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SUMMARY

This interim note presents an analysis, using an energy
method, of the thermal stresses in a finite length box structure
resulting from uniform skin heating, The solution depends upon
an eighth order differential equation with constant coefficients,
Numerical solutions are given for comparison with existing and
prijected experiments,
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SYMBOLS

4, C,

Constants depending on temperature distribution
and material properties.

Half width of I-section (= half web spacing)
Helf depth of I-section (= half box depth)
Moduli. of Elasticity

9F/ 21

Stress Functioms im axial variable

Length of box

Local and weighted average temperatures

Ratio of width to depth (= &/a)

Skin and web thickness

Non dimensional axial co-crdinate (= %/d)

Nen dimensional transverse coe-ordinate (= y/d)
Non dimensional lateral cs-erdinate (= z/a)
Axial co~ordinate
Transverse co-ordinate gee Tig, 2
Lateral co-ordinate

Coefficient of linear expansion

Poissons Ratio

Direct stress

Shear stress

Ratio of skin area to web area (= 2ats/dtw)



Introduction,

The analysis of thermal stresses due to kinetic heat%ng in
multi-web box wing structures was first discussed by Hoff, who
considered a structure of infinite length. This reduced the problem
to a uniaxial system, and thus led to an extremely simple solution.

Further unpublished work has been done by‘Galkin2 who has
generalised the infinite solution for unsymmetric cases, etc., and
who also attempted an experimental investigation. This however showed
no agreement with the anglysis, the differences being put down to the
simplicity of the theory, mainly in neglecting end effects in a short
box. :

The present analysis accounts for finite length of box, and could
be extended to practical cases of wings with root fixings, etc,
Furtier experimental work is under way, being directed at establishing
means of measuring thermal stresses.

Lnalysis,

An element of the box beam of Fig. 1 is idealised to one I
section,

With uniform skin temperatures, the temperature distribution
at eny cross-section (Fig. 2) after a short time may be approximated
by -

T T

skin max

Tweb = Toin [1 "(Y/d>%l + Tmax(y/d)z I
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The temperature is constant axially se that there is only
axial stress due to differential expansion. The total end load to
completely suppress expansion is

P = - jaEaTdA

so that, assuming the properties are constant, an overall 'average'
temperature which would require the same restraint load, may be

defined as
1
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A thermal stress system due to the above temperature distribution,
and having no resultant load is thus

Ot "“E“(Tmax —Tnﬁ_n)\'(Y/d)z i M] seeesl

g 3(1 +9)

o = T N
i)

where ¥ is ratio of skin area to web area (= 2 tsa/twd).

There is then a constant stress in the skin and a parabolic
stress distribution in the web, For a finite box with free ends
a correction system must be superimposed on this having equal and
opposite edge stresses, i.e.

2 X B b
i bk v Fy Ea(me— Tmin) [(Y/d) "é‘(r;‘ﬁ]

5 =0
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Considering the web and skins separately as plane stress systems
and treating only half the skin as there will be a shear discontinuity
at the junction, the boundary conditions for all the edges of the two
elements may be written as :

) . i\ 2_1+3q}
Web: xw G4 3 O =4 [V é’ﬁ':—\p_‘g‘

il

T =0
v=%4 . o =0
¥
i e ED
Skin x=0, 1} O'X=2A/3(1+‘I’)
% =0
W=0 - g .= TS(O)
W= 1 5 0‘Z=o

= 0
T ....01*'



where * (i) the transverse co—ordinate y is replaced by v = y/a
(ii)  the lateral " z " " "w = z/a

(iii)  the web axial stress is parsbolic, with A=Ea (Tmax-T )

min
(iv)  the skin is assumed to have no bending rigidity so
that it cannot resist normal loads from the web.,

(v) the shear stresses at the junction are to be considered
later.

(vi)  the box beam is considered to be symmetric so that
there is no shear between adjacent I sections.

(vii) the lateral skin stress is taken to be zero at the edge
of the I-section (a minimum is implied in vi).

