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i. ABSTRACT 

Seven UK fields located across Oxfordshire, Southampton and W. Berkshire, five 

cropped in winter wheat in 2014 and two in 2013 were investigated to assess the 

effect of soil variability on mean yield and yield variance under flat-rate and variable-

rate nitrogen applications. The high level aim being to provide information to help 

guide growers on how best to apply nitrogen fertiliser to increase yield and enhance 

yield uniformity. Data layers were collated for shallow Electrical-Conductivity (EC), 

Leaf Area Index, nitrogen application and yield. Yields were neither significantly 

higher under flat-rate nor variable-rate treatment (p = 0.8356). Variation in shallow 

EC was neither significantly more different in the variable-rate treatments or the flat-

rate treatments (p = 0.7862).  Variability in EC held a positive relationship with yield 

variability under both flat-rate (R2 = 0.2102) (p = 0.0213) and variable-rate treatment 

(R2 = 0.1507) (p = 0.0176). This suggests that variable-rate treatment provided no 

significant benefit in reducing yield variability.  

 

 

 

 

Keywords:  

Precision Farming, GPS, Fertiliser, UK Agriculture, Remote Sensing. 

 

  



ii 
 

ii. ACKNOWLEDGEMENTS 

I would like to thank my family for their constant support, Agrifood ATP for their 

funding of the project, my supervisors Dr Tim Hess and Dr Toby Waine for their 

patience, guidance and technical expertise and David Whattoff for his ongoing 

encouragement. 

 

  



iii 
 

iii. TABLE OF CONTENTS  

1. Introduction……………………………………………………..…………………………………………………….……..12 

2. Literature  Review…………………………………………………………………………………………………….…..16 

2.1 Winter Wheat in the UK………………………………………………………………………….…….…16 

2.2 Nitrogen…………………………………………………………………………………………………….…….17 

2.3 Soil……………………………………………………………………………………………………………....….18  

2.4 In-Field Variability………………………………………………………...…………………………………19 

2.5 Current Industry Practice for Applying Nitrogen Fertiliser……………………………....21 

2.6 Precision Fertiliser Application……………………………………………………………………...…24 

2.7 Combining Crop Monitoring Technology and Agronomic Advice for Variable-Rate 

Treatment……………….………………………………………………………………………………………….…28 

3. Methodology………………………………………………………………………………………………………………...33 

3.1 Site Selection……………………………………………………………………………………………….…..33 

3.2 EC Scanning and Soil Zoning…………………………………………………………………….…...…36 

3.3 Soil Sampling for Macronutrients………………………………………..............................…37 

3.4 Collation of Field data…………………………………………………….................................….37 

3.4.1 LAI…………………………………………………………..………………………………….………37 

3.4.2 N Applications……………………………………………………………………………..…..…37 

3.4.3 Yield……………………………………………………………………………………………………38 

3.5 Geoprocessing of Data…………………………………………………………………………………....38 

3.5.1 Collation of Shape Files…………………………………………………………..….....…38 

3.5.2 Geoprocessing in ArcMap………………………………………………………………...38 

3.5.3 Converting the Cell Size of LAI and N Application Data……………………..39 

3.5.4 Converting and Cleaning Yield Data……………………..………………..…..…...39 

3.5.5 Interpolation of Soil EC…………………………………………………………….…......40 

3.5.6 Resampling the Data……………………………………………………………….......….40 



iv 
 

3.6 Statistical Analysis………………………………………………………………………………...42 

4. Results………………………………………………………………………………………………………………….…....…44 

 4.1 Location of Sub-sample Plots……………………………………………………………………..……44 

 4.2 Rainfall………………………………………………………………………………………………………….…48 

 4.3 Nitrogen Application Rate………………………………………………………………………….……49 

 4.4 Wheat Yields…………………………………………………………….……………………………………..50 

 4.5 Variation of Yield and EC………………………………………………….……………………………...52 

 4.6 Relationships between Shallow EC and Yield……………………………………………………54 

5. Discussion…………………………………………………………………………………………………………………….…57 

 5.1 Yield…………………………………………………………………………………………………………………57 

 5.2 Yield Variability…………………………………………………………….………………………………....59 

 5.3 Limitations………………………………………………………………………………………………….…...62 

6. Conclusion……………………………………………………………...……………………………………………………..64 

7. References…………………………………………………………………………………………………………………...66 

8. Appendices…………………………………………………………………………………………………….………………73 

 

 

 

 

 

 

 

 

 

 

 



v 
 

iv. LIST OF FIGURES  

Figure 1. Upper diagram shows how ground scanner interacts with soil and 

illustrates the two depths to which soils were scanned. Ground scanner is towed 

behind a quad bike equipped with GPS (SOYL, 2012). 

Figure 2. Extraction of data points through sub sampling. 

Figure 3. Placement of sub-sample plots in Bugmore (33.20 ha). 

Figure 4. Placement of sub-sample plots in Chalk Churn (28.79 ha). 

Figure 5. Placement of sub-sample plots in Hamstyles (47.57 ha). 

Figure 6. Placement of sub-sample plots in High Street Lane (44.61 ha). 

Figure 7. Placement of sub-sample plots in Home Farm (10.14 ha). 

Figure 8. Placement of sub-sample plots in Singford (20.74 ha). 

Figure 9. Placement of sub-sample plots in Weston Bottom (21.89 ha). 

Figure 10. Standard Deviation of Yield (t/ha) vs. Mean Yield (t/ha). 

Figure 11. Standard Deviation of EC (µS/m) vs. Mean (µS/m). 

Figure 12. Average Yield t/ha vs. Mean Shallow EC (µS/m) for all fields. 

Figure 13. Yield MAD (t/ha) vs. EC MAD (µS) for all Flat-rate and all Variable-rate 

Treatment sub-sample Plots. 

Figure 14. Soil type for Bugmore (33.20 ha). 

Figure 15. EC point location for Bugmore. 

Figure 16. Shallow EC for Bugmore. 

Figure 17. Deep EC for Bugmore. 

Figure 18. Bugmore 2014 Yield. 

Figure 19. Bugmore LAI 30/10/13. 

Figure 20. Bugmore LAI 12/02/14. 

Figure 21. Bugmore LAI 28/02/14. 

Figure 22. Bugmore LAI 17/03/14. 

Figure 23. Bugmore LAI 08/04/14. 

Figure 24. Bugmore LAI 05/05/14. 

Figure 25. Bugmore LAI 23/05/14. 

Figure 26. Bugmore LAI 01/07/14. 

Figure 27. Bugmore N Application 28/02/14. 

Figure 28. Bugmore N Application 03/04/14. 

Figure 29. Bugmore N Application 16/04/14. 



vi 
 

Figure 30. P, K, Mg and pH sampling results for Bugmore. Sampled 06/10/2010. 

Figure 31. Soil Type for Chalk Churn (28.79 ha). 

Figure 32. EC point location for Chalk Churn. 

Figure 33. Shallow EC for Chalk Churn. 

Figure 34. Deep EC for Chalk Churn. 

Figure 35. Chalk Churn 2014 Yield. 

Figure 36. Chalk Churn LAI 30/10/13. 

Figure 37. Chalk Churn LAI 28/02/14. 

Figure 38. Chalk Churn LAI 17/03/14. 

Figure 39. Chalk Churn LAI 08/04/14. 

Figure 40. Chalk Churn LAI 05/05/14. 

Figure 41. Chalk Churn LAI 23/05/14. 

Figure 42. Chalk Churn LAI 01/07/14. 

Figure 43. Chalk Churn N Application 14/03/14. 

Figure 44. Chalk Churn N Application 08/04/14. 

Figure 45. Chalk Churn N Application 21/05/14. 

Figure 46. P, K, Mg and pH sampling results for Chalk Churn. Sampled 12/08/2010. 

Figure 47. Soil Type for Hamstyles (47.47 ha). 

Figure 48. EC Point location for Hamstyles. 

Figure 49. Shallow EC for Hamstyles. 

Figure 50. Deep EC for Hamstyles. 

Figure 51. Hamstyles 2014 Yield. 

Figure 52. Hamstyles LAI 30/10/13. 

Figure 53. Hamstyles LAI 12/02/14. 

Figure 54. Hamstyles LAI 28/02/14. 

Figure 55. Hamstyles LAI 17/03/14. 

Figure 56. Hamstyles LAI 08/04/14. 

Figure 57. Hamstyles LAI 05/05/14. 

Figure 58. Hamstyles LAI 23/05/14. 

Figure 59. Hamstyles LAI 01/07/14. 

Figure 60. Hamstyles N Application 19/03/14. 

Figure 61. Hamstyles N Application 16/04/14. 

Figure 62. Hamstyles N Application 20/05/14. 

Figure 63. P, K, Mg and pH sampling results for Hamstyles. Sampled 04/10/2011. 



vii 
 

Figure 64. Soil Type for High Street Lane (44.61 ha). 

Figure 65. EC Point location for High Street Lane. 

Figure 66. Shallow EC for High Street Lane. 

Figure 67. Deep EC for High Street Lane. 

Figure 68. High Street Lane 2014 Yield. 

Figure 69. High Street Lane LAI 30/10/13. 

Figure 70. High Street Lane LAI 12/02/14. 

Figure 71. High Street Lane LAI 28/02/14. 

Figure 72. High Street Lane LAI 12/03/14. 

Figure 73. High Street Lane LAI 08/04/14. 

Figure 74. High Street Lane LAI 05/05/14. 

Figure 75. High Street Lane LAI 23/05/14. 

Figure 76. High Street Lane LAI 01/07/14. 

Figure 77. High Street Lane N Application 14/03/14. 

Figure 78. High Street Lane N Application 08/04/14. 

Figure 79. High Street Lane N Application 21/05/14. 

Figure 80. P, K, Mg and pH sampling results for High Street Lane. Sampled 

18/08/2013. 

Figure 81. Soil Type for Home Farm (10.14 ha). 

Figure 82. EC Point location for Home Farm. 

Figure 83. Shallow EC for Home Farm. 

Figure 84. Deep EC for Home Farm. 

Figure 85. Home Farm Yield 2014. 

Figure 86. Home Farm LAI 30/10/13. 

Figure 87. Home Farm LAI 12/02/14. 

Figure 88. Home Farm LAI 28/02/14. 

Figure 89. Home Farm LAI 17/03/14. 

Figure 90. Home Farm LAI 08/04/14. 

Figure 91. Home Farm LAI 05/05/14. 

Figure 92. Home Farm LAI 23/05/14. 

Figure 93. Home Farm LAI 01/07/14. 

Figure 94. Home Farm N Application 14/03/14. 

Figure 95. Home Farm N Application 08/04/14. 

Figure 96. Home Farm N Application 21/05/14. 



viii 
 

Figure 97. P, K, Mg and pH sampling results for Home Farm 18/10/2011. 

Figure 98. Soil Type for Singford (20.74 ha). 

Figure 99. EC Point location for Singford. 

Figure 100. Shallow EC for Singford. 

Figure 101. Deep EC for Singford. 

Figure 102. Singford Yield 2013. 

Figure 103. Singford LAI 22/02/13. 

Figure 104. Singford LAI 11/03/13. 

Figure 105. Singford LAI 18/03/13. 

Figure 106. Singford LAI 25/03/13. 

Figure 107. Singford LAI 02/04/13. 

Figure 108. Singford LAI 08/04/13. 

Figure 109. Singford LAI 15/04/13. 

Figure 110. Singford LAI 22/04/13. 

Figure 111. Singford LAI 25/04/13. 

Figure 112. Singford LAI 06/05/13. 

Figure 113. Singford LAI 21/05/13. 

Figure 114. Singford N Application 22/02/13. 

Figure 115. Singford N Application 06/04/13. 

Figure 116. P, K, Mg and pH sampling results for Singford 05/08/2012. 

Figure 117. Soil Type for Weston Bottom (20.82 ha). 

Figure 118. Point location for Weston Bottom. 

Figure 119. Shallow EC for Weston Bottom 

Figure 120. Deep EC for Weston Bottom. 

Figure 121. Weston Bottom Yield 2013. 

Figure 122. Weston Bottom LAI 22/02/13. 

Figure 123. Weston Bottom LAI 11/03/14. 

Figure 124. Weston Bottom LAI 18/03/13. 

Figure 125. Weston Bottom LAI 25/03/13. 

Figure 126. Weston Bottom LAI 02/04/13. 

Figure 127. Weston Bottom LAI 08/04/13. 

Figure 128. Weston Bottom LAI 22/04/13. 

Figure 129. Weston Bottom N Application 22/02/13. 

Figure 130. Weston Bottom N Application 06/04/13. 



ix 
 

Figure 131. P, K ,Mg and pH sampling results for Weston Bottom 12/11/2008. 

Figure 132. Shallow EC vs. Yield scatter plot for Bugmore sub-sample plots. 

Figure 133.Shallow EC vs. Yield scatter plot for Chalk Churn sub-sample plots. 

Figure 134. Shallow EC vs. Yield scatter plot for Hamstyles sub-sample plots. 

Figure 135. Shallow EC vs. Yield scatter plot for High Street Lane sub-sample plots. 

Figure 136. Shallow EC vs. Yield scatter plot for Home Field sub-sample plots. 

Figure 137. Shallow EC vs. Yield scatter plot for Singford sub-sample plots. 

Figure 138. Shallow EC vs. Yield scatter plot for Weston Bottom sub-sample plots.  

Figure 139. Scatter plot of Yield MAD vs. Shallow EC MAD for Bugmore. 

Figure 140. Scatter plot of Yield MAD vs. Shallow EC MAD for Chalk Churn. 

Figure 141. Scatter plot of Yield MAD vs. Shallow EC MAD for Hamstyles. 

Figure 142. Scatter plot of Yield MAD vs. Shallow EC MAD for High Street Lane. 

Figure 143. Scatter plot of Yield MAD vs. Shallow EC MAD for Home Field. 

Figure 144. Scatter plot of Yield MAD vs. Shallow EC MAD for Singford 

Figure 145. Scatter plot of Yield MAD vs. Shallow EC MAD for Weston Bottom. 

 

  



x 
 

v. LIST OF TABLES 

Table 1. Wheat Growth Stage and expected Green Area Index Value (HGCA, 1998). 

Table 2. Yield (t/ha) and grain protein levels (g) under Flat-rate and Variable 

treatment (SOYL, 2015). 

Table 3. Field location, size and predominant soil texture of trial sites.  

Table 4. Monthly rainfall data (mm) for harvest years 2013 and 2014 (Oct-Sept) at 

Oxford.  

Table 5. Average rate of N (Kg/ha) and total applied for each field. 

Table 6. Average Yield (t/ha) for each field and Mean Yield (t/ha) for all Flat-rate and 

Variable-rate treatment plots combined for each field.  

Table 7. Average SD of yield for flat-rate and variable-rate sub-sample plots for each 

field.   

