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This work describes the assessment of the effect of engine installation parameters such as 

engine position, size and power setting on the performance of a typical 300 seater aircraft at 

cruise condition. Two engines with very-high by-pass ratio and with different fan diameters 

and specific thrusts are initially simulated in isolation to determine the thrust and drag 

forces for an isolated configuration. The two engines are then assessed in an engine-airframe 

configuration to determine the sensitivity of the overall installation penalty to the vertical 

and axial engine location. The breakdown of the interference force is investigated to 

determine the aerodynamic origins of beneficial or penalising forces. To complete the cruise 

study a range of engine power settings were considered to determine the installation penalty 

at different phases of cruise. This work concludes with the preliminary assessment of cruise 

fuel burn for two engines. For the baseline engine, across the range of installed positions the 

resultant thrust requirement varied by 1.7% of standard net thrust. The larger engine was 

less sensitive with a variation of 1.3%. For an assessment over a 10000km cruise flight the 

overall effect of the lower specific thrust engine showed that the cycle benefits of –5.8% in 

specific fuel consumption was supplemented by a relatively beneficial aerodynamic 

installation  effect but offset by the additional weight to give a -4.8% fuel burn reduction. 
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Nomenclature 

Aref = wing reference area 

b = wing span 

cref = aircraft reference chord 

dc = aircraft drag counts, based on aircraft reference area; 1dc = 0.0001 

dx = horizontal position of the fan cowl trailing edge from the wing leading edge 

dz = vertical position of the fan cowl trailing edge from the wing leading edge 

CD = drag coefficient based on aircraft reference chord 

Cf = skin friction coefficient 

Cp = pressure coefficient 

Cd = discharge coefficient 

CL = lift coefficient 

CV = thrust coefficient 

CZ’ = overall vertical force coefficient including the vertical component of thrust 

DFF = fan face diameter 

Dmax = nacelle maximum diameter 

Lnac = nacelle length 

M = Mach number 

V = Velocity 

x, y, z = Cartesian coordinate system for the aircraft 

ξ, η, ζ = Cartesian coordinate system for the engine 

ξ, R, Θ = Cylindrical coordinate system for the engine 

𝜙 = force in the drag domain 

𝜃 = force in the thrust domain 

Acronyms 

BPR = By-pass Ratio 

BPD = By-pass Duct 

DPW = Drag Prediction Workshop 



CNPR = Core Nozzle Pressure Ratio 

CRM = NASA Common Research Model 

CST = Class Shape Transformation function 

LPT = Low Pressure Turbine 

MFCR = Mass Flow Capture Ratio 

NPF = Net Propulsive Force 

OPR = Overall Pressure Ratio 

Soc, EoC = Start of Cruise, End of Cruise 

 

I. Introduction 

riven by the requirement of greater propulsive efficiency for turbofan engines, there has been a trend to 

increase the engine by-pass ratio [1]. To achieve the expected improvement in the overall aircraft efficiency, it is 

necessary to ensure that the installation and integration of the engine with the airframe is understood. Currently, the 

overall effect of engine installation for a typical conventional podded under-wing engine on a wide-body twin-

engine aircraft is estimated to be in the order of 30 to 50 drag counts per two engines [2], which corresponds to 

approximately 10% to 15% of aircraft total drag. This penalty is sensitive to the relative engine size and position on 

the wing [2, 3, 4] and the effect of engine size becomes significant for larger diameter engines [5]. The presence of a 

relatively larger engine can result in a flow acceleration on the lower side of the wing and eventually in the loss of 

lift [5]. This local acceleration of the flow due to the larger nacelle and pylon can also lead to penalising interference 

effects [6]. However, some efforts can be undertaken to redesign the wing specifically for the larger engines to 

mitigate the loss of lift [7]. Furthermore a careful redesign of the pylon [8] to move the peak acceleration 

downstream can lead to a drag reduction of 6dc. Due to the large number of degrees of freedom, computational 

methods such as full potential flow [9] or Euler [10] evaluations have been considered to analyse the multitude of 

possible configurations [9, 10]. Furthermore, the development of numerical tools and an increase in computational 

power led to a series of AIAA Drag Prediction Workshops, where the second workshop was dedicated to propulsion 

installation effects [11]. The outcomes from the 2
nd

 DPW [11] triggered the design of more a modern aircraft 

geometry for the NASA Common Research Model (CRM) [12]. The publication of substantial experimental datasets 

with and without through-flow nacelles [13, 14] makes CRM a benchmark validation activity to assess the effects of 

D 



installation. Subsequent to the work undertaken here, the effects of installation of a through-flow nacelle on the 

CRM were addressed during the 6
th

 Drag Prediction Workshop [15]. Initial results from the CRM workshop show 

that the installation drag of a through-flow nacelle is approximately 23 dc based on both the experiment as well as 

the RANS CFD calculations using multi-block structured meshes. The installation drag of 23 dc corresponds to 

approximately 10% of total aircraft drag. Within this broad context, it is anticipated that engine installation will 

become an increasingly important issue as engine diameters are expected to increase relative to the size of the 

aircraft. It is also expected that knowledge of these aspects at the preliminary design stage will become more 

important to facilitate timely and informed decisions on engine cycle, size and airframe integration. The aim of this 

research is to study the details of aerodynamics for aero-engine installation at cruise condition for a typical 300 

seater aircraft. The work was carried out with use of the NASA CRM which was modified to include an under-wing 

turbofan engine with a separate-jet exhaust system. The paper concentrates on the effect of engine position, size and 

power setting on the overall installation effect for a re-trimmed aircraft. All the presented computational results 

come from the Reynolds Averaged Navier-Stokes studies. The comparison of the computations for the full aircraft 

configuration with those for the combined results for the isolated engine and clean-wing airframe enable the 

interference effects [16] to be determined. 

II. Methods and scope 

The main focus of the work is to evaluate installation aerodynamic effects for podded underwing engine 

configurations by the means of computational fluid dynamics (CFD), in particular the computation of Reynolds 

Averaged Navier-Stokes (RANS) equations with the commercial solver ANSYS Fluent. This solver was previously 

used for the calculation of the CRM aerodynamic characteristics and the effect of the TFN [17] as well as for the 

assessment of dual stream exhaust system performance [18]. The assessment of the overall installation effects at 

cruise condition for a relatively modern aircraft configuration [12] is performed. The ambition is to provide detailed 

analysis of the individual effects, evaluate the overall installation effect due to the aerodynamics and to compute the 

cruise fuel burn for the combined aircraft-engine system. 

A. Project scope 

 

The overall project scope is to assess the impact of engine installation at cruise conditions as it is the dominant phase 

for long-haul flights. A typical mission at an altitude of 35000 ft and a cruise Mach number of 0.82 was chosen 



within a range of aircraft angles of attack from 0°and 5°. For a given mission specification, the NASA CRM [12] 

was chosen, which is comparable with a typical twin-engine wide-body 250-300 seater aircraft. A range of engine 

positions was considered based on the location of the fan cowl trailing edge in relation to wing leading edge (Fig. 1, 

Fig. 2). The aim within this work is to evaluate the characteristics over a relatively wide range of engine positions 

(Fig. 2). However, within this context, this range of positions also encompasses previously reported [19] 

approximate locations for conventional installations on the Boeing B757, B767 and B777 which are generally in the 

region between points C1 and C2 (Fig. 2). Moreover, the sensitivity of engine installation effect to engine size is 

considered. Furthermore, to enable the assessment of the engine installation, a clean wing aircraft, as well as isolated 

engine configurations are computed. It is necessary to compare the combined engine-airframe configuration, a 

clean-wing aircraft and an isolated engine to fully evaluate the installation effects. 

 

 

Fig. 1 Sketch of key installation parameters  

Fig. 2 Map of investigated engine positions for 

baseline engine 

 

B. Engine model 

 

To provide a range of realistic CFD boundary conditions for an engine, a full engine performance model was 

developed for a required specification. The engine performance modelling was done with use of the Cranfield 

University in-house code, Turbomatch [20]. Turbomatch is a zero- dimensional code for aerothermal analysis that 

employs discrete component maps. The method solves for the mass and energy balance between the various engine 

components. Within the current scope of work, the engine is assumed to be operating exclusively under steady-state 

conditions. 

   



   

   

   
 

Based on the CRM performance at 𝑀 = 0.82, a net thrust requirement of 55686 N at an altitude of 35000 ft. was 

estimated. An engine performance model for a typical modern turbofan-engine (BPR=10.4, OPR=50) has been 

created to match the specification, and is referred to as the baseline engine (E1). Decisions on engine technology 

level were taken based on open source data [1] for engines of comparable thrust class. Furthermore, an engine 

performance model with a very-high by-pass ratio (BPR=17.8, OPR=58) for the same mission specification was 

created. While the engine by-pass ratio increased, the engine architecture, thrust requirement and component 

technology level were kept constant. The engine performance models were used to generate engine boundary 

conditions to provide a consistent link between the engine intake and the engine nozzles. Based on the engine 

performance model, the baseline engine (E1) the start of cruise ‘SoC’ setting (Table 1) is characterized by the 

massflow capture ratio (MFCR) for the cruise condition of 0.75, the fan nozzle pressure ratio (FNPR) of 2.71 and 

the core nozzle pressure ratio (CNPR) of 1.37. Similarly for the study of engine size, the larger engine (E2) ‘SoC’ 

power setting is represented by MFCR of 0.75, FNPR of 2.11 and CNPR of 1.68. With use of performance models, 

the range of power settings from start of cruise to start of descent was considered. 

