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Abstract—Compared to lithium-ion batteries, lithium–sulfur
(Li-S) batteries potentially offer greater specific energy density, a
wider temperature range of operation, and safety benefits, making
them a promising technology for energy storage systems especially
in automotive and aerospace applications. Unlike lithium-ion
batteries, there is not a mature discipline of equivalent circuit
network (ECN) modelling for Li-S. In this study, ECN modelling
is addressed using formal ‘system identification’ techniques. A
Li-S cell’s performance is studied in the presence of different
charge/discharge rates and temperature levels using precise
experimental test equipment. Various ECN model structures are
explored, considering the tradeoffs between accuracy and speed.
It was concluded that a ‘2RC’ model is generally a good compro-
mise, giving good accuracy and speed. Model parameterization is
repeated at various state-of-charge (SOC) and temperature levels,
and the effects of these variables on Li-S cell’s ohmic resistance
and total capacity are demonstrated. The results demonstrate that
Li-S cell’s ohmic resistance has a highly nonlinear relationship
with SOC with a break-point around 75% SOC that distinguishes
it from other types of battery. Finally, an ECN model is proposed
which uses SOC and temperature as inputs. A sensitivity analysis
is performed to investigate the effect of SOC estimation error on
the model’s accuracy. In this analysis, the battery model’s accuracy
is evaluated at various SOC and temperature levels. The results
demonstrate that the Li-S cell model has the most sensitivity to
SOC estimation error around the break-point (around 75% SOC)
whereas in the middle SOC range, from 20% to 70%, it has the
least sensitivity.

Index Terms—Battery modelling, identification, lithium-sulfur
cell, state-of-charge estimation, sensitivity analysis.

NOMENCLATURE

C1 Battery polarization capacitance.
Ct Battery total capacity.

i(t) Battery current.
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IL Battery load current.
L2 Root mean square error (RMSE).
L∞ Maximum error value.
Pi A parameter of the battery model.
Rint Battery internal (total) resistance.
R1 Battery polarization resistance.
RO Battery ohmic resistance.
SOC Battery state-of-charge.
T Temperature.
VOC Battery open circuit voltage.
Vt Battery terminal voltage.
y(tk ) Real output at time k.
ŷ(tk |tk−1; θ) Predicted value of the output at time k using

the parameter vector θ .
ε Prediction error.
γ Battery coulombic efficiency.
θ Model’s parameter vector.

I. INTRODUCTION

THE development of electrical energy storage systems
plays a key role in the vehicle electrification process.

Lithium-ion (Li-ion) batteries are the most common and well-
known technologies used in present-day electric vehicles (EVs).
Achieving specific energy densities up to 200–250 W·h/kg [1],
Li-ion batteries provide a typical electric vehicle to achieve a
range of 250 km with a reasonable and efficient battery size [2].
This does not compare well with the range of a gasoline or diesel
powered vehicle, so there is a strong incentive to explore new
technologies with the potential to achieve much higher energy
densities. Lithium-sulfur (Li-S) batteries have realistic near-
future prospects of achieving energy densities up to 650 W·h/kg
[3], and as a result, they are one of the many technologies under
consideration for next generation EVs. In addition, when com-
pared to Li-ion, Li-S battery has other advantages such as good
low-temperature performance, and inexpensive and nontoxic
raw materials [4]. Li-S also operates over a wider temperature
range and it is safer than Li-ion. These properties are seen as
well suited to automotive application. Conversely, present-day
Li-S battery technology suffers from significant limitations such
as low power capability, low cycle life and a volumetric energy
density that is no better than Li-ion. It is too early to know
whether materials science will resolve some of these problems,
but at present, they are ongoing research efforts exploring the
chemistry.
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Regardless of the state of development of the chemistry, it is
important to be able to operate Li-S cells in practical applica-
tions, and this study is focused on building a fast low-fidelity
model for a Li-S cell. In an EV, it is important to understand
state-of-charge (SOC) (or remaining capacity), which is vital
for any kind of range prediction. An optimal use of a battery de-
pends on efficient and accurate battery modelling. Different ap-
proaches can be used for cell modelling: the two main groupings
are (i) electrochemical models, and (ii) equivalent (electrical)
circuit network (ECN) models. Electrochemical battery mod-
els are high-fidelity models working based on solving complex
mathematical equations (e.g. partial differential equations) and
attempting to fully describe the electrochemical reactions taking
place inside a cell. On the other hand, ECN models only focus
on reproducing the transient terminal voltage of the battery with
basic electronic components like resistors or capacitors. There-
fore they are mathematically simpler, faster and more suitable
for real-time applications, though they provide less physical in-
sight. There are also other modelling approaches in the literature
which are reviewed in [5]. Because of the low computational
effort and relatively good precision, ECN models have been the
subject of studies in a wide range specifically for automotive ap-
plication [6]–[8]. Unlike Li-ion batteries—where ECN models
are commonly discussed—there are few studies in the literature
proposing or using equivalent circuit models for Li-S batteries.

