Cyber-Physical System Based Optimization Framework for Intelligent Powertrain Control

Chen Lv, Hong Wang, Bolin Zhao, Dongpu Cao, Wang Huaji, Junzhi Zhang, Yuting Li and Ye Yuan.

Abstract
The interactions between automatic controls, physics, and driver is an important step towards highly automated driving. This study investigates the dynamical interactions between human-selected driving modes, vehicle controller and physical plant parameters, to determine how to optimally adapt powertrain control to different human-like driving requirements. A cyber-physical system (CPS) based framework is proposed for co-design optimization of the physical plant parameters and controller variables for an electric powertrain, in view of vehicle’s dynamic performance, ride comfort, and energy efficiency under different driving modes. System structure, performance requirements and constraints, optimization goals and methodology are investigated. Intelligent powertrain control algorithms are synthesized for three driving modes, namely sport, eco, and normal modes, with appropriate protocol selections. The performance exploration methodology is presented. Simulation-based parameter optimizations are carried out according to the objective functions. Simulation results show that an electric powertrain with intelligent controller can perform its tasks well under sport, eco, and normal driving modes. The vehicle further improves overall performance in vehicle dynamics, ride comfort, and energy efficiency. The results validate the feasibility and effectiveness of the proposed CPS-based optimization framework, and demonstrate its advantages over a baseline benchmark.

Introduction
The ever-growing attention to the environment and energy conservation requires automobiles to be cleaner and more energy efficient. Technologies such as powertrain electrification and alternative fuels are being actively researched and developed. Among these solutions, various types of electrified vehicles with alternative power sources, including battery electric vehicles (BEVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and fuel cell electric vehicles (FCEVs), are very promising due to their higher efficiency and lower or even zero emissions [1]-[5]. Besides, the regenerative braking performance of an electrified powertrain is strongly related to the driver torque request, actuated by the accelerator and brake pedals [13]. The energy efficiency of BEVs can be improved over 20% through regenerative braking. Therefore, small changes in driving mode can cause unnecessary energy waste and sub-optimal vehicle performance [14]. And information of driving scenarios, driver modes, and driver-vehicle interactions is crucial and should be integrated to enhance electric powertrain performance.

The main drawback of the conventional implementations in powertrain design and control is the lack of global optimality in the selection of architecture, parameters, and variables [15]. By using the conventional design flow, which deals with different subsystems independently, even if the controller is very well designed, the improvement of vehicle performance could be limited, since the physical architecture and parameters are not optimized in sync with the controller, and the system potential is not fully explored. Optimal co-design of the physical architecture and controller parameters with human operation consideration provides the ability to extend system design space and improve the overall CPS performances [16]-[19]. However, in addition to the cyber and the physical worlds, we need to include the “Human” side of a vehicle. To do so, the interactions between the physical plant, controller parameters, vehicle performance, and driving mode have to be well understood.

In this paper, we propose a CPS based framework for the optimal co-design of the physical plant parameters and controller variables for an electric powertrain with different driving mode considerations, while taking into account the trade-off between vehicle dynamic performance, ride comfort, and energy efficiency.

The paper is organized as follows: The co-design optimization problem is illustrated in Section II. A cyber-physical optimization framework is proposed and presented in Section III. System models and driving-mode-oriented controller synthesis are described in Section IV. Then, the performance exploration methodology is...
proposed in Section V. Section VI reports simulation-based design optimization results, followed by conclusions in Section VII.

Problem Description

In this study, the goal is to formulate the CPS-based intelligent powertrain control under different driving modes for an electric vehicle as a multi-objective optimization problem. Optimal assignments for design variables to maximize performances while satisfying a number of constraints are expected to be found. To ensure that the problem is of a reasonable complexity, only longitudinal vehicle control in normal driving situations is considered, and the sizing of the powertrain system is fixed, i.e., the parameters of the energy source (battery) and the power source (electric motor) are constant to bound the exploration space.

Intelligent Electric Powertrain System

Electric Powertrain System

Figure 1 shows the overall structure of the electrified powertrain system considered in this study. For the physical structure, a central electric motor is installed at the front axle of the vehicle. During acceleration, the electric motor, powered by the battery, provides propulsion through the transmission system to the wheels. During deceleration, the regenerative braking torque generated by the motor is synchronized with the friction brake torque modulated by the hydraulic modulator, in a cooperative regenerative braking function.

