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Abstract. Reliability modelling of repairable systems deals mostly with two types of repair. 

Perfect repair brings a system to ‘as good as new’ state. Minimal repair, on the contrary, 

returns a system to the state immediately prior to failure. In this paper, we consider perfect 

and imperfect preventive maintenance actions for a system subject to minor and major 

failures. Minor failures are minimally repaired, whereas a major failure terminates the 

operational function of the system and can be considered as an end-of-life event. The 

preventive maintenance strategies that we propose and analyse increase mission success 

probability and extend the expected lifetime of the system. The modeling is illustrated with 

numerical examples. 

  

 

Keywords: Preventive maintenance; perfect repair; minimal repair; imperfect maintenance; 

nonhomogeneous Poisson process  

 
1. Introduction 

 

Traditionally, reliability modeling of repairable systems deals mostly with two types of 

repair. Perfect or ideal repair returns a system to ‘as good as new’ state. Therefore, the 

sequence of operating times forms in this case a renewal process. The most common 

realization of perfect repair in practice is the replacement of the failed system with a new 

identical one. Minimal repair, on the contrary, returns a system to a state (defined in 

statistical terms) immediately prior to failure (see, e.g., references [1-2]]). It is well known 

that in the latter case the corresponding sequence of lifetimes is described by the 

nonhomogeneous Poisson process (NHPP) with the rate equal to the failure rate defined by 

the baseline lifetime distribution of a system. A natural example of minimal repair is when 

the failed system is replaced by the identical one that was operating for the same time in the 

same conditions but did not fail and, therefore, could be considered as statistically identical.  

     In order to compare different maintenance actions, the basis for comparison should be 

chosen.  A manufacturer (if he, for instance, provides a warranty) or the user are obviously 

interested in minimizing the operational costs of repairable systems. This characteristic for 

perfectly repaired systems is often defined as a stationary one via the concept of the renewal 

reward theory [3] as the long-run expected cost per unit of time (cost rate), i.e., the mean cost 

incurred at the renewal cycle/ duration of the renewal cycle. Numerous optimal maintenance 

policies minimizing this metric were discussed in the literature. The most popular strategy 
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considers the setting when a system is perfectly repaired either upon failure or on attaining 

age T , whichever comes first. Then the optimal T  minimizing the expected cost rate can be 

obtained (see the ‘classical’ paper by Barlow and Hunter [4]). The other standard strategy 

considers replacements at periodic instants of time ,...3,2, TTT  and minimal repairs in-

between. Then again, optimal period minimizing the cost rate is obtained. Those are well- 

known cost driven important optimal decisions focused on perfect and imperfect preventive 

maintenance strategies [5-15]. 

     There are numerous modifications of the basic models. However, we feel that some of the 

essential notions and approaches were overlooked in this ‘endless’ flow of literature. Some of 

the criticism of the renewal reward reasoning is based on the fact that in reality, we do not 

achieve asymptotic values of costs per unit of time as prescribed by the renewal-rewards 

theorems. This is true, but still these values are usually a very good estimate of the real 

quantities in practice and, furthermore, a ‘one cycle solution’ can be also [16]. On the other 

hand, it should be noted that in practice, we have a lot of applications when a system is 

subject to minor failures (which can be repaired minimally, perfectly or imperfectly) and a 

critical (disastrous) failures that terminate the operation of a system and cannot be repaired 

(e.g., failure of a mission or a death of an organism in biological applications). The possible 

optimal PM actions in these cases should be of interest as a possibility for, e.g., a life 

extension or for increasing the probability of a mission success. Both of these applications 

can be very important in practice. For instance, when a mission is very important (e.g., space 

or combat mission) or when the unique complex system is very expensive and the extension 

of its lifetime becomes vital. 

     Our setting somehow resembles the basic Brown-Proschan model [2] (or its time-

dependent generalization [17] when each failure is minor (minimally repaired) with 

probability q  and is major (perfectly repaired) with probability p , however, in contrast to 

this basic model, we consider the process only to the first major failure. To the best of our 

knowledge, this PM model in the current setting was not considered in the literature so far. 

Note that, preventive maintenance for the classical Brown-Proschan model with a random, 

time-independent p  in a different from our approach context was reported recently in Lim et 

al. [18].  

     The paper is organized as follows. In Section 2, we describe our general setting. In Section 

3, we consider increasing of the probability of a mission success via the PM actions is 

considered, whereas in Section 4, we deal with the cost-effective optimal PM schedules for 

extending the time to the major failure of partially repairable systems. Finally, concluding 

remarks are given in the last section.  

 

2. The setting  

 

Consider a system subject to minor failures that are instantaneously minimally repaired and 

to a major failure that is unrepairable and terminates the operational function of our system.  