Table 8. Summary of relationships between Shallow EC and Yield under Flat-rate 

and Variable-rate treatment.  

Table 9. MAD values for Yield and EC for each sub-sample plot and averages for all 

sub-sample plots combined for each field. 

Table 10. Descriptive Statistics for all Sub-sample plots. 

  



xi 
 

vi. LIST OF ABBREVIATIONS 

ADAS  Agricultural Development and Advisory Service 

DEFRA Department for Environment, Food and Rural Affairs 

EC  Electrical Conductivity 

GAI  Green Area Index 

GIS  Geographic Information System 

GPS  Global Positioning System 

GS  Growth Stage 

HGCA  Home Grown Cereals Authority 

LAI  Leaf Area Index 

MAD  Mean Average Deviation 

NDVI  Normalised Difference Vegetation Index 

NUE  Nitrogen Uptake Efficiency 

OM  Organic Matter 

WUE  Water Use Efficiency



1 
 

1. Introduction 

Agriculture in the UK has become a refined and demanding industry. Growers are 

under constant pressure to deliver high yielding crops in a sustainable manner with 

minimal impact on the environment. As well as producing high yielding crops, 

farmers in the UK have strict targets to meet concerning the quality of harvested 

material. As modern farming strives to achieve more from less, there is great 

agronomic and financial justification for refining the way farmers manage their inputs. 

 

Winter wheat is the most commonly grown arable crop in the UK. In 2015, 1.87 Mha 

of winter wheat was planted, producing 16.2 Mt and accounting for 50% of the UK’s 

cereal crop area (DEFRA, 2015). Modern varieties grown in the UK offer the 

potential for high yields, ranging between 8-12 t/ha (HGCA, 2012). 

 

In its most simplistic terms, final winter wheat yield, like most arable crops, is 

dependent on photoperiod (Tippett,, 1926), temperature (Porter and Gawith, 1999), 

moisture availability (Fisher, 1924), variety, nutrient availability (Davis et al., 1996) 

and pest/disease intervention. Some of these factors such as variety and nutrient 

availability can be influenced by the grower (Delogu et al., 1997). Growers can apply 

fertiliser to maximise yield and quality. N is a key component in the growth of the 

wheat plant (Novoa and Loomis, 1981) and as a result has a direct effect on yield 

(Austin et al., 1977). Growers apply N at key growth stages of the crop in an effort to 

maximise grain number and size (Bing-nian and Sheng-xiu, 2006). The amount of N 

fertiliser required, depends on the variety grown, end market, anticipated yield, time 

of application, expected rate of uptake and is restricted by environmental legislation 

(MAFF, 2010). 

 

Applied N fertiliser needs to find its way into the soil solution to be available to the 

crop. An established rooting system then allows for the N to be absorbed by the 

plant (Barraclough et al., 1991). N that is not captured by the crop can be lost 

through leaching and volatilisation which can pose negative effect to the environment 

(DEFRA, 2012). Successful uptake by the crop is dependent on an adequately 

established rooting zone and is influenced by the physical characteristics of the soil 

(Barraclough et al., 1991).  
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The cost of N is dependent on global markets. More efficient application of N 

fertiliser and uptake by the crop leads to more efficient use of inputs on farm, 

potentially contributing to overall farm profit. This is amplified by an increase to yield. 

As a result, accurate applications of N fertiliser are paramount to UK growers to 

enhance yields whilst minimising wasted inputs (Austin et al., 1977). Selecting 

products that are more efficiently consumed by the crop and applying these products 

at times that result in efficient uptake are an integral consideration of any wheat 

grower’s nutrient program. 

 

In the UK, it is typical for soil type and related water retaining characteristics to vary 

on farm and in-field (Avery et al., 1980). Differences in soil structure and pore space 

have an influence on soil moisture availability (Hall et al., 1977). Electrical 

Conductivity (EC) shows the water holding capabilities of a soil. This can typically 

show the difference between lighter and heavier soils. By taking frequent EC 

measurements in all areas of a field, a georeferenced image can be produced which 

shows changes in soil type. This, when coupled with an onsite investigation, can 

help produce a detailed soil map for a field. EC is a sliding scale. Unique EC values 

do not exist for certain soils, instead the range shows the extent of in-field variation 

and where soil type changes. Reduced soil moisture availability can restrict N uptake 

while excessive soil moisture can lead to N loss (Avery, 1973). Although N fertiliser 

can typically be applied at a uniform rate to a wheat crop, it is understood that the 

efficient uptake of N varies within field (Baxter and Oliver, 2005). This can lead to 

non-uniform yield within field; posing difficulties to disease management, harvesting, 

as well as obvious financial loss due to low yielding areas (Bakker et al., 2005).  

 

UK growers have the capability to variably apply their N depending on the state of 

the crop through the use of GPS application equipment (Welsh et al., 2003b). This 

relies on measuring the crop within the field and assigning georeferenced areas an 

NDVI value (Asrar et al., 1984). Normalised Difference Vegetation Index illustrates 

the ratio of bare soil to cop. A higher NDVI value represents thicker crop, a lower 

NDVI value thinner crop. Values in the range 0-1.5 can be recorded in February and 

figures up to 8.0 obtainable in early July. Through on ground calibration, NDVI 

values can be translated to LAI (Leaf Area Index) which illustrates crop biomass. The 
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amount of N applied can be adjusted to address variation in crop biomass. Usually, 

more N can be applied to areas of lower biomass to help promote rapid crop growth 

in an attempt to catch up with the more forward areas in the field. Conversely, the 

amount of N applied to areas of higher biomass, illustrating more advanced areas of 

the crop, can be restricted in an attempt to bring all biomass in-field to the same 

level. Variable application of N fertiliser, directed by biomass, allows inputs to be 

adjusted but does not consider the influence that soil variation has regarding efficient 

uptake of N by the crop after point of application. It could be suggested that variable 

applications of N are irrelevant if in-field soil variation is the controlling factor in the 

successful uptake of N fertiliser by the crop. 

 

Literature shows that soil characteristics affect the way that N is taken into the soil 

solution and consumed by the crop (Avery, 1973, Barraclough et al., 1991 and Hall 

et al., 1977), also that N availability has a direct effect on the yield of winter wheat 

(Novoa and Loomis, 1981). In-field variation of soil is common in the UK (Avery et 

al., 1980) and the technology to map such variation exists (Waine et al., 2000 and 

Earl et al., 2003).  

 

The creation of seasonal N programs as advised by MAFF (2010) and the canopy 

management approach established by the HGCA (2012) offer a field-by-field 

approach and indeed do factor in soil type but do not fully consider in-field variation. 

Work conducted by the HGCA (2012) in refining the canopy management approach 

noted differences in the performance of the models on different soil types and 

recommended adjustment between fields depending on soil type but not adjustment 

between zones within a field.  

 

Although GPS directed services offered by UK industry address in-field variation 

(Griffin, 2007), they are based purely on crop biomass and do not consider in-field 

soil variation. Soil types are treated as spatially non variable within a field. Therefore 

the differences in soil characteristics within field and their effects on crop 

performance under variable-rate N applications need to be understood. 
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1.1 Aims and Objectives 

 

This project aims to evaluate the extent to which soil variability affects the response 

of winter wheat to N under variable-rate application. In order to meet this aim, the 

objectives are; 

 To determine the difference in yield between areas of flat-rate and variable-

rate N application. 

 To critically evaluate the relationships between soil characteristics and yield. 

 To critically evaluate the variation in yield and soil type under flat-rate and 

variable-rate N application, using electrical conductivity (EC) as an indicator of 

soil characteristics. 
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2 Literature Review 

 

2.1 Winter Wheat in the UK 

Numerous varieties of winter wheat exist in the UK and are selected for their 

characteristics suiting the end market.  Main market options are for; UK bread-

making, UK cake and biscuit making, UK distilling and for international export. Hard 

wheats, with high protein and starch content are grown for bread production. Soft 

wheats (low protein and starch) are used for biscuit production. Poorer quality 

wheats are used for animal feed. A small amount of wheat is gown each year for 

seed production.  77.4% of domestic wheat grain is used for human and industrial 

consumption (HGCA, 2013). Ideal grain characteristics focus on endosperm texture, 

protein content and the Hagberg falling number. In 2014, the UK winter wheat area 

was 1,929,000 ha, with 16.6 Mt produced, of which 10% was exported, and the 

remaining used in national livestock production and UK food production (HGCA, 

2014).  

 

Winter wheat yields in the UK have seen a steady increase over the last 50 years 

with 10 t/ha currently achievable for most farmers in England (HGCA, 2014). First 

wheat will usually yield a tonne higher per hectare than second wheat. Different 

varieties of wheat have been developed to produce high yields of quality grain from 

plants that are resistant to disease and climatic stress. Cultivar development is 

mainly responsible for increases in yield over time (HGCA, 2013). It is also relevant 

to note that changes to farming practice, fertilisation and pest/disease management 

has also played a part (Austin, 1999). Yields vary depending on cultivar (Smith, 

1976) with 8.5 -10.5 t/ha being the average across the UK (DEFRA, 2012). 

 

The yield and selling price of a wheat crop is important for the grower as it has a 

significant effect on farm income. Growers can justify expenditure on fertilisers and 

crop protection products if the choices will result in an increase in yield. As a result, 

agronomic decision making typically focuses on three key stages which can have a 

significant effect on yield (Tottman, 1987). This includes an initial application to aid 

root establishment (Barraclough and Leigh, 1984 and Barraclough et al., 1991), an 
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application to promote tillering and an application to promote protein development 

during grain fill (Thorne et al., 1988; Willington and Biscoe, 1985).  

 

2.2 Nitrogen 

Nitrogen (N) is the most important nutrient regarding yield and grain quality of wheat 

(Novoa and Loomis, 1981). It is also the most mobile nutrient with uptake efficiency 

highly dependent on available N in the rooting zone of the crop and the soils 

susceptibility to leaching through the profile (Barraclough et al., 1991). N can be 

served to the crop in two key forms; as inorganic N or ‘bagged fertilisers’ and as 

organic N that goes through the process of mineralisation becoming available during 

the crop’s growing period . Timing the application of N is key to high yield and 

adequate protein levels (Mahler et al., 1994).  N needs to be available at all growth 

stages but is particularly important at rooting; tillering and grain fill (Spiertz and Vos, 

1985). A wheat crop will typically take up to 30% of final N demand by the start of 

stem extension and 90% by flowering. Extra N can be applied later in the season 

(end of May/July) to achieve optimum protein levels, (HGCA, 2009). 

 

Nitrogen applied to the crop will typically enter the soil solution and then the crop via 

the roots. Uptake efficiency of N ranges from 10 – 80% with 60% uptake efficiency 

accepted by industry as a general average (MAFF, 2010). Uptake efficiency depends 

on three key elements. Firstly an adequate rooting system needs to be in place to 

capture N in the soil solution. Secondly, temperature controls the process of 

mineralisation (Baxter and Oliver, 2005). Low temperatures will see slower 

mineralisation and in turn less N released in to the available pool. Thirdly, soil 

moisture must be present to contribute to the soil solution so that N can be delivered 

to the rooting zone and taken up by the plant (Baier and Robertson, 1968). If a soil 

lacks moisture, this process is inhibited with N remaining in the soil but becoming 

immobile (Delogu et al., 1997). Moisture levels in the soil must be kept constant 

throughout the growing season to aid nitrogen use efficiency (NUE). High 

precipitation rates can contribute to the soil solution to a point where water and N are 

forced down through and out of the soil profile (Parkinson et al., 1988). This can lead 

to N not being taken up by the crop making the application of N fertiliser a wasteful 
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exercise. Concerning N leaching, certain soils retain moisture and therefore N more 

effectively than other soils (Richards, 1965). 

 

2.3 Soil 

Soils in the UK are varied in terms of their physical characteristics due to underlying 

geology, climate and previous geological processes. Five factors lead to differences 

in soil type: parent material, climate, relief, biotic factors and time (Burnham et al., 

1980). These processes affect the ratio of sand, silt and clay in a soil as well as soil 

depth, drainage characteristics and Organic Matter (OM) content.  

 

Soil type has a significant effect on wheat yields (Bakker, et al., 2005). Deep and 

fertile soils when combined with ideal climatic conditions provide the highest yields 

(Avery, 1962). Depth of the soil profile is important because it allows the crop’s root 

structure to develop fully and therefore have an increased ability to draw in nutrients 

and water (Barraclough et al., 1991). It is also important to note the effect that soil 

structure can have on crop development. Compacted soils, typically clays, can inhibit 

root movement, meaning that roots struggle to find water and nutrients. However, if 

roots have the option of being mobile in a clay soil they will benefit from the soil’s 

ability to retain moisture and nutrients (Barraclough and Weir, 1988). Soils 

comprised predominantly of sand may favour root mobility but due to increased 

drainage and leaching may have less moisture and fewer nutrients for the crop to 

utilise (Barraclough and Leigh, 1984). Soils need to have a balance between 

adequate pore space, suitable moisture levels and adequate nutrient composition 

(Barraclough et al., 1991). Some soils in England have ideal characteristics for the 

production of winter wheat helping to explain the spatial distribution of UK industry 

(Avery, 1962 and Bakker et al., 2005). 

 

Soil characteristics and their ability to maintain water with varying levels of efficiency 

have been evaluated (Rowell, 1994). The maximum amount of water that a soil can 

hold is its saturated water content which is dependent on soil porosity. This is 

typically 40-60% of the soil volume. This is reduced to 10-55% when macropores are 

drained and the stage of field capacity has been reached. Permanent wilting point 
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falls into the range of 5-35%. The ability to retain water is dependent on forces acting 

between water molecules and hydrophilic particle surfaces. These forces can include 

electrical attraction, hydrogen bonds and van der Waals forces. These processes are 

heavily influenced by particle size, particle distribution and OM content. Commonly, 

sandy soils will drain more quickly and have a lesser ability to maintain water while 

clay soils will typically retain water more effectively (Jarvis and Leeds-Harrison, 

1987). Different soils within a particular field will have varied compositions regarding 

soil particle size and distribution, in turn leading to different drainage characteristics 

(Hall et al., 1997). 

 

2.4 In-Field Variability 

Moisture levels can vary across a field and will normally have a significant correlation 

with soil type (Waine et al., 2000). During times of drought stress, parts of the field 

with lower moisture levels will see reduced yields (Taylor et al., 2003). The 

relationship between soil moisture and yield typically relates to two key processes. 