Intelligent Powertrain Control Architecture

The high-level powertrain control strategy is designed to output a suitable torque to propel the vehicle, satisfying the longitudinal motion requirement of the vehicle. The output torque demand is generally determined by driver’s operation maneuver. Specifically, as Figure 2 shows, in this study, the intelligent powertrain controller is synthesized considering different driving modes, i.e., the requested output torque of the powertrain is not only decided by the driver’s operation, but also differentiated by the driving modes. In the implementation phase, the driving mode can be either selected through a human-machine interface (HMI), or identified by smart sensing of driver’s intentions or preferences using machine learning approaches. In this work, we assume that the driving mode selection is available via HMI.

Driving Mode

 Oriented by the driving-mode-aware intelligent powertrain control described above, three driving modes are considered in this work and defined as follows.

1) Sport: The Sport driving mode exhibits sharp and abrupt accelerations and deceleration, aiming at vehicle dynamic performance. This mode results in higher fuel consumption and increased likelihood of accidents as well.

2) Eco: The driving mode of Eco exhibits a high efficient energy conversion of the powertrain with small amplitudes and low frequency actions on both longitudinal and lateral dynamics. This Eco mode values primarily energy efficiency, avoiding abrupt variation of powertrain torque demand.

3) Normal: The Normal driving mode is in between. It does not aim at absolute vehicle performance, but would like to balance multiple performances, such as vehicle dynamic performance, energy consumption, and ride comfort.

Driving Scenario

In this paper, as mentioned above, we focus on vehicle longitudinal motion control, whereas the lateral motion and dynamics related to the steering wheel operation are not involved. Hence, the following driving scenarios are of importance in our derivations.

1) Scenario 1: 0-50km/h acceleration. In this scenario, the car is accelerated from 0 to 50 km/h. With the intelligent powertrain controller, the motor torque will be generated based on different control strategies and parameter selections corresponding to different driving modes. The vehicle acceleration, jerk, and the time taken in this process are used to evaluate the dynamic performance and ride comfort under different driving modes.

2) Scenario 2: 50-0 km/h deceleration. In this scenario, the car is decelerated from 50 km/h to 0. For an electric car, the total brake demand is distributed to the regenerative and frictional brakes. Different deceleration demands will be generated by the intelligent powertrain controller under different driving modes. The deceleration and the time taken in this process are used to evaluate vehicle’s performance and energy efficiency during optimization.
3) Scenario 3: standard driving cycle. The standard ECE driving cycle is adopted for measuring energy efficiency since this driving cycle is close to the behavior of a vehicle in an urban area and covers an extended operation time period. This scenario will be used to check vehicle’s energy efficiency during optimization.

Vehicle Performance

The performances for vehicle design and control involve safety, dynamical performance, energy efficiency, and ride comfort. Driving mode consideration implies the introduction of trade-offs between multiple performances that are the objective functions in our optimization problem under different driving modes.

1) Dynamic performance: Dynamic performance is the fundamental and the most important indicator of a car. Maximum speed and acceleration time are proxies for dynamic performance. Dynamic performance depends on driver behavior as well as on the parameters of the physical plant and the controller. In this paper, we select the acceleration time and the deceleration time as two indicators for the dynamic performance.

2) Energy efficiency: The energy efficiency of a vehicle can be represented by the fuel or energy consumed during a certain trip. Powertrain performance as well as driving mode have great effects on energy consumption. For electrified vehicles, energy consumption can be significantly enhanced through regenerative braking. Thus, in this paper, we set the regenerated braking energy as one of the optimization goals in the trade-off problem.

3) Ride comfort: During accelerations and decelerations, torsional oscillations may occur in the powertrain due to fast torque transitions, resulting in unexpected jerks at the vehicle level and deteriorated drivability. To cope with this problem, an active damping controller is usually required [20]. Thus, we would like to co-optimize related plant parameters and controller variables to improve comfort level under different driving modes.

Basic Requirements and Limitations

During vehicle design, control, and optimization, there are some basic requirements and limitations of the physical systems that need to be taken into account.

1) Maximum vehicle speed: The maximum speed of the vehicle is determined by the highest rotational speed of the electric motor, the radius of tire, and the gear ratio.

2) Minimum gradeability: Gradeability is defined as the highest grade a vehicle can ascend maintaining a particular speed. It is an important requirement in vehicle design.