Fatal failures often can result in large economic loss and probabilities of these events should 

be minimized as in the case of, e.g., space or combat missions. Another example is the 

deteriorating systems with a relatively long lifetime when it is not already cost-wise 

reasonable to perform a repair after a major failure.  Furthermore, we can think also about an 

organism, whose death can be considered as a major failure, whereas ‘minimal repairs’ are 

executed throughout its lifetime.  Thus, we can qualify the described type of systems as 

partially repairable. It is quite natural to implement some measures extending the lifetime 

and/or increasing the probability of a mission success of these critical systems. One of these 

measures is preventive maintenance (PM) that is widely used especially for repairable 

systems. One can find numerous papers that deal with various modifications of the basic PM 
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models (see, e.g., [4, 6, 7] and references therein).  However, we believe, that the described 

partially repairable case that seems simpler from the first sight, did not attract the deserved 

attention. Therefore, in this note, we will try to fill this gap to some extent considering some 

basic simple PM models for the partially repairable systems. Note that classical PM strategies 

with infinite time are formally non-applicable as the time till the major failure is finite. 

However, obviously, we can consider a single cycle (till the major failure) and describe 

optimal strategies of preventive maintenance in this case that will minimize overall or per 

unit time operational costs. 

     Let T   be the time to any failure (minor or major) of our system with a finite expectation 

∞<≡ ][TEµ  and absolutely continuous cumulative distribution function (Cdf) 

][)( tTPtF ≤= . Denote the corresponding survival function by )(1)( tFtF −= , the 

probability density function (pdf) by )(tf  and the failure rate by )(tλ . Assume that each 

failure is minor with probability )(tq  and major (terminating) with probability )(1)( tqtp −=
. 

     Minor failures are instantaneously minimally repaired. Denote the time to the fatal failure 

by PT . It is well known that the time to the fatal failure has the following distribution [17,19]: 








−=≤= ∫ duuuptTtF

t

PP

0

)()(exp]Pr[)( λ .                                    (1) 

with the corresponding failure rate  

)()()( ttptP λλ =                                                         (2) 

and the density function )(tfP .  It also follows from e.g., Finkelstein and Cha [20] that the 

process of minimal repairs (before the major failure) in this case follows the NHPP with rate   

)()()( ttqtq λλ = .                                                        (3) 

     In what follows we will assume that a system is deteriorating, which is manifested by the 

increasing )(tPλ . By implementing the corresponding PM actions we want to extend the 

useful life of deteriorating systems or to increase a mission success probability. However, as 

usual, it should be cost-effective (optimal in a suitable sense), otherwise we can perform the 

instantaneous PM as often as technically possible and will achieve the maximal extension of 

the initial lifetime PT .  We will first consider how to increase mission success probability by 

implementing the corresponding PM actions, where optimality is understood as the minimal 

number of PMs that achieve the required value of probability. 

 

3. Maximizing mission success probability  

As it was stated in the Introduction, increasing the probability of a mission success can be 

crucial in practice, e.g., for missions with high importance (e.g., space or combat missions). 

In this section, for the setting to be described, we will obtain the optimal (minimal) number of 

PMs that achieve the required probability of a mission success.  We start first with  perfect 

PM, that, according to its definition,  decreases the failure rate to its initial value at .0=t  

     Let mt  be the mission duration and )( mr tP  be the required mission success probability and 

let 

)()( mrmP tPtF <                                                                (4) 
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meaning that existing mission success probability does not meet these requirements. 

Therefore, we want to implement the preventive maintenance. As perfect maintenance brings 

the failure rate to its initial )0(Pλ , and the failure rate )(tPλ  is increasing, we must  first 

check that this ideal case meets our requirement, i.e.,  

)(})0(exp{)( mrPid tPttF >−≡ λ .                                              (5) 

If this is the case, then we can proceed with PMs. Note that, when 0)0( =Pλ , as for many 

distributions used in reliability modeling (e.g., the Weibull distribution in the forthcoming 

examples), inequality (5) holds automatically ( 1})0(exp{ ≡− tPλ ) and this formal check is not 

required. Assume first, that only one PM can be scheduled at time a  and let us find a  

maximizing the corresponding probability. Thus, we must obtain 













+∫ ∫
−a at

PPa

m

duuduu
0 0

)()(min λλ ,  ),0[ mta∈ ,                              (6) 

which simply follows from maximizing 












−








−= ∫∫

−at

P

a

Pmm

m

duuduutaF
00

)(exp)(exp),( λλ . 

where  ),( mm taF  is the corresponding survival function for the case with one PM at a . 

Indeed, similar to the series system, the first multiplier in the r.h.s. gives probability of 

survival before the PM, and the second one, after the PM, defines survival probability in the 

rest of the interval. It also takes into account that after the PM, the failure rate is set to its 

initial value. After differentiating the sum of integrals in (6) with respect to a  and equating 

the result to zero, we arrive at the following equation with respect to an optimal a : 

)()( ata mPP −= λλ .                                                  (7) 

Equation (7) has a trivial unique solution 2* mta =  for increasing functions [21]. It is also 

clear that it is a minimum for (6) as the maximum is achieved for 