Firstly the initial phase of root development following drilling whereby the roots 

require adequate moisture to establish (Porter, 1993; Pringle et al., 2003) and 

secondly the steady supply of moisture through the growing season to facilitate the 

successful uptake of nutrients at key growth stages (Shepherd et al., 2001 and Zwart 

et al., 2010). Successful uptake of nutrients can be determined by the spatial 

distribution of N as well as the physical soil characteristics that allow the N to be 

taken into the roots (Delin et al., 2005). Supply of N can vary in-field due to a number 

of reasons. Areas of a field with free draining soils may see more leaching of N 

(Casa and Castrignano, 2008) or areas of compaction may inhibit N uptake 

(Barraclough et al., 1991). A soil may be uniform across the field in terms of its 

composition but compaction or waterlogging may affect NUE after N is applied as 

well as affecting the mineralisation process (Baxter et al., 2003; Barraclough and 

Weir, 1988).  

 

Organic matter supports microbial activity and binds aggregates, improving water 

and nutrient holding capacity (DEFRA, 2012). OM can vary in-field, affecting N 

mineralisation and availability. Some soils may have substantially more naturally 

occurring OM. Peaty soils will have a higher presence of OM compared to sandy 
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soils (Huang et al., 2007 and Chai et al., 2008). OM can vary due to crop residue 

input and the spreading of organic manures. Crop residue such as the material left 

in-field after harvest, returns OM back to the soil. It is then this OM that through the 

process of mineralisation returns N back to the soil. Therefore, parts of a field that 

had a more developed crop will see more biomass turned back into the soil than 

parts of the field where there was less biomass at the time of harvest (Chai et al., 

2008).  

 

Implications of baling or incorporating the straw post-harvest also affect soil OM. If 

the straw is baled, N is removed. If it is chopped and incorporated, N will be returned 

to contribute to the mineral N pool. Applications of organic manures will grant OM 

and N to the field. Due to their nature and general farming practice, spreading of 

such materials is not as accurate as prilled fertilisers. As a result, OM distribution 

following organic manure applications can vary in-field (Baxter et al., 2003b and 

Baxter and Oliver, 2005). OM content will also affect N distribution in-field with high 

OM levels more likely to provide a constant source of N into the soil solution, 

dependant on temperature and adequate aeration of the soil (Nolan et al., 1995).   

 

Electrical Conductivity (EC) scanning can be used to illustrate the water holding 

capacity of a soil at a particular location in a field and in turn describe the abundance 

of porosity (Waine et al., 2000) serving as a base layer to spatially distinguish 

changes in soil type. High EC shows soils which are less permeable and in turn are 

less free draining due to a higher abundance of tightly placed, typically smaller, clay 

particles. Low EC illustrates higher permeability due to larger coarser sand particles 

which can be related to free draining soils (Godwin and Miller, 2003). Soils 

represented by high EC may restrict germination and rooting development, ultimately 

leading to a lower yielding crop. In contrast, low EC soils can favour establishment, 

promoting rapid development in the early stages of the crops growing period crop 

(Barraclough and Leigh, 1984, Barraclough and Weir 1988 and Barraclough et al.,  

1991). Georeferenced EC values allow soil zones to be identified within a field which 

can then be classified through further on site investigation. 
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2.5 Current Industry Practice for Applying Nitrogen Fertiliser 

Arable farmers growing winter wheat in the UK are largely dependent on the fertiliser 

manual (RB209) (DEFRA, 2012). An N fertiliser plan needs to establish how much N 

is available to the crop (a combined influence of previous crop, residual material and 

soil type) and how much the crop will require through the growing season. RB209 

currently offers two key strategies for calculating how much N is available to and 

required by the crop. Both estimate the amount of N available or the Soil Nitrogen 

Supply (SNS) and then propose a balance to be applied through the growing 

season. SNS is affected by rainfall (due to N’s ability to be leached) soil type and OM 

content. 

 

The first approach to calculating SNS is the field assessment method. Location in the 

UK is determined and the level of expected/typical rainfall assigned – low, medium or 

high. The most common soil type of the field is identified (options of; light sand soils, 

shallow soils, medium soils, deep clayey soils, deep silty soils, organic soils and peat 

soils)  and the previous crop in-field noted. An SNS index ranging from 0-6 is then 

determined. Deep silts and deep clays typically retain residual N more effectively 

than shallow or sandy soils influencing the prescribed rate of N proposed by the SNS 

figure (HGCA, 2009). 

 

The field assessment method offers a basic approach but may be inaccurate if the 

SNS is likely to be large or uncertain (Sylvester-Bradley et al., 2008). It assumes that 

previous crops have been managed well and that previous fertiliser 

recommendations have been accurate enough to ensure optimum uptake with 

minimal leaching through the profile. The second method is based on measured 

amount of N in the profile through soil sampling to 90 cm. The measurement method 

requires three key steps to be undertaken. Firstly the Soil Mineral Nitrogen (SMN) of 

the soil needs to be determined. Then, an estimate of how much N is in the crop 

needs to be made. An allowance for net mineraliseable N is then made and finally 

the SNS index calculated. To estimate the amount of N in the crop, the number of 

shoots per m2 can be counted and the likely amount of N present in the crop 

determined. An adjustment is then made for N that will be mineralised from OM and 

crop debris after soil sampling. An OM figure below 10% (common in most mineral 
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soils) will see no adjustment. High OM soils or fields receiving frequent manure 

applications may need to be accounted for. As a general rule, an OM reading of 10% 

can potentially release 60-90 kg/ha more potentially available N. As a result, SNS = 

SMN (0-90cm or maximum rooting depth in shallow soils over rock) + Crop N (at 

time of sampling for SMN) + estimate of available N from mineralisation of OM. The 

exact SNS figure in kg/ha N falls into a range of SNS indices ranging from 0-6.  

 

Limitations of the two management strategies have been addressed in literature 

(Sylvester-Bradley et al., 2008), Ten N-response trials were carried out for wheat in 

2005, 2006 and 2007 on trial sites on a number of soils located in the East of 

England. Trial plots were chosen for their generally uniform soil characteristics. 

Results were used to update the following edition of the RB209. It was discovered 

that to maximise average profit from feed grain production, current recommendations 

(at the time RB209, 7th edition, 2000) had to be increased by 18 kg/ha N for modern 

wheat varieties. It was also stated that the field assessment method to predict SNS 

did not perform satisfactorily hence an industry trend for people to adopt the in-field 

measurement approach and monitor the crop through the growing season. 

 

RB209 (MAFF, 2010) uses the previously calculated SNS index which combined 

with soil type produces an overall N requirement in kg for the growing season for a 

wheat crop. This method considers the dominant soil type for the field but with no 

consideration for in-field variation. The total amount of N recommended is then 

broken down into “splits” that relate to key requirements in the wheat plants growth 

cycle. The aim being to enhance the effectiveness of key physiological stages that 

influence yield. The number of splits is dependent on the overall season’s 

requirements but may lead to three key applications being made. For example, an 

overall total requirement exceeding 120 kg/ha N could consist of an early application 

(Feb/March) of 40 kg/ha, a main application (early April, early May) of 120 kg/ha just 

before stem extension and a late application (end of May) of 40 kg/ha to boost grain 

protein. For milling varieties, a final foliar application (late July) of 40 kg/ha could be 

applied to enhance protein levels. An overall requirement less than 120 kg/ha would 

be applied as a single dressing before the onset of early stem extension. 
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Devising an N fertiliser plan before the growing season is useful for budgeting and 

logistical purposes, but does not factor in the numerous variables that can exist 

through the growing season and have an effect on the performance of the crop. 

Measuring the biomass or Green Area Index (GAI) through the growing season can 

allow for adjustments to be made in the N fertilisation plan, saving costs and 

amplifying yields. The HGCA provides benchmarks relating growth stage to expected 

Green Area Index as shown in Table 1. 

 

Table 1.  Wheat Growth Stage and expected Green Area Index Value (HGCA, 

1998). 

 

Growth Stage 
Green Area Index 

(GAI) 

23 – 3 tillers 0.7 

30 – ear at 1cm 1.6 

31 – first node 2.0 

39 – flag leaf emerged 6.1 

59 – ears emerged 6.3 

61 – flowering 6.3 

71 – watery ripe 5.7 

87 – hard dough 1.3 

 

Between 1993 and 1995, the HGCA conducted a number of trials to assess the 

differences between the canopy management model (as used by DEFRA today) and 

conventional wisdom as put forward by MAFF in 1994. The aim was to improve N 

management and help refine the accuracy of fertiliser practice. The two strategies 

were trialled in 90 tests over the three years. Trial plots were at least 24mx6m with 

wheat drilled at a rate determined by local experience to expect 275 plants/m2 in the 

spring. Soil types within the trial plots were treated as uniform. All applications under 

both the canopy management model and the MAFF approach were applied flat-rate 
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by hand. Satellite sites were also scrutinised in different years; 1993 ADAS 

Rosemand, 1994 Harper Adams, 1995 SAC Edinburgh. These sites along with the 

main sites of the project showed savings in N costs and an increase in yield under 

the canopy management model. However, results from additional satellite sites were 

less favourable to the canopy management model. In 1994 and 1995 at Cirencester 

and ADAS Terrington and in 1995 at Rosemand and ADAS High Mowsthorpe, yields 

were lower under the canopy management model compared to the conventional 

MAFF management strategy. The project speculated that yields may have been 

lower, possibly due to highly calcareous soils and suggested that recovery of N is 

significantly poorer on shallow soils over their deeper counterparts. Concluding 

thoughts of the work suggested that it may be sensible to adjust the canopy 

management rules depending on soil type and proneness to drought. 

 

2.6 Precision Fertiliser Application 

Precision farming has witnessed rapid development over the past 20 years. Early 

work focused on recording spatial differences in yield which highlighted the need to 

consider variable treatments (Davis et al., 1996 and Stafford et al., 1996). 

Technological advances such as the combination of Global Positioning Systems 

(GPS) with variable-rate spreader technology has facilitated the end goal of precise 

and accurate fertiliser placement. Large savings stand to be made through variable 

placement. Godwin et al., (2002) showed a gross margin benefit in yield of £22/ha 

when variably applying N fertilisers compared to doing so at a uniform rate. They 

estimated that the cost of equipment required ranged from £5-18/ha based on a 

250ha farm. With advances in the capabilities of equipment for other purposes, this 

is widely seen as a sound financial investment by many UK growers. 

 

Variable N plans require a spatially referenced map, based on data that has an 

influence on end yield and can be manipulated by the application of N (Mulla et al., 

1992). Rationale on how to variably apply the fertiliser divides into two groups with 

some variably applying N due to changes in soil characteristics (Ferguson et al., 

1996) and others due to changes in historic yield data collected from the combine 

(Moore, 1998).  
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N applications have historically been based on the collation of multiple years of yield  

data whereby areas of a field that consistently deliver high yield are granted more N 

fertiliser than areas of the field that consistently produce poorer yields (Pringle et al., 

2003 and Pringle and Lark, 2006). This method allows underperforming areas of the 

field to be identified. Areas that consistently fail to yield that of the field average 

receive a higher rate of N to promote crop development or conversely no N, as it 

could be decided that another factor other than N is having an influence on crop 

performance.  

 

While yield maps focus on biomass, they do so at the final stage of the crop’s 

existence. Biomass distribution at this time of the year can be due to numerous 

factors through the growing season such as nutrient distribution (other than N), 

moisture distribution, waterlogging, compaction or other soil structure related issues. 

Disease and pest prevalence is also ignored. This forced the industry to consider 

stages of the crop during the growing season and was also combined with the 

concept of applying N in splits to reduce environmental impact and capitalise on key 

growth stages that have a strong influence on yield. 

 

Originally, aerial photography was utilised for this purpose. Photographic imagery 

allowed growers to take an image during the growing season that showed 

underperforming as well as more advanced parts of the crop. N could then be 

applied variably by eye or the image could be uploaded into a GIS program and an 

application plan created. This involved a set of base GPS data collected in-field that 

could then have application zones of varying rate laid on top. This required two 

layers of data; the aerial image and a field boundary logged by GPS on foot.  

 

Aerial photography has remained popular in the Unites States where air traffic is 

sparsely distributed. This is different in the UK with numerous airstrips, flight paths 

and RAF bases making it difficult to gain free permission to fly in UK airspace. 

Legislation and resulting restriction made this option commercially unviable. Light 

remote aircraft and unmanned aerial vehicles (UAVs) have since been utilised to 

replicate imagery taken by larger aircraft but slow rates of data capture combined 

with the human interaction required to launch and fly such equipment has made this 

option commercially unviable.  Satellite data does not suffer from these problems. 
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Modern satellites can capture large high quality images daily, which are then sent 

remotely to servers to process and pass on to industry.  

 

Initially, high resolution photographic images were interpreted by the grower and 

agronomist to mark key zones within a field. This consumed time, money and did not 

consistently provide an accurate portrayal of the status of the crop. It was realised 

that biomass is the ultimate indicator of crop development concerning the uptake of 

N and can be defined by spectral reflectance (Asrar et al., 1984). By applying N to 

the backward, thinner areas, crop development is promoted in an effort to obtain 

uniform biomass across the field (Blackmer et al., 1996). 

 

Normalised Difference Vegetation Index (NDVI) was proposed as a way of 

graphically illustrating in-field variation (Goward et al., 1991). This index utilises light 

reflectance signatures with changes between soil and crop easily identifiable. A 

thinner crop will show more soil which will affect the ratio of soil to crop. A denser 

crop will tilt the ratio the other way. NDVI is the raw data used in much research 

(Goward et al., 1991, Blackmer et al., 1996, Jago et al., 1999 and Combal et al., 

2003) but has also been converted to a biomass index known as Leaf Area Index 

(LAI). In-field calibration allows NDVI to be converted to LAI. The use of 1m2 quadrat 

measurements and the manual cutting and weighing of crop, in a specific square 

area after its NDVI reading is recorded allows an LAI figure to be determined (Wood 

et al., 2003a). By carrying out this process numerous times and considering the key 

growth stages of wheat, LAI can be obtained from NDVI and can also give an 

accurate judgement as to typical Growth Stages (GS) in a crop of wheat. 

 

Physically measuring the crop costs time and labour. Automated technology can 

provide a solution for this. Tucker (1979) showed that Infra-red radiances can be 

used to monitor photosynthetically active biomass of plant canopies. The sensitivity 

of the equipment used could determine the difference between bare soil and green 

leaf area or green leaf biomass. This applied to all vegetation, which although useful 

to the remote sensing community was too general and not crop specific for 

agriculture. At the time, cost of obtaining such imagery was financially unfeasible to 

industry. The use of remote sensing to monitor vegetation saw the associated 

technology being refined and improved. Blackmer et al. (1996) were able to detect N 
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deficiency using reflected shortwave radiation. This work identified the specific 

reflected electromagnetic wavelengths that were most sensitive to detecting N 

deficiencies in a wheat canopy. A portable spectroradiomater was used to measure 

reflected radiation (400-1100nm in 1992 and 350-1050nm in 1993) at key growth 

stages. The project progressed in 1993 with the creation of a relatively cheap 

photometric cell which made this approach to crop monitoring more accurate and 

financially suitable. This work provided the basis for following research to refine the 

most accurate way to measure reflectance in the crop. In 2001, the use of remote 

data began to appear more commercially viable to industry. This technology saw 

rapid refinement in following years up to present date. Siegmund and Menz (2005) in 

particular, used LANDSAT 7 to show differences between canopy and soil with great 

accuracy. HGCA (2001) assessed advanced radar for measuring GAI biomass and 

shoot numbers in wheat. The work compared SPARTAN which used spectral 

reflectance and SAR (Synthetic Aperture Radar). Key findings were; that radar could 

operate 24 hours a day and is not restricted by cloud cover, radar could be used to 

monitor in season vegetation but more research would be required to provide an 

accurate and robust system, hyper spectral reflectance is more accurate up to a GAI 

of 3.0 and that SAR was deemed unsuitable to be practically mounted on a tractor. 

