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Abstract: The problem of the design of a controller for a multi-vectored propeller airship is 

addressed. The controller includes anti-windup that takes into account unsymmetrical actuator 

constraints. First, a linear transformation is applied to transform the unsymmetrical 

constraints into symmetric constraints with an amplitude-bounded exogenous disturbance. 

Then, a stability condition based on a quadratic Lyapunov function for the saturated 

closed-loop system is proposed. The condition considers both amplitude-bounded and 

energy-bounded exogenous disturbances. Thus the controller design problem is transformed 

into a convex optimization problem expressed in a bilinear matrix inequality form. Two 
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controller design methods were applied: one-step controller and traditional Anti-Windup 

Controller (AWC). The one-step method obtains the controller and the 

anti-windup compensator in one step while the AWC method separates this process into the 

linear controller design and the compensator design. Simulation results showed that both 

controllers enlarge the stability zone of the saturation system and have good tracking 

performance. It is shown that the AWC design method not only has a larger region of stability, 

but the demanded actuator output exceeds the constraints less and has a smaller anti-windup 

coefficient matrix compared to the one-step method.   

Keywords: multi-vectored propeller airship, unsymmetrical saturation, one-step controller 

anti-windup controller, LMI 

Notation 

m mR a  Actuator upper limits matrix 

ia The i
th
 element of a matrix 

m mR b  Actuator lower limits matrix 

ib The i
th
 element of b matrix 

u
mR  Actuator input vector  

0 u
mR  Actuator symmetric limits vector  

p w
qR  Bounded energy exogenous signal  

ξ w
qR  Bounded amplitude disturbance  

p

nRx  System state vector 

cn

c Rx  Controller state vector 



 

 

p y
pR  Measured output vector 

c y
mR  Controller asymmetric output  

c y
mR  Controller symmetric output  

rRz  Regulated output vector 

m nR G  Designed matrix 

nI  Identity matrix of dimensions n n   

n0  Null matrix of dimensions n n  

 m nRK State feedback matrix 

 n nRP  Symmetric positive definite matrix 

1 0   Admissible initial states size 

1 0   System L2-gain  

1 0   Admissible energy bounded disturbance size 

1

0


  Admissible amplitude bounded disturbance size 

1 0   Admissible states size 

ξ Column vector whose components are all equal to 1 

1 0  ,
2 0   The designed positive parameters 

1. Introduction 

The stability and the stabilization of systems including saturations is an important field of research in 

control theory [1, 2]. The presence of a saturation may be a source of instability, or at least of only 

local stability, and frequently implies a reduction of the performances [3, 4].  



 

 

In the literature, the stabilization problems for linear systems with saturating controls can classified 

into two main approaches: saturation avoidance and saturation allowance. The first one consists of 

control laws in order to avoid control saturation [5-8], while the second one handles the occurrence of 

the control saturation and stabilizes larger region of stability, thus receiving more attention in the 

literature [9-12]. In this context, these works can be divided into two approaches: the one-step 

controller and the traditional Anti-Windup Controller (AWC) [13].  The one-step controller is 

designed simultaneously taking into account performance specification and a safe domain of operation. 

Higher performance may be expected if a controller is designed a priori considering the saturation 

effect, however, the solutions offered by optimal control techniques tend to be complex and unintuitive 

[14-17]; The anti-windup controller allows separation in design of the controller devoted to achieving 

nominal performance and the compensator devoted to constraint handling [4,18-20]. The AWC 

technique is considered attractive in practice because no restriction is placed upon the nominal linear 

controller when no saturation is encountered.  

When the open-loop system is exponentially unstable or when some performance or robustness 

specifications should be met, for the closed-loop saturated system, only local stabilization is possible 

[21,22]. In this case, the characterization of sets of admissible initial states and admissible disturbances 

plays a central role in stability analysis and synthesis. Thanks to more sophisticated modeling of the 

saturation nonlinearities including polytopic models and sector nonlinearity models, major 

improvements in this field have been achieved associated with using quadratic and polyhedral 

Lyapunov functions to build regions of stability [11-20], more detailed results related to this area have 

been stated in seminal works of Tarbouriech and her co-authors [11-15, 20,22]. They presented proofs of 



 

 

these theories in terms of stabilization of saturated system and their solutions of estimated basin of 

attraction, and designed controller were given based on the use of linear programming and convex 

optimization problems with LMI constraints [23].  