Note: The two halves of the skin element are identical so the lateral
stress is continuous at the web line and a final boundary
condition on this stress is the zero value at the outer edge
of the opposite half,

The simplest axial stress system which satisfies the boundary
conditions 4 and varies axially is

web i O = F1(x) & V2F2(X) |
skin H O-X. = F3<X) ..0005

The equilibrium equations for plane stress with no body forces
(the thermal 'body forces' are not to be considered in this correction
stress system) are satisfied by taking the other components of stress
as

N ° — — ’ — i
web g = vdF4 BdeFé _ dFL

ﬂ
g £ = 2 /i \ i
¥ oo sz'l +43 vHa - deFZ_ & szg

skin T == WaF% — OFI6
4 .
Op = ZWZaZFg + Wang + aZE‘% R

where dashes denote differentiation with respect to x, and where the
functions of integration Fh_to F7 are in x, and are chosen in a
convenient form,



Satisfying 211 the boundary coxditions L4 (except the shears at
the junction) requires
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Pylo) = By (1)= grpgupPs () = F3 (1) =0

FL_(O) - FL_( . Fﬁ. .8 s Fi. = const. = &'
F5 . 12F” = 1’1§F” |
Fy (o)=F'6(z)=o, Ff =~F’3
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The stresses now become :
web s 0& = FQ + VZF2
x = = -——;—vde’z
. = -%E (1 -vz)Fq —%—25 (1 - v)"')F'é
skin 0& = F3
g m a(1-w)Fg
% =-%E(1-W)?Fg ; | FRVEIN -

As there are three unknown functions, two conditions relating
these may be imposed at the junction. These are equilibrium of shear
and compatibility of axial strain, Noting that there are two halves of
skin, the first of these conditions requires that

! i ! s
teFy =~ th(F1 + 35 )
This becomes on integration

! —1- e ....‘I/
F1 + 2 = F3 + Const, C .ccl9



Por the second condition, the value of Young's Modulus for the
web and skin may be taken to be the same, so that an equation of axial
strain requires that
Va2 7
T F.=F, —--=T7
Ty v fp =ty -3 0y verad0

Solving equations 9 and 10 gives

m . i 1 24-” --(35

h1 = 2(1+3W>b3 7 va TB + %

L2 A = Y |

F, = 2(1+¢)P3 z va('l*% SC e 11

From the first three conditions of equations 7 these lead
te the following conditions:

F5(0) = Fy(1) = 28 / 3(1+y)
(o) = FY(8) = TFYo) =TFYE)  =F5(o)r =F3(e) =°
=0 ceeeel?

The stress system may now be written in terms of the ene

unknovmn F3’ which will be abbreviated to F:
web: o, = —-% {(1+3w) - 3(1+¢)V2 } F o4 %jva2(1—3v2)F”
y jZ-d {(14-3\#)\7 - (1+¢/)v3 } R —% uazd(v—vz)]:?’”
1.2( 2y 1 4
—1 ""d = Lt b ”
oy = 12 () (1) - Yown) 1) | 7
_-% vagd? { (1~v2) ~-%(1~v4) } wau
skin: o =T
%
T = a(1-w)F
¢ 2
a
(e} z:: "2‘ (1"-\/\7) F” oonn;13

The problem is now reduced to finding the function I for
this system, satisfying the conditions 12, The internal energy
may be found and minimised to yield a differential equation in F



Since energy is quadratic in the stresses, the highest order term will be
a fourth derivative squared, which on mlnlmﬂsatlon will lead to an eighth
order term, Thus the equation will require 8 conditions for a solution,
and these are given in equations 12. There will be no need to cstabllsh
boundary conditions in the minimisation process, so that the boundary
terms will not be evaluated.

The strain energy is given'by
=2u[ +2(1+v)r -wog ]tdA iy ot

the integration being takcn over the whole area of web and skins,
These may be considered over the ranges o<x< 1, and o<v<i, for half
the web; and the skin over the ranges e<x<l and o<w< for half of one
skin, Thcn the former must be doubled and the latter quadrupled.