 

Data collected via satellite can be restrained by the influence of shadowing and 

cloud cover. Tractor and equipment manufacturers have responded with equipment 

that can be operated in-field by the grower to produce an on-the-go fertiliser plan. 

YARA’s N-sensor determines N demand by measuring the crop’s light reflectance 

which shows high and low biomass. The sensor covers an area of approximately 50 

m2 with the software used to analyse the acquired data based on typical light 

reflectance readings for vegetation. The sensor measures light reflectance at specific 

bands related to chlorophyll content and biomass, calculating N uptake of the crop. 

The first model was introduced in 1999 for use on cereals. By taking measurements 

of the crop and combining with agronomic knowledge, N rates could be adjusted in 

different areas of the field. Through the running of 250 trials between 1997 and 2010 

the system was refined with the creation of the YARA N-Sensor ALS (Active Light 

Source), providing a contrast beam of light with the use of xeon lamps rather than 

depending on natural daylight. From associated trial work, YARA claim a cereal yield 

increase of 3.5%, N savings of up to 14%, reduction of carbon footprint (through N 
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use efficiency) of 10-30%, an even canopy leading to increased combine 

performance and an 0.2-0.5% increase in grain protein (YARA, 2015). The ability to 

use the YARA system during reduced light conditions and with the presence of cloud 

cover has provided a commercial advantage but the inability to assess the farm as a 

whole and the use of just the field average model (dependant on one pre driven-

pass) highlights limitations of the system.  

 

Tractor mounted sensors are dependent on accurate calibration and a representative 

pass of the field to establish the average LAI of that crop. Boom mounted sensors 

could offer the ability to collect multiple data sets relating to LAI if utilised during 

other farming operations such as the spraying of crop protection products. HGCA 

(2013) reviewed this concept in further detail. Different seed rates (70 – 400 seeds 

/m2) were drilled over experimental plots over three seasons to give different canopy 

characteristics. The plots were based at two sites; a heavy land site near 

Biggleswade (Bedfordshire) and a light land site near Andover (Hampshire).  A 

manually operated light attenuation instrument was then compared to a boom 

mounted spreader. From the trial, the accuracy of the boom mounted sensor was 

recognised. 

 

2.7 Combining Crop Monitoring Technology and Agronomic 

Advice for Variable-Rate Treatment 

In 2001, suitable technology existed for in season monitoring of wheat but the gap 

between collation of data and fertiliser recommendations was still significant (Welsh 

et al., 2003b and Wood et al., 2003b). Certain machinery manufacturers were 

beginning to offer GPS compatible equipment that would allow the use of geo-

referenced data for variable-rate fertiliser applications. Over the following years, GPS 

compatible fertiliser spreaders became commonplace in the UK. Griffin (2007) 

evaluated a commercial service ‘SOYLsense’ offered to UK growers that utilises 

satellite imagery to devise an N application plan. It was suggested that N fertiliser 

could be applied variably, through the use of GPS enabled fertiliser spreaders and 

sprayers. 90 commercial farms were assessed and the financial findings discussed. 

The service allowed growers to produce an N fertiliser plan through an online 

management tool. Satellite images were collected, uploaded to a website and the 
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grower given the option of the following three models depending on timing of 

application, stage in the growing season and end crop requirement: 

 

1. The Field Average Model is used for the first application. Areas with lower LAI 

receive a higher application and those with a higher LAI receive a reduced 

application. This model assesses each field separately. The average NDVI of 

a field is calculated and matched to the average rate of kg/ha N that the 

grower wishes to apply based on best practice. Application rates are then 

adjusted to the range of NDVI values within the field whereby the lowest NDVI 

value will receive 20% more than the average kg/ha N and the highest NDVI 

value will receive 20% less than the average kg/ha N. NDVI values in 

between the average, minimum and maximum are assigned proportional rates 

in kg/ha.  20% variation either side of the average is typical but can be 

adjusted if required. Of the 90 commercial farms assessed by Griffin (2007), a 

significant proportion opted to stick to this range due to the presence of 

sulphur in the first dose on wheat following the notion that too much variation 

around the proposed average rate would see too much variation in applied 

sulphur delivered to the crop. The model encourages growth in poor areas, 

stops over-tillering and shadowing in forward areas and evens out the crop at 

a time which can have significant effect on final canopy uniformity. 

 

2. The Canopy Management Model is used for the second application. This 

model allows the grower to group fields of the same variety and drilling date 

together with the aim of bringing all fields to the same LAI value. The user 

specifies a ‘target’ growth stage and typical best practice rate of kg/ha N for 

the second application. LAI values are calculated for the field by combining 

satellite measured NDVI values and on ground regional calibrations. Average 

LAI value for the group of fields combined receives the average kg/ha N 

proposed by the grower. Areas of lower LAI receive additional N (to the best 

practice average entered) to build to the target LAI value based on HGCA 

guidance of 30 kg/ha N applied results in growth of one unit of LAI for winter 

cereals (e.g. LAI of 1.0 to 2.0) (HGCA, 2004). Areas of forward LAI are run 

down based on a deduction of 30 kg/ha for one unit of LAI from the prescribed 
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average kg/ha N. The Canopy Management Model is used after tillering and 

at the beginning of stem elongation. Use of the Canopy Management Model 

will encourage canopy growth in areas of low LAI (in comparison to field 

average LAI) and ensure tiller survival based on the notion of 3 tillers per 3 

heads to ensure optimum yield. 

 

3. The Field Average Reverse Model is used for the final application and 

assesses each field individually with the aim of applying more N to the more 

forward areas of the field. The model is utilised by growers farming milling 

varieties aiming for high protein levels. Similar to the field average model used 

in the first split, the grower provides an average kg/ha N based on best 

practice which is paired to the average recorded NDVI value for the field. 

Application rates are then adjusted to the range of NDVI values within the field 

whereby the lowest NDVI value will receive 20% less than the average kg/ha 

N and the highest NDVI value will receive 20% more than the average kg/ha 

N. 20% variation either side of the average is typical but can be adjusted in 

the higher range to limit rates to prevent the dilution of protein. For growers 

farming feed wheat’s, many will rerun the canopy management model for their 

third application. 

 

 

Benefits of the variable N system ‘SOYLsense’ can be demonstrated by in-field trials 

testing the result of variable treatment vs. flat-rate treatment on yield. Trials on wheat 

for multiple years (SOYL, 2015) have shown benefits in final average yield and grain 

protein as below. 
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Table 2. Yield (t/ha) and grain protein levels (g) under flat-rate and variable treatment 

(SOYL, 2015). 

 Flat-rate Variable-rate 

Field 
Average Protein 

Content (g) 

Average 

Yield 

(t/ha) 

Average Protein 

Content (g) 

Average 

Yield 

(t/ha) 

Field 1 

2014 
9.4 10.67 9.8 10.91 

Field 2 

2014 
10.98 9.08 12.24 10.13 

Field 1 

2013 
Not recorded 11.38 Not recorded 11.89 

Field 2 

2013 
Not recorded 12.04 Not recorded 12.05 

 

 

Yield benefits through the use of ‘SOYLsense’ reported in 2015 are shown in Table 

2.  All four fields received a seasonal total of 220kg/ha divided into three splits. 

Average rate at each split varied with the average proposed in the flat-rate treatment 

assigned to the average rate in the variable-rate plan. Variable-rate plans saw rates 

adjusted 20% each side of the average rate. Application rates were increased in 

areas of low biomass and decreased in areas of high biomass. Trials in 2013 

demonstrated a yield increase of 1.5% (vs. flat-rate treatment) and a monetary 

benefit (based on grain prices for 2013 harvest) of £19.50/t. Yield increases in 2014 

were highlighted as 4.5% and 3.8% with monetary benefits of £75.48/t and £68.08/t. 

(SOYL, 2015). These findings confirm yield increase through the use of variable-rate 

treatment based on satellite imagery as shown in unrelated work by Welsh et al., 

(2003) and Wood et al., (2003b). 
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Applying N variably according to NDVI (Welsh et al., 2003 and Wood et al., 2003b) 

and by LAI through the use of satellite imagery (Griffin, 2007) offers the ability to 

address in-field variation of biomass through the variable application of N fertiliser. 

However, separate work shows that soil variability is linked to OM variability (Chai et 

al., 2008 and Huang et al., 2007) and that nutrient availability is often varied in-field 

(Casa and Castrignano, 2008). Current approaches to variable N application do not 

consider in-field variation of soil moisture and OM through their relationships with in-

field variability of soil characteristics. In-field variation of soil characteristics can be 

measured through the use of EMI (Waine et al., 2000, Earl et al., 2003, Godwin and 

Miller, 2003 and Wood et al., 2003a) offering an additional layer of georeferenced 

data that could potentially be utilised in the creation of spatial treatment plans for the 

variable application of N fertilisers. 

 

By utilising soil EC data and yield maps the influence of variable nitrogen 

applications could be assessed to determine if they help to overcome the influence 

that variable soil types have on yield variability. By looking at fields that have had 

trials to demonstrate the benefit of flat-rate N treatment against variable-rate N 

treatment, select geospatial techniques could be utilised to assess the effectiveness 

of variable-rate treatment.  
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3 Methodology 

3.1 Site Selection 

Seven fields in three sites within southern England were selected that had previously 

been surveyed for shallow EC, soil type,  LAI, N application and yield for one 

growing season. All data was collected by SOYL, a UK company offering data 

collection and precision farming advice to UK growers. All seven fields had trials to 

assess SOYLs variable N service ‘SOYLsense’. All N application trials were carried 

out in 2014 with the exception of Singford and Weston Bottom which had trials 

carried out in 2013. Fields were divided into flat-rate (control) and variable-rate strips 

with the number of strips dependant on field size. Width of the strips was not 

consistent between fields but guided by the size of the field to include at least two 

sets of tramlines. All three growers had previous experience of using precision 

farming techniques. The final fields were selected due to the presence of higher than 

normal in-field variation of EC. The selected fields were deemed to be ‘varied’ by 

their owners hence their use in the ‘SOYLsense’ trials conducted by SOYL. 
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Table 3. Field location, size and predominant soil texture of trial sites. 

Field Name 
Area 

(ha) 
County Easting/Northing 

Predominant 

Soil Texture 

Date of EC 

Scan 

Bugmore 33.20 Hampshire 459155/136883 
Heavy Silty 

Clay 
26/09/2013 

ChalkChurn 28.79 W. Berkshire 440688/171054 
Sandy Clay 

Loam 
01/03/2012 

Hamstyles 47.57 Oxfordshire 465741/193676 Clay Loam 02/11/2010 

High Street 

Lane 
44.61 W. Berkshire 441164/170867 

Sandy Clay 

Loam 
20/11/2014 

Home Farm 10.14 W. Berkshire 440689/172478 
Medium Clay 

Loam 
01/03/2012 

Singford 20.74 W. Berkshire 440604/173582 
Medium Clay 

Loam (Chalky) 
01/03/2012 

Weston 

Bottom 
21.89 W. Berkshire 440398/173691 Sandy Loam 01/03/2012 

 

Bugmore possessed soils ranging from medium silty clay loam to heavy silty clay 

loam. All soils at Bugmore were over chalk with a typically slight to moderate stone 

content recorded in the topsoil. A patch of heavier silty clays was noted in the middle 

of the field.  

 

At ChalkChurn, soil types were varied ranging from sandy soils (sandy clay, medium 

sandy clay loams, and heavy sandy/silty clay loams) to heavier soils (heavy silty clay 

loams and medium heavy silty clay loams). Sandy clays to 30-35cm had loamy soils 

beneath.  
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Hamstyles provided a mixture of soils with medium heavy soil found over grey chalk 

to light loamy soils.   

 

High Street Lane possessed sandy clay with loamy clays (below 30-35cm).  

 

Home Farm possessed only three different soil types over the 10.14 Ha. These 

consisted of a medium clay loam (very stony), medium heavy sandy clay loam and 

medium silty clay loam.  

 

Soils at Singford ranged from medium clay loams (some noted as chalky) to heavy 

silty clay loams.  

 

Weston Bottom provided significant in-field variation of soil type. Soil types ranged 

from sandy loam to medium silty clay loams to medium clay loams, all sub divided 

due to variations in topsoil stone content and presence of calcareous material 

provided by chalky parent material.  
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3.2 EC Scanning and Soil Zoning 

All fields had been scanned by SOYL using a quad bike trailed EC scanner (Figure 

1). Readings were recorded at depths of 40cm and driven at a width of 24m along 

the tramlines. Point conductivity data was contoured using the inverse distance 

kriging method. Through in-field assessment and hand texturing analysis, fields had 

been zoned and classified according to soil description based on BSSS (2010).  

 

 

 

Figure 1. Upper diagram shows how ground scanner interacts with soil and 

illustrates the two depths to which soils were scanned. Ground scanner is towed 

behind a quad bike equipped with GPS (SOYL, 2012). 
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3.3 Soil Sampling for Macronutrients 

All fields had been soil sampled by SOYL utilising a 1 ha grid system. For each grid 

point, a composite sample was taken composed of 16 sub-samples. Placement of 

the sub-samples was based on two concentric circles, around the central point of the 

grid square (spaced 2m and 4m outwards). Depth of sampling was 15cm. Composite 

sample location was logged using in-field GPS equipment. Soils were dried and 

analysed for phosphorus (Olsen’s P method), potassium and magnesium 

(ammonium nitrate extract method) and pH. Data returned was then plotted, 

interpolated and converted to RB209s soil index system. 

 

3.4 Collation of crop and N data 

3.4.1 LAI 

NDVI data was collected by SOYL between October and May (2012, 13 & 14) by 

satellites UK-DMC-2 and Deimos-1. Both satellites carried an on-board multi-spectral 

imager with a resolution of 22 m and 600 km of swath operating in green, red and 

near infrared spectra. Daily acquisitions were carried out at mid-day over the area of 

interest in an attempt to offer an image unrestricted by cloud cover. Successful data 

capture of a region of interest resulted in an image being converted to an LAI reading 

with the aid of on-ground calibration using a Sun Scan meter. NDVI for selected 

points was registered against the LAI measured in-field. A line of best fit was then 

assigned to the data to give the figure used for the imagery. 