3) Minimum brake intensity: In order to guarantee stability during braking, a vehicle needs to have enough braking force, represented by the brake intensity z, as required by regulation ECE-R13 [21].

4) Powertrain limitation: Once the sizing of the power source is given, then the output torque of the powertrain is bounded by the outer characteristics profile of the electric drive.

Cyber-Physical Optimization Framework

The optimization problem is a constrained multi-objective optimization problem where both vehicle and controller parameters need to be optimally chosen. In this paper, we adopt as co-design methodology Platform-Based Design (PBD) [10]. As Figure 3 shows, PBD is a meet-in-the-middle approach that favors re-usability. At the top layer are high-level requirements and constraints, which are characterized by driving modes, driver maneuvers, and driving scenarios. The bottom layer is defined by a design platform, i.e., a library of components characterized by their behaviors and performance. The bottom layer contains the models of the electric powertrain, the brakes, and the driver-mode-aware controller. The models are parameterized to capture families of vehicles, powertrains, brakes and controllers. The design problem is to select a set of components and their parameters so that the constraints are satisfied and the objective functions optimized. The selection process is called mapping, indicated as the meeting point in the diagram, since the obligations captured in the requirements and constraints are discharged by particular components or combinations thereof. Co-design of the physical plant parameters, controller protocols and variables, for the intelligent electric powertrain is then made possible.

System Modelling and Formulation

The following model and formulation is able to support interactive performance exploration and optimization between components at different layers within a unifying framework.

System Modelling

Electric Powertrain Model

Oriented by controller synthesis and optimization, the powertrain is simplified to a two-inertia model, as presented in Figure 4. One inertia corresponds to the electric motor, and the other corresponds to the contribution by the wheels. The gearbox, consisting of the
transmission, final drive, differential, and inner and outer constant-velocity (CV) joints, is located close to the motor inertia.

Assuming that the half shafts are of the same length, the motor output torque is considered to be equally distributed over the left and right half shafts. The motor torque is modelled as a first-order reaction, as shown in equation (1). The transmitted torque via the gearbox can be represented by equation (2). The model for the half-shaft torque can be given by equation (3).

\[T_{m,ref} = T_m + \tau_m T_m \]
\[J_m \dot{\theta}_m = T_m - 2T_{hs} / i_z \]
\[T_{hs} = k_{hs}(\theta_m / i_z - \theta_w) + c_{hs}(\theta_m / i_z - \theta_w) \]

where, \(\tau_m \) is the small time constant, \(T_m \) is the half-shaft torque, \(J_m \) is the motor inertia, and \(\theta_m \) and \(\theta_w \) are the angular positions of electric motor and load, respectively. Furthermore, \(k_{hs} \) and \(c_{hs} \) are the stiffness coefficient and damping coefficient of the half shaft, respectively.

The energy source, i.e. the battery, is built as an open-circuit voltage-resistance model based on the data of the lithium-ion battery utilized in a commercial electric vehicle. In this paper, look-up tables are compiled on the basis of the state of charge (SOC) and temperature data for the battery, modeling its charging-discharging internal resistance. The model’s input is the power required by the electric motor, and its outputs include the SOC, the voltage at the output port, the current, and the temperature of the battery. The detailed model with parameters can be found in [6].

Regenerative Brake Model

In this paper, the brake force distribution (BFD) ratio \(\beta \) is set to a fixed value, which can be obtained by the parameters of the brake devices. The front and rear brake demand can be calculated as follows.

\[T_b = 2T_{b,fe} + 2T_{b,rr} \]
\[T_{b,fe} = \frac{\beta}{2} T_{b, demanded} \]
\[T_{b,rr} = \frac{1-\beta}{2} T_{b, demanded} \]

where \(T_b \) is the actual braking torque provided by the blended brakes, \(T_{b, demanded} \) is the demanded braking torque of the vehicle, and \(T_{b,fe} \) and \(T_{b,rr} \) are the brake torque of one front wheel and one rear wheel, respectively.

Vehicle Longitudinal Model

Because we focus on the longitudinal motion of the vehicle, the vehicle model adopts the longitudinal dynamics model:

\[m\ddot{v} = \frac{2T_{w}}{r} - \frac{T_r}{r} - fm g - \frac{1}{2} C_D A \rho v^2 \]

where \(m \) is the vehicle mass, \(v \) is the vehicle speed, \(r \) is the nominal radius of tire, \(C_D \) is the coefficient of air resistance, \(A \) is the frontal area, and \(\rho \) is the air density.