Table 1 The range of power settings for engine E1 

 E1 E2 

Power Setting MFCR [-] FNPR [-] CNPR [-] MFCR [-] FNPR [-] CNPR [-] 

PS1 ‘SoC’ 0.75 2.71 1.37 0.75 2.11 1.68 

PS2 0.7 2.51 1.27 0.7 1.98 1.44 

PS3 0.65 2.32 1.20 0.65 1.83 1.25 

PS4 0.6 2.12 1.14 0.6 1.70 1.11 

 

Based on the performance model of the baseline engine with a reference fan face diameter (𝐷𝐹𝐹 𝐵𝑎𝑠𝑒), an 

axisymmetric geometry of an engine nacelle was created (Fig.3). An established methodology [21, 22, 23, 24] was 

used to determine the engine keypoints such as fan hub, fan tip, intake throat, intake highlight, nacelle maximum 



diameter, nacelle trailing edge, and key dimensions of the exhaust ducts. The geometry was constructed using class 

shape transformation (CST) curves [21, 22, 23, 24, 25, 26] to provide a smooth curvature distribution. The increase 

of by-pass ratio for engine E2 resulted in an increase of fan diameter of 1.23𝐷𝐹𝐹 𝐵𝑎𝑠𝑒. The same conventional 

preliminary design guidelines and the same methodology as for the baseline engine E1 were implemented. As a 

result a geometrically similar nacelle for the E2 engine was created. As the design was performed for a different 

engine BPR, the exhaust system was sized appropriately. To maintain the similarity of the design, the same boat-tail 

angles for the core cowl and plug as for the baseline engine were used. 

C. Computational method 

 

The aerodynamic analyses were performed using a compressible RANS method. An implicit flow solver was 

used with second order discretization for all terms. The Green-Gauss node based gradient method was used and, 

based on the results from 4
th

 AIAA Drag Prediction Workshop (DPW) [27, 28], the 𝑘 − 𝜔 𝑆𝑆𝑇 turbulence model 

was used [29]. The aircraft with an installed engine was placed in the computational domain with a size of 100𝑐𝑟𝑒𝑓  

(Fig. 4) which was adopted based on the conclusions from the 4
th

 DPW [28]. A pressure far-field boundary 

condition was used by specification of freestream Mach number of M=0.82 and static pressure and static 

temperature based on International Standard Atmosphere (ISA) for 35000 ft. A centreline symmetry boundary 

condition was used as half of the aircraft model was computed. The studies of the isolated engine are considered. 

The Dual Stream Flow Reference Nozzle (DSFRN) [18,30]
 
was identified as suitable test case for the validation of 

numerical method in the determination of thrust for separate-jet exhaust systems. The numerical strategy coherent 

with current research was followed for the computations [31] of the DSFRN [18] with use of 𝑘 − 𝜔 𝑆𝑆𝑇 turbulence 

model [29] and full resolution of the boundary layer with 𝑦+ = 1. The by-pass duct entry and low pressure turbine 

exit were set to be uniform total pressure inlets. All the nozzle and by-pass duct walls were modelled as no-slip, 

adiabatic boundary condition. Within the current work, the isolated engines with an intake geometry were computed 

to compare with the wing-installed engines. The engine fan face was set to pressure outlet with a target mass-flow 

and pressure inlets were used for the by-pass duct (BPD) entry and low pressure turbine (LPT) exit. All the nozzle 

and by-pass duct walls were modelled as no-slip, adiabatic boundary condition. In the computations the iterative 

convergence was monitored for the forces that act on the geometry. The amplitude of the oscillation found in the 



forces report did not exceed an equivalent of 0.2 aircraft drag counts for all the computations, which is 0.1% of total 

aircraft drag. 

 

 

 

Fig.3 Schematic of the baseline engine (E1). Fig. 4 The hemispherical domain for aircraft studies 

and close-up on the mesh. 

D. Gridding methods 

 For the reference “clean” aircraft studies, the grid independence assessment followed the approach advocated by 

Roche [32]. Based on the gridding guidelines [27], a medium density structured mesh was created (“WBT0 

medium”) with an element count of around 10x10
6
 elements. Four meshes were generated for the clean wing aircraft 

(WBT0) and the impact of spatial resolution on aircraft drag 𝐶𝐷 𝐴/𝐶  was evaluated under typical cruise conditions 

(𝑀 = 0.85 and 𝐴𝑜𝐴 = 2.5°). The refinement ratio between the meshes was 1.15 in each direction. The boundary 

layer mesh was kept unmodified to have the same node distribution and the first cell height resulted in 𝑦+ = 1 for 

all mesh densities. As a result, the meshes of 6.9x10
6
, 10.3x10

6
, 16.1x10

6
, and 24.1x10

6
 cells were created and 

referred to as “coarse”, “medium”, “fine” and “superfine” respectively. Richardson Extrapolation [32] was 

conducted to estimate the grid independent solution. The aircraft drag coefficient 𝐶𝐷 𝐴/𝐶 reduced monotonically with 

increasing mesh size. Using a factor of safety of 1.25, the second order grid convergence index (GCI) for a medium 

mesh solution was 2.05% and 1.08% for fine mesh solution. The refinement ratio was in each case evaluated as an 

average based on the three meshes. Following Roache [32], the achievement of the asymptotic range can be checked 

by a simple ratio of GCI corrected with use of the refinement ratio between the meshes and the observed order of 

computation. A satisfactory result was achieved for the GCI of medium-fine and fine-superfine with a ratio of 1.018. 

Thus, the fine meshes were used in the paper. 



 

For the meshes with through flow nacelles (TFN), a structured mesh with a comparable blocking strategy to the 

clean wing configuration was created. Additional blocking was created to accommodate the presence of through 

flow nacelles. The blocking around the nacelle is arranged as an O-grid concentric with the engine axis. The 

meshing of the TFN geometry was based on the experience from previous studies on isolated studies [17, 33, 34]. 

Thus, the following criteria were added: 40 elements for the nacelle lip, maximum axial spacing on the nacelle 

∆𝑥 = 𝐿𝑛𝑎𝑐 110⁄ . Those criteria have been merged with most of the DPW4 gridding guidelines [27]. The guidelines 

for trailing edges as well as for longitudinal and lateral spacings were consistent with DPW4 gridding guidelines 

[27]. However, the near wall treatment was facilitated with a constant 𝑦+ = 1 for all mesh resolutions and with 

minimum 20 nodes within boundary layer. In total, three mesh densities were used for the aircraft with a through 

flow nacelle and the overall number of elements in the meshes are 16x10
6
, 22x10

6
 and 30x10

6
. The meshes are 

called “coarse”, “medium” and “fine”, respectively. Also the meshes are the derivations from the clean wing meshes 

and the applied modifications are localized around the through-flow nacelles. Similarly, the Richardson 

Extrapolation [32] was then conducted to estimate the grid independent solution for cruise condition (𝑀 = 0.83 and 

𝐴𝑜𝐴 = 2.5°). The aircraft drag coefficient 𝐶𝐷 𝐴/𝐶 reduced monotonically with increasing mesh size. Using a factor 

of safety of 1.25, the second order grid convergence index (GCI) was 1.2% and 0.5%. 

 

As part of the work to enable an analysis of the installation effects, the isolated engines were considered with the 

separate jets exhaust. The Dual Stream Flow Reference Nozzle (DSFRN) [18,30] was chosen as a validation test 

case for the computation of the separate jet nozzles. The computations were done [31] with structured meshes with 

𝑦+ = 1 for full boundary layer resolution. The domain study was completed [31] at a FNPR of 2.2 for three domain 

diameters, 20𝐷𝑚𝑎𝑥 , 40𝐷𝑚𝑎𝑥  and 60𝐷𝑚𝑎𝑥  where 𝐷𝑚𝑎𝑥 was the maximum diameter on the DSFRN nacelle. Between 

the 20𝐷𝑚𝑎𝑥  and 60𝐷𝑚𝑎𝑥  computations there was an increase of 0.5% in the overall 𝐶𝑉, 0.003% in 𝐶𝐷
𝐵𝑃𝐷 and a 

decrease of 0.12% in 𝐶𝐷
𝐶𝑜𝑟𝑒. The 60𝐷𝑚𝑎𝑥  was adopted for further study on the DSFRN. To determine the grid 

dependency, a total of three mesh resolutions were investigated at a FNPR of 2.2 such that grid independency could 

be assessed with Richardson Extrapolation [32] used to calculate the grid independent solution. The first cell height 

remained fixed across all the meshes investigated. The element count for the three meshes was as follows: 8.6x10
6
, 

10.3x10
6
, 14.5x10

6
. A monotonic increase of thrust coefficient was observed with the mesh refinement, with a GCI 



0.06% between the 8.6 x10
6
 element and 10.3 x10

6
 element meshes and the GCI of 0.08% between the 10.3 x10

6
 

element and the 14.5 x10
6
 element meshes. A safety factor of 1.25 was used throughout. The results presented in this 

paper were computed on the 14.5 million element mesh . 

 

The separate jet engine geometry is of key interest in the current research both in terms of the isolated engine as well 

as for the installed configurations. The intake and nacelle meshing strategy was similar to that adopted for the TFN 

‘fine mesh’. The nacelle meshing guidelines were established based on previous studies [35]. However, the bypass 

duct, core duct, nozzles and core cowl required a modified blocking strategy which also facilitated the boundary 

layer meshes. A blocking topology compatible with DSFRN was developed. Three mesh resolutions for the isolated 

engine were created with 3.0x10
6
, 9.8x10

6
, 33.5x10

6
 elements and with use of the Richardson Extrapolation [32] the 

grid dependency study was done. For the isolated engine at an equivalent cruise incidence of 4.25°, the engine net 

propulsive force 𝑁𝑃𝐹 reduced monotonically with increasing mesh size. Using a factor of safety of 1.25, the second 

order grid convergence index (GCI) was 1.5% from coarse to medium mesh and 0.64% from medium to fine. The 

GCI was also computed for the engine thrust coefficient with 0.007% and 0.002%. The effect of the computational 

domain was also assessed and for the separate-jet configuration indicated an increase of the engine net propulsive 

force with an increase of domain diameter by +0.07% from 10 to 30𝐷𝑚𝑎𝑥 and an reduction of Net Propulsive Force 

(NPF) by -0.11% from 30 to 50𝐷𝑚𝑎𝑥. The non-monotonic behaviour is explained by a pressure influence from the 

pressure far-field for the 10𝐷𝑚𝑎𝑥 domain. For this work the extent of the domain size was set to 50 nacelle 𝐷𝑚𝑎𝑥. As 

a result a mesh with 9.8 x10
6
 elements was used for the isolated engines (E1 and E2) with separate exhausts and the 

meshing strategy is consistent with the ‘fine’ mesh resolution in the aircraft studies.  