 

3.4.2 N Applications 

Fertiliser application plans were produced by SOYL using SOYLs ‘SOYLsense’1. 

Plans utilised the most recent LAI image produced using the latest captured NDVI 

image at the time. N application plans were based on an average rate of best 

practice determined by the grower and on farm agronomist. Plans were devised 

based on SOYLs ‘SOYLsense’ management guidelines (see literature review 1.7). 

                                                           
1 http://www.cerelia.geosys-eu.com, 2015 
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3.4.3 Yield 

To determine the difference in yield between flat-rate and variable-rate areas, yield 

maps for the year of study had to be collected. All three sites utilised CLAAS Lexion 

Combines which possessed an in-cab CEBIS head unit with the ability to map and 

georeference yield within field. Yield was recorded using a Quantimeter yield 

monitoring system2. Location of point readings was established by a GPS system 

mounted in the roof of the cab. Calibration and cleaning of the Quantimeter lens was 

carried out every day during harvest by the growers. All data was read back into 

CLAAS Agromap3 by the grower. 

 

3.5 Geoprocessing of Data 

3.5.1 Collation of Shape Files 

A common file format had to be decided for all input sources into ArcMap in 

preparation for analysis. ESRI WGS84 shape files were chosen as a common 

industry standard. All yield data was exported as raw point data from growers yield 

mapping backups. Data for shallow EC and soil zone was all processed by SOYL 

using Farmworks4. Data relating to LAI and N application was stored in the online 

SOYLsense website. LAI dates for each of the fields were selected and the related 

shape file exported. For the N plans, previously issued application programs were 

retrieved and the relevant data exported as shape files. 

 

3.5.2 Geoprocessing in ArcMap 

ArcMap V10.25 was used for the spatial mapping and analysis. For each field, data 

layers were imported for Shallow EC, LAI, N application and yield. 

                                                           
2 http://www.claasofamerica.com/product/combines/lexion-780-670/electronics-operation/quantimeter- 
proficam 
3 http://www.claas.co.uk/products/easy/agrocom-software 
 
4 http://www.farmworks.com/index.php 
 
5 https://desktop.arcgis.com/en/desktop/ 
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3.5.3 Converting the Cell Size of LAI and N Application Data 

LAI data produced from the online platform was based on a 5m grid system. N 

application data however was resized at the time of the production of the N 

application plans, as it was not uncommon for many cells within the same area of the 

field to possess the same application value in kg/ha due to uniform LAI. As a result, 

cells of similar N application had been grouped together to form larger polygons of 

the same application rate, in turn altering the grid size of the data layer. For analysis 

all data cells for LAI and N application were converted back to a 5x5m grid. All LAI 

and N application layers were converted from polygon to raster using the ‘polygon to 

raster conversion’ tool. During this process the output cell size was amended to 5x5 

metres. Cell assignment type was set as Cell_Center. Value field and priority field 

set to value rather than field ID. Projection was established as WGS1984. 

 

3.5.4 Converting and Cleaning Yield Data 

Yield data layers were exported as generic shape files but did not possess a 

projection. Coordinates had to be added to the .dbf component. Firstly, shape files 

were saved to WGS1984 projection, x, y columns added to the attribute table and 

coordinates produced using the ‘calculate geometry’ tool.  

 

Due to the abundance of rogue data points recorded by the combines, the values for 

yield for each field had to be cleaned. Firstly the attribute table was converted to .csv 

for editing. The standard deviation (SD) and mean were then calculated to guide the 

removal of rogue yield points in each field’s data set. Data was sorted in numerical 

order. Yield values outside of the range mean  2 SD were deemed as anomalies 

and therefore deleted from the data set. Features were created from .csv using 

‘Create Feature Class from xy Table’. XY fields were selected and projection was 

established as WGS1984. The resulting subset layer was then imported as a point 

data file ready for interpolation. Due to the presence of a large amount of data 

points, Inverse Distance Weighted Kriging was used to interpolate the yield point 

data based on the notion that although kriging is theoretically superior when it comes 

to interpolating yield data with high accuracy, the influence of interpolation method 
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on yield maps is substantially lower than the influence of the yield monitoring system 

and the effect of filtering (Noack et al., 2005). As a result, the inverse distance to a 

power approach proved most suitable. The data layer was then exported as .TIFF 

file for further analysis. 

 

3.5.5 Interpolation of Soil EC 

Although data for deep EC (to 120cm) was available, shallow EC data (to 40cm) was 

more relevant to the function of the crop and to the variable output of yield as the 

interaction between crop and applied N fertiliser is more prominent in the top 40cm 

of the soil profile with no interaction occurring below 60cm (Gregory, 1979). EC data 

was imported as point data and interpolated using inverse distance weighted kriging. 

The result of this process was a polygon file which was then converted to raster. 

3.5.6 Resampling the Data 

Following interpolation and resizing, each field possessed data in the following 

formats. Multiple LAI and N application layers as raster files, shallow soil EC as a 

raster file and a yield file as .TIFF. All layers were imported for resampling. To 

resample, the ‘Fishnet’ function was used. The extent of the fishnet was determined 

by an LAI boundary for that field. Cell size of the net was set at 5x5 metres to match 

the centre of the LAI and N application layers. This created a grid of resampling 

points which were then clipped to the boundary of the field (using the ‘Clip Analysis’ 

tool) to ensure that no null data points were returned. 

 

The ‘intersect’ function was then used to resample the data based on the point 

placement of the fishnet. The clipped fishnet label was used as the template with the 

LAI, N application and shallow EC then ranked below. This allowed unique values to 

be extracted based on the 5x5 metre fishnet grid. The result was then exported as a 

standard shape file which in the .dbf component contained the ID of the fishnet point 

and corresponding data values for the required variables. As yield data was exported 

as a .TIFF, this layer had to be added to the resampling file using the ‘Extract to 

Points’ tool (points input was the intersect output and the input raster was the yield 

‘TIFF). 
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This produced a large number of points for each field but failed to address the 

influence of headland and boundary placement on LAI and yield. As all fields were a 

mixture of flat-rate control strips and variable treatment, the single data set did not 

differentiate between the two styles of N treatment as required by the project. To 

assess the effects of variable and flat-rate treatment, data points for each had to be 

separated. As a result data was sub-sampled further to produce smaller sets of data 

that were not affected by headland and boundary interference and which could be 

categorised into flat-rate and variable-rate treatments. This was achieved by utilising 

a yield map to guide the placement of the plots, avoiding extreme yield readings 

noticed on the headland. Plot placement was selected to fall within the trial zones 

and to capture areas of the field that were particularly uniform or particularly varied in 

terms of soil shallow EC.  Sub-sample plot size was based on capturing 200 unique 

points per plot. Due to the elongated shape of the trial strips, individual plots 

measured approximately 85x100 m. Due to the physical placement of the plots and 

the intention of avoiding headland and boundary interference, sub-sample plot size 

averaged 200 unique points with some slightly more and some slightly less. Due to 

their smaller sizes and placement of the trial strips, Home Field and Singford 

produced plots that contained an average of 100 unique values. Weston Bottom 

plots had an average of 70 unique points. Once the sub-sample plot size had been 

determined, values from the fishnet were then extracted to a .dbf for further analysis. 
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Figure 2. Extraction of data points through sub sampling. Data extracted at fixed 

location in field for variable-rate/flat-rate (blue), shallow EC (brown) and yield 

(green). As a result each fixed point that was extracted had a value for type of 

treatment, shallow EC and yield). This allowed relationships between shallow EC 

and yield to be compared under either flat-rate or variable-rate treatment. 

 

3.6 Statistical Analysis 

Statistical analysis was conducted using Statistica6. Descriptive statistics were 

generated for all individual sub-sample plots. Yield data was grouped together for the 

variable and the flat-rate treatment plots for each field to determine the difference in 

yield between areas of flat-rate and variable-rate treatment. Data was analysed 

using a standard t-test to compare the means and the Brown-Forsythe test to 

compare the variance. Shallow EC was plotted against yield for each sub-sample 

plot. Data for each sub-sample plot was then tested for normality. As it was not 

                                                           
6 http://www.statsoft.com/Products/STATISTICA/Product-Index 
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normally distributed it was decided that calculating the Mean Average Deviation 

(MAD) would be a more statistically sound method (than using the standard 

deviation) of analysing the distribution of the data as the presence of outliers in the 

data are less relevant. MAD values were calculated for all sub-sample plots and then 

for all flat-rate and all variable-rate sub-sample plots for each field. This allowed the 

difference in the variance of yield and EC under flat-rate and variable-rate treatment 

to be determined. MAD values for both treatments for each field were then plotted on 

a scatter graph to highlight potential relationships between variation in yield and 

variation in EC. 
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4 Results 

4.1 Location of Sub-sample Plots 

Figures 3 to 9 show the location of the sub-sample plots overlaid on top of the soil 

zones (shown in grey) for each field.  Plots that capture areas of variable- rate 

treatment are shown in red, plots capturing areas of flat-rate treatment are shown in 

blue. Although fields were selected for their in-field variability, some fields had more 

soil zones than others. For example, Bugmore and High Street lane had a large 

number of soil zones and related soil types (detailed soil type descriptions can be 

found in appendix, see Figure 11, 28, 44, 61, 78, 95 and 114). Home Farm and 

Singford had less variation, but this may be explained by the smaller size of these 

fields.  

 

Figure 3. Placement of sub-sample plots in Bugmore (33.20 ha). 
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Figure 4. Placement of sub-sample plots in Chalk Churn (28.79 ha). 

 

Figure 5. Placement of sub-sample plots in Hamstyles (47.57 ha). 
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Figure 6. Placement of sub-sample plots in High Street Lane (44.61 ha). 

 

Figure 7. Placement of sub-sample plots in Home Farm (10.14 ha). 
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Figure 8. Placement of sub-sample plots in Singford (20.74 ha). 

 

Figure 9. Placement of sub-sample plots in Weston Bottom (21.89 ha). 
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4.2 Rainfall 

Table 4. Monthly rainfall data (mm) for harvest years 2013 and 2014 (Oct-Sept) at 

Oxford (Met Office, 2016). Monthly average between 2000-16 = 48.33mm. 

 

 

Data was obtained from the Met Office website to provide an average overview 

between 2013 and 2014 (see Table 4). Oxford was chosen for its proximity to all 

three sites. More site specific data for rainfall was not obtainable. 2014 growing 

season was wetter than 2013 growing season (seasonal monthly average 60.68mm 

vs. 42.27mm). Average monthly rainfall between 2000 and 2016 was 48.3mm. . Oct 

2013 had notably high rainfall (86.5mm) for the establishment of the 2014 crop (Oct 

2012 = 24.2mm). March to July 2013 received a total of 230.6mm vs. March to July 

2014 a total of 262.1mm. During the growing season, April and June 2013 were 

particularly low rainfall months at 24.8mm and 17.3mm respectively. It is important to 

note that rainfall data was not site specific, only measurements from Oxford were 

available from the Met Office. 

2013 Harvest mm 2014 Harvest mm 

Oct-12 24.2 Oct-13 86.5 

Nov-12 83.3 Nov-13 55.2 

Dec-12 3.3 Dec-13 97.7 

Jan-13 58.5 Jan-14 46.9 

Feb-13 47.4 Feb-14 90.1 

Mar-13 76.6 Mar-14 39.2 

Apr-13 24.8 Apr-14 50.2 

May-13 66.2 May-14 90.3 

Jun-13 17.3 Jun-14 36.9 

Jul-13 45.7 Jul-14 45.5 

Aug-13 19.3 Aug-14 85.6 

Sep-13 40.6 Sep-14 4.1 

2013 Total: 507.2 2014 Total: 728.2 

Seasonal 
Monthly Av. 

42.27 
Seasonal 

Monthly Av. 
60.68 
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4.3 Nitrogen Application Rate 
 

Table 5. Average rate of N (Kg/ha) and total applied for each field. 

 

1st 
Application 

2nd 
Application 

3rd 
Application Total 

Field Av Kg/ha N Av Kg/ha N Av Kg/ha N Av Kg/ha N 

Bugmore 46 150 43 239 

ChalkChurn 70 46 69 185 

Hamstyles 55 90 40 185 

High Street Lane 61 107 53 221 

Home Farm 92 92 50 234 

Singford 87 87 46 220 

Weston Bottom 87 87 46 220 
 

Table 5 shows the average rate of N applied in kg/ha for each field. This will have 

been the exact amount applied to the flat-rate control strips and the average rate 

applied to each of the variable rate strips. Overall, Bugmore had the highest amount 

of total N applied at 239kg/ha, ChalkChurn and Hamstyles had the lowest at 

185kg/ha. 
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4.4 Wheat Yields 

Firstly yield data was tested for normality in Statistica. Due to a normal distribution, 

the use of ANOVA was deemed adequate. Table 6 shows the average yield for each 

field. Singford had the highest average yield and Hamstyles the lowest. The highest 

yields were noted in 2013 for both Singford and Weston Bottom. 

Table 6. Average Yield (t/ha) for each field and Mean Yield (t/ha) for all Flat-rate and 

Variable-rate treatment plots combined for each field. ns = Not significant (p > 0.05). 

For number of sub-sample plots; F = Flat, V = variable. Note that it was not possible 

to statistically determine an accurate level of significance for Singford due to low 

number of sub-sample plots.  

 

Field 

Name 

Harvest 

Date 

Field 

Average 

Yield 

from the 

Combine 

(t/ha) 

Number of 
sub-

sample 
plots 

Flat-rate 
Average 

Yield 
(t/ha) 

Variable-
rate 

Average 
Yield 
(t/ha) 

Significance 
(p value) 

Bugmore 23/08/2014 10.70 8 F, 8 V 11.4 11.1 0.183 ns 

Chalk 

Churn 
29/07/2014 10.88 4 F, 4 V 11.2 11.1 0.230 ns 

Hamstyles 28/07/2014 9.55 6 F, 6 V 8.9 9.4 0.056 ns 

High Street 

Lane 
28/07/2014 10.69 3 F, 3 V 11.2 11.1 0.500 ns 

Home 

Farm 
28/07/2014 11.46 3 F, 3 V 12.0 11.1 0.355 ns 

Singford 13/08/2013 12.27 2 F, 2 V 12.1 13.3 Not recorded 

Weston 

Bottom 
13/08/2013 11.90 3 F, 3 V 12.4 12.4 0.531 ns 

 

 

Average yield was then calculated separately for the flat-rate and the variable-rate 

combined areas for each field (see Table 6. and full statistics in Table 10. of 

appendices). The lowest average yields for both flat-rate and variable-rate 
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treatments were recorded in Hamstyles. Yield for variable treatment plots did not 

significantly exceed their flat-rate counterparts. Hamstyles provided a yield difference 

of 0.5 t/ha (p = 0.056), and Singford a difference of 1.2 t/ha (a p value could not be 

calculated for Singford as only two sub-sample plots existed for each treatment). 