Some key parameters of the case study electric vehicle are listed in Table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric powertrain</td>
<td>Peak power</td>
<td>40 kW</td>
</tr>
<tr>
<td></td>
<td>Maximum torque</td>
<td>145 Nm</td>
</tr>
<tr>
<td></td>
<td>Maximum speed</td>
<td>9000 rpm</td>
</tr>
<tr>
<td></td>
<td>Gear ratio</td>
<td>7.881</td>
</tr>
<tr>
<td>Vehicle</td>
<td>Total mass (m)</td>
<td>1360 kg</td>
</tr>
<tr>
<td></td>
<td>Wheel base (L)</td>
<td>2.50 m</td>
</tr>
<tr>
<td></td>
<td>Coefficient of air resistance ((C_D))</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>Nominal radius of tyre ((r))</td>
<td>0.285 m</td>
</tr>
</tbody>
</table>

Driving-Mode-Aware Intelligent Controller Design

As Figure 5 represented, the high-level supervisory controller adopts a scheduling protocol, requesting the control architecture and objectives of the low-level controller, as well as parameters to the physical plant, dynamically adapts to different driving modes.

Figure 5. Scheduling protocol of the driving-mode-aware controller.

Sport-Mode Powertrain Control

Based on the sporty feature of this driving mode, the vehicle longitudinal control under this condition can be seen as an acceleration tracking problem, realizing the sporty feel of the driving for passengers. The control objective is to track the reference acceleration using the actual one. Because of its ability to address nonlinearity and fast response [22], a sliding-mode control (SMC) scheme is applied, as shown in Figure 6(a).
In designing the sliding-mode controller, an integral-type sliding surface \(S \) is chosen with the error term \(e \) defined in equations (8) and (9).

\[
S = \int e \, dt \quad (8)
\]

\[
e = \dot{a} - a_{\text{ref}} \quad (9)
\]

where \(a \) and \(a_{\text{ref}} \) are the actual and reference values of the vehicle acceleration, respectively.

Lyapunov direct method is used to design a control law that derives the system trajectories to the sliding surface [23]. The following function is used for the system:

\[
V = \frac{1}{2} S \dot{S} \quad (10)
\]

To ensure the stability of the system, the derivative of the Lyapunov function should satisfy the following condition [24]:

\[
\dot{V} = S \ddot{S} \leq 0 \quad (11)
\]

Then, combining the above equations, when \(\dot{S} = 0 \), the SMC control law can be derived. Besides, to avoid the chattering caused by the discontinuous sign function, \(\text{sgn}(S) \), in the standard SMC, a continuous function \(S \) is utilized instead of the discontinuous term, as shown in equation (12) [25].

\[
T_{\text{m},\text{ref}} = m r \left(a_{\text{ref}} + f g + \frac{C_s A p v^2}{2 m} - k_{\text{SMC}} S \right) \quad (12)
\]

where \(k_{\text{SMC}} \) is the positive gain of the SMC controller.

![Diagram of the powertrain controller for different driving modes.](image)

Eco-Mode Powertrain Control

In this mode, the acceleration and deceleration operations of the vehicle become significantly milder. It features high energy efficiency with smooth driving maneuvers. To this end, the powertrain controller uses a combined feed-forward and feed-back structure, as shown in Figure 6(b), in order to actively damp powertrain torsional vibrations, reducing the power consumption during torque transient process. Based on the control objective, the feed-forward term can be determined by the target motor torque \(T_{\text{m},\text{ref}} \), which can be calculated using the reference acceleration. For the feedback term, a linear proportional-integral (PI) controller is adopted to damp the torsional oscillation.

\[
T_{\text{m},\text{ref}} = T_{\text{m},\text{ref}} + (K_p + K_i \int \dot{e} \, dt) \cdot e \quad (13)
\]

\[
e = T_{\text{m},\text{ref}} - 2T_{\text{hs}} / i_{\text{hs}} \quad (14)
\]

where the feedback gains \(K_p \) and \(K_i \) are tuning parameters of the PI controller.

Normal-Mode Powertrain Control

In the normal driving mode, the operators usually care more about energy efficiency and smooth driving. In this condition, the low-level powertrain controller adopts the same combined feed-forward and feed-back architecture as for the Eco-mode to ensure vehicle drivability and energy efficiency.