In this paper, an application of Tarbouriech’s theory to a multi-vectored propeller airship is presented. 

The control problem addressed is one of an over-actuated system with unsymmetrical actuator saturation 

constraints. Firstly, for the constraints can be expressed in an LMI form, a linear transformation is 

applied to transfer the unsymmetrical constraints into symmetric constraints with an amplitude-bounded 

exogenous disturbance [24]. The stabilization theory from [13, pp.149-150] is then extended to take into 

account simultaneous amplitude-bounded and energy-bounded exogenous disturbance. Subsequently the 

controller design problem is transformed into a convex optimization problem expressed in several LMI 

forms. A one-step controller and a traditional anti-windup controller are then computed in a similar 

manner as [13, pp.293-297, 14]. Simulation results demonstrate the possibility of application of the two 

methods to this airship.  

2. Saturation nonlinearity models  

2.1 Linear systems subject to unsymmetrical constraints 

In this section, we show the system can be modelled as an unsymmetrical saturation with exogenous 

signal, wp
. This signal can be considered as a disturbance, a tracking reference or a combination of 

both. Hence, we consider that the open-loop system is generically represented as: 

 
p p p

p p p

p

x x u w

y x u w

z x

p pu pw

p pu pw

pz

= A + B + B

= C + D + D

= C

                            (1) 



 

 

where 
p

nRx is the state vector, u
mR is the control vector , 

p y
pR is the measured output vector, 

rRz is the regulated output vector,
p w

qR is input exogenous signal, 
pA ,

puB ,
pwB ,

pC ,
puD and

pwD  

are real matrices of appropriate dimensions.  

Consider that the exogenous signal 
p ( )w t  is energy bounded, i.e. it belongs to the following set of 

functions: 

1

p p p p
0

{ :[0, ] ; ( ) ' ( ) }


   w w w
qW R d   R                      (2) 

for some 0  , with 0T
R = R . In this case the energy of 

p ( )w t  is bounded by 1  . We 

assume that a dynamic output stabilizing compensator  

c c p

c c p

x x y

y x y

c c

c c

= A + B

= C + D
                                         (3) 

is applied to system (1). Due to the magnitude bounds, the effective control signal provided by the 

actuator can be modelled by a saturation function, that is 

p p c psatx x y wp pu pw= A + B ( ) + B                                 (4) 

where each component of the control vector, u , can be described by  

 sat( )

i ci i

i ci ci i ci i

i ci i

a if y a

u y y if b y a

b if y b




   
 

                             (5) 

for 1, ,i m  where ciy is the i
th

 output of the controller, and
ia ,

ib are the upper limit and lower 

limits of the i
th

 actuator respectively, noting that for many real systems their absolute values are not 

equal. For the constraints to be expressed under LMI form, following [24], a new variable is introduced 

to convert the unsymmetrical control 
cy  into a symmetrical control 

cy  and a constant disturbance 

term so that 

c cy y ξ
a + b

= -
2

                                            (6) 



 

 

where a and b are matrix with diagonal elements
ia and

ib respectively and ξ is column vector whose 

components are all equal to 1.   

The asymmetrical saturation is linked to the symmetric saturation by  

 
c csat saty y ξ-

a + b
( ) = ( )

2
                        (7) 

where 
csat( )y  is considered as the symmetrical saturation control, where each component of the 

control vector is defined by 

 
0 0

0 0

0 0

sat( )

i ci i

ci ci i ci i

i ci i

u if y u

y y if u y u

-u if y -u




   
 

                 (8) 

where 
0u i

is the i
th

 component of vector
0u and 

0u ξ
a - b

=
2

. 

Equation (6) can be rewritten as follows 

c c ξy y wcξ= - D                                           (9) 

with matrix m
 

   
 

cξ

a + b
D

2
and

ξ
m


ξ

w , where m is the number of the control variables. We 

can now rewrite the state equation of system (1) as  

 

p p c ξ p

p p c ξ p

p

sat

sat

x x y w w

y x y w w

z = x

p pu pξ pw

p pu pξ pw

pz

= A + B ( ) + B + B

= C + D ( ) + D + D

C

             (10) 

with matrices pξ pu cξB = B D , pξ pu cξD = D D , and 
T 1

ξ ξ 1 w w


 . The obtained system (10) can be seen 

as a symmetric saturated system with a bounded amplitude disturbance
ξw and bounded energy 

disturbance
pw . 