Note that Hamstyles produced a p value of 0.056 nearly making the difference 

significant. Average yield was not significantly higher in the flat-rate treatment plots. 

(Bugmore (p = 0.183), Chalk Churn (p = 0.230), High Street Lane (p = 0.500) and 

Home Farm (p = 0.355)). Highest overall yield was recorded in the combined 

variable-rate treatment plots for Singford. Weston Bottom produced the same 

average yield value for both variable and flat-rate treatment plots. Yields were on 

average higher, but not significantly, under variable-rate treatment (11.36 t/ha) as 

opposed to flat-rate treatment (11.31 t/ha). 
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4.5 Variation of Yield and EC 

Standard deviation of yield was plotted against mean yield to see if the yield variability was affected 

by the mean yield (see Figure 10). Singford produced the highest average yield out of 

all 7 fields. Some of the higher yielding plots in Singford did have less yield variation. 

Bugmore and ChalkChurn demonstrated a slight relationship whereby plots that 

yielded higher had less yield variation. Lower yielding subsample plots in Hamstyles 

seemed to demonstrate a large range of yield variation. 

 

 

 Figure 10. Standard Deviation of yield (t/ha) vs. Mean Yield (t/ha). 

 

Standard deviation of EC was plotted against mean EC (see Figure 11). Bugmore in 

particular provided plots close to an EC value of 5 µS/m which were not very varied 

when compared with the other fields. The same applied to Weston Bottom with an 

EC value of -5 µS/m and Home Farm a value of -4 µS/m. 
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 Figure 11. Standard Deviation of EC (µS/m) vs. Mean (µS/m). 

 

The average of the SDs of each sub-sample plot was calculated for combined flat-

rate and combined variable-rate plots for each field for yield and shallow EC. P 

values were calculated to determine the significance of difference in variation of yield 

between flat-rate and variable-rate treatment. The same was also calculated for soil 

EC. Results are shown in Table 7.  
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Table 7. Average SD of yield for flat-rate and variable-rate sub-sample plots for each 

field.   

  Av SD of Yield (t/ha) Av SD Dev Shallow EC (µS/m) 

Field Flat Variable Flat Variable 

Bugmore  1.03 1.02 0.59 0.73 

Chalk Churn 1.02 1.15 1.16 1.23 

Hamstyles  1.39 1.28 1.31 1.31 

High Street Lane 1.44 1.23 1.65 1.83 

Home Farm 2.14 1.30 2.67 2.65 

Singford  1.38 1.03 2.75 2.89 

Weston Bottom 1.76 1.13 2.96 3.89 

Overall Av: 1.45 1.16 1.87 2.08 

Significance     

FR Yield Av vs VR Yield Av p = 0.8356 ns   

FR EC Av vs VR EC Av p = 0.7862 ns   

FR Yield Av vs FR EC Av p = 0.0213 *   

VR Yield Av vs VR EC Av p = 0.0176 *   

 

 

Average SD of yield was higher under flat-rate treatment for 6 out of 7 fields.  

Greatest variation for yield was recorded in the combined flat-rate plots of Home 

Farm. The combined variable plots for Bugmore provided the least variation for yield. 

For shallow EC, greatest variation was noted in the combined variable-rate plots of 

Weston Bottom. Least variation for shallow EC was recorded in the combined flat-

rate plots of Bugmore. Concerning variation of yield, there was no significant 

difference between the flat-rate treatment strips and the variable-rate treatment strips 

(p = 0.8356). For shallow EC, there was no significant difference between the 

variable-rate treatment sub sample plots and the flat-rate treatment sub sample 

plots. (p = 0.7862). 
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4.6 Relationships between Shallow EC and Yield 
 

 

 

Figure 12. Average Yield t/ha vs. Mean Shallow EC (µS/m) for all fields. 

 

Average yield was plotted against mean shallow EC values as shown in Figure 12. 

Certain EC values did not lead to either exceptionally high or low yield. Higher 

shallow EC values for Hamstyles did lead to lower yields in some of the subsample 

plots. Shallow soil EC was plotted against yield for each individual sub-sample plot. 

Scatter plots produced showed no distinct relationships between shallow soil EC and 

yield (see Figure 132-138 in appendices). For flat-rate treatment, 16 plots showed a 

positive relationship against 13 showing a negative relationship between yield and 

shallow EC. For the variable-rate sub-sample plots, 13 of the plots showed a positive 

relationship against 16 showing a negative relationship between shallow EC and 

yield.  MAD values for yield and EC were calculated (Table 9 in appendices) and 

plotted on scatter plots for each of the 7 fields (see Figure 139-145 in appendices). A 

summary of the scatter plots are shown in Table 8. 
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Table 8. Summary of relationships between Shallow EC and Yield under Flat-rate 

and Variable-rate treatment. For scatter plots refer to Figure 139-145 in appendices. 

 

  Flat-rate   
 Variable-

rate 
  

 

Field 
Name 

Relationship R2 
Significance 

(p value) 
Relationship R2 

Significance 
(p value) 

Bugmore + 0.001 0.776 ns + 0.000 0.831 ns 

Chalk 
Churn 

- 0.214 0.057 ns - 0.087 0.013 * 

Hamstyles + 0.032 0.253 ns + 0.517 0.255 ns 

High 
Street 
Lane 

+ 0.373 0.201 ns - 0.600 0.116 ns 

Home 
Farm 

- 0.698 0.056 ns - 0.858 0.649 ns 

Singford + 1.000 0.609 ns - 1.000 0.790 ns 

Weston 
Bottom 

- 0.546 0.909 ns - 0.994 0.896 ns 

 

 

Only ChalkChurn demonstrated a significant negative relationship between shallow 

EC and yield under variable-rate treatment (p = 0.013). All other relationships were 

not significant. ChalkChurn provided a p value of 0.057 for a negative relationship 

under flat-rate treatment and Home Farm a p value of 0.056 for a negative 

relationship under flat-rate treatment. 
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Figure 13. Yield MAD (t/ha) vs. EC MAD (µS) for all Flat-rate and all Variable-rate 

Treatment sub-sample Plots. 

 

Plotting all sub-sample points showed that the relationship between yield variability 

and EC variability was significant in the flat-rate treatment (p = 0.0213) and the 

variable-rate treatment (p = 0.0176). 
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5 Discussion 

5.1 Yield 

The first research objective was to determine if there was a difference in yield 

between areas of flat-rate and variable-rate treatment. Recorded average yields 

were different under flat-rate and variable-rate treatment (see Table 6). However, 

none of these results were significant (no p values <=0.05 recorded). Average yield 

was higher under variable treatment overall but just for two fields which challenges 

approaches put forward by Griffin (2007), Godwin et al., (2002), Welsh et al., (2003) 

and Wood et al., (2003b). Some of the sub sample plots yielded higher under 

variable –rate treatment and some yielded higher under flat-rate treatment. This 

provides limited credibility to claims by Godwin et al., (2002) who claimed a gross 

margin benefit of £22/ha through variable placement of N fertiliser using similar 

techniques to those used in this study. 

 

Characteristics of the yield maps can help to explain the findings. Hamstyles had 

visible patches of low and high yielding areas (Figure 51) In particular; two low 

yielding areas can be noticed in the Northwest of the field. These may have been 

caused by a number of variables that were not fully investigated in this study, for 

example OM content or soil moisture levels at the time of establishment. The upper 

portion of this low yielding area was covered by a flat-rate treatment strip (refer to 

Figures 60-62). This will have likely contributed to the lower yields recorded in the 

flat-rate areas. Regarding relationships between average yield and mean shallow 

EC, results shown in Figure 12 provided limited findings. Hamstyles did produce 

some low yielding areas that were related to higher EC values but this was the only 

example out of the 7 fields. Evidence of this can be recognised in Figure 12.  Timing 

of the EC scan relating to soil moisture levels and field conditions will have 

influenced the EC values provided.  

 

The yield map for Singford (Figure 102) seems to demonstrate a benefit of the 

variable-rate treatment strips (refer to Figure 115). Interestingly Singford only saw 

one variable application (only two N applications were made, the first applied at a 

flat-rate due to the presence of sulphur in the dressing). It is also important to note 

that due to the low number of sub-sample plots (two for variable, and two for flat-rate 
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treatment) a p value could not be calculated so the significance of the differences 

between the two treatments could not be fairly evaluated.  

 

Bugmore provided high yielding areas in the northwest of the field (Figure 18) but 

these had no visual relationship with the placement of the control strips (Figures 27-

29). The yield map for High Street Lane (Figure 68) demonstrates two high-yielding 

bands but these relate to natural features rather than treatment with yields higher in 

these areas due to the presence of valleys. This confirms work by Bakker (2005) and 

also helps to confirm fundamental concepts put forward by Barraclough et al., (1991) 

and Pringle et al., (2003) highlighting the importance of deep fertile seedbeds to 

facilitate root development determining not only the successful establishment of the 

crop but ultimately (when combined with the protection that a valley offers) leading to 

high yields.  Interestingly the location of these two valleys and their associated high 

yielding areas covers both flat-rate and variable-rate strips (refer to Figures 77-79) 

so their presence will have unlikely affected the average yield values.  A high 

yielding area in Home Farm (Figure 85) will have enhanced the high yield 

demonstrated in the flat-rate area in the Northwest portion of the field (Figure 94). 

Only Weston Bottom provided the same average yield (12.4 t/ha) for both flat-rate 

and variable-rate treatment areas. The highest recorded average yield for all areas 

was recorded in the variable-rate treatment areas for Singford (13.3 t/ha). The lowest 

recorded average yield was in the flat-rate treatment areas for Hamstyles (8.9 t/ha). 

Hamstyles was a poor yielding field regardless of treatment, again with no significant 

difference in yield being noted between flat-rate and variable-rate treatment (p = 

0.056). However, the p value recorded was close to being significant. 

 

The higher yields in Singford and Weston Bottom, regardless of treatment, could be 

related to the fact that these two fields were the only two fields in the study based on 

2013 harvest data. All other fields were cropped in winter wheat in 2014. This could 

suggest that 2013 was a more favourable growing season concerning yield, 

however, both Singford and Weston Bottom were from the same farm, potentially 

highlighting the effect of crop management by the grower or localised climatic 

conditions. Total N fertiliser applied in each field may have had some effect on final 

yield. Low yields in Hamstyles may have been caused by the low amount of N 

applied at just 185kg/ha. Bugmore and Home Farm both had an average of 
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239kg/ha and 234kg/ha N applied, yet yielded 10.7t/ha and 11.46t/ha respectively. 

ChalkChurn had a low total of 185kg/ha N applied for the growing season yet was 

able to still yield an average of 10.88t/ha across the field. It is important to remember 

that total N figures relate to bagged product applied through the growing season and 

do not consider N input from the previous crop or from mineralisation.  Drilling 

conditions for the 2014 crop (October 2013) were wetter than for the 2013 crop 

(October 2012) at 86.5mm vs. 24.2mm respectively (refer to Table 4) which may 

have influenced soil conditions and establishment but seems to not have had a 

negative effect on the yields of Singford and Weston Bottom. In addition, March 2014 

received just 39.2mm of rainfall (compared to 76.6 mm in March 2013). However, it 

is important to note that the rainfall data was not site specific with reginal averages 

only available. Interestingly, both fields typically had different soil type’s in-field, with 

Singford comprised of more medium clay loams and Weston Bottom containing more 

sandy soils. As a result, average yields (regardless of treatment) of 12.27 t/ha in 

Singford and 11.90 t/ha in Weston Bottom could be related to the predominant soil 

types within each field. December 2013 saw particularly heavy rainfall (97.7mm) for 

the 2014 harvest crop (compared to 3.3mm in December 2012). This may have 

affected nitrogen content in the soil at the start of the spring period with some N 

potentially lost to leaching. However, inspection of the crop in the early spring by the 

grower will have likely influenced the average rate of N to be applied, thus a higher 

rate of N will have been recommended to compensate for over winter leaching. 

 

5.2 Yield variability 

Scatter plots for shallow soil EC vs. yield allowed relationships between soil 

characteristics and yield to be evaluated. Early work by Davis et al., (1996) and 

Stafford et al., (1996) suggested that relationships can exist between soil 

characteristics and yield. The only relationship in this study was demonstrated by 

Hamstyles (see Figure 12.) where areas of higher EC did result in lower yields. 

Twenty-nine of the individual field plots showed a positive relationship between EC 

and yield compared to 29 plots showing a negative relationship. Note that for the two 

fields cropped in 2013 (Singford and Weston Bottom) 6 of the plots showed a 

positive relationship between EC and yield vs. 4 plots showing a negative 

relationship. Studying the maps for soil type, shallow EC, deep EC and yield (see 
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breakdown for each field in appendices) shows no clear relationships. Levels for P, 

K, Mg and pH were not at a value where they could significantly inhibit crop growth 

(No values <1+ for PK or pH <6.0 were recorded). There were only two exceptions to 

this finding. Low Mg levels (Index 0-1) were recorded in Weston Bottom which 

actually provided the second highest whole field average yield of the seven fields 

(11.9 t/ha). Low pH spots were recognised in ChalkChurn (pH 5.0-6.0) however, 

these results were from sampling carried out in 2010. It is highly likely that the 

grower applied lime to these areas to address this before 2014.  

 

Regarding EC and soil type, a poor yielding area in the North of Hamstyles (yielding 

less than 7 t/ha) does relate to an area of higher EC when compared to the rest of 

the field. A heavy soil (slightly stony medium/heavy silty clay loam over silty clay 

subsoil) in the Northern portion of the field may have limited crop establishment and 

root development. However, early LAI images taken from 12/02/14 to 05/05/14 (see 

Figures 53-57) show more forward LAI through the growing season. Two high 

yielding strips (over 14 t/ha) are noticeable in the yield map for High Street Lane (see 

Figure 68). This illustrates the bottom of a slight valley which will have favoured crop 

development. Interestingly, an early LAI image taken 30/10/13 (Figure 69) does not 

show this, suggesting that in-field variation of altitude did not have an effect on 

establishment. However, LAI imagery through the growing season from 12/02/14, to 

01/07/14 (Figures 70-76) does show more forward LAI in these areas highlighting the 

benefit of being situated in a valley. Low LAI resulting in low yield (less than 6 t/ha) 

can be recognised in Southern parts of the field by the field boundary which may 

have held a relationship with High EC, however, placement close to the boundary 

could suggest a range of other factors such as pest damage/grazing or inaccurate 

monitoring by the combine leading to low values recorded in the yield maps. Sub-

sample plot placement should have minimised inaccurate data values from the 

combine. Singford showed an area in the northwest portion of the field that 

correlated with high EC, illustrating a clay loam (see Figure 100) which led to low LAI 

through the season and ultimately a hotspot of low yield (less than 8.5 t/ha) in the 

yield map (see Figure 102). Relationships between EC, LAI readings through the 

season and yield are limited at best, suggesting that applying N to soil maps alone 

as investigated by Ferguson et al., (1996) is not a robust approach to take. 
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Calculation of MAD values for yield showed no significant differences between flat-

rate and variable-rate treatments (p = 0.8356). Yield was more variable in the 

recorded sub-sample plots for flat-rate treatment for 6 out of the 7 fields, Chalk 

Churn, Hamstyles and High Street Lane (MAD = 0.707, 1.36 and 1.387 respectively). 