Performance Representation

1) Dynamic performance: In this paper, we select the 0-50 km/h acceleration time \(t_{\text{acc}} \) and the 50-0 km/h deceleration time \(t_{\text{brk}} \) as two indicators for the dynamic performance to capture driver’s behavior including the selection of suitable values for the gear ratio \(i_{\text{g}} \).

\[
E_{\text{reg}} = \eta_{\text{gen}} \cdot \int T_{\text{m},\text{reg}} \omega_{\text{m}} \, dt \quad (15)
\]

where \(E_{\text{reg}} \) is the regenerated braking energy, \(T_{\text{m},\text{reg}} \) and \(\omega_{\text{m}} \) are the regenerative brake torque and the angular speed of the electric motor, respectively, and the \(\eta_{\text{gen}} \) is the generation efficiency of the motor.

2) Energy efficiency Representation: In this paper, we set the regenerated braking energy defined in equation (15) as one of the optimization goals in the trade-off problem [26].

\[
j = \ddot{v} \quad (16)
\]

Constraint Formulation

1) Maximum vehicle speed. The constraint on vehicle speed is posed as:

\[
v_{\text{max}} = \frac{r \pi n_{\text{max}}}{30 i_{\text{g}}} \geq (100 / 3.6) \text{ m/s} \quad (17)
\]

where \(v_{\text{max}} \) is the maximum speed of the vehicle, \(n_{\text{max}} \) is the highest rotational speed of the electric motor, and the \(i_{\text{g}} \) is the gear ratio.
2) Gradeability. Given the electric motor capability, the gradeability performance can be determined by the gear ratio, which is represented as:

$$\eta i_g T_{m,\text{max}} = mgr (f \cos \alpha_{\text{max}} + \sin \alpha_{\text{max}})$$

$$i_{\text{max}} = \tan \alpha_{\text{max}} \geq 30\%$$

where η is the transmission efficiency, $T_{m,\text{max}}$ is the maximum torque of the electric motor, f is the friction drag coefficient, r is the nominal radius of tire, and the α is the grade angle.

3) Minimum brake intensity: The brake intensity required by regulation ECE-R13 can be given by [21]:

$$z = \frac{\delta}{g} \geq 0.1 + 0.85(\phi - 0.2)$$

where ϕ is the adhesion coefficient of the road.

4) Powertrain limits: The limitation set by the electric powertrain can be represented as follows:

$$T_m \omega_m \leq P_{\text{lim}}$$

where P_{lim} is the output power limit of the electric motor.

Driving-Mode Aware Performance Optimization

Design Space Exploration

Based on the assumptions and constraints formulated in Section II, namely requirements for vehicle safety, vehicle speed, gradeability, and powertrain capability, the boundaries of related physical plant parameters, i.e., upper and lower limits of the gear ratio i_g and BFD ratio β, are determined as follows. The design space is then bounded to this region.

$$7.708 \leq i_g \leq 9.330$$

$$0.60 \leq \beta \leq 0.80$$

Simulation Based Performance Exploration

In order to carry out multi-objective optimization under different driving modes, the impacts of the related parameters on the performance indicators and their interactions should be explored. In this paper, we propose a simulation-based exploration algorithm to do so. Assuming that, within the Parameter Library ξ, there are four parameters, including parameters of the physical plant and controller variables, deciding one performance. Under pre-defined driving scenario within valid design space, the selected vehicle performance is simulated in the Simulink environment stepping each parameter with a suitably small step. After global simulation-based exploration, the best performance with its corresponding value selections of the parameters can be attained. The overall flow of the optimization procedure under each driving mode is shown in Figure 7. And the detailed algorithm can be found in the Appendix.

Driving-Mode-Aware Multi-Objective Optimization

1) Sport-mode optimization: This driving mode requires to maximize vehicle dynamical performance first and foremost. In addition, we wish also to guarantee a good performance in terms of energy efficiency. Therefore, we consider the trade-off between dynamic performance and energy efficiency, with a much greater weight on the side of dynamic performance. The cost function is designed as:

$$J = \min \{ \omega_1 \cdot t_{\text{acc}} + \omega_2 \cdot I_{\text{reg}} - \omega_3 \cdot E_{\text{reg}} \}$$

$$J = \max \{ \omega_1 \cdot E_{\text{reg}} - \omega_2 \cdot j \}$$

Thus, within the cost function, the parameters of the powertrain system to be optimized are: i_g, K_{SMC}, β.