In [9] and [10], impedance spectroscopy has been used to
investigate Li-S cell’s properties. Then parameters of a second-
order electrical circuit model were determined based on the
spectrum data. Although the authors have touched briefly on the
subject of ECN modelling of a Li-S cell; their study was more
focused on Li-S cell cycling analysis. The model parameteriza-
tion method that was used in [9] and [10], i.e. impedance spec-
troscopy, is different from the system identification approach
which is used in this study. The advantage of the system iden-
tification technique, which is proposed here, is its higher speed
that enables us to use it in online applications such as EV battery
management system (BMS). In another study, done by Knap
et al. [11], Li-S cell’s performance was investigated using an
ECN model by considering various model structures subjected
to discharge pulses in the whole range of SOC. The battery
model’s parameters, i.e. ohmic resistance and capacitance, were
obtained vs. SOC and discharge rates [11]. However, the effects
of temperature and charging pulses were not considered in [11],
which are covered in this study.

In this study, ECN modelling of a Li-S cell is performed
with a focus on real-time fast model parameterization using a
system identification technique. Li-S cell’s charge/discharge be-
haviour is investigated subject to various C-rates using precise
experimental test equipment. The effect of temperature is also
assessed by repeating the tests at 10, 20, 30, 40 and 50 °C. So,
the first contribution of this study is development of an ECN
charge/discharge model for a Li-S cell by considering SOC and
temperature effects. Model parameterization is performed at
various charge and temperature levels demonstrating the effects
of these variables on cell’s ohmic resistance and capacitance.
The second contribution of this study is an appropriate com-
promise between accuracy and simplicity (speed) of the model.

Fig. 1. OXIS Li-S cell (left) and schematic of inside the cell (right) [12].

TABLE I
SPECIFICATIONS OF OXIS LITHIUM-SULFUR CELL

Type Rechargeable lithium-sulfur pouch cell Remarks:
Li Metal Anode

Nominal dimension 145 mm × 78 mm × 5.6 mm
Applications Recommended discharge current: 680 mA
Nominal voltage 2.05 V
Capacity Typical: 3400 mA·h when discharged at 680 mA to

1.5 V at 30 °C
Charging condition 340 mA to 2.45 V at 30 °C
Recommended charging
condition in applications

340 mA constant current (C/10) Charge
termination control recommended: CC stop at
2.45 V or 11 h max charge time

Clamped charging voltage 2.45 ± 0.05 V
Service life >95 cycles at 100% depth of discharge >150

cycles at 80% depth of discharge
Weight Approx. 50.7 g
Ambient temperature range Charge/ Discharge: 5 to 80 °C Storage (1 year):

–27 to 30 °C

Four ECN model structures with different levels of complexity
are evaluated for this purpose. The third contribution of this
study is a sensitivity analysis which is performed to investigate
the effect of SOC estimation error on ECN model’s accuracy at
different SOC levels. Finally, restrictions of the proposed model
and future works are discussed.

II. LITHIUM-SULFUR CELL

The lithium-sulfur cells investigated in this study are devel-
oped by OXIS Energy Ltd. Fig. 1 illustrates a 3.4 A·h Li-S cell
and schematic of inside the cell, with the specifications listed in
Table I. These Li-S cells have advantages over existing Li-ion
cells, as follows [12]:

1) High energy density: high energy density: the cell manu-
facturer projects that the realizable specific energy for a
Li-S cell will increase to 650 W·h/kg within a few years;
this compares well to a figure of 250 W·h/kg for a Li-ion
cell. The prototype Li-S cell which is tested in this study
has energy density of 137 W·h/kg which is still far from
the final target.
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Fig. 2. Li-S cell terminal voltage during continuous discharge test at C/30
discharge rate.