However, only the Hamstyles flat-rate areas had more variable EC (MAD = 2.008). 

EC was neither significantly more variable (p = 0.7862) in the variable treatment 

plots or the flat-rate treatment plots. However, more variation was noted for Bugmore 

(0.666 vs. 0.604), ChalkChurn (1.922 vs. 1.672), High Street Lane (2.121 vs. 2.086) 

and Weston Bottom (1.027 vs. 0.974). LAI imagery through the growing season 

illustrates a reduction in LAI variation, particularly in Bugmore, Chalk Churn and on 

Home Farm (Final image on 01/07/14 provided LAI ranges as 5.66-7.54, 4.62-7.04 

and 5.87-615 respectively). It is important to note that in-field variation for Bugmore 

and ChalkChurn was exaggerated by particularly low LAI on the headland at the 

northern part of the boundary for both Bugmore and Chalk Churn (refer to Figures 

19-26 and 36-42 respectively).  Interestingly this study only focused on one year of 

yield data. Pringle et al., 2003 and Pringle and Lark, 2006) for example looked at 

multiple years of yield data suggesting possible scope for future related work. 

 

Plotting Yield MAD (t/ha) against. EC MAD (µS/m) provided mixed findings. On a 

field by field basis, only ChalkChurn demonstrated a significant negative relationship 

between shallow EC and yield under variable-rate treatment (p = 0.013). None of the 

other relationships were statistically significant. However, combining all sub-sample 

plots for all fields to provide a dataset for flat-rate treatment and a dataset for 

variable-rate treatment showed that variability in EC leads to variability in yield under  

both flat-rate (R2 = 0.2102) (p = 0.0213) and Variable rate treatment (R2 = 0.1507) (p 

= 0.0176). 

 

Dramatically eliminating the effect of variability in EC under variable N treatment 

based on LAI imagery alone appears challenging. Studying LAI imagery through the 

season for all fields shows that areas of a field can see a reduction in variation of 

LAI, however certain areas in a field seem unresponsive to N fertiliser be it under 

variable or flat-rate treatment. This is particularly noticeable in High Street Lane and 

Singford (refer to Figures 69-76 and 102-112 respectively). All fields showed variable 

LAI in the first image of the season showing that variable establishment of the crop 
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provides a difficult hurdle to overcome regarding canopy management later in the 

growing year. For all fields, variable LAI in the first image does show similarities to 

soil type and EC variation (see EC maps and LAI images in appendices). The study 

has provided two possible explanations to the causes of in-field variability of yield, 

namely topography and establishment of the crop. It could be proposed that even 

establishment of the crop could reduce the in-field variation of LAI experienced, 

ultimately leading to more uniform yields. 

 

5.3 Limitations 

Although the investigation provided 58 sub-sample plots for the two treatments, 

producing a total of 1,070 points, the data set was limited to just 2013 or 2014. It 

should also be noted that only seven fields were analysed for the purpose of this 

study. Additional years, particularly those where UK crops experienced drought-like 

conditions or excessively wet conditions at the point of drilling may have provided 

some interesting data for the purpose of this study. It is important to note that 

between 2000 and 2016, monthly rainfall averaged 48.3mm. The 2013 harvest year 

received an average of 42.27mm and the 2014 harvest year received an average of 

60.68mm. It could be suggested that in years of low soil moisture, the effect of soil 

type on yield may be more notable. Interestingly a drier drilling period for the 2013 

crop (compared to 2014) produced the two highest yielding fields but it must be 

noted that these were located on the same farm. 

 

Accuracy of yield data also needs to be mentioned. Plot design and sub sampling 

methodology certainly helped eliminate rogue data points from the combine, 

however, false readings may still exist in the data. Until the instrumentation utilised 

for yield mapping becomes more accurate this will be hard to address.  

 

As each field provided flat-rate and variable-rate strips that saw the same N fertiliser 

applied, the influence of using liquid rather than solid fertilisers will not have affected 

the outcome of the data in terms of explaining in-field variation of yield. It could be 

argued that liquid would promote NUE, but in the years of 2013 and 2014, soil 

moisture levels were adequate to implement the successful uptake of N be it applied 

as solid or liquid. If additional years were to be scrutinised that experienced soil 
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moisture depletion, the influence of product choice may have a more significant 

effect.   

 

In-field measurement of OM was not undertaken which could have helped explain 

areas of high and low yield within field. No OM levels were recorded at the time of 

the soil scan or survey making it difficult to incorporate this information. However, it 

is fair to note that as OM levels take considerable time to change, sampling could 

have been undertaken at the time of this study to provide supplementary data. In 

addition to OM, no protein levels were recorded. It is important to not lose focus of 

the aims of variable-rate N application with many using the service as a way of 

optimising grain protein content rather than focusing exclusively on final yield. 
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6 Conclusion 

Data collected in the investigation allowed the aims and objectives of the thesis to be 

addressed; 

Is yield significantly different between areas of flat-rate and variable-rate treatment? 

Although average yield of all sub-sample plots was higher under variable-rate 

treatment as opposed to flat-rate treatment, 4 out of 7 fields yielded higher under flat-

rate treatment. Overall, no significant difference in the average yield between the two 

treatments was found. This suggests that variable application of N (+/- 20% of the 

average rate) did not enhance the yield of winter wheat and that traditional industry 

approaches to N planning and canopy management offer a suitable framework for 

devising N applications to increase yield.  

 

Are there notable relationships between soil characteristics and yield? 

No notable relationships between soil EC and yield were noted except for Hamstyles 

field, however, it is common to see relationships between soil characteristics and 

yield. If more fields were incorporated in this study, relationships between the two 

may have been present. In addition, the testing of macronutrients and pH through 

soil sampling provided readings that were non-yield limiting, potentially highlighting 

good overall farm management on all fields. If this were not the case, the impact of 

nutrient deficiency on yield may have been noticeable. The importance of 

topography, in particular the location of valleys, was highlighted with its ability to 

favour crop development and lead to high yields as shown in LAI imagery and yield 

maps. Both years provided enough rainfall to not jeopardise yield. Years of drought 

like conditions may have resulted in different average yield. 
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Is there a difference in the variation for yield and EC under flat-rate and variable-rate 

treatments? 

Variation of yield was not significantly different between flat-rate and variable-rate 

treatment (p = 0.8356). MAD values for soil EC were neither more significantly varied 

in the sub sample plots under variable-rate treatment or flat-rate treatment (p = 

0.7862).  

 

 

 

Is variation in yield related to variation in EC? 

EC variability led to variability of yield with this relationship being significant under 

flat-rate (p = 0.0213) and variable-rate treatment (p = 0.0176). This suggests that 

variable treatment provided no significant benefit in reducing yield variability. Other 

factors such as altitude, valley placement, rate of establishment and OM levels may 

also lead to variability of yield. If years that experienced drought like conditions were 

incorporated into this research, different relationships between EC variability and 

yield variability may have been noted. 
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8 Appendices 

Table 9. MAD values for yield and EC for each sub-sample plot and averages for all 

sub-sample plots combined for each field. 

 

Field Plot 
Yield (t/ha) 

MAD 
EC (µS) MAD 

Bugmore F1 0.442 1.115 

  F2 1.222 0.560  

  F3 0.553 0.665 

  F4 0.574 0.486 

  F5 0.487 0.464 

  F6 0.469 0.535 

  F7 0.310 0.324 

  F8 0.478 0.684 

  V1 0.552 1.121 

  V2 0.720 0.614 

  V3 0.433 0.516 

  V4 0.322 0.234 

  V5 0.676 0.313 

  V6 1.491 0.640 

  V7 0.309 0.824 

  V8 0.522 1.069 

Chalk Churn F1 0.629 1.982 

  F2 0.475 1.207 

  F3 0.602 2.466 

  F4 1.122 1.032 

  V1 0.652 2.698 

  V2 1.034 1.560 

 
V3 0.633 1.695 
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Field Plot 
Yield (t/ha) 

MAD EC (µS) MAD 

  V4 0.500 1.736 

Hamstyles F1 1.426 1.013 

  F2 2.005 2.288 

  F3 0.865 3.736 

  F4 2.287 2.643 

  F5 0.570 1.485 

  F6 1.007 0.880 

  V1 1.431 1.358 

  V2 1.124 2.964 

  V3 0.784 1.014 

  V4 1.080 1.253 

  V5 1.917 3.018 

  V6 0.593 0.710 

High Street Lane F1 1.829 2.250 

  F2 1.338 2.599 

  F3 0.994 1.410 

  V1 1.109 2.515 

  V2 0.817 2.453 

  V3 1.307 1.394 

Home Field F1 0.711 0.856 

  F2 0.718 1.047 

  F3 0.459 1.218 

  V1 0.839 0.374 

  V2 0.674 1.148 

  V3 0.896 0.489 

Singford F1 0.894 0.622 

  F2 0.898 2.485 

  V1 1.197 0.859 

  V2 1.017 1.624 
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Field Plot 
Yield (t/ha) 

MAD EC (µS) MAD 

Weston Bottom F1 1.209 0.802 

  F2 1.022 1.077 

  F3 0.751 1.044 

  V1 1.070 0.948 

  V2 1.126 0.916 

  V3 0.829 1.217 
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Figure 14. Soil type for Bugmore (33.20 ha). 

 
Topsoil 

Stone 
Content 
(Topsoil) 

Subsoil 

1 
Medium Silty 
Clay Loam 

Slight 
(Chalky) 

Chalk Rubble below 25-30cm (or Solid 
Chalk) 

5 
Medium Silty 
Clay Loam 

Slight 
(Chalky) Very Stony below 30-50cm (or Chalky) 

7 
Medium Heavy 
Silty Clay Loam Slight 

Chalk Rubble below 25-30cm (or Solid 
Chalk) 

9 
Medium Heavy 
Silty Clay Loam 

Slight (Slightly 
Chalky) 

Chalk Rubble below 35-50cm (or Solid 
Chalk) 

10 
Medium Heavy 
Silty Clay Loam Moderate Very Stony below 50-80cm (or Chalky) 

11 
Heavy Silty Clay 

Loam Slight Chalk Rubble below 40-60cm (in places) 

12 
Heavy Silty Clay 

Loam Moderate Very Stony below 50-80cm (or Chalky) 

13 
Heavy Silty Clay 

Loam Slight Very Stony below 50-80cm (or Chalky) 

14 
Heavy Silty Clay 

Loam Slight 
Silty Clay below 35cm, over Moderately 

Stony below 50-80cm (or Chalky) 

 



67 
 

. 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. EC point location for Bugmore. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Shallow EC for Bugmore. 
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Figure 17. Deep EC for Bugmore. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Bugmore 2014 Yield. 
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Figure 19. Bugmore LAI 30/10/13. 

 

Figure 20. Bugmore LAI 12/02/14. 
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Figure 21. Bugmore LAI 28/02/14. 

 

Figure 22. Bugmore LAI 17/03/14. 
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Figure 23. Bugmore LAI 08/04/14. 

 

Figure 24. Bugmore LAI 05/05/14. 
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Figure 25. Bugmore LAI 23/05/14. 

 

Figure 26. Bugmore LAI 01/07/14. 
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Figure 27. Bugmore N Application 28/02/14. 

 

Figure 28. Bugmore N Application 03/04/14. 
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Figure 29. Bugmore N Application 16/04/14. 

 

Figure 30. P, K ,Mg and pH sampling results for Bugmore. Sampled 06/10/2010. 
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Figure 31. Soil Type for Chalk Churn (28.79 ha). 

 

Topsoil Stone Content (Topsoil) Subsoil 

2 
Medium Sandy Clay 

Loam High Very Stony 

4 Medium Silty Clay Loam High Very Stony 

9 
Medium Heavy Sandy 

Clay Loam High Very Stony 

11 
Medium Heavy Silty 

Clay Loam Moderate Moderately Stony 

14 
Medium Heavy Silty 

Clay Loam Moderate Very Stony 

16 Heavy Silty Clay Loam Slight Heavy Silty Clay Loam 

17 
Heavy Sandy Clay 

Loam Moderate 
Heavy Sandy Clay 

Loam 

20 
Heavy Sandy Clay 

Loam Very High Sandy Clay 

22 Sandy Clay Moderate Loamy Clay 
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Figure 32. EC point location for Chalk Churn. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33. Shallow EC for Chalk Churn. 
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Figure 34. Deep EC for Chalk Churn. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35. Chalk Churn 2014 Yield. 
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Figure 36. Chalk Churn LAI 30/10/13. 

 

Figure 37. Chalk Churn LAI 28/02/14. 
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Figure 38. Chalk Churn LAI 17/03/14. 

 

Figure 39. Chalk Churn LAI 08/04/14. 
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Figure 40. Chalk Churn LAI 05/05/14. 

 

Figure 41. Chalk Churn LAI 23/05/14. 
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Figure 42. Chalk Churn LAI 01/07/14. 

 

Figure 43. Chalk Churn N Application 14/03/14. 
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Figure 44. Chalk Churn N Application 08/04/14. 

 

Figure 45. Chalk Churn N Application 21/05/14. 
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Figure 46. P, K, Mg and pH sampling results for Chalk Churn. Sampled 12/08/2010. 
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Figure 47. Soil Type for Hamstyles (47.47 ha). 

 

 

Topsoil 
Stone Content 

(Topsoil) 
Subsoil 

3 
Medium Clay 

Loam High Medium Clay Loam to depth 

4 
Medium Silty Clay 

Loam Moderate 
Medium Silty Clay Loam over Chalk 

below 70cm 

10 Heavy Clay Loam Slight 
Heavy Clay Loam over Loamy Clay 

below 60cm 

11 
Heavy Silty Clay 

Loam Slight Silty Clay below 30cm 

12 Silty Clay Very Slight 
Silty Clay becoming heavier with 

depth 

15 
Medium Heavy 

over Clay Slight 
Medium Clay becoming heavier with 

depth 
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Figure 48. EC Point location for Hamstyles. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 49. Shallow EC for Hamstyles. 
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Figure 50. Deep EC for Hamstyles. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 51. Hamstyles 2014 Yield. 
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Figure 52. Hamstyles LAI 30/10/13. 

 

Figure 53. Hamstyles LAI 12/02/14. 
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Figure 54. Hamstyles LAI 28/02/14. 

 

Figure 55. Hamstyles LAI 17/03/14. 
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Figure 56. Hamstyles LAI 08/04/14. 