 

For the full engine geometries positioned under the wing, the meshing strategy was similar to that adopted for the 

TFN under the wing. As for the isolated separate jet configuration, the mesh had to facilitate the boundary layer 

meshes for the bypass duct, core duct, nozzles and core cowl. The inclusion of the separate jet meshing rules 

resulted in the nominal mesh of 35 x10
6 
elements for the configuration of CRM with the engines installed. The mesh 

was derived from the fine mesh for the clean wing configuration.  

 

E. Drag accounting methods 



 

In the current work, a thrust and drag book-keeping system based on AGARD book-keeping system was followed 

[17, 34, 36, 37]. As a result, a modified near-field method of drag computation for separate jet engines is used. The 

domain is split into a drag domain and thrust domain. The forces that act in the thrust domain (Fig. 5), i.e. on the 

inside of the streamtube, are denoted as 𝜃 and the forces in the drag domain are denoted as 𝜙. Furthermore, gauge 

stream forces of the flow are evaluated at characteristic engine stations from upstream to downstream infinity and 

are denoted 𝐹𝐺0and 𝐹𝐺00 , respectively. 

 

 

 

Fig. 5 Decomposition of modified Near Field Method forces acting on the entry streamtube and nacelle 

 

To account for all the forces of an isolated or wing-installed engine, the NPF is considered as the difference of the 

overall engine thrust (𝐹𝑜𝑣) and nacelle drag (𝐷𝑛𝑎𝑐) in the drag aero-axis (Equation (1)). From the balance of forces 

for the post-exit domain, the unknown terms 𝐹𝐺00 and 𝜙𝑝𝑜𝑠𝑡 from Equation (1) can be substituted by the known 

terms of stream forces (𝐹𝐺9 and  𝐹𝐺19) and forces that act on the exhaust surfaces (𝜃𝑒𝑥ℎ𝑎𝑢𝑠𝑡). As a result, the NPF can 

be expressed in terms of standard net thrust (𝐹𝑁) and forces exerted on exhaust surfaces (𝜃𝑒𝑥ℎ𝑎𝑢𝑠𝑡), forces on the 

nacelle (𝜙𝑛𝑎𝑐) and the force on the pre-entry streamtube (𝜙𝑝𝑟𝑒) (Equation (2)). By the introduction of modified 

standard net thrust (𝐹∗
𝑁) and modified standard drag for the nacelle (𝐷∗

𝑛𝑎𝑐) (Equations (3) (4)), the NPF can be 

expressed in terms of 𝐹∗
𝑁 and 𝐷∗

𝑛𝑎𝑐 alone (Equation (5)). To compute the balance of forces in the drag aero-axis 

for an engine and an aircraft an overall horizontal force (𝐹𝑥′𝑖𝑛𝑠𝑡) is considered as the difference between 𝑁𝑃𝐹 and 

airframe drag (𝐷𝐴/𝐹). To determine the magnitude of the interference forces the configuration needs to be compared 

with the idealised configuration with the idealised configuration with no interference force. Following the 

established approach to determine interference terms [16], a superposition model (SM) of the clean-wing and 

isolated engine is created. Within this SM estimate, the values of lift and drag of the clean-wing aircraft are 



combined with the isolated engine thrust, drag and lift data at the corresponding incidence. As a result the overall 

horizontal force of the superposition model is obtained (𝐹𝑥′𝑆𝑀). Clearly this model does not take into account any of 

the mutual interference terms that arise between the engine and airframe and which affect both the lift and drag 

terms. The sole purpose of the superposition model is to provide a reference for the engine-airframe configuration. 

Eventually, the aerodynamic interference term 𝐹𝑖𝑛𝑡𝑒𝑟𝑓 is the difference between RANS computations for the 

combined engine-airframe configuration and the idealised SM at equal overall lift force (Equation (7)). The overall 

aerodynamic interference consists of the individual effects of installation on the drag and thrust terms. The 

individual effects are referred to as the airframe interference drag (Equation (8)), the engine interference drag 

(Equation (9)) and the interference thrust (Equation (10)). To obtain the force coefficients based on the aerodynamic 

forces, the freestream reference condition is used, where ρ is the mass density of the fluid, υ is the velocity of the 

fluid and 𝐴𝑟𝑒𝑓 is the aircraft reference area. As a result, the nacelle drag coefficient (𝐶𝐷∗𝑛𝑎𝑐) is defined (Equation 

(11)) based on the nacelle drag and the aircraft total drag coefficient (Equation (12)) is defined based on the sum of 

the drag forces for the nacelle and the airframe.  

 

𝑁𝑃𝐹 = 𝐹𝑜𝑣 − 𝐷𝑛𝑎𝑐 = 𝐹𝐺00 − 𝐹𝐺0 − 𝜙𝑝𝑟𝑒 − 𝜙𝑛𝑎𝑐 − 𝜙𝑝𝑜𝑠𝑡 (1) 

𝑁𝑃𝐹= 𝐹𝑁 − 𝜃𝑒𝑥ℎ𝑎𝑢𝑠𝑡 − 𝜙𝑝𝑟𝑒 − 𝜙𝑛𝑎𝑐 (2) 

𝐷∗
𝑛𝑎𝑐 = 𝜙𝑝𝑟𝑒 + 𝜙𝑛𝑎𝑐 (3) 

𝐹∗
𝑁 = 𝐹𝑁 − 𝜃𝑒𝑥ℎ𝑎𝑢𝑠𝑡 (4) 

𝑁𝑃𝐹=𝐹∗
𝑁 − 𝐷∗

𝑛𝑎𝑐 (5) 

𝐹𝑥′ = 𝑁𝑃𝐹 − 𝐷𝐴/𝐶 = 𝐹∗
𝑁 − 𝐷∗

𝑛𝑎𝑐 − 𝐷𝐴/𝐹 
(6) 

𝐹𝑖𝑛𝑡𝑒𝑟𝑓=𝐹𝑥′𝑖𝑛𝑠𝑡. − 𝐹𝑥′𝑆𝑀= Δ𝐹∗
𝑁 − Δ𝐷𝐴/𝐹 − Δ𝐷∗

𝑛𝑎𝑐 
(7) 

Δ𝐷𝐴/𝐹 = 𝐷𝐴/𝐹 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑙𝑒𝑑 − 𝐷𝐴/𝐹 𝑐𝑙𝑒𝑎𝑛−𝑤𝑖𝑛𝑔 
(8) 

Δ𝐷∗
𝑛𝑎𝑐 =  𝐷∗

𝑛𝑎𝑐 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 − 𝐷∗
𝑛𝑎𝑐 𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 

(9) 

Δ𝐹∗
𝑁 = 𝐹∗

𝑁 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 − 𝐹∗
𝑁 𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑  

(10) 

𝐶𝐷∗ 𝑛𝑎𝑐 =
𝐷∗

𝑛𝑎𝑐

1
2

𝜌𝜐2𝛢𝑟𝑒𝑓

 
(11) 

𝐶𝐷 𝑡𝑜𝑡 = 𝐶𝐷 𝐴/𝐹 + 𝐶𝐷∗ 𝑛𝑎𝑐  
(12) 

 



F. Aircraft performance and fuel burn calculation 

 

In addition to the assessment of the effect of engine installation on the elements of interference and the overall 

changes in lift and drag, it is of interest to undertake a preliminary evaluation of the impact on fuel burn. Within the 

current work a typical preliminary design approach of fuel burn analysis at the cruise phase is considered. A point 

mass model of the aircraft is considered at the constant altitude and the constant flight Mach number. The balance of 

forces on the aircraft needs to be obtained to result in steady state flight as a basis of the calculations. The initial 

mass of the aircraft at the start of the cruise phase is determined based on the BADA methodology [38] for a typical 

250-seater aircraft. As a preliminary assessment, the climb phase was modelled [38] as independent of the type of 

engine used for the cruise calculation. As a result, the fuel burnt during the climb phase was deducted from the 

maximum take-off mass of the airplane and the aircraft mass at start of cruise for baseline configuration was 

established. The mass of the propulsion system is included in the overall aircraft mass for the baseline configuration 

(E1). To determine the additional weight for larger engine (E2), the mass of the propulsion systems was estimated 

based on the statistical correlations for engine mass [39] and nacelle mass [40]. The bare engine mass is estimated 

based on the WATE++ method [39]. The method is a statistical approach to engine weight estimation based on the 

overall pressure ratio, by-pass ratio and core massflow. This method has been calibrated based on a range of engines 

with a reported uncertainty [39] of ±10% on the mass estimation for engines ranging in thrust from 120 to 400 kN. 

The WATE++ tool was assessed against known engines of a similar class (BPR, OPR, thrust) to the E1 engine and  

a discrepancy of -3%  on engine mass was noted which is considered to be satisfactory within the performance of 

statistical methods [41]. The nacelle mass estimation is based on Jenkinson et.al [40]. This uses a piecewise linear 

model based on the take-off thrust of the engine. The weight of thrust reversers was taken into account while 

establishing the method. Based on previous studies [33], the uncertainty of the method was found to be ±10%. 