2.2 Classical and generalized sector condition 

Let us define the actuator dead-zone nonlinearity by
c c csaty y y( ) = ( ) - , from this definition, the 

closed-loop system (10) can be written as
 [13]

  



 

 

p p c

p

x x y w w y

y x y w w y

z x





p pu pξ ξ pw p pu c

p p pu c pξ ξ pw p pu c

pz p

= A + B + B + B + B ( )

= C + D + D + D + D ( )

= C

                  (11) 

For all mR
c

y , the nonlinearity ( )
c

y satisfies the following inequality
 [13]

: 

T( ) ( ( ) ) 0   
c c c

y y yT                              (12) 

for any diagonal positive definite matrix m mR T .This inequality is a classical sector condition which is 

globally verified, i.e., it is verified for mR
c

y . Now we state a generalized sector condition, its use 

should result in less conservative conditions than the use of classical sector conditions. Define the 

following set 
[13]

 

  c g 0 c g 0 c g 0( , ) , |     y y u y y u y y u
m mS R R- -        (13) 

If 
cy and

gy  are elements of
c g 0( )y y uS - , , then the nonlinearity

c( )y satisfies the following 

inequality [13]
: 

 
c c g( ) ( ( ) ) 0 y y y

T T                             (14) 

Note that the sector condition (14) is more general than (12). In fact 
gy  appears as an extra degree of 

freedom in the stability conditions. The generalized sector condition allows one to convexify the 

anti-windup synthesis problem for regional (local) stability 
[13]

. Applying state feedback
c py x= K , and 

choosing
g c py y x= +G , m nR G , the set defined by equation (13) becomes  

              
c g 0 0( , ) { ;| | }nS R  

p p
y y u x x u- G                                (1

5) 

The state deduced from condition (15) is the allowed state of the saturated system with a certain 

saturation allowance. The sector nonlinearity 
c( )y satisfying inequality (14) becomes 

[13]
: 

T

c c c( ) ( ( ) ) 0  y y y x T G                                       (16) 



 

 

Consider the quadratic Lyapunov function T( ) x x xV P with
T

P = P > 0 , the regions of 

asymptotic stability is given by the ellipsoidal domains defined as follows:  

     T 1( , ) { ; }  x x x
nR  P P  with 0                          (17) 

If the ellipsoid ( , ) P is included in the polyhedral set
c g 0( , )y y uS - , then the following linear matrix 

inequality is satisfied
 [13]

:  

 
T

2

0

0, 1
u

 
  

 

G

G

i

i i

i m


P                           (18) 

where Gi
is the i

th
 row of matrixG . 

3. Stability analysis and stabilization 

3.1 Anti-windup compensator synthesis 

In order to mitigate the undesirable effects of windup caused by input saturation, an anti-windup term 

T
T T

x y
   v v v can be added to the controller (3). The control structure is as shown in Fig.1 

[13]
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Fig.1 Anti-windup compensator synthesis 

Although anti-windup compensation has been mainly related to performance improvement, it can also 

be used to enlarge the region of attraction (or an estimate of it) of the saturated closed-loop system. 

Hence, the anti-windup problem can be generically defined as follows. 



 

 

c c p

c c p

x x y v

y x y v

c c x

c c y

= A + B +

= C + D +

&
                              (19)  

The non-symmetric saturation control is linked to the symmetric saturation control: 

 c c

c c ξ c





x x y y

y x y w y

c c c p awx

c c p cξ awy

= A + B + D ( )

= C + D + D + D ( )
              (20) 

Thus considering the dynamic controller and this anti-windup strategy, the closed-loop system is 

c p ξ

c c p ξ

x x y w w

y x y w w

z x





w ξ

w ξ

z

= A + B ( ) + B + B

= C + D ( ) + D + D

= C

                              (21) 

where 

T
T T n mR    x x xp c

,  
 
 

p pu c p pu c

c p c

A + B D C B C
A =

B C A
,

 
 

    c

pu pu m aw

n aw

B + B [0 I ]D
B =

I 0 D
, 

 
 
 

pw

w

B
B =

0
,

 
 
 

pu cξ pξ

ξ

c pξ

B D + B
B =

B D
,   c p c
C = D C C , D = 0 ,

w
D = 0 ,

ξ cξD = D , 

z pzC = [C 0] ,  
 
 

pu

1

B
B =

0
,

 
 
    c

pu m

2

n

B [0 I ]
B =

I 0
. 