 

Figure 57. Hamstyles LAI 05/05/14. 
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Figure 58. Hamstyles LAI 23/05/14. 

 

Figure 59. Hamstyles LAI 01/07/14. 
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Figure 60. Hamstyles N Application 19/03/14. 

 

Figure 61. Hamstyles N Application 16/04/14. 
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Figure 62. Hamstyles N Application 20/05/14. 

 

Figure 63. P,K,Mg and pH sampling results for Hamstyles. Sampled 04/10/2011. 
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Figure 64. Soil Type for High Street Lane (44.61 ha). 
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Topsoil 

Stone Content 

(Topsoil) 
Subsoil 

1 Sandy Loam Slight Loamy Sand below 50cm 

2 

Medium Sandy Clay 

Loam Very High Very Stony below 20-25cm 

3 

Medium Silty Clay 

Loam, Chalky 

Slight to 

Moderate Chalky below 25-35cm 

5 

Medium Sandy Clay 

Loam Very High Very Stony below 50cm 

6 

Medium Clay Loam 

(Slightly Chalky) Moderate Chalky below 25-35cm 

9 

Medium Heavy 

Sandy Clay Loam High Very Stony below 30-50cm 

10 

Medium Heavy 

Sandy Clay Loam Slight 

Medium Heavy Sandy Clay Loam 

to depth 

15 

Heavy Silty Clay 

Loam Moderate Chalky below 30-50cm 

17 

Heavy Sandy Clay 

Loam Moderate Sandy Clay below 30cm 

20 

Heavy Sandy Clay 

Loam Very High 

Sandy Clay below 30-35cm, very 

stony below 70cm 

22 Sandy Clay Moderate Loamy Clay below 30-35cm 
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Figure 65. EC Point location for High Street Lane. 

 

Figure 66. Shallow EC for High Street Lane. 
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Figure 67. Deep EC for High Street Lane. 

 

Figure 68. High Street Lane 2014 Yield. 
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Figure 69. High Street Lane LAI 30/10/13. 

 

Figure 70. High Street Lane LAI 12/02/14. 
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Figure 71. High Street Lane LAI 28/02/14. 

 

Figure 72. High Street Lane LAI 12/03/14. 
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Figure 73. High Street Lane LAI 08/04/14. 

 

Figure 74. High Street Lane LAI 05/05/14. 
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Figure 75. High Street Lane LAI 23/05/14. 

 

Figure 76. High Street Lane LAI 01/07/14. 
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Figure 77. High Street Lane N Application 14/03/14. 

 

Figure 78. High Street Lane N Application 08/04/14. 
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Figure 79. High Street Lane N Application 21/05/14. 

 

Figure 80. P, K ,Mg and pH sampling results for High Street Lane. Sampled 

18/08/2013. 
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Figure 81. Soil Type for Home Farm (10.14 ha). 

 

  
Topsoil 

Stone Content 
(Topsoil) 

Subsoil 

8 Medium Clay Loam Moderate Very Stony 

10 
Medium Heavy 
Sandy Clay Loam Slight 

Medium Heavy Sandy Clay 
Loam 

11 
Medium Heavy Silty 
Clay Loam Moderate Moderately Stony 
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Figure 82. EC Point location for Home Farm. 

 

Figure 83. Shallow EC for Home Farm. 
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Figure 84. Deep EC for Home Farm. 

 

Figure 85. Home Farm Yield 2014. 
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Figure 86. Home Farm LAI 30/10/13. 

 

Figure 87. Home Farm LAI 12/02/14. 
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Figure 88. Home Farm LAI 28/02/14. 

 

Figure 89. Home Farm LAI 17/03/14. 
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Figure 90. Home Farm LAI 08/04/14. 

 

Figure 91. Home Farm LAI 05/05/14. 



109 
 

 

Figure 92. Home Farm LAI 23/05/14. 

 

Figure 93. Home Farm LAI 01/07/14. 
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Figure 94. Home Farm N Application 14/03/14. 

 

Figure 95. Home Farm N Application 08/04/14. 
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Figure 96. Home Farm N Application 21/05/14. 

 

Figure 97. P, K, Mg and pH sampling results for Home Farm 18/10/2011. 
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Figure 98. Soil Type for Singford (20.74 ha). 

 

  
Topsoil 

Stone Content 
(Topsoil) 

Subsoil 

6 
Medium Clay Loam 
(Slightly Chalky) Moderate Chalky below 25-35cm 

7 
Medium Clay Loam, 
Calcareous Moderate Chalky below 30-50cm 

11 
Medium Heavy Silty 
Clay Loam Moderate 

Moderately Stony, Very Stony below 
50-75cm 

14 
Medium-Heavy Silty 
Clay Loam Moderate Very Stony below 55-70cm 

15 
Heavy Silty Clay 
Loam Moderate Chalky below 30-50cm 

19 
Heavy Silty Clay 
Loam Moderate 

Silty Clay below 30cm, Chalky, or 
Very Stony below 60-80cm 

 

 

 

 



113 
 

 

Figure 99. EC Point location for Singford. 

 

Figure 100. Shallow EC for Singford. 
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Figure 101. Deep EC for Singford. 

 

Figure 102. Singford Yield 2013. 
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Figure 103. Singford LAI 22/02/13. 

 

Figure 104. Singford LAI 11/03/13. 



116 
 

 

Figure 105. Singford LAI 18/03/13. 

 

Figure 106. Singford LAI 25/03/13. 
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Figure 107. Singford LAI 02/04/13. 

 

Figure 108. Singford LAI 08/04/13. 



118 
 

 

Figure 109. Singford LAI 15/04/13. 

 

Figure 110. Singford LAI 22/04/13. 
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Figure 111. Singford LAI 25/04/13. 

 

Figure 112. Singford LAI 06/05/13. 
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Figure 113. Singford LAI 21/05/13. 

 

Figure 114. Singford N Application 22/02/13. 
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Figure 115. Singford N Application 06/04/13. 

 

Figure 116. P, K, Mg and pH sampling results for Singford 05/08/2012. 
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Figure 117. Soil Type for Weston Bottom (20.82 ha). 

 

 

Topsoil 
Stone Content 

(Topsoil) 
Subsoil 

1 Sandy Loam Slight 
Loamy Sand below 

50cm 

2 Medium Sandy Clay Loam Very High 
Very Stony below 20-

25cm 

3 
Medium Silty Clay Loam, 

Chalky Slight to Moderate Chalky below 25-35cm 

4 Medium Silty Clay Loam High 
Very Stony below 20-

50cm 

5 Medium Sandy Clay Loam Very High Very Stony below 50cm 

6 
Medium Clay Loam 

(Slightly chalky) Moderate Chalky below 25-35cm 

7 
Medium Clay Loam, 

Calcareous Moderate Chalky below 30-50cm 
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Figure 118. Point location for Weston Bottom. 

 

Figure 119. Shallow EC for Weston Bottom 
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Figure 120. Deep EC for Weston Bottom. 

 

Figure 121. Weston Bottom Yield 2013. 
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Figure 122. Weston Bottom LAI 22/02/13. 

 

Figure 123. Weston Bottom LAI 11/03/14. 
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Figure 124. Weston Bottom LAI 18/03/13. 

 

Figure 125. Weston Bottom LAI 25/03/13. 
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Figure 126. Weston Bottom LAI 02/04/13. 

 

Figure 127. Weston Bottom LAI 08/04/13. 
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Figure 128. Weston Bottom LAI 22/04/13. 

 

Figure 129. Weston Bottom N Application 22/02/13. 
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Figure 130. Weston Bottom N Application 06/04/13. 

 

Figure 131. P, K, Mg and pH sampling results for Weston Bottom 12/11/2008. 
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Table 10. Descriptive Statistics for all Sub-sample plots. 

Plot 
Mean 
Yield 
(t/ha) 

Yield 
SD 

(t/ha) 

Mean 
Shallow 
EC (µS) 

Shallow 
ECSD 
(µS) 

Mean 
Deep 
EC 
(µS) 

Deep 
EC SD 

(µS) 

Bugmore F1 11.54 0.56 5.34 1.29 16.95 1.37 

Bugmore F2 10.95 1.86 4.71 0.78 16.37 0.69 

Bugmore F3 11.84 0.72 4.03 0.80 15.16 0.79 

Bugmore F4 11.47 0.88 5.29 0.63 17.39 0.57 

Bugmore F5 11.16 0.87 5.72 0.55 18.75 0.85 

Bugmore F6 11.74 0.62 3.80 0.74 14.11 0.44 

Bugmore F7 11.48 0.39 5.20 0.40 17.61 0.40 

Bugmore F8 11.04 0.64 3.97 0.82 16.22 1.02 

Bugmore V1 11.61 0.91 5.15 1.38 16.39 1.25 

Bugmore V2 10.99 1.30 4.46 0.82 17.09 1.03 

Bugmore V3 11.79 0.55 4.63 0.65 15.16 0.70 

Bugmore V4 11.46 0.42 5.33 0.31 17.75 0.28 

Bugmore V5 10.61 1.21 5.40 0.40 17.66 0.63 

Bugmore V6 10.65 2.28 3.36 0.81 13.94 0.69 

Bugmore V7 11.46 0.41 4.14 0.94 15.70 1.20 

Bugmore V8 10.81 0.67 3.89 1.37 16.14 1.68 

Chalk Churn F1 11.33 1.04 -3.49 2.43 -46.39 3.94 

Chalk Churn F2 11.83 0.74 -2.42 1.54 -44.03 2.85 

Chalk Churn F3 11.10 0.77 -2.90 2.94 -44.57 4.28 

Chalk Churn F4 10.64 1.69 -7.40 1.23 -52.92 2.08 

Chalk Churn V1 10.93 0.86 -0.75 3.41 -39.58 6.56 

Chalk Churn V2 10.90 1.41 -4.46 1.85 -46.07 2.96 
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Plot 

Mean 

Yield 

(t/ha) 

Yield 

SD 

(t/ha) 

Mean 

Shallow 

EC (µS) 

Shallow 

ECSD 

(µS) 

Mean 

Deep 

EC (µS) 

Deep 

EC SD 

(µS) 

Chalk Churn V3 11.42 1.03 -2.63 2.08 -42.04 3.30 

Chalk Churn V4 11.31 0.65 -6.55 2.25 -50.87 3.79 

Hamstyles F1 5.93 1.73 18.21 1.39 -56.37 2.02 

Hamstyles F2 7.22 2.58 13.50 2.75 -60.83 3.28 

Hamstyles F3 11.01 1.07 1.84 4.31 -78.41 8.92 

Hamstyles F4 7.87 2.61 14.04 3.16 -62.26 3.12 

Hamstyles F5 11.20 0.75 6.73 1.94 -73.56 2.99 

Hamstyles F6 10.00 1.31 5.27 1.12 -78.06 2.28 

Hamstyles V1 6.67 1.70 13.22 1.59 -62.66 2.86 

Hamstyles V2 6.54 1.47 14.81 3.96 -57.60 10.35 

Hamstyles V3 11.97 1.15 3.67 1.29 -75.15 2.12 

Hamstyles V4 9.22 1.29 10.20 1.66 -67.71 1.97 

Hamstyles V5 9.45 2.22 11.29 3.62 -66.03 3.61 

Hamstyles V6 12.59 0.93 2.50 0.89 -83.78 1.35 

High Street Lane F1 10.98 2.54 4.92 2.67 11.35 4.45 

High Street Lane F2 11.48 1.71 -1.75 3.07 7.07 4.22 

High Street Lane F3 11.26 1.54 1.10 1.69 4.99 2.87 

High Street Lane V1 10.94 1.42 8.11 3.09 17.40 5.76 

High Street Lane V2 11.57 1.28 3.91 2.85 8.22 4.27 

High Street Lane V3 10.78 1.89 0.35 1.81 3.28 2.37 

Home F1 12.24 1.23 -7.79 1.24 -51.55 2.32 

Home F2 12.69 0.94 -6.42 1.22 -49.48 1.68 

Home F3 11.23 0.60 -6.75 1.59 -50.31 2.22 

Home V1 11.01 1.34 -8.19 0.46 -52.55 0.97 
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Plot 

Mean 

Yield 

(t/ha) 

Yield 

SD 

(t/ha) 

Mean 

Shallow 

EC (µS) 

Shallow 

EC SD 

(µS) 

Mean 

Deep 

EC (µS) 

Deep 

EC SD 

(µS) 

Home V2 11.51 1.03 -5.65 1.31 -48.87 1.66 

Home V3 10.89 1.40 -4.17 0.73 -46.64 0.94 

Singford F1 12.29 1.45 -5.90 0.76 -51.20 0.98 

Singford F2 11.96 1.31 -2.28 3.14 -46.25 4.43 

Singford V1 12.90 1.92 -5.90 1.23 -50.78 1.93 

Singford V2 13.67 1.23 -3.02 2.11 -47.47 3.01 

Weston Bottom F1 11.76 1.83 -4.46 1.00 -47.95 1.61 

Weston Bottom F2 13.05 1.36 -5.58 1.24 -49.73 1.71 

Weston Bottom F3 12.37 1.08 -5.72 1.24 -50.29 1.47 

Weston Bottom V1 12.86 1.46 -5.92 1.08 -50.25 1.82 

Weston Bottom V2 12.23 1.68 -6.12 1.07 -50.65 1.30 

Weston Bottom V3 11.98 1.37 -4.85 1.45 -49.13 1.96 
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Figure 132. Shallow EC vs. Yield scatter plot for Bugmore sub-sample plots. 
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Figure 133.Shallow EC vs. Yield scatter plot for ChalkChurn sub-sample plots. 
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Figure 134. Shallow EC vs. Yield scatter plot for Hamstyles sub-sample plots. 
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Figure 135. Shallow EC vs. Yield scatter plot for High Street Lane sub-sample plots. 
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Figure 136. Shallow EC vs. Yield scatter plot for Home Field sub-sample plots. 
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Figure 137. Shallow EC vs. Yield scatter plot for Singford sub-sample plots. 
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Figure 138. Shallow EC vs. Yield scatter plot for Weston Bottom sub-sample plots.  
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Figure 139. Scatter plot of Yield MAD vs. Shallow EC MAD for Bugmore. 

 

Figure 140. Scatter plot of Yield MAD vs. Shallow EC MAD for Chalk Churn. 
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Figure 141. Scatter plot of Yield MAD vs. Shallow EC MAD for Hamstyles. 

 

Figure 142. Scatter plot of Yield MAD vs. Shallow EC MAD for High Street Lane. 
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Figure 143. Scatter plot of Yield MAD vs. Shallow EC MAD for Home Field. 

 

Figure 144. Scatter plot of Yield MAD vs. Shallow EC MAD for Singford. 
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Figure 145. Scatter plot of Yield MAD vs. Shallow EC MAD for Weston Bottom. 
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