2) Improved safety: protective layer over the lithium, high
flash point electrolyte and no dendrite growth are the rea-
sons that improve Li-S cell’s safety in comparison to Li-
ion cells.

3) Lower environmental impact: Sulfur, as the cathode ma-
terial, is non-toxic and environmentally benign.

4) Cost competitive: in comparison to Li-ion cells, the differ-
ent cathode material in Li-S cells, that is sulfur, is abundant
and cheap.

Although the construction of a Li-S cell is similar to a Li-ion
cell, the chemical reactions that take place inside the two cells
and consequently their performances are very different. As illus-
trated in Fig. 1, a Li-S cell consists of different layers including:
1) A lithium metal anode, 2) A sulfur-based cathode, which
includes carbon or a polymer binder, and 3) A non-flammable
electrolyte rendering the cell inherently safe. Various reactions
may take place inside a Li-S cell; the discharge process includes
gradual reduction of sulfur to various polysulfides and finally to
the low-order polysulfides and lithium sulfide, and oxidization
of lithium metal to lithium ions. The opposite direction, that is
charging, consists of reduction of the lithium ions to lithium,
and oxidization of the sulfide and low order polysulfides to the
higher-order polysulfides and sulfur [5]. These various reac-
tions, at different charge levels, cause that Li-S cell’s behaviour
highly depends on SOC. A slow-discharge curve of the Li-S
cell at C/30 discharge rate is illustrated in Fig. 2 where the cell’s
voltage changes from 2.45 V at fully charged state to 1.5 V at
depleted state. Li-S cell’s discharge curve can be divided into
two separate parts which are high plateau (HP) and low plateau
(LP) as shown in the figure. More details about the electro-
chemical reactions taking place inside a Li-S cell can be found
in [13]–[15].

III. METHODOLOGY

For Li-S cell model parameterization, this study has used
formal ‘system identification’ techniques from control theory. A
schematic showing the system identification process as a ‘loop’
is illustrated in Fig. 3 based on a concept developed by Ljung in
[16]. In this concept, three main parts of a system identification
process are as follows:

1) Model structure selection,

Fig. 3. System identification loop.

2) Experiment design, and
3) Fitness criterion and algorithm selection.
The methodology of this study follows this order. First, the

ECN model structures to be considered for Li-S cell modelling
are introduced. Then, experimental tests, which are designed for
cell model identification, are presented and test equipment is de-
scribed. Finally, the fitness criterion and identification algorithm
to be used for cell model parameterization, are explained.

A. ECN Model Structures

ECN modelling is a common battery modelling technique
in the literature. Having less complexity than electrochemical
models, ECN models have been used in a wide range of appli-
cations and for various battery types [18], [19]. ECN models are
constructed by putting resistors, capacitors and voltage sources
in a circuit. The simplest form of an ECN battery model is
‘Rint model’ or simply saying ‘R model’ [20]. The R model in-
cludes an ideal voltage source (VOC ) and a resistor as depicted
in Fig. 4(a): here R is the total battery resistance, Vt is the
battery terminal voltage and IL is the load current. Adding one
RC network to the R model potentially increases its accuracy
by allowing the model to reflect the polarization characteristics
of the cell. A first order RC model or ‘Thevenin’ model [21],
which has one RC network and a resistor as shown in Fig. 4(b),
has been used in a wide range of applications in the literature
[5]. In a RC model, Vt is terminal voltage, VOC is open cir-
cuit voltage (OCV), RO is ohmic resistance, RP and CP are
equivalent polarization resistance and capacitance respectively.
Adding more RC networks to the battery model may improve
the accuracy; however, an appropriate compromise is needed
between accuracy and simplicity of the model especially for
real-time applications. In this study, four model structures are
assessed as illustrated in Fig. 4(a)–(d) which are called here
as R, 1RC, 2RC and 3RC models. Differential equations of an
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Fig. 4. Cell ECN models: (a) R model, (b) 1RC, (c) 2RC, and (d) 3RC.