The system is finally non-dimensionalised by substituting for
the axial co-ordinate from

X:‘le o¢-015

offe
2

so that ete,

2
- ou
The non-dimensional parameter r = a/d is introduced also.

The expressicn for the energy becomes

1/4
%Eg - L du{ -—(1+7w+6ur )F

'1—5' vr? (3+8¢) - '1'5'5‘ (2418451%°) J F F

A e 74
105 v I‘ <2+9V’)F B

+ -32'(14-1/) 13-5' (2418¢ + 519°) + rzw] FF
= g%%l vr2(2:9¥)F" B/

[315 (o1 +319°) + 5 rl*(v +) - 105 22 (2499) J P

[515 vr2(2+11w)-7%§ vjrh_‘ e g

1‘1‘6;> 2 lh;,,, oo, _gj__ v rLl-F””F”” } R |

where dashes now denote differentiation with respect to u.
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This energy expression can be minimised by the variaticnal calculus,
resulting in integrals of variations of derivatives. A typical term is

4/a . &a
o) fF’F'” = / (FIS T4 4 B4 & p! ) du
] o]

Integrating by parts this becomes

&4 : /a
[F! 5:5-]) -uF” 6F1 + ZE\III SE]I ) / FII/6 Pdu
; Q

o}

where OF dis an arbitrary variation in the function F,

Now all the boundary terms will be zero, as every term contains one of
the first three derivatives or its variation, and these are zero from the
boundary conditions 12, Then since OF is arbitrary, all the integral
terms may be collected together and equated to zero.

For the particular case of a box with square cells, having the
skin thickness the same as, and twice, that of the web, respectively
(ice. =1, ¥=2and 4 resp,) this results in the following differential
equations for I in terms of u:

-V-Yll -v-i 11ttt tt ’
v = 2t B = 1660 4 8065F ~47,000F 4 546,000F = O
11t 9
v =4t F' = 33F 4 27,000F'11! — 209,000Ft! 4 175,000F = 0 ....17

The solutions of these equations satisfying the boundary conditions
of equations 12 will yield the correction stresses, from equation 13, to
be imposed on the infinite system of equation 3.

The general solution of these equations is
mu ~m U m.u ~m,_u m u

F=G1e1 +Ge1+0e2+0e2 mu.;.0653’_1'1m3u)elF

5 5 s + (65003 5

-1, U
L

C i 3
+ ( -7COS m3u+ CBSj‘n InBu)e ..GS&ODDGOOI!QGO.IOO'918
with the indices having the values tabulated below:

v m m, m m

1 2 3 L
2 1252 2,227 1.395 9. QL5
LF ° 976 20 7[4-23‘ 1o 11-39 1 2024-1 6

For a semi~infinite box (i.e. with one free end at x = 0 and one
at x = » ) all positive order exponentials must vanish, so that only four
coefficients remain, to be determined from the boundary conditions for
u =0,



These coefficients for the two cases are :

14 02 04 06 08

2 3054 -2,217 +168 . 286 )) X. o 2224

L 10824 - 4902 .078 -1 ; X . ,13534
O'..D".19

where A is defined in equations L4 note iii, and represents the temperature
difference and properties, whilst the odd coefficients are zero,

For a short free~ended box, the system is symmetric, and the
origin of axes moy be taken at the centre, with the boundary conditions
expressed at te /2, The general solution 18 may be written in terms
of even functions only, with four coefficients determined at either edge.