Moreover, the nacelle mass was estimated for the E1 and E2 engines and it equates to 25% of the total engine mass 

which is in agreement with current reported technology levels [42]. From the quadrature method for the assessment 

of uncertainties [43] the overall combined uncertainty on the propulsion system mass is ±3.4%. Based on the mass 

estimation for the entire propulsion system, the weight penalty for the larger engine E2 is evaluated and added to the 

mass of the baseline aircraft configuration at the start of cruise (‘SoC’). With use of the aircraft mass for ‘SoC’ the 

weight and therefore the lift requirement of the aircraft is established. For each configuration, the overall lift 

including the vertical component of thrust is considered. Based on the required lift, the corresponding drag value is 



evaluated based on the CFD computed drag polars for the considered configurations with additional corrections for 

parasitic drag. Furthermore, the thrust requirement is set based on the drag of the aircraft. However, the drag of the 

configuration contains the thrust dependent terms and therefore it is an iterative process to balance the thrust and 

drag at a given lift coefficient. Once the balance of forces on the aircraft is achieved the first step of the cruise 

computation is computed and the fuel burn is evaluated. The mass of fuel burnt at that step is subtracted from the 

‘SoC’ aircraft mass and the procedure is repeated for the next step. To provide relatively small steps for the 

integration process, the cruise phase was divided in to 40 steps to consider steps shorter than 20 minutes [44] of 

steady flight. 

III. Results 

A. Validation 

 

The validation of the CFD method addresses two parts that are the building blocks of the current research. The first 

part assesses the capability of CFD to determine the installation drag. The NASA CRM was used as a representative 

modern aircraft with its wing designed [12] for M=0.85 and 𝐶L of 0.5. The aerodynamics for the CRM with Through 

Flow Nacelles (TFN) were experimentally investigated [13, 14] using a 1/37
th

 sub-scale model at a Reynolds 

number of 5x10
6
. The second part of the validation work is concentrated on the validation of the jet exhaust flow 

with use of the AIAA Dual-Flow Reference Nozzle (DFRN) test case [18, 30]. The assessment of CFD for the 

exhaust flow is based on the comparison of current computations [31] with the experimental results [18] for the 

DSFRN.  

 

 

1. Aircraft validation with and without through flow nacelle 

 

The validation activity for the clean aircraft [17] investigated the mesh dependence, sensitivity to turbulence models 

and compared the computed results with the measurements by Rivers [13] , as well as with the computation studies 

from participants of DPW4 presented and Tinoco [28]. The experimental data by Rivers [13] was corrected for the 

presence of the wind tunnel walls, but remained uncorrected for the presence of the sting. The results for the fine 

mesh with the 𝑘 − 𝜔 SST turbulence model have a +13𝑑𝑐 (5% of airframe drag) discrepancy at the cruise condition 



of 𝑀 = 0.85 and 𝐶𝐿 = 0.5. The average of the results from the DPW4 has a +5.5𝑑𝑐 difference from the 

experimental data with a ±10𝑑𝑐 scatter. Within the current work an evaluation with the 𝛾 − 𝜃 transition model on 

the medium mesh provide a +6dc difference between the CFD and measurements at the cruise condition (𝑀 = 0.85 

and 𝐶𝐿 = 0.5). To expand the validation, analyses for the CRM configuration with and without the nacelle and pylon 

were computed with three mesh resolutions. To validate the computation for the aircraft at the condition closest to 

the chosen mission profile for the engine-airframe configurations, the Mach number of 0.83 was chosen from the 

experimental dataset [13]. The results for the wing body (WB) configuration and the wing body nacelle pylon 

(WBNP) configuration were compared with the measurements (Fig. 6). With the increase of mesh resolution for the 

WB configuration the difference between the computed and measured drag at 𝐶𝐿 = 0.5 reduces monotonically from 

16.2 dc to 8.6dc for the coarse (6.9𝑥106 elements) and fine mesh (14.7𝑥106 elements) respectively. As for the 

WBNP configuration, the drag discrepancy reduces from 15.3dc for coarse mesh (15.7𝑥106 elements) to 10.3dc and 

8.4dc for medium (22.4𝑥106 elements) and fine mesh (29.7𝑥106 elements), respectively. 

 

The penalty associated with the installation of the TFN in terms of the installation drag (Δ𝐶𝐷 𝑖𝑛𝑠𝑡) was determined 

for the computations for each mesh resolution and compared with the installation drag determined from the 

experimental drag polars (Fig. 7). The computation broadly captured (Fig. 7) the magnitude of 25dc for installation 

drag (Δ𝐶𝐷 𝑖𝑛𝑠𝑡) and the magnitude was approximately constant across the range of 𝐶𝐿 from 0.15 to 0.55. For higher 

𝐶𝐿, the Δ𝐶𝐷 𝑖𝑛𝑠𝑡 reduces rapidly beyond 𝐶𝐿 = 0.6 and equals zero at about 𝐶𝐿 = 0.65. The reduction of Δ𝐶𝐷 𝑖𝑛𝑠𝑡 is 

predominantly the result of an increased contribution of the TFN to the aircraft lift 𝐶𝐿 with relatively constant drag 

contribution to 𝐶𝐷 at higher aircraft incidence. The results for all the mesh resolutions are within 3dc for the range of 

lift coefficient from 0.4 to 0.6. The best accuracy is achieved for the fine mesh resolution with 1dc discrepancy 

across the range of interest (CL from 0.4 to 0.6). The behaviour of the installation drag (Δ𝐶𝐷 𝑖𝑛𝑠𝑡) was found to be 

non-monotonic with respect to the mesh resolution. Even though the aircraft drag (𝐶𝐷 𝑡𝑜𝑡) was reduced 

monotonically with the increase of the mesh resolution for both configurations with and without TFN, the rate of the 

reduction was different for each geometric configuration (Fig. 6). As a result, the Δ𝐶𝐷 𝑖𝑛𝑠𝑡 for the “coarse” mesh 

presented relatively good results as a result of cancellations of mesh dependent terms (Fig. 7). The “fine” mesh 

solutions were more accurate on both the absolute values of 𝐶𝐷 𝑡𝑜𝑡, as well as the Δ𝐶𝐷 𝑖𝑛𝑠𝑡. Within this work the fine 

mesh approach, with a 1dc difference in Δ𝐶𝐷 𝑖𝑛𝑠𝑡 between the computations and the measurements, has been used for 



the subsequently reported results. This finding is in agreement with the initial results from 6
th

 DPW [15], where no 

improvement in the accuracy for Δ𝐶𝐷 𝑖𝑛𝑠𝑡 is reported for structured meshes denser than 20 million elements. 

 
 

Fig. 6 Drag polar for the CRM without (WB) and 

with nacelle and pylon (WBNP). 

Fig. 7 Installation drag coefficient ( ∆𝑪𝑫 𝒊𝒏𝒔𝒕) for 

WBNP against 𝑪𝑳; compared with measurements 

[13] 

  

2.  Dual Flow Reference Nozzle (DFRN) 

 

To validate the numerical methods for the calculations of the nozzle performance metrics for separate-jet exhaust 

systems study was performed based on the DSFRN configuration [18]. The typical nozzle performance parameters 

such as overall thrust coefficient (𝐶𝑉) and discharge coefficients for both core (𝐶𝑑
𝐶𝑜𝑟𝑒) and by-pass (𝐶𝑑

𝐵𝑃𝐷) nozzles 

were chosen for the comparison between the simulations and measurements [18]. The effect of domain size, mesh 

resolution and iterative convergence were assessed as part of the work by Otter [31]. Due to the main interest in the 

cruise performance of engines within the current study, the fan nozzle pressure ratios (FNPRs) from 2.2 to 2.6 for 

the DSFRN are the most significant. The discrepancy for overall 𝐶𝑉 as compared with experimental data is less than 

+0.1% for the FNPRs between 2.2 and 2.6. In comparison, the computational results [30] from the AIAA PAW2 

workshop had an average difference in computed overall 𝐶𝑉 was -0.4% with a scatter of computational data by 

±0.5%. As for the bypass ( 𝐶𝑑
𝐵𝑃𝐷) and the core discharge coefficient (𝐶𝑑

𝐶𝑜𝑟𝑒) the average difference was -0.44% and 

-0.62% across the cruise range of FNPR. The previous studies [30] have reported average differences in the range of 

-0.4 and -0.6 %, for bypass and core respectively. 

 



 

B. Isolated engines 

 

To evaluate the effect of engine size on the isolated engine performance, two engines are considered. A baseline 

engine (E1) and a larger, low specific thrust engine (E2) with a 𝐷𝐹𝐹  1.23 times larger than E1 engine. Both engines 

are designed to generate the same standard net thrust at cruise condition. Thus, prior to engine installation on the 

airframe, the computation of the isolated engines (Fig. 8a and b) across a range of incidences from 0° to 8° was 

performed at the cruise 𝑀 = 0.82, MFCR=0.75 for both engine. Due to the different thermodynamic cycles (Table 

1), the engines operate with FNPR=2.71 and 2.11 as well as CNPR=1.37 and 1.68, for baseline engine E1 and larger 

engine E2 respectively. The results are presented in aircraft drag counts for the full aircraft geometry and therefore 

the drag values for two isolated engines are presented. 

 

For the baseline engine E1, the modified nacelle drag coefficient (𝐶𝐷∗𝑛𝑎𝑐) for two engines is approximately 35 dc at 

𝐴𝑜𝐴𝑒𝑛𝑔 = 0°. The drag coefficient for the isolated engines (𝐶𝐷∗𝑛𝑎𝑐) was quadratic across the incidence range of 

incidence from 0° to 8° with 41dc at 8°. The cruise condition presents an effective incidence onto the installed 

engine of approximately 𝐴𝑜𝐴𝑒𝑛𝑔 = 4.25°. The 𝐴𝑜𝐴𝑒𝑛𝑔 is a result of summation of the aircraft angle of attack at 

cruise (𝐴𝑜𝐴𝐴/𝐶 = 2.5°) with the geometric installation angle for the E1 engine of 𝐴𝑜𝐴𝑖𝑛𝑠𝑡 = 1.75°. The engine 

installation angle is considered to be acceptable based on the comparison with the installation angle of 𝐴𝑜𝐴𝑖𝑛𝑠𝑡 =

1.5° for the CRM through-flow nacelle. At 𝐴𝑜𝐴𝑒𝑛𝑔 = 4.25°, the pair of isolated engines has a 𝐶𝐷∗𝑛𝑎𝑐 of 36dc which 

is approximately 15.4% of the clean aircraft total drag. Compared with the baseline engines, the larger engines ‘E2’ 

(Fig. 8b) has a 𝐶𝐷∗𝑛𝑎𝑐 of 50 dc at 𝐴𝑜𝐴𝑒𝑛𝑔 = 0° with this increase in 𝐶𝐷∗𝑛𝑎𝑐 approximately proportional to the 

increase in wetted area. Moreover, other secondary effects on the drag value are present such as a modest effect of 

the Reynolds number and the effect of different nozzle efflux. At a typical cruise condition 𝐴𝑜𝐴𝑒𝑛𝑔 = 4.25°, the 

pair of isolated engines E2 has a 𝐶𝐷∗𝑛𝑎𝑐 of 52dc which is approximately 22.2% of the clean aircraft total drag. 