ECN model with N networks like shown in Fig. 4 are:
⎧
⎨

⎩

Vt = VOC − RO IL −∑N
i=1VPi

dVP i

dt = − 1
RP i

CP i
VPi

+ 1
CP i

IL (for i = 1..N)
(1)

B. Experimental Tests

The second part of the model identification process, experi-
mental test, was designed so that covers various battery operat-
ing conditions. All the tests were carried out on 3.4 Ah long life
Li-S cells with specifications mentioned in Table 1, produced
by OXIS Energy Ltd.

Series-4000 battery tester was used for the experiments. The
battery tester is a voltage/current device that applies a current
profile and measures the voltage or vice versa. Li-S cells were
contained inside an aluminium test box connected to the equip-
ment using crocodile clips. The boxes were inside a Binder
thermal chamber to set the desired temperature during each test
as depicted in Fig. 5.

Fig. 6 shows a mixed charge-discharge pulse test which was
used for Li-S cell model parameterization in this study. Pulse
tests are common in the literature to be used for modelling
of various battery types. The pulse tests used in this study were
based on those used by the cell manufacturer, and were intended
to give data sets that allow the dynamics of interest to be clearly
seen. (There is nothing particularly special about these choices,
and it may well be possible to use a common standard pulse
sequence for a Li-S cell as well.)

Fig. 5. Cell test equipment.

In this test, various charge/discharge rates and different SOC
levels are taken into consideration. The test started at full charge
state (2.45 V) and continued until the cell’s terminal voltage
dropped below 1.5 V (i.e. the cut-off voltage) which means
a depleted state. Consecutive charge/discharge current pulses
were applied to the cell as shown in the zoomed window in
Fig. 6. The pulse sequence consists of 18 pulses (9 discharge
and 9 charge pulses) including different frequencies and am-
plitudes. As shown in the figure, the whole pulse sequence
was applied ten times at ten charge levels to investigate the
effects of SOC. The models derived in this study represent a
mix of discharge and charging behaviour: discharge is dom-
inant, but there is a small amount of charging. This is cho-
sen to simulate an EV driving scenario in which regenera-
tive braking is modelled with charge pulses. Hysteresis effects
are not explicitly modelled, and could be explored in future
work.

The maximum current is not more than 1C because the Li-S
cells used in this study were prototypes and they could not be
subjected to higher currents. As the cell technologies mature, it
is expected that higher currents will become practicable, and it
will be possible to explore the sensitivities of model parameters
to current and indeed other parameters.

Data was collected in the time domain with a sampling rate
of 1 second. The measurements included time, current and the
cell’s terminal voltage while temperature was monitored to en-
sure that it is being kept constant by the test equipment. The test
was repeated at various temperature levels including 10, 20, 30,
40 and 50 °C. Model parameterization was performed in each
case, as described in the following sections.

C. Fitness Criteria and Identification Algorithms

The well-known Prediction-Error Minimization (PEM) al-
gorithm [16] is used for battery model parameterization. The
algorithm minimizes the error (prediction error) between the
ECN model’s prediction and measurement. Operating over a
short time interval; the PEM algorithm works on a small batch
of data to find an estimate of the model’s parameters. This is
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Fig. 6. Mixed charge/discharge impulse test.

carried out online but periodically and batch-wise rather than
recursively: this approach is different from the on-line recursive
algorithms that work based on sample point to sample point.
For this specific application where the battery parameters are
changing slowly with regard to SOC, temperature, etc., the PEM
algorithm is fast enough to identify this time-varying model as
discussed in [17]. So, the choice of PEM is reasonable because
the measured data are assumed stationary and the battery model
is assumed to be time-invariant within a short time interval. On
the other hand, the algorithm does not have the limitations of the
on-line algorithms which need time to settle, and do not always
preserve all the dynamic information available.

It is assumed that the system ‘output’ y(tk ) is a realization
of a Gaussian stochastic process and it is stationary. The goal
is to find a discrete-time model using the measurements of the
process. The first step in our application is to determine the
model’s structure which is one of the ECN models illustrated in

Fig. 4. During the identification procedure, the model’s param-
eter vector (θ) is determined so that the least difference between
the process and model is achieved. So, here we are talking about
a parameterization problem. In such a problem, prediction error
(ε) is defined as follows:

ε (tk , θ) = y(tk ) − ŷ ( tk | tk−1; θ) (2)

where y(tk ) is the cell’s real output at time k and ŷ(tk |tk−1; θ)
is predicted value of the output at time k using the parame-
ters vector θ. The prediction error depends on the parameter
vector, so an iterative minimization procedure has to be ap-
plied. Consequently a scalar fitness function is minimized as
follows [16]:

EN (θ) = det

(
1
N

N∑

k=1

ε (tk , θ) εT (tk , θ)

)

(3)
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Fig. 7. Li-S cell’s terminal voltage prediction using 1RC model.

