IP addresses

corresponding to the nodes, as they are unknown to the controlled

node and cannot be derived from the respective IDs. Similarly, the

a�acker cannot learn the network structure (the position of the

nodes within the subnetworks and the number of subnetworks), as

the routing of sent and received packets is achieved anonymously.

A�acker controlling a subnetwork gateway. An a�acker control-

ling a gateway will learn all the identity of all the nodes in the

respective subnetwork. However, he will not be able to read any

information sent and received by the nodes, as the payloads are
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encrypted. Similarly, he will not learn the destination of sent pack-

ets or the origin of received ones, as the routing information e#
is

encrypted. Finally, the a�acker cannot learn the network structure

as per the case above.

A�acker controlling the routing layer. In this case, the a�acker

will be able to watch the �ow of information between the di�erent

subnetworks. However, due to the properties of the SBF, even

being able to decrypt the encrypted routing information e#
will not

enable him to learn the identity of the receiving node r . Similarly, he

cannot learn the identity of the sending node s , as this is encrypted

within the payload, and the sending gateway will not communicate

it to him.

5 CONCLUSIONS
In this paper, we present a private routing protocol that can be used

to communicate anonymously between di�erent networks. Our

protocol can be applied in a variety of Internet of �ings scenarios:

from Wireless Sensor Networks, to interconnected IoT systems

composed by di�erent devices or infrastructures.

Our protocols achieves context privacy by using homomorphic

encryption, tunneling and the Spatial Bloom Filters. In particular,

we achieve the following properties: communication between nodes

can only be read by the intended receiver; the network structure

and topology (context information) is kept private to all nodes;

the identity and location of the sending and receiving nodes in

two di�erent subnetworks is kept private to the routing layer;

and the routing layer is oblivious to the origin and destination

of any communication between subnetworks. �ese properties

enable context privacy and security against adversaries who control

one or more nodes within the network, or even the routing layer.

�erefore, the proposed anonymous routing protocol can prevent

a�acks aimed at taking over control of the network.
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