2) Eco-mode optimization: As mentioned above, under the eco driving mode, the drivers are usually with the intentions of saving energy and ensuring comfortable driving. Thus, for the multiple objective system optimization, the trade-off elements are now energy and efficiency ride comfort. The parameters to be optimized are: i_g, K_P, K_I, β.

3) Normal-mode optimization: In this case, the multi-objective optimization problem is a trade-off between dynamic performance and ride comfort. The cost function for this mode is designed as follows. And the parameters to be optimized are: i_g, K_P, K_I, β.

$$J = \min \{ \omega_1 \cdot j + \omega_2 \cdot t_{\text{acc}} - \omega_3 \cdot E_{\text{reg}} \}$$

The detailed weighting set-up for the objective functions of the three driving modes is summarized in Table 2.

Table 2. Weighting set-up for the objective functions under different modes.

<table>
<thead>
<tr>
<th>Driving Mode</th>
<th>Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Optimization Results and Analyses

The above system models, optimization goals, requirements, and formulated constrains are embedded in the Matlab/Simulink environment, driving the implementation of the multi-objective performance optimization for the intelligent powertrain system.

Optimization Results for Sport-Mode

Based on the cost function designed for the sport mode, we explore the interactive effects of the values of the SMC gain, the gear ratio, and BFD on the dynamic performance of the 0-50km/h acceleration and regenerated braking energy. According to the exploration results shown in Figure 8, the positive gain of the SMC controller k_{SMC} tends to be small, while the gear ratio prefers a larger value in favor of a better acceleration performance. For the regenerative braking performance, β needs to select a small value to reach a higher efficiency according to the exploration results.

Figure 8. Performance exploration results of the sport driving mode.

Optimization Results for Normal-Mode

Based on the multiple optimization objectives of the normal driving mode, the trade-off between ride comfort and vehicle acceleration performance is considered. As an example, the exploration results under the gear ratio of 8.3 are shown in Figure 9. The gains selection of the PI controller has a great impact on vehicle jerk. While the manipulation of the gains of the PI active damping controller has very small influence on the energy regeneration performance, according to the exploration results. The detailed optimization results for parameter selection are summarized in Table 3.

Figure 9. Performance exploration results of the normal driving mode.

Optimization Results for Eco-Mode

Since the controller structure of the eco mode is the same with the normal one, the related parameters which to be optimized are the same. However, because the optimization objectives are different under these two modes, the value selections of those parameters at the end of the optimization process can be far different, as shown in Figure 10. The generated optimization results of the parameters selection are listed in Table 3.

Figure 10. Performance exploration results of the eco driving mode.

Table 3. Optimized parameter for different driving modes.

<table>
<thead>
<tr>
<th>Driving mode</th>
<th>Optimized parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>i_g</td>
</tr>
<tr>
<td>Sport</td>
<td>9.012</td>
</tr>
<tr>
<td>Eco</td>
<td>8.281</td>
</tr>
<tr>
<td>Normal</td>
<td>8.563</td>
</tr>
</tbody>
</table>

Comparison of Results under Different Modes

Comparisons of the results under different modes is shown in Figure 11. The sport mode, which favors dynamic performance, dominates the acceleration and deceleration events among the three. The eco mode, which is in favor of energy efficiency, as well as the ride comfort, reaches the best performance in regenerative braking and jerk reduction. Finally, the normal mode, which sits in between the above two, achieves a good balance between dynamic performance, ride comfort, and energy efficiency.
Zhang, J., Lv, C., Gou, J., Kong, D. Cooperative control of

Chau, K.T., Chan, C.C. Emerging energy-efficient technologies

Hu, X., Jiang, J., Egardt, B., Cao, D. Advanced power-source

Crolla, D. A., Cao, D. The impact of hybrid and electric

Lv, C., Zhang, J., Li, Y. Extended-Kalman-filter-based

To compare the energy efficiency at the vehicle level with different

Future work will include vehicle test of the proposed optimization

References

7. Lv, C., Zhang, J., Li, Y. Extended-Kalman-filter-based regenerative and friction blended braking control for electric vehicle equipped with axle motor considering damping and