The parameters are optimized so that the least difference
between measured terminal voltage and the model’s output is
achieved. To evaluate the identification error, L2 and L∞ norms
were used as follows:

L2 =

[
1
N

N∑

k=1

|ε (tk , θ)|2
] 1

2

(4)

L∞ = max
k∈[1,N ]

|ε (tk , θ)| (5)

where L2 stands for root mean square error (RMSE) and L∞

demonstrates maximum error value.

IV. RESULTS ANALYSIS

Referring to the mixed charge/discharge pulse test shown in
Fig. 6, Li-S cell model identification was performed for all 10
pulse sequences shown in the figure. This means that the ECN
model was parameterized every 10% change in SOC. The whole
process was repeated for various model structures at different
temperature levels. Consequently, different factors are consid-
ered including the effects of cell’s model structure, SOC and
temperature. Since the battery model’s parameters are functions
of SOC, which is not directly measurable, the model’s sensitiv-
ity to the SOC estimation error is assessed as well. In the last
section, restrictions of the proposed model are addressed.

A. Analysis of ECN Battery Model Structures

In Section III-A, four ECN models were introduced: simple
resistance model (R model), 1RC model (Thevenin model), 2RC
model and 3RC model. (The models are shown in Fig. 4). As
discussed above, adding even more components to the model
is possible however; it will be shown that increasing the com-
plexity of the model is not necessarily beneficial. A goal of this
study is to try different model structures for a Li-S cell during
the model identification process. Accordingly, the average and
maximum identification errors for the whole charge/discharge
test were calculated for each model: these identification errors
were the first criterion that was used to compare the models.
Fig. 8 demonstrates how the identification accuracy depends on
model structure. It was observed that the accuracy improved
when more RC networks were added to the model. However,

Fig. 8. Cell’s terminal voltage prediction error using different models.

it should be noted that complexity and consequent computa-
tional effort was also increased. The computational time needed
to perform identification—the ‘identification time’—was taken
as a second criterion for the models’ evaluation. So a compro-
mise must be made between accuracy and complexity for model
structure selection.

Fig. 8 also demonstrates that the improvement caused by
adding the first RC network to the model, is not the same as
the second and third RC networks. In other words, there is not
a big difference between the 2RC and 3RC models (average
error of 20 mV for 2RC vs. 19 mV for 3RC) with regard to
the identification accuracy. This result tells us that there is an
optimal point that after it, more complexity will not necessarily
result in more accuracy. In order to quantify the complexity of
the models, the normalized value of the identification time was
used: all the model structures were used for the same data set,
the identification time was noted, and these time values were
normalized by dividing by the maximum identification time. In
this study, a pulse sequence was used. A sample ‘batch’ of the Li-
S cell terminal voltage prediction using 1RC model is depicted
in Fig. 7. (This is a part of the whole test shown in Fig. 6.)
The process was repeated for all pulse sequences applied to
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Fig. 9. Normalized cell’s terminal voltage prediction error and identification
time using different models.

the model structures. Average normalized identification time
across the whole data sequence was obtained as presented in
Fig. 9. The figure contains terminal voltage prediction error as
well (normalized by its maximum value), so a trade-off can be
explored between model’s accuracy and speed. Based on the
results presented in Fig. 9, if normalized time and normalized
error are considered to be equally important, it is concluded
that 2RC model would be a good compromise in this case.
Other models might be selected in other cases depending on
the modelling purpose. Application-oriented trade-offs between
accuracy and speed in battery modelling has been discussed
more deeply in [17].