3.2 Input-to-state stability analysis 

Since the closed-loop system (21) is nonlinear, the action of the exogenous signal can produce 

trajectories that converge to equilibrium points other than the origin, to limit cycles, or can even 

diverge [13]. In this case we are interested in determining sets of “admissible” exogenous signals. 

These admissible sets are in general characterized with respect to bounds on the amplitude (L∞-norm) 

and/or the energy (L2-norm) of the disturbance. This problem is also referred to as input-to-state 

stability analysis 
[13]

. 

Problem 1 Given a set of admissible initial states
0

x and admissible disturbances set defined for a 

specified class of signals
p p( )w t W , determine a control law u(t) such that: 



 

 

1. The trajectories of the closed-loop system (21) are bounded, i.e., they are confined in some compact 

set R. 

2. If the disturbance is vanishing, then limt→∞ ( )tx =0. 

3. Given a set Wp of admissible exogenous signals and a regulated output ( )z t , minimize the upper 

bound for the L2-gain from 
p ( )w t to ( )z t : 

 
2

2

2

2
2 2

0
2

sup



z

w
L

pw
p

, considering here that =                      (22) 

Considering a quadratic Lyapunov function in (17) and a bounded in amplitude 
ξw  in (9) that satisfies

-1

ξ ξ{ ; }  w w w
qW R 

T

ξ ξ
, and the application of the well-known S-procedure, a sufficient condition to 

obtain a solution to Problem 1 is achieved if the following relation is satisfied ( , ) x  P and

p p w W : 

T 1 1

p 1 2

1
( ) ( ) ( ) ( ) 0        x z z w w x x w wJ t V    



T T T

p ξ ξ
P       (23) 

where
1 0  ,

2 0  and 0  , T
P = P > 0 ,

pw is the energy bounded disturbance, and
ξw is the 

amplitude bounded disturbance. One obtains:  

0

T T T 1 1 T

1 2
0 0 0 0

( )

1
( ( )) ( (0)) ( ( ) ( ) ) ( ) 0

T

T T T T

J t dt

V T V dt dt t t dt dt   


 



       



   x x z z w w x x w w
p p ξ ξ

P

 (24)              

and it is possible to conclude that: 

1. If ( ) 0w tp
, relation (23) ensured that ( ) 0V x   for any x such that 1' x xP  and for any

ξWwξ
, 

which ensures that ( ) 0t x  as t  , the trajectories of the saturated system (21) do not leave 

the set , （ ）P . 

2. For wp
such that 

2
1

2
 w

p
 and (0) , x （ ）P , it follows that

2
1 1 1

2
( ( )) ( (0))V T V         x x w

p
 , 0T  , i.e. the trajectories of the system (21) are 



 

 

confined in the set , （ ）P .  

3. Considering that (0)=0x , in this case -1 -1=   and the L2-gain of the system is given by 1/γ, i.e.

22

2 2
z w

p
. 

4. In the case of a non-null initial condition (0)x , since 1 1 1=      there is a trade-off between 

the size of the set of admissible conditions (given basically by 1  ), and the size of the admissible 

norm of the exogenous signal (given by 1  ). In this case, for 
22

2 2
, ( ( (0)));  z w xT V

p
 the 

finite L2-gain from wp
to z presents a bias term. 

3.3 One-step controller schemes with regional stability guarantees 

In this section, we provide some results to address the design problem of one-step controller, that is, the 

determination of matrices , , , ,
c c c c aw

A B C D D simultaneously with consideration of both amplitude 

bounded and energy bounded signals. Considering a simplified anti-windup controller in one-step 

method, the anti-windup output is only injected in the dynamics of
cx , hence

awy 0D . The following 

proposition is used to design the one-step controller.  