Across the computed range of incidence the lift coefficient (𝐶𝐿 𝑒𝑛𝑔) for the baseline engine E1 was relatively small 

and increased from 0 to 0.008. For the same range of incidence, the 𝐶𝐿 𝑒𝑛𝑔 for the E2 engine increased from 0 to 

0.012. For the effective incidence onto the engine of approximately 4.25° at the cruise condition, the lift force is 



negligible at approximately 0.004% and 0.006% of the lift force for the clean airframe of the cruise lift of 𝐶𝐿 = 0.5, 

for the E1 and E2 engines respectively. 

 

The key differences between the engines are observed in the exhaust region due to the different specific thrusts 

which result is different Mach number distributions for the jet of the by-pass nozzle (Fig. 8a and b). As a result of 

the relatively high FNPR of 2.71 for E1 engine, a set of expansion and compression waves arise in the jet which is 

reflected in the pressure distribution by the negative pressure that occurs between 20% and 60% of the core cowl 

length (𝐿𝑐𝑜𝑟𝑒 𝑐𝑜𝑤𝑙). Nevertheless, the overall force on the exhaust 𝜃𝑒𝑥ℎ𝑎𝑢𝑠𝑡  is beneficial and corresponds to 11.1% of 

the calculated standard net thrust. For the low specific thrust engine E2, the FNPR of 2.11 results in a different flow 

topology and a relatively constant distribution of positive pressure coefficient 𝐶𝑝 = +0.3 that acts on the surface of 

the core cowl. This provides a beneficial forward oriented force (𝜃𝑒𝑥ℎ𝑎𝑢𝑠𝑡) which corresponds to approximately 18% 

of 𝐹𝑁 𝑟𝑒𝑓 . For the larger engine with the lower specific thrust and concomitant reduced FNPR, these beneficial 

changes in 𝜃𝑒𝑥ℎ𝑎𝑢𝑠𝑡  on the core cowl make it relatively easier to achieve the same values of modified thrust (𝐹𝑁
∗ ) to 

compensate for the increase in modified nacelle drag (𝐷𝑛𝑎𝑐
∗ ) 

 

The nacelles for both engines were designed based on typical design guidelines and the computations indicate a 

plausible design of the nacelle with a peak Mach number of 1.06 and 1.08 at the nacelle forebody at zero incidence, 

for the E1 and E2 engines respectively. The intake and nacelle performance is considered acceptable for this study 

with no intake separations, conventional pressure distributions over the nacelle, inlet pressure recovery of 0.998 and 

a nominal fan face M of 0.54 at 𝐴𝑜𝐴𝑒𝑛𝑔 = 4.25° (Fig. 8a and b). 

 



a)  b)  

Fig. 8 Mach number contours for a) E1 engine and b) E2 engine at 𝑹𝒆 = 𝟒𝟓𝒙𝟏𝟎𝟔, 𝑴 = 𝟎. 𝟖𝟐, 𝑨𝒐𝑨𝒆𝒏𝒈 =

𝟒. 𝟐𝟓° 

 

C. Wing-installed engines 

 

1. The effect of engine position on the overall installation for the baseline E1 engine 

 

To investigate the impact of the E1 engine position on the aerodynamic effects of engine installation and 

interference terms a set of evaluations were performed at nine engine  (Fig. 2). For each engine position the 

interference terms are determined from RANS simulations of the combined airframe-engine configurations as well 

as the clean wing and isolated engine configurations (Equation (7)). Re-trimmed aircraft configurations are 

considered at cruise condition 𝑀 = 0.82 for an overall vertical force coefficient 𝐶𝑧′ = 0.5 that includes the vertical 

component of thrust. An assessment of the overall installation effect (𝐹𝑖𝑛𝑠𝑡) of the baseline E1 engine is considered, 

as well as, its sensitivity to engine position (Fig. 9). The 𝐹𝑖𝑛𝑠𝑡 is decomposed into the drag (𝐷𝑛𝑎𝑐
∗ ) and thrust 

elements (𝜃𝑒𝑥ℎ𝑎𝑢𝑠𝑡) for the isolated engine as well as the interference terms for the engine (Δ𝐷𝑛𝑎𝑐
∗ ; Δ𝐹𝑁

∗ ) and the 

airframe (Δ𝐷𝐴/𝐹). The results are referenced to the value of standard net thrust of the baseline engine E1 at cruise 

condition (𝐹𝑁 𝑟𝑒𝑓). For the bare engine, the added +11% 𝐹𝑁 𝑟𝑒𝑓  benefit from 𝜃𝑒𝑥ℎ𝑎𝑢𝑠𝑡  is offset by the −14% 𝐹𝑁 𝑟𝑒𝑓  

drag penalty associated with the nacelle (𝐷𝑛𝑎𝑐
∗ ) to provide an isolated Net Propulsive Force (NPF) –3.2% penalty 

relative to the bare engine standard net thrust (𝐹𝑁).  

 



To evaluate the interference terms due to the installation onto the aircraft, the interference for thrust (Δ𝐹𝑁
∗), modified 

nacelle drag (Δ𝐷𝑛𝑎𝑐
∗ ) and airframe drag (Δ𝐷𝐴/𝐹) are considered in the installation force diagram (Fig. 9). For the 

different installation positions there are different sensitivities of the interference forces which ultimately affect the 

final resultant force (𝐹𝑖𝑛𝑠𝑡). The overall sensitivity of 𝐹𝑖𝑛𝑠𝑡 to the engine position is 1.7% 𝐹𝑁 𝑟𝑒𝑓  depending on the 

engine location. The decomposition of the overall effect on to the individual interference terms is assessed. The 

interference on thrust (Δ𝐹𝑁
∗) is predominantly sensitive to the engine axial position and the overlap of the exhaust 

with the wing (positions C, Δ𝑋/𝐿𝑛𝑎𝑐 = −0.06; Fig. 2). For these cases there is a penalty where Δ𝐹𝑁
∗ < 0 which 

reduces the obtained engine thrust (𝐹𝑁
∗ ). For the group of positions A and B (Δ𝑋/𝐿𝑛𝑎𝑐 = −0.45 and Δ𝑋/𝐿𝑛𝑎𝑐 =

−0.26), the changes in Δ𝐹𝑁
∗  are relatively minor with a slight beneficial effect of Δ𝐹𝑁

∗ < +1%. For all installation 

positions the interference effect on the nacelle (Δ𝐷𝑛𝑎𝑐
∗ ) is advantageous with benefits in the order of +2.6%  to 

+5.1%𝐹𝑁 𝑟𝑒𝑓. These benefits are slightly more pronounced for the group of engines in positions A and B which are 

further forward of the wing leading edge (Fig. 9). The largest change in Δ𝐷𝑛𝑎𝑐
∗  is +5.2%𝐹𝑁 𝑟𝑒𝑓 which arises for 

position A2 and partially offsets the – 14% associated with the isolated nacelle drag 𝐷𝑛𝑎𝑐
∗ . In general, for all engine 

positions, there is an adverse effect on the airframe with a penalising Δ𝐷𝐴/𝐹 which ranges from −0.3% to 

−6.6% 𝐹𝑁 𝑟𝑒𝑓 . The engines in the relatively close axial position (positions C, Δ𝑋/𝐿𝑛𝑎𝑐 = −0.06) have less of an 

impact on Δ𝐷𝐴/𝐹 (Fig. 9). However, the engines positioned further forward (positions B, Δ𝑋/𝐿𝑛𝑎𝑐 = −0.26 and 

positions A, Δ𝑋/𝐿𝑛𝑎𝑐 = −0.45) have a more notable impact with Δ𝐷𝐴/𝐹 in the range of −4.7% to −6.6% 𝐹𝑁 𝑟𝑒𝑓 . 

This typically offsets the previous benefits in Δ𝐷𝑛𝑎𝑐
∗  for this family of installation positions. 

 

To indicate the sensitivities of the interference effects, a map of the overall interference (𝐹𝑖𝑛𝑡𝑒𝑟𝑓) effects was created 

based on the nine engine positions for the E1 engine (Fig. 10) with use of natural neighbour interpolation [45] based 

on Delaunay triangulation. Although nine points are relatively few to create detailed contour maps, the visualization 

was considered helpful to understand the key sensitivity at a preliminary design stage. In the considered range the 

best position is C3 and other results were presented as relative to this position. Based on the interference map (Fig. 

10), a trend along the C3-A1 diagonal is observed. Movement of the engine closer to the wing vertically or upstream 

axially was detrimental as compared with position C3. The worst position is A2 where it is approximately -1.7% of 

reference thrust relative to C-3. 



 
Fig. 9 Overall installation force diagram for E1 engine in a range of under-wing positions. 

 

 

  

 

 

Fig. 10 The overall interference (𝑭𝒊𝒏𝒕𝒆𝒓𝒇) for baseline engine (E1) for 𝒅𝒙 and 𝒅𝒛 engine displacements. 