The solutions are:

o 1] 1 ? t o 3
P = G,Icosh mu 4 Czcosh m.u 4 Clcosh m3u.cos mu 4+ Clsinh n13u,s1n mu

1 2 b L L L
...'20

where the values of the m are as befare, and where the Ct for different
box sizes are as below

£
v /a o} 1' cé c% GL ;
2 2 #1.222 =297 +3,59107 41,4010\

N + U875 = 0498  41.57x100 -8.65x1070 | x,z20n

7 + 07 ~00M86  49.33x10710  47.93x1071°
i 2 3 .9827 =065 4T T30 42,097x1077
o 1aBL
b 4 W4897  =.00685 = T595x107'2 460431072
L N N ) 21

The functions of equations 18 and 20, with the coefficients
19 and 21 are plotted in Fig. 3.



Now the direct web stresses of equation 13 added to the infinite
system of equation 3, for the two cases of V- 2 and 4, may be written
in the following forms, to give the actual stresses in the short box:

o = A {,777(1«1‘)4.,0166?‘ - { (1) + LOBOE" ¥ :] (v = 2)
L)

5 {(.30687 = ,00L267){ 31T —, C0EBEIV)2(, 082" —, 00426 H) (v o)

1l
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A (].866(1F) 4 L0107 | = {(1F) 4 LO30E" v° ] (v

q
il
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A { (,233E" ~,0025£17) =(o4338" -, OOBOtf‘*V)vz.;.( 083" =, 0025ftv)v4} (¥ =)
c 090 0000 22

ore £ o 2 _ 198
where £ = o and = o

stresses are not considered here, but may be obtained from equation 13,

for v = 2 and L respectively., The ramaining

For purposes of comparison with experiment, the difference between
axial and lateral web strain for the case of ¥ = L4 will be calculated as
this corresponds to the results obtained by Calkin~, He assumed that the
lateral stresscs were negligible, so that twe strain gauges placed
perpendicularly on the web would give the axial stress only, the gauges
being temperature compensated. The apparent axial stress would then be
token asg

Topp = ( e, - ey)E/(’! + V)
However this would really become

O‘app = O‘X = O‘y

For the case corresponding to Calkin's tests (i.c. ¥ = L,
£/d =k, v =1, and toking v = 0,3) the present theory gives

o = (350 = .350v> - 03 B ofT ) veened3

app mx ij_n

Values of this stress are calculated using Calkin's measured
temperature distributions, (assuming these to be parabolic) and with the
same moterial properties, namely E « = 303 p.s.i./ C. These are plotted
in Fig, 4 together with the earlier experimental results and infinite
theory calculations, and with the corrected axial stress of equation 23,
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Conclusions

1e According to the present theory for short boxes, the axial stresses
are sbout half those predicted by the infinite theory, far the box examined,

2 - A short initial period occurs before the heat flow from the skin
penetrates to the centre of the web, so that in this period the web
temperature distribution is not as assumed, namely parabolic, Hence the
present theory cammot be reliable then,

2% The experimental results and the calculated values do not agree
well having different forms,

L. The weakness of the present theory probably lies in the fact

that it is based on a simplified temperature distribution. TVhile the web
parabolic approximation may be justified in some cases, the skin temperature
would alwaeys have a significant drop at the web, and the maximum web
temperature would be different fram the skin temperature, due to thermal
resistance at the joint, The theory is also only a second approximation

to the true stress distribution, even if the idealisations are justified,
However a more refined solution would be impractical and probably unnecessary.

5% In a long box, the infinite theory would be accurate for positions
more than sbout 2% depths (€/d = 5) from a free end,

6. For boxes of typical proportiocns, the stress distribution is only
slightly affected by the ratio of skin area to web area,

References:

16 Hoff, N.J. Structural problems of future aircraft;
Third Anglo-American Conference, 1951,

2 Calkin, P, - An analytic and experimental study of some

problems of thermal stresses; College of
Aeronautics Diploma Thesis, 1956,
(Unpublished),



FIG2 IDEALISED I-SECTION WITH TYPICAL TEMPERATURE DISTRIBUTION.
FIG.1 MULTICELL BOX STRUCTURE. 2 IDEAL I
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FIG.3 VARIATION OF AXIAL STRESS FUNCTION FOR DIFFERENT BOX LENGTHS



80X PROPORTIONS :
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