Contact Information

Dr. Lv, Chen
State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, China;
Advanced Vehicle Engineering Centre, Cranfield University, UK.
Email: e.lyu@cranfield.ac.uk

Dr. Wang, Hong
Department of Mechanical and Mechatronics Engineering, University of Waterloo, Canada.
Email: h492wang@uwaterloo.ca

Mr. Bolin Zhao
Mechanical Engineering Department, Eindhoven University of Technology, The Netherlands.
Email: b.zhao@student.tue.nl

Dr. Cao, Dongpu
Advanced Vehicle Engineering Centre, Cranfield University, UK.
Email: d.cao@cranfield.ac.uk

Dr. Wang, Huaji
Advanced Vehicle Engineering Centre, Cranfield University, UK.
Email: huaji.wang@cranfield.ac.uk

Prof. Zhang, Junzhi
State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, China;
Collaborative Innovation Center of Electric Vehicles in Beijing.
Email: jzhbang@mail.tsinghua.edu.cn

Dr. Li, Yutong
State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, China.
Email: wilson420813@gmail.com

Dr. Yuan, Ye
State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, China.
Email: ye_yuan_91@126.com
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEV</td>
<td>Battery electric vehicles</td>
</tr>
<tr>
<td>BFD</td>
<td>Brake force distribution</td>
</tr>
<tr>
<td>CPS</td>
<td>Cyber-physical system</td>
</tr>
<tr>
<td>FCEV</td>
<td>Fuel cell electric vehicles</td>
</tr>
<tr>
<td>HEV</td>
<td>Hybrid electric vehicle</td>
</tr>
<tr>
<td>HMI</td>
<td>Human-machine interface</td>
</tr>
<tr>
<td>RBS</td>
<td>Regenerative braking system</td>
</tr>
<tr>
<td>PBD</td>
<td>Platform-based design</td>
</tr>
<tr>
<td>PHEV</td>
<td>Plug-in hybrid electric vehicles</td>
</tr>
<tr>
<td>PI</td>
<td>Proportional-integral</td>
</tr>
<tr>
<td>SMC</td>
<td>Sliding mode control</td>
</tr>
<tr>
<td>SOC</td>
<td>State of charge</td>
</tr>
</tbody>
</table>
Appendix

As shown in Table 5, assuming that, within the Parameter Library ξ, there are four parameters, namely P_1, P_2, C_1, and C_2, deciding one powertrain performance. Under pre-defined driving Scenario E with valid design space, the selected performance is simulated stepping each parameter with a suitably small step. After global simulation-based exploration, the Best Performance K with its corresponding value selections of the parameters can be attained.

Table 5. Algorithm for performance exploration.

<table>
<thead>
<tr>
<th>Algorithm 1: Performance Exploration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: Parameter Library ${P_1, P_2, C_1, C_2} \subseteq \xi$, Scenario E</td>
</tr>
<tr>
<td>Output: Best Performance Point K</td>
</tr>
<tr>
<td>1: function Global Exploration (ξ, E)</td>
</tr>
<tr>
<td>2: $\text{Performance} \leftarrow {}$; $\text{Paras} \leftarrow {}$;</td>
</tr>
<tr>
<td>3: while $p_1 \in P_1$ do</td>
</tr>
<tr>
<td>4: while $c_1 \in C_1$ do</td>
</tr>
<tr>
<td>5: while $c_2 \in C_2$ do</td>
</tr>
<tr>
<td>6: $\text{Performance} \leftarrow \text{Simulation}(E, P_1, P_2, C_1, C_2)$</td>
</tr>
<tr>
<td>7: $\text{Paras} \leftarrow \text{Performance}(C_2)$;</td>
</tr>
<tr>
<td>8: $\text{Paras} \leftarrow \text{Performance}(P_2, C_1, C_2)$;</td>
</tr>
<tr>
<td>9: $\text{Paras} \leftarrow \text{Performance}(P_1, P_2, C_1, C_2)$;</td>
</tr>
<tr>
<td>10: $\text{K} \leftarrow \text{Best Performance Point (Paras)}$;</td>
</tr>
<tr>
<td>11: Return K, Paras</td>
</tr>
<tr>
<td>12: end while</td>
</tr>
<tr>
<td>13: end while</td>
</tr>
<tr>
<td>14: end function</td>
</tr>
</tbody>
</table>

7/20/2015