Propositon1 If there exist symmetric positive define matrices n nR X , n nR Y , a positive definite 

diagonal matrix m mR S , matrices n mR Q ， m nR L ， n pR F ， n nR W ， m nR Z ，
1

m nR Z  

and positive scalars  ,
1 and

2 such that the following conditions hold: 



 

 

T T T

1 1

T T

1

T T T

T T T

2

*

* *

* *

* *

* *

0

0

2 0 0
0

* 0 0

* * 0

* * *

 







 












 


 



 

p p pu pu

T

p p p p

pu pw z

T

1 p c w z

cξ

YA + A Y + B L + L B Y W + I

A X + XA + C F + FC + X

B S - Z - L B YC

Q - Z - C D XB C

S D

I

I

I

              (25) 

 

T

2

0( )

0, 1,...,

i

i

i i i

i m

u

 
 

  
 
 

( )

T

1( )

( ) 1( )

Y I Z

I X Z

Z Z

                         (26) 

 1 1

1 2 0                                                (27) 

then the controller (20) with  

T

T T T

 





 

 1 1

awx pu

c c

1

c c p

1

c pu c

1 1

c p pu c p p pu c p

D U (Q - XB S)S

D = D

C = (L - D C Y)(V )

B = U (F - XB D )

A = U (W - (A + B D C ) - XA Y - XB L - UB C Y)(V )

         (28) 

is such that the condition (23) for Problem 1 is verified. 

Proof：The relation (23) is verified if  

 T T T T

1 2

1
( ) 0V  


    

p p ξ ξ
x z z w w x Px w w                     (29) 

and  

 1 1

1 2 0                         (30) 

are satisfied.  

Consider the quadratic Lyapunov function ( )xV defined in (17) and the sector nonlinearity ( )
c

y  

satisfies the inequality (16), use this sector condition into (29), which implies that 

T T T T T

p p 1 2

1
( ) 2 ( ) ( ( ) ) 0      

c c c
x z z w w x x w w y y y xV    


ξ ξ

P T G-              (31) 

The right term of the inequality (31) reads 



 

 

T T T
T 1

2

( ) ( )

0

 
    
    
    
     
    
    
       

 

x

w



 





-1 -1
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   (32) 

where 1
S = T . Then follow the same lines as that one of Proposition3.20 in reference [13] or proof 

process of theorem 1 in reference [14], LMI (25) can be proved. The satisfaction of relation (26) 

ensures that ( , ) ( , )S  
c g 0

P y - y u  according to (18) to obtain the regional stability.  

3.4 Traditional anti-windup controller schemes with regional stability guarantees 

The controller structure shown in Fig.1 shows there can be a separation between the controller and the 

anti-windup compensator. The controller is designed as an unconstrained controller, and the 

anti-windup compensator is driven by the difference between the constrained and unconstrained control 

signals 
[13]

. 

Proposition 2: If there exists a symmetric positive define matrix ( ) ( )c cn n n n
R

  
Q , positive definite 

diagonal matrices m nR Z , ( )cn m m
R

 
E  and positive scalars , 

1 and 
2 such that the following 

conditions hold: 
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 1 1

1 2 0                                              (35) 

then the compensator (20) with
aw

 1
D ES , is such that the condition (23) for Problem 1 is verified. 



 

 

Proof: By pre- and post-multiplying (32) respectively by  diag 1/ Q S I I with -1
P = Q , one 

obtains 

T T T T
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2
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


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ξ w z

cξ

QA + AQ + Q BS - QG - QC B B QC

* -2S - DS - SD -D 0 0

* * - I 0 0

* * * -I 0
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           (36) 

Considering the change of variables Z = GQ ,
awE = D S ,  1 2 awΒ = B + B D  and  m awD = 0 I D , one 

gets LMI (34). By pre- and post-multiplying (18) with diag[ ]Q I , one gets LMI (36). 

4. Application to a multi-vectored propeller airship model 

4.1 Model introduction 

An airship with a diameter of 6 m and a volume of 70 m
3
 is shown in Fig.2. The airship is finless, 

and equipped with four vectored propellers, and the equipment tank is suspended under its body to 

increase pitch stability. Each vectored propeller can change its thrust amplitude and direction 

independently. Hence there are eight control degrees-of-freedom; the vectored thrusters have 

unsymmetrical saturation in that the thrust can be varied between zero and a maximum thrust value. 