 

 

 



2. The effect of engine position on the overall installation for the E2 engine 

 

The impact of engine position on the overall installation effect for the larger engine E2 was also considered. The E2 

engine was tested for the same range of positions as engine E1 and between the two engine sizes the location of 

nacelle trailing edge (Δ𝑋/𝐿𝑛𝑎𝑐|𝐸1; Δ𝑍/𝐿𝑛𝑎𝑐|𝐸1) was kept constant. Similarly, the installation force diagram (Fig. 11) 

for the E2 engine was created to decompose the overall installation effect (𝐹𝑖𝑛𝑠𝑡) in to the drag (𝐷𝑛𝑎𝑐
∗ ) and thrust 

(𝜃𝑒𝑥ℎ𝑎𝑢𝑠𝑡) terms for isolated engine as well as the interference terms (Δ𝐹𝑁
∗ , Δ𝐷𝑛𝑎𝑐

∗ , Δ𝐷𝐴/𝐹). For this larger E2 engine, 

the effect of the 𝜃𝑒𝑥ℎ𝑎𝑢𝑠𝑡  is +18% 𝐹𝑁 𝑟𝑒𝑓  which is offset by −21%𝐹𝑁 𝑟𝑒𝑓 for the 𝐷𝑛𝑎𝑐
∗  to give an overall NPF for the 

isolated engine which is −2.5% lower than the bare engine standard net thrust (Fig. 11). As expected, for 

aerodynamically similar nacelle designs for E1 and E2, the engine modified drag (𝐷𝑛𝑎𝑐
∗ ) approximately scales with 

the engine fan area. However, as for the 𝜃𝑒𝑥ℎ𝑎𝑢𝑠𝑡 , the benefits are approximately +2% greater than an evaluation 

based on the geometrical relation between the engines. It is explained by the reduced and more favourable FNPR for 

E2 engine as compared with E1. Overall, the isolated engine E2 performed +0.7% better than E1 engine in terms of 

the isolated net propulsive force. 

 

For the E2 engine, there are some notable differences in the interference terms which depend on the engine position 

and overall the final installed NPF varies by 1.3% 𝐹𝑁 𝑟𝑒𝑓 across the full range of positions (Fig. 11). This is less than 

the range of 1.7% which was calculated for the smaller E1 engine across the same range. For the E2 engine, the 

effects of the interference reflect some of the aspects observed for the smaller E1 engine. For example (Fig. 11), the 

group of engines positioned closest to the wing leading edge (Δ𝑋/𝐿𝑛𝑎𝑐|𝐸1 = −0.06, C1, C2, C3) exhibit a negative 

effect of the exhaust interference (Δ𝐹𝑁
∗) of approximately −1% 𝐹𝑁 𝑟𝑒𝑓. The other engines positioned further 

upstream show a beneficial impact from about +0.9% to +2.6% 𝐹𝑁 𝑟𝑒𝑓 . All of the engines show a beneficial impact 

of the interference on the nacelle across the range of +3% to +8% 𝐹𝑁 𝑟𝑒𝑓  with, in general, the largest benefits 

observed for the engines furthest upstream of the wing with Δ𝑋/𝐿𝑛𝑎𝑐|𝐸1 = −0.45 (group A). The effect of 

interference on the aircraft (Δ𝐷𝐴/𝐹) ranges from slightly positive (+0.8%) for the close coupled position C3 

(Δ𝑋/𝐿𝑛𝑎𝑐|𝐸1 = −0.06, Δ𝑍/𝐿𝑛𝑎𝑐|𝐸1 = −0.26) to significantly negative of up to −9% for the other configurations 

further upstream (groups A and B). 



 
Fig. 11 Overall installation force diagram for engine E2 in different engine positions. 

The sensitivity of the overall impact on the resultant force (𝐹𝑖𝑛𝑠𝑡) depends on the balance of these competing 

interference elements and is visualized based on the Delaunay triangulation as previously for the range of non-

dimensional positions Δ𝑋/𝐿𝑛𝑎𝑐|𝐸1 and Δ𝑍/𝐿𝑛𝑎𝑐|𝐸1 (Fig. 12). The spatial sensitivity of all configurations is presented 

as related to the configuration C3 (Fig. 12). For the larger E2 engine, the best engine locations with the greatest 

resultant force are B3 and C3. This is further upstream than the best position for the smaller E1 engine which was at 

C3. The distribution highlights the reduced sensitivity of the resultant force (𝐹𝑖𝑛𝑠𝑡) due to the installation position for 

the E2 engine (Fig. 12) as compared with the E1 engine (Fig. 10). The greatest penalty for the E2 engine is observed 

at the A1 position, which is similar to the highest penalty for E1 at the positions A1 and A2. However, the 

detrimental effect for the engine at position A1 for E1 engine is approximately 1.5 times greater than for the E2 

engine. 

 



 
Fig. 12 The overall interference (𝑭𝒊𝒏𝒕𝒆𝒓𝒇) for the E2 engine for the 𝒅𝒙 and 𝒅𝒛 engine displacements. 

 

3. The effect of engine size on the overall installation effects 

 

To evaluate the impact of engine size on the installation effects, two size engines are considered over a range of 

positions. The baseline engine E1 (𝐷𝐹𝐹 𝐵𝑎𝑠𝑒 , Fig. 13a) is compared with the very-high by-pass ratio engine E2 

(1.23𝐷𝐹𝐹 𝐵𝑎𝑠𝑒 , Fig. 13b) and over the range of engine positions considered, the position of the trailing edge point of 

the nacelle top-line was kept constant between the engines.  

a)  b)  

Fig. 13 Contours of Mach number for C3 configurations a) with E1 and b) with E2 engine. 

 

The replacement of the E1 engine with E2 engine resulted in notable changes to the flowfield (Fig. 13) and wing 

aerodynamics. For example, an initial inspection of the overall Mach number field distribution (Fig. 13) at a typical 



cruise incidence of 𝐴𝑜𝐴𝐴/𝐶 = 2.5°, shows a reduction of the peak suction on the upper side of the wing and the 

upstream movement of the shock. The changes in the local aerodynamics led to the overall effect in the aerodynamic 

forces and the installation of the engine resulted in the increase of total drag (𝐶𝐷 𝑡𝑜𝑡) (Fig. 14) which is the sum of 

airframe drag (𝐶𝐷 𝐴/𝐹) and the nacelle drag (𝐶𝐷∗𝑛𝑎𝑐). At a constant overall vertical force that includes aerodynamic 

lift and the vertical component of thrust, the 𝐶𝐷 𝑡𝑜𝑡 increased by 27 dc for the E1 configuration and by 36 dc for E2 

configuration, as compared with the clean wing airframe. The installation penalty in the drag domain is 

approximately proportional to the increase of engine size as the drag of the nacelle is the dominant component of the 

installation drag. The changes in the aerodynamics also affected the lift force of the aircraft. For the baseline engine 

E1 at a typical cruise incidence of 𝐴𝑜𝐴𝐴/𝐶 = 2.5°, the effect of loss of lift as compared with the clean wing 

configuration was Δ𝐶𝐿 𝑡𝑜𝑡 = −0.015. The loss of lift is predominantly an effect of changes to local wing 

aerodynamics, as the engine contribution to the lift force was 𝐶𝐿 𝑛𝑎𝑐 = +0.001 and vertical component of thrust 

+0.005 As compared with the baseline engine E1, the E2 engine resulted in a further reduction of lift coefficient of 

Δ𝐶𝐿 𝑡𝑜𝑡 = −0.020 with a negligible beneficial contribution of the nacelle 𝐶𝐿 𝑛𝑎𝑐 = +0.002 and vertical component 

of thrust +0.007.  

 

Fig. 14 Overall vertical force (𝑪𝒁′) and drag (𝑪𝑫 𝒕𝒐𝒕) polar for CRM with and without engines. 

 

The effect on the aircraft aerodynamic performance is predominantly the result of changes to the pressure 

distribution. It has been determined that the changes of the viscous forces due to the increase of engine size are 

triggered mainly by the upstream movement of the shock location on the upper side of the wing. The magnitude of 



the contribution to overall drag force is broadly two orders of magnitude less significant than the changes to the 

pressure distributions. The impact of the larger engine as compared with the baseline engine on the pressure 

distribution is of interest for the wing cross-section closest to the installation at y/(b/2)=0.3 (Fig. 15), where y is the 

spanwise distance from the aircraft axis and b is the span of the wing. As compared with the clean wing (Fig. 15) the 

installation of the baseline engine E1 reduced the peak suction at the wing upper side by Δ𝐶𝑝 = +0.3 at x/c=0.05 

and caused the movement of the shock from x/c=0.45 to 0.25 with a simultaneous increase of shock strength. 

Compared with the baseline engine E1 (Fig. 15), the installation of the larger engine E2 caused a further decrease of 

the peak suction by Δ𝐶𝑝 = +0.1 and a upstream movement of the shock by Δ𝑥/𝑐 = −0.05. The pressure 

distribution on the aft section of the wing beyond 𝑥/𝑐 = 0.6 for both engines is coincident with the pressure 

distribution of the clean wing airframe. For both engine-airframe configurations E1 and E2 (Fig. 15), the reduction 

of the suction on the upper side of the wing leads to a reduction of local lift coefficient and as a consequence a local 

reduction of lift induced drag on the wing. Compared with the clean wing (Fig. 15) the installation of baseline 

engine E1 also changed the pressure distribution on the lower side of the wing. The increased acceleration Δ𝐶𝑝 =

−0.25 occurs towards the wing leading edge 𝑥/𝑐 = 0.05. Beyond x/c=0.1 a beneficial effect of increased pressure 

is observed with a maximum increase of Δ𝐶𝑝 = +0.3 at approximately x/c=0.4. The pressure distribution for the aft 

section of the wing (𝑥/𝑐 > 0.7) of the E1 configuration is the same as the distribution for the clean wing. Compared 

with the E1 engine (Fig. 15), the installation of larger E2 engine resulted in broadly the same peak acceleration at 

the wing leading edge and a relatively modest increase of pressure by Δ𝐶𝑝 = +0.05 at x/c=0.1 and at x/c=0.5. The 

E2 engine has a significantly lower fan nozzle pressure ratio (FNPR) of 2.11 as compared with 2.71 for E1 engine. 

The increased suction on the lower side of the wing for the E1 configuration is a result of stronger influence on the 

wing surface from the expansion waves in the jet.  