B. Analysis of the Effect of SOC

Before analysing the role of SOC in a Li-S cell model, a
definition of battery SOC is presented. A common technique
of battery SOC calculation, which is used as a benchmark in
this area, is coulomb-counting. In this method, battery SOC is
calculated by integrating the load current to know how much
capacity is used and remained. Assuming SOC0 as the initial
SOC at time t0, battery SOC at time t is calculated as follows:

SOC = SOC0 −
(∫ t

t0

γ i(τ)
Ct

dτ

)

, 0 < SOC < 1 (6)

where i(t) is the current (A) assumed positive for discharging
and negative for charging. γ is battery’s coulombic efficiency
(dimensionless) and Ct is the total capacity (As). In this rep-
resentation, SOC value is a number between 0 and 1, where 0
indicates a fully depleted state and 1 represents a fully charged
state.

In this study, the tests started at fully charged state (2.45 V)
and continued until the cell’s terminal voltage dropped below
1.5 V (i.e. the cut-off voltage) which means a depleted charge
state. In this way, the whole discharge capacity (Ct) is obtained
after each test and is used for SOC calculation.

It was expected that SOC would affect a battery’s dynamic
behaviour, and this is confirmed by our test results. Fig. 10 shows
how an ECN model’s components are related to the behaviour

Fig. 10. Correlation between ECN model’s components and different parts of
the battery response subject to a discharge current pulse.

seen in a discharge current pulse. Each circuit parameter is
dependent on SOC—as an example, the SOC-dependence of
ohmic resistance (RO ) and open circuit voltage (VOC ), for a
single temperature point is presented in Table II. When a current
pulse is applied or removed, there is an instantaneous change in
voltage equal in magnitude to the product of the ohmic resistance
and the applied/removed current, as indicated in Fig. 10. So the
ohmic resistance is calculated as follows:

RO =
∣
∣
∣
∣
Vt, k − Vt, k+1

IL, k − IL, k+1

∣
∣
∣
∣ (7)

where the load current is changed from IL, k to IL, k+1 at time
k and, Vt, k and Vt, k+1 are cell’s terminal voltage just before
and after changing the current. On the other hand, open circuit
voltage is the measured voltage when the battery is in relaxation,
i.e. the load current is zero and steady-state has been reached.

The results demonstrate that Li-S cell’s ohmic resistance has
a highly nonlinear relationship with SOC as presented in Fig.
11 (the effect of temperature will be discussed later). Ohmic
resistance is low at high SOC, increasing linearly in the high
plateau (HP) by charge depleting. There is a break-point at the
end of HP where cell’s ohmic resistance starts decreasing after
it. In the low plateau (LP), Li-S cell’s ohmic resistance almost
has a parabolic shape with a minimum point in the middle. The
biggest value of ohmic resistance is at very low SOC.

C. Analysis of the Effect of Temperature

In this section, the effect of temperature on Li-S cell’s behav-
ior is investigated. For this purpose, the mixed charge/discharge
test was repeated at 10, 20, 30, 40 and 50 °C. Firstly, the rela-
tionship between cell’s capacity and temperature was assessed.
As demonstrated in Fig. 12, the Li-S cell’s capacity decreases
at low temperature (less than 30 °C) and it remains almost con-
stant at high temperature. In order to double-check this result,
the tests were repeated for another cell which confirms it as
illustrated in Fig. 12.

The relationship between cell’s ohmic resistance and temper-
ature has been investigated too. Fig. 11 demonstrates Li-S cell’s
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TABLE II
OPEN CIRCUIT VOLTAGE AND OHMIC RESISTANCE OF LI-S CELL AT DIFFERENT CHARGE LEVELS

SOC (%) 95 85 75 65 55 45 35 25 15 5

VO C (V) 2.371 2.233 2.083 2.094 2.098 2.100 2.099 2.096 2.087 1.995
RO (Ω) 0.039 0.078 0.079 0.068 0.059 0.054 0.053 0.058 0.077 0.140

Fig. 11. Li-S cell’s ohmic resistance vs. SOC at different temperatures.

Fig. 12. Li-S cell’s capacity at different temperature.

ohmic resistance vs. SOC at different temperature levels. This
is a significant figure including a number of novel outcomes.
Firstly, variation of cell’s ohmic resistance vs. SOC follows a
particular nonlinear pattern at all temperature levels (explained
in Section IV-B). The second outcome is the effect of the tem-
perature on cell’s ohmic resistance. Generally, temperature and
Li-S cell’s ohmic resistance are inversely proportional. (Fig. 13
depicts variation of the maximum and average Li-S cell’s ohmic
resistance vs. temperature.) The third outcome of Fig. 11 is re-
lated to the effect of temperature on ‘plateau change’ in Li-S
cell. As demonstrated in Fig. 2, there is a break-point between

Fig. 13. Variation of the maximum and average Li-S cell’s ohmic resistance
vs. temperature.