 

Fig. 2 Overall structure of the airship 

The body frame is established as shown in Fig.3. The x-axis of the body-fixed frame is coincident with 



 

 

one of the four thrusters. The vectored angle of each propeller is denoted by ( , ), 1,2,3,4i i     , 

and the generated force is represented by (0,20 )if N , 1,2,3,4i  . In the vectored-rotation plane, 

each vectored thrust is decomposed into two orthogonal forces 
iHf

 
and

iVf . The pair 
iHf

 
and 

iVf
 

 

can then be resolved into the body-fixed frame along the x-, y-, and z-axes 
[25]

 so that  
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(a)Side view of the airship                  (b)Top view of the airship 

Fig.3 Decomposition of the thrusts in the body-fixed frame 

The dynamics of this vehicle are similar to those of a conventional airship. External forces and 

moments are induced by gravity, buoyancy, fluid inertia force, aerodynamics, and thrusters. Through 

force analysis, the following dynamics equation can be constructed in the body-fixed frame
 [25]

: 

 
T

u v w p q r 
T GB A I

M F + F + F + F
                            (38) 

where M  is the mass matrix; , ,u v w denote linear accelerations; , ,p q r represent the angular 

accelerations around the body frame; and the right-hand side of the equation corresponds to external 

forces and moments, including gravity and buoyancy 
GB

F , aerodynamic force 
A

F , coriolis force 
I

F , 



 

 

and vectored thrust 
T

F . 

4.2 Model linearization 

The vehicle is in trimmed in forward flight with a longitudinal flight speed, a linear model can be 

obtained from linearization. Before linearization, the aerodynamic coefficients given in [25] were fitted 

as a function of flow angle of attack in the approximated linear area about the trim point, hence we 

obtain 2

1 1 1HC c b a    , 2

2 2 2ZC c b a    and 2

3 3 3M MqC c b a C     , where
MqC  is the 

pitch damping coefficient and 30 30o o   . 

Because of the symmetric shape of the vehicle and the symmetric flight condition, the linear model 

can be decoupled into longitudinal and lateral models. The obtained longitudinal linear model is: 
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where s  represents the triangular sine function, c represents the triangular cosine function and 

subscript 0 represents the trim value. All the other parameter definitions and values can be found in 

[25]. 



 

 

Given 
0 4.118 / su m  with trimmed control input T1 1

[0 10 0 10 0 0 ]
2 2

 
trim

u   , the 

obtained linear model is given  

 
p px = x + up puA B                                         （40） 
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The linear model of the airship in equation (40) is open-loop stable, the eigenvalues are 

0.0684  2.6232i   , -0.1113 and -0.0082. The complex pair represents the lightly damped oscillation 

mode in pitch motion, the other two real roots represent the surge mode in longitudinal and 

vertical velocity respectively. The upper limits of the actuator around the trim point are

1 3
diag 20 10 20 10

2 2
   
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 
a , and the lower limits are

3 1
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2 2
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 
b . The new variable 

c c
y y ξ

a + b
= -

2
 is introduced 

here, by using the variable transformation, then the unsymmetrical constrains are transformed into the 

symmetrical constraints,  
T

10 10 10 10    
0

u ξ
a -b

=
2

 as described in equation (8). 

4.3 Results and discussion  

The controller problems of Proposition 1 and 2 were solved using the YALMIP toolbox [13]. Regions 

of stability in a 2-D plane for each pair of variables are presented; the actuator saturation depth was 

calculated to evaluate the reliability of the controller; control performances in terms of anti-windup 

ability and disturbance rejection ability were studied to validate the controller.  



 

 

4.3.1 Controller solutions 

Three controllers were designed and tested on the airship model. The first is an unconstrained dynamic 

output feedback controller obtained from an LQG formulation, and it was designed based on the 

unsaturated linear system model. The second is a one-step controller in which a dynamic output 

feedback controller with an anti-windup compensator were calculated together by solving the LMIs 

(25), (26) and (27). The third is an anti-windup compensator obtained by solving LMIs (33), (34) and 

(35) with the unconstrained linear LQG controller. Even though the linear model is open-loop stable, 

we still focus on a robust local stabilization approach for relaxing open-loop stability assumptions 

and by using the local stability condition, a solution that satisfies the performance criteria in our 

interested region of stability is obtained quickly. The inequalities (25) and (33) are BMIs, if   and

1  are decision variables and LMIs if these are fixed a priori. The three controllers solve a MIMO 

problem, so the allocation of multi-vectored thrusters is directly obtained in the controller design.   