 

On the inboard side of the engines (y/(b/2)=0.2, Fig. 15a), the presence of the installation causes an increase of peak 

suction by Δ𝐶𝑝 = −0.1 on the upper side of the wing for both engine configurations and it moves the shock location 

forward by Δ𝑥/𝑐 = −0.2 and Δ𝑥/𝑐 = −0.25 for E1 and E2 configurations, respectively. On the lower side of the 

wing (y/(b/2)=0.2), a significant flow acceleration Δ𝐶𝑝 = −0.25 is observed between x/c=0.05 and x/c=0.2.  

The changes to the pressure distribution on the wing affect the spanwise lift distribution. On the inboard side of the 

engine between y/(b/2)=0.1 and 0.3 (Fig. 15b), the magnitude of the reduction of local lift coefficient is below -0.04 



and -0.05 for E1 and E2 configuration, respectively. On the outboard side of the wing (y/(b/2)=0.4, Fig. 15c), the 

presence of the installation reduced the peak suction on the upper side of the wing by Δ𝐶𝑝 = +0.2 and Δ𝐶𝑝 = +0.3 

for E1 and E2 configuration respectively. A two shocklets in the pressure distribution are noted at approximately 

x/c=0.2 and x/c=0.6 for both engine configurations as compared with a single shock at x/c=0.4 for the clean-wing. 

The impact of the installation on the lower side of the wing is modest for the outboard side of the wing (y/(b/2)=0.4, 

Fig. 15c). As a result of pressure distribution, the local loss of lift reduces to less than -0.01 on the outboards side of 

the engine (y/(b/2)>0.4, Fig. 15c and d) and no difference between the two engine configuration is observed at 

approximately y/(b/2)=0.6 and further to the tip of the wing. 

 

Fig. 15 Pressure distribution for aircraft with and without engines; 𝐑𝐞 = 𝟒𝟓𝐱𝟏𝟎𝟔; 𝐌 = 𝟎. 𝟖𝟐; 𝐀𝐨𝐀𝐀/𝐂 = 𝟐. 𝟓°; 

𝐲/(𝐛/𝟐) from 0.2 to 0.5 

 

To localize the changes in pressure and viscous forces and to highlight the importance of the changes to the overall 

drag, the difference of local drag force per unit area between the E1 configuration and the idealized ‘no-interference’ 



configuration is calculated (Fig. 16a). As for the upper side of the wing (Fig. 16a), the installation of the E1 engine 

reduced the local drag due to the movement of the shock location upstream on the inboard side of the installation. 

The changes to the drag occur predominantly for the root and centre sections of the wing with negligible difference 

to the wing tip. The wing pressure-field affects the force distributions on the engine. The fan cowl, core cowl and 

plug surfaces were presented in cylindrical coordinate system (𝜉, Θ) (Fig. 17a). A notable beneficial effect on the 

afterbody of the fan cowl is present due to the forward pressure force exerted by the wing pressure field. Moreover, 

the shock pattern in the jet was affected by the interaction with the pressure field and the force distribution on the 

core cowl was changed but no overall beneficial trend is observed. At the surface of the plug, a beneficial pressure 

force is also exerted due to the pressure-field of the wing. Furthermore, the difference in drag distribution between 

the E2 configuration compared with the clean-wing and isolated engine was done (Fig. 16b). The installation of E2 

engine caused a greater reduction of drag at the root of the wing as compared with the E1 engine. For the engine 

surfaces, the beneficial pressure force is exerted by the wing pressure-field. Modest interaction of the wing pressure-

field with the jet is observed in the forces distribution, due to the relatively low FNPR for the E2 configuration (Fig. 

17b) as compared with the E1 engine. A modest beneficial pressure force is exerted by the wing pressure field on the 

surface of the engine core cowl. 

a)  b)  

Fig. 16 Distribution of difference drag (𝚫𝑫𝒕𝒐𝒕/𝑨𝒍𝒐𝒄) between a) configuration E1; b) configuration E2 and the 

clean-wing. 

 



a)  b)  

Fig. 17 Distribution of difference drag (𝚫𝑫𝒕𝒐𝒕) between a) configuration E1; b) configuration E2 and isolated 

engine. 

 

 

To quantify the overall installation effect, a force diagram (Fig. 18) for the two engines E1 and E2 was developed. 

The cruise operating point was chosen with the coefficient for the overall vertical force of 𝐶𝑧′ = 0.5 at M=0.82. The 

installation effects are considered for a re-trimmed aircraft and are referenced to the value of standard net thrust of 

the baseline engine E1 at cruise condition (𝐹𝑁 𝑟𝑒𝑓) (Fig. 18). The isolated net propulsive force (NPF) is 

deconstructed into beneficial thrust terms (𝐹𝑁 and 𝜃𝑒𝑥ℎ𝑎𝑢𝑠𝑡) and detrimental modified nacelle drag (𝐷𝑛𝑎𝑐
∗ ) for both 

engines. As a result, the difference in isolated NPF between the two engines is determined to be a benefit of 

+0.7 𝐹𝑁 𝑟𝑒𝑓  for the larger engine E2.  

 

To include the interference terms due to the installation onto the aircraft, the interference for thrust (Δ𝐹𝑁
∗), modified 

nacelle drag (Δ𝐷𝑛𝑎𝑐
∗ ) and airframe drag (Δ𝐷𝐴/𝐹) were considered (Fig. 18 a). Considering the overall interference 

effect (𝐹𝑖𝑛𝑡𝑒𝑟𝑓) in baseline position C3, a benefit of +1.2% of 𝐹𝑁 𝑟𝑒𝑓  and +2.7% of 𝐹𝑁 𝑟𝑒𝑓  was observed for the 

engines E1 and E2, respectively. The overall difference in the installation force (𝐹𝑖𝑛𝑠𝑡) between the two engines is 

+2.2% for the larger engine as a result of benefits in isolated NPF and advantageous interference (𝐹𝑖𝑛𝑡𝑒𝑟𝑓) as 

compared with the baseline engine. The benefit for E2 as compared with E1 is explained by an improvement in 

Δ𝐷𝑛𝑎𝑐
∗  by +0.4% 𝐹𝑁 𝑟𝑒𝑓  and in Δ𝐷𝐴/𝐹 by +1% 𝐹𝑁 𝑟𝑒𝑓  for the E2 engine. Meanwhile, a very modest difference 



between the engines is observed in Δ𝐹𝑁
∗  by +0.1% 𝐹𝑁 𝑟𝑒𝑓  in favour of E2 engine. Moreover, the sensitivity of 

overall interference and the sensitivity of the individual terms is dependent on the engine position. By locating of the 

engines vertically closer to the wing (position C1, Fig. 18 b), the overall installation force (𝐹𝑖𝑛𝑠𝑡) increased by 

+2.45% 𝐹𝑁 𝑟𝑒𝑓 for the E2 engine as compared with E1 at corresponding position. The major advantage for the 

larger engine comes from the improvement in Δ𝐷𝐴/𝐹 by +1.2% 𝐹𝑁 𝑟𝑒𝑓, as the improvement in Δ𝐷𝑛𝑎𝑐
∗  is 

+0.5% 𝐹𝑁 𝑟𝑒𝑓  and the effect on Δ𝐹𝑁
∗  is neutral as compared with E1. The movement of the engines upstream from 

the wing affected the interference terms significantly (position A1, Fig. 18 c). A notable benefit in Δ𝐹𝑁
∗  of 

+1.7% 𝐹𝑁 𝑟𝑒𝑓  and improvement in Δ𝐷𝑛𝑎𝑐
∗  by +3.1% 𝐹𝑁 𝑟𝑒𝑓  are observed for the E2 engine as compared with E1 at a 

corresponding position. However, the interference on airframe Δ𝐷𝐴/𝐹 became more penalising for the larger engine 

by −2.7% 𝐹𝑁 𝑟𝑒𝑓 and it offsets the gains from the thrust and nacelle interferences. As a result, the difference in the 

overall installation force between E2 and E1 engines at position A1 results in +2.8% 𝐹𝑁 𝑟𝑒𝑓 for E2 engine. To assess 

the spatial sensitivity of the overall installation effect, a map of difference in 𝐹𝑖𝑛𝑠𝑡 is considered (Fig. 19). Apart 

from the benefit for E2 as compared with E1 in terms of isolated NPF (+0.7% 𝐹𝑁 𝑟𝑒𝑓), the additional difference in 

𝐹𝑖𝑛𝑡𝑒𝑟𝑓 is considered. The difference in overall installation effect between the two configuration is a result of 

considerably different sensitivities of interference effect (𝐹𝑖𝑛𝑡𝑒𝑟𝑓) for each engine. Relative to the E1, the 

+2.2% 𝐹𝑁 𝑟𝑒𝑓  benefit for E2 engine at position C3 increases up to +3.2% 𝐹𝑁 𝑟𝑒𝑓  benefit for E2 at position A2. Even 

though, the position A2 is less favourable for both engines as compared with C3, it is relatively advantageous to 

locate a larger engine in position A2, if other design constraints require it. 