Fig. 14. Influence of temperature on plateau change in a Li-S cell.

HP and LP regions around 70% to 80% SOC due to a change
in the reactions inside the cell as explained in Section II. The
break-point is also detectable using ECN modelling approach
where model’s parameters have a harsh gradient change as de-
picted for ohmic resistance in Fig. 11. Because of the limited
number of identification points in the figure, a curve fitting tech-
nique is needed to detect the exact location of the break-point.
Fig. 14 demonstrates how temperature affects the location of the
break-point where plateau changes. The results demonstrate that
HP region shrinks as the temperature increases. The break-point
moves from 65% at 10 °C to 85% at 50 °C.

D. Sensitivity Analysis of the Li-S Model to SOC Estimation
Error

The proposed model can be mathematically presented in form
of polynomial functions or lookup tables. In both cases, the cell
model’s parameters are functions of temperature and SOC. Tem-
perature is usually available using an accurate sensor; however
cell’s SOC is not measurable directly and should be estimated. In
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Section IV-B, coulomb-counting technique was used to calculate
SOC. Although coulomb-counting is a quite useful technique,
it suffers from practical limitations. For example, it can only
start to estimate from a given initial SOC value. In many appli-
cations, batteries do not begin to discharge from fully charged
state due to internal self-discharge or being not originally fully
charged [22]. In addition, coulomb-counting technique suffers
from accumulated errors caused by initial SOC value errors,
and noise and measurement errors [23], [24]. Another problem
is that the battery capacity (Ct) might change under various
conditions (e.g. temperature variation) which can lead to esti-
mation errors when using coulomb-counting. A more reliable
SOC estimation can be provided by using other techniques such
as open-circuit voltage method, Kalman filter-based methods,
etc. Good reviews of battery SOC estimation methods can be
found in [25] and [26]. Even using more advanced battery SOC
estimation algorithms, small errors are inevitable. Explanation
of SOC estimation methods is out of the framework of this study
however, sensitivity analysis of the proposed model to SOC es-
timation error is performed here. Indeed, it would be helpful
to know how well the model performs if the correct value of
SOC is not available. In order to investigate the sensitivity of
the model to SOC, gradient of the model’s error (L2) with re-
spect to SOC was analysed. It is clear that the model’s accuracy
is affected by changing its parameters which are functions of
SOC, temperature, etc. as follows:

Pi = fi(SOC, T, . . .), i = 1, 2, . . . , n (8)

where Pi is a parameter of the model, T stands for temperature
and n is the number of parameters used in the model. So, we can
investigate the effect of SOC on the model’s accuracy by using
the formula in below. It says that the model’s sensitivity to SOC
is proportional to the sensitivity with respect to each parameter
multiplied by the sensitivity of that parameter to SOC.

∂L2

∂SOC
∝

n∑

i=1

(
∂L2

∂Pi
× ∂Pi

∂SOC

)

(9)

Assuming that RO and VOC are more influential in model’s
accuracy than R1 and C1, equation (9) is simplified as follows:

∂L2

∂SOC
∝ ∂L2

∂RO
× ∂RO

∂SOC
+

∂L2

∂VOC
× ∂VOC

∂SOC
(10)

At first, derivative of cell’s ohmic resistance with respect
to SOC (∂RO /∂SOC) is calculated at different charge and
temperature levels as illustrated in Fig. 15 (absolute values are
shown in the figure). The dashed line just shows the general
trend which is the average of all temperature levels. The results
demonstrate that Li-S cell’s ohmic resistance changes fast at low
and high SOC regions. So regarding the ohmic resistance only,
the model is more sensitive to SOC estimation error at low and
high charge levels. However, it should be noted that the open
circuit voltage can also affect the overall results. Referring to
Fig. 2, open circuit voltage changes much faster in HP than LP.
It means that the derivative of cell’s open circuit voltage with
respect to SOC (∂VOC/∂SOC) has higher values at HP. For
investigation of the resultant effect of the two factors (RO and
VOC ) simultaneously, a specific analysis is conducted.