The LQG controller has 
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8 4cD 0  

The one-step controller and traditional anti-windup controller have different solutions for different 

given   and
1 . The best obtained solutions of the two kinds of anti-windup controllers are given 

below. The optimal objectives , 
2 and the tracking ability of step response are used to evaluate the 

control performance. 

For the one-step controller, for given values -7=1 10   and
1=0.01 , the values obtained are 

2 =3425 and =88 , with controller matrices calculated as: 

4
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For the traditional anti-windup compensator, with the above unconstrained LQG controller, with given 

values =4  and
1=0.01 , the obtained values are

2 =0.00088 and 7=5.6 10  , and the matrices of 

the calculated compensator are:  
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From the above results we can conclude:  

1) The one-step anti-windup controller has good disturbance rejection ability with a lower value of 

as compared with that of the traditional anti-windup compensator.  

2) The gains in the obtained controller coefficient matrix and anti-windup coefficient matrix of 

one-step methods are very high. Clearly, these are not suitable for implementation. For the given linear 

controller, the traditional anti-windup compensator methods gives smaller anti-windup coefficient 

matrices that are more applicable for a real system.  

3）From the calculated matrices P and G, the region of stability represented by ellipsoid set (17) and the 

allowance state of saturated system represented by polyhedral set (15) can be determined. However it is 

difficult to describe accurately in a graph because of the multi-variable (4 state variables) coupled 



 

 

relationship. Fig.4 gives an approximation of the region of stability for each longitudinal variable pair 

in a 2-D plane. 

 

Fig.4 Regions of stability in 2-D plane of two methods 

 

From Fig.4 we can see that the region of stability of the one-step method is very small compared with 

that of the traditional anti-windup compensator method. This is because the one-step method 

simultaneously takes into account performance and the safe domain of operation. In order to obtain a 

minimum , the resulting region of stability is very small. For the anti-windup compensator, the 

performance is mainly controlled by the linear controller and so the region of stability is enlarged by 

the compensator. 

4.3.2 Actuator saturation depth 

In this section we consider the difference of the controller output with real control input, which in this 
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paper we call the actuator saturation depth. This saturation depth is an excess control demand above 

the saturation limits of each actuator calculated from controller. High level of actuator saturation depth 

makes the controller difficult to recover from the saturation state, and such a system will be 

uncontrolled. Although it is not a quantitative criteria, actuator saturation depth can be taken as an 

evaluation of the reliability of a controller. From Figs 5 - 8 we can see that the control saturation depth 

of the one-step method is relatively large compared with that of the AWC method. Furthermore, as 

shown in Fig.5, saturation occurred during the whole control process for the one-step controller so this 

decreases the control reliability. That is because the one-step controller takes more constraints into 

consideration in controller design, so it is more conservative. The control saturation depth of the AWC 

method are small, and only occurred at the beginning as shown in Fig.7, which means this controller 

can withdraw from the saturation quickly and it makes the control system more reliable.  

 Fig.5 Controller output force and system input in one-step method 
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Fig.6 Controller output vectored angle and system input in one-step method 

 

Fig.7 Controller output force and system input in AWC method  
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Fig.8 Controller output vectored angle and system input in AWC method 

4.3.3 Performance of the controller 

To validate the controllers, three simulation cases were implemented: the first two are based on the 

linear model, and the last is based on the nonlinear model. The first case is based on the linear 

model with the velocity tracking of a 1m/s step demand at t=0 s and a gust with amplitude of 0.5 /m s  

at t = 20 s. In this situation actuator saturation occurs (Fig.9-Fig.11). The second case is based on the 

linear model with the velocity tracking of a 0.2m/s step demand at t=0 s and a gust with amplitude of 

0.2 /m s  at t = 20 s, in this situation no actuator saturation occurs (Fig.12-Fig.14). The third case is 

based on the nonlinear model with the same condition as in the first case (Fig.15-Fig.17). 
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  Fig.9 Time evolution of state (First case with saturation)

 

 Fig.10 Time evolution of force (First case with saturation) 
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 Fig.11 Time evolution of vectored angle (First case with saturation) 

From Fig. 10 we see that both propellers 1 and 3 vary only their thrusts to suppress the disturbance 

generated during transient process. Propellers 2 and 4 were used for forward velocity tracking, so they 

have the same force amplitude, but with opposite direction as shown in Fig.11. The saturation occurred 

for both the velocity tracking and the disturbance rejection.  