 

It is useful to compare these results for the impact of engine size with previous experimental studies [2, 3, 4]. These 

studies using TPS systems for a range of engine sizes indicated that the installation penalty ranged from about 35dc 

to 42dc for a range of engine sizes from 𝐷𝐹𝐹/𝑐𝑙𝑜𝑐  of 0.42 to 0.51. These experimental studies were also under 

nominal cruise conditions although the Mach number was notably lower with 0.75 [2]. The current computational 

studies have been conducted at a nominal cruise condition of M=0.82 and the initial nominal reference condition for 

the engines is the standard net thrust (𝐹𝑁 𝑟𝑒𝑓). To ensure compatibility with the previous experimental work, the 

current analysis is modified to present installation drag within the same definition [2]. Taking this into account, and 

keeping in mind that these are the changes in the drag domain only, the current computational results indicate a 



typical installation penalty (𝐶𝐷 𝑖𝑛𝑠𝑡) of 33dc for the E1 engine (𝐷𝐹𝐹/𝑐𝑙𝑜𝑐 = 0.36) and 45dc for the E2 engine 

(𝐷𝐹𝐹/𝑐𝑙𝑜𝑐 = 0.45). For each of these engines, the 𝐶𝐷 𝑖𝑛𝑠𝑡 varies with position by 5dc and 3dc for the E1 and E2 

engines, respectively. Although the current configurations and operating conditions are different, the overall effect is 

broadly in agreement with these previous experimental studies. However, a different approach was followed for the 

accounting of the thrust, as compared with the previous studies
 
[2, 3, 4]. Due to the design of the engines for the 

same standard net thrust (𝐹𝑁) and explicit presentation of the exhaust forward force (𝜃𝑒𝑥ℎ𝑎𝑢𝑠𝑡) a benefit in 

aerodynamic forces for the larger engine (E2) is observed. Overall, as compared with the baseline (E1) engine, the 

large engine (E2) requires from -2.2% to -3.2% less thrust to compensate for the overall installation penalties over 

the range of considered positions. The large penalties of the modified drag of the nacelle (𝐷𝑛𝑎𝑐
∗ ) increased 

proportionally to the engine size, however, they were offset by the better interference terms and the beneficial effect 

on the exhaust term (+𝜃𝑒𝑥ℎ𝑎𝑢𝑠𝑡) due to the design of the core cowl and plug as well as the favourable lower FNPR. 

 

a)  

b)  



c)   

Fig. 18 Installation force for E1 and E2 in positions a) C3 b) C1 and c) A1. 

 

 

 

Fig. 19 The difference in overall installation effect (𝑭𝒊𝒏𝒔𝒕|𝑬𝟐 − 𝑭𝒊𝒏𝒔𝒕|𝑬𝟏) between E2 and E1 engines. 

 

4. Cruise fuel burn analysis 

 

To quantify the effect of engine position in terms of fuel consumption, a single point calculation at the start of 

cruise ‘SoC’ condition was initially considered to compare the engine fuel flow (Fig. 20) based on the thrust 

requirement for the balanced aircraft. For the baseline engine E1, the spatial sensitivity of aerodynamic forces to 

different engine position results in a greater thrust requirement for some of the engine positions as compared with 

the baseline position C3. As a result, the fuel consumption (𝑚̇𝑓𝑢𝑒𝑙) of the engine rises by approximately +1.6% in 

the worst position A2 as compared with the best installation position C3.  



 

To compare the fuel consumption between the two engines the cycle performance at the ‘SoC’ design point was 

analysed. The benefits in 𝑚̇𝑓𝑢𝑒𝑙  for E2 engine are about -5.8% based on the cycle analysis. The single point 

calculation for a balanced aircraft at ‘SoC’ with use of the computed aerodynamic installation effects and the weight 

penalty for the larger engine resulted in benefits in 𝑚̇𝑓𝑢𝑒𝑙 ranging from -5.6% to -6.6% for E2 as compared with E1 

at a corresponding position. The increase of aircraft weight for E2 configurations resulted in a greater lift 

requirement, and as a consequence greater drag and thrust requirement for the engine. Overall the detrimental effect 

of weight was in order of +2% increase in 𝑚̇𝑓𝑢𝑒𝑙 that partially offset the benefits from the cycle improvements and 

aerodynamics. As a result a spatial sensitivity map for the fuel consumption at start of cruise condition was created 

for the E2 as compared with E1 at corresponding position and referenced to the 𝑚̇𝑓𝑢𝑒𝑙  of E1 at C3 (Fig. 21). The 

thermodynamic cycle improvements, aerodynamic differences and weight penalty were included (Fig. 21). The -

5.6% benefit in 𝑚̇𝑓𝑢𝑒𝑙 for E2 engine as compared with E1 is observed at position C3. Due to different spatial 

sensitivities for the two engines, the benefit for the large engine E2 increases to a -6.6% reduction in fuel flow rate at 

position A2. 

 

 

Fig. 20 Sensitivity map of the fuel consumption (𝒎̇𝒇𝒖𝒆𝒍) for the E1 as compared with E1_C3. 

 



 

Fig. 21 Sensitivity map of the fuel consumption (𝒎̇𝒇𝒖𝒆𝒍) for the E2 engine as compared with E1_C3. 

 

To compute the integrated fuel consumption over the entire cruise phase, the throttle dependent aerodynamic effects 

were considered. A range of engine power settings for E1 and E2 engines in configuration C3 was computed (Table 

1), to cover the cruise phase from the start of cruise (‘SoC’) through end of cruise (‘EoC’), as well as to give an 

indication about the effects at start of descent (‘SoDe’). 

 

Furthermore, to determine the performance of the engine over the entire cruise phase of flight, the relation between 

the overall installation force (𝐹𝑖𝑛𝑠𝑡) and the engine power setting and lift coefficient is considered. Based on the 

computations for engine E1 in the baseline position C3, a sensitivity map of the overall installation force (𝐹𝑖𝑛𝑠𝑡) as a 

percentage of reference thrust (𝐹𝑁 𝑟𝑒𝑓) was created (Fig. 22a) to aid the cruise fuel burn analysis. The map covers the 

range of lift coefficient and range of engine power settings represented by the intake massflow capture ratio 

(MFCR). For the baseline engine E1, the installation penalty (𝐹𝑖𝑛𝑠𝑡) increases for aircraft off-design conditions away 

from 𝐶𝑧′ = 0.5 and 𝑀𝐹𝐶𝑅 = 0.75. The dominant trend is the increase of the installation penalty with reducing 

MFCR as a result of spillage. The secondary effect observed is the jet interaction with the flow acceleration over the 

lower side of the wing at MFCR=0.75 and low lift coefficient (𝐶𝑧′ = 0.2). At 𝐶𝑧′ = 0.2, the reduction of power 

setting initially alleviates the jet interaction for the MFCR=0.7, however, further reduction of power setting is 

dominated by the increasing spillage drag. Overall, over the entire range of conditions considered, the sensitivity to 

engine power setting and aircraft lift coefficient is in order of 3% of 𝐹𝑁 𝑟𝑒𝑓 .Based on the computed relation between 



the overall installation force (𝐹𝑖𝑛𝑠𝑡) and the engine power setting, the integrated cruise fuel burn calculation was 

considered with the weight penalty for large engine included. For the E1 configuration the ‘SoC’ condition was 

evaluated to be at 𝐶𝑧′ = 0.47 and MFCR=0.75 for a fully balanced aircraft at M=0.82 at an altitude of 35000ft. The 

step calculation method for cruise phase was applied and the 10000 km range was divided in 40 steps. As a result, 

the end of cruise ‘EoC’ point was established for the E1 configuration at 𝐶𝑧′ = 0.34 and MFCR=0.7. The integrated 

fuel burn for the cruise phase was evaluated. A similar off-design performance map was created for the large engine 

E2 (Fig. 22b). The large engine exhibits a more monotonic behaviour with regards to power setting and lift 

coefficient as compared with E1 engine. The design of the engine for the low specific thrust resulted in more 

favourable nozzle pressure ratios and the jet interference effects at the high power setting and low lift coefficients 

(𝐶𝑧′ = 0.2) were mitigated.  

 

a)  

b)  



Fig. 22 𝑭𝒊𝒏𝒔𝒕/𝑭𝑵 𝒓𝒆𝒇 for a) E1 and b) E2 over the range of 𝑪𝒛′  and MFCR 

 

The effect of the engine power setting on the overall installation penalty for the E2 engine is approximately twice as 

sensitive as the effect of power setting for the E1 engine and it is in order of 5.5% of 𝐹𝑁 𝑟𝑒𝑓 . Based on off-design 

map for the overall installation effect (𝐹𝑖𝑛𝑠𝑡) as a function of the engine power setting and aircraft lift coefficient, the 

integrated cruise fuel burn calculation was considered. For the E2 configuration the ‘SoC’ condition was evaluated 

to be at 𝐶𝑧′ = 0.49 and MFCR=0.75 for a fully balanced aircraft. The greater value of the 𝐶𝑧′ is the result of the 

increased weight of the aircraft for the E2 configuration as compared with the E1 configuration. The step calculation 

method for cruise phase was applied for the same mission at M=0.82 over a range of 10000 km. As a result, the end 

of cruise ‘EoC’ point was established for the E1 configuration at 𝐶𝑧′ = 0.36 and MFCR=0.72. The integrated fuel 

burn for the cruise phase was evaluated and as compared with the E1 engine the E2 engine consumed -4.8% less fuel 

over the same mission. As a consequence, the estimated benefits from the thermodynamic cycle analysis in the order 

of -5.8% reduced to -4.8% fuel burn reduction in favour of the large E2 engine taking into account the effects of 

throttle dependent aerodynamic effects, installation terms and the engine weight penalty that were considered over a 

long-haul mission. 

IV. Conclusion 

The effect of engine installation for a typical 300 seater at a cruise condition of M=0.82 and altitude 35000 ft 

was considered. The sensitivity of the overall installation effect to engine size, position and power setting was 

evaluated. Depending on the position, the sensitivity of the aerodynamic installation effect ranged within 1.7% and 

1.3% of reference thrust for the baseline engine and the larger engine, respectively. The fuel burn during the cruise 

phase was compared for both engines based on the computed engine-aircraft aerodynamics. Based on the cycle 

performance, the reduction in fuel burn due to the high by-pass ratio cycle was approximately −5.8%. Moreover, 

the aerodynamic benefit for the large engine was observed due to favourable aerodynamic interference for the low 

specific thrust engine. However, the aerodynamic benefits were offset by a detrimental effect of engine weight. For 

one typical installation position, the single point calculation at the start of cruise indicated the fuel reduction of -

5.6% for the larger engine as compared with the baseline engine. Finally, the complete cruise phase was considered 

with an evaluation of the throttle dependent interference effects. Compared with the baseline engine, the larger 



configuration with the -34% lower specific thrust had a nominal cycle benefit of −5.8% which reduced to −4.8% 

when the effects of engine weight, installation and throttle dependent interference were included.  
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