Fig. 15. Derivative of Li-S cell ohmic resistance over SOC at different charge
and temperature levels.

Fig. 16. Cell terminal voltage prediction error with and without SOC estima-
tion error.

Referring back to Fig. 8 (cell’s terminal voltage prediction
error), it should be noted that the results were obtained using
an ‘ideal model’. Here ‘ideal model’ means a model whose
parameters are optimised for that particular case without any
error in SOC estimation. However in a real application, an error
in SOC estimation is inevitable. For our analysis, the results are
calculated again using an ‘not-ideal model’ with 10% deviation
in SOC from its correct value.–Fig. 16 demonstrates the effect of
SOC estimation error on model’s accuracy. The cell’s terminal
voltage prediction error is obtained with 10% SOC error and it
is plotted against the ideal model. In this analysis, the simplest
form of the cell models [shown in Fig. 4(a)]was used. The results
demonstrate that the Li-S cell model has the most sensitivity to
SOC estimation error around the break-point (75% to 80% SOC
at 30 °C). The next highest sensitivity is at low and high charge
levels. It is concluded that SOC estimation accuracy is less vital
in middle SOC range from 20% to 70%.

E. Limitations of the Proposed Model

There are a number of limitations for the proposed model in
this study. The capacity fade in a Li-S cell is a challenging issue
for automotive application. Li-S cell capacity fade occurs due
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to cell ageing (cycling). So, an ageing factor should also be con-
sidered in the model in addition to SOC and temperature. For
more detail, Li-S cell capacity fade due to cycling is addressed
in [9], [10], and [27]. A Li-S cell’s capacity might decrease be-
cause of the composition change on the surface of the lithium
electrode and formation of a layer of solid products on the sur-
face of the sulfur electrode during cycling. In detail, whereas the
polysulfides S8

−2, S6
−2, and S4

−2 are soluble in the electrolyte,
the polysulfide ions Li2S2 and Li2S are relatively insoluble.
So they might remain within the body of the positive electrode.
The shuttling of polysulfides between the electrodes is a major
technical issue limiting the self-discharge and cycle life of the
Li-S battery [28]. Shuttle phenomenon has been investigated in
previous studies [29]–[31] and research in this area is ongoing.

V. CONCLUSIONS

In this study, ECN modelling of a Li-S cell was investigated.
Model parameterization was performed under various condi-
tions. The results were analysed by considering different aspects
such as the effects of model structure, SOC and the ambient
temperature. In addition, sensitivity of the proposed model’s ac-
curacy to SOC estimation error was assessed and limitations of
the model were identified and discussed. All in all, the following
outcomes can be highlighted as main conclusions of this study:

1) A proper compromise between accuracy and complexity
in selection of an ECN model structure for Li-S cell has
been explored. It was concluded that the 2RC model is
a good general compromise, giving good accuracy and
speed. However, other model structures might be more
appropriate in other applications depending on the aims
of modelling and the criteria for ‘goodness’.

2) The model identification results demonstrated that a Li-
S cell’s ohmic resistance is low at high SOC, where it
increases linearly in ‘high plateau’ region (by charge de-
pletion). There is a break-point at the end of high plateau
where cell’s ohmic resistance starts decreasing. In the ‘low
plateau’, the graph of a cell’s ohmic resistance has a near
parabolic shape with a minimum point near the centre of
the low plateau; after that, the Li-S cell has the greatest
ohmic resistance value at very low SOC. However, at low
temperature, the maximum ohmic resistance occurs just
at the break-point between high plateau and low plateau
as demonstrated in Fig. 11 for 10 °C.

3) The effect of temperature on a Li-S cell’s behaviour was
investigated and the following patterns were observed:
a Li-S cell’s capacity decreases at low temperature, but
above the ambient temperature it remains almost con-
stant, with only a small drop as temperature increases.
The temperature and ohmic resistance were found to be
approximately inversely proportional. Changes in temper-
ature were found to have an effect on the shape of the ‘high
plateau’, which was observed to shrink as the temperature
increased.

4) Finally, a sensitivity analysis showed that the Li-S cell
model’s accuracy was most sensitivity to SOC estimation
error around the break-point; the next most sensitive SOC

regions were at high and low SOC range. It was concluded
that in consequence, SOC estimation accuracy was less
critical in middle SOC range, i.e. 20% to 70%.
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