All three control systems converge to the trim position after a transient period when saturations are 

active as shown in Fig.9. The linear LQG controller presents rather poor performance regarding 

disturbance rejection and its input presents a slowly damped oscillation. Both anti-windup controllers 

have better tracking results and less input oscillation compared with the linear controller. The one-step 

method has better disturbance rejection and the transient states are smooth. The AWC method has more 

oscillation in the initial tracking phase and the disturbance rejection phase. It is because when the 

condition changed, the nominal linear controller responds rapidly, then the anti-windup compensator 
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followed if saturation occurred, so the traditional anti-windup method has more sensitivity to external 

disturbances. 

 

Fig.12 Time evolution of state (Second case without saturation)

 

Fig.13 Time evolution of force (Second case without saturation) 
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Fig.14 Time evolution of vectored angle (Second case without saturation) 

In the second case, with even with smaller disturbances, saturation always occurred, because of 

the multi-channel coupling and the critical limits of the thrusts, which should be greater than zero 

as shown in Fig.13. However, we still can see that the AWC method almost acted as the nominal 

linear controller when saturation is not encountered, and the one-step approach still calculates an 

optimal solution within the constraints of a safe domain of operation. So the state responses of the 

one-step approach were smoother, however the output forces are relatively large compared with 

that of the other two methods as shown in Fig.12 and Fig.13. 
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Fig.15 Time evolution of state (Third case based on nonlinear model) 

 

Fig.16 Time evolution of force (Third case third case based on nonlinear model) 
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Fig.17 Time evolution of vectored angle (Third case third case based on nonlinear model) 

In the final case, the nonlinear model is used for validation of the controller. Comparing the state 

responses of Fig.15 with that of Fig.10 and the input forces of Fig.16 with that of Fig.11, we can see 

the state response and the control input of the AWC is not very different to that of the LQG controller 

in the third case, but there is steady state error in u. The response of the vertical velocity w under the 

LQG controller based on the nonlinear model is better than that based on linear model, which is 

because the more accurate model gives some dynamic compensation. There is no steady error in the 

time response of one-step method based on different model, however the state response of the one-step 

method are a little worse in the initial phase. The actuator saturation of the one-step controller extends 

for longer time based on the nonlinear model than that based on the linear model. 

5. Conclusion  
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Two methods for the control of the multi-vectored propeller airship are proposed. Both methods offer 

improvements on the LQG controller when the actuators are subject to saturation constraints.  The 

strategies significantly increase the set of admissible initial states and drastically reduce the settling 

time. However although one-step controllers are satisfactory in principle, they have been criticized for 

their conservatism and lack of applicability to some practical problems because of the very high control 

gain matrix. The traditional anti-windup compensator is devoted to achieve nominal performance and 

constraint handling. It has smaller control matrix gains and small control saturation excesses, hence is 

more attractive in practice. 

The research of this paper also highlights some limitations of the proposed methods: 1) For the LMI 

based saturated control problem, the stability is guaranteed by the inequality (23) and the performance 

is guaranteed by the minimization of the objective function (22) for given   and
1 . Through   and

1  are adjustable, they make the methods conservative, because there are not always solutions for any 

combination of   and
1 .  2) In this paper the objective function has no direct relation with the 

tracking performance, so not all the possible solutions may guarantee the command tracking ability of 

command.  3) For MIMO systems, because of the coupled states, the region of stability and allowed 

states of saturation are hard to describe in an intuitive visual description.  4) The one-step method has 

the advantage of direct controller design for a saturated system, however the obtained region of 

stability in this example is very small, a more elaborate analysis can improve it further based on 

accurately modelling of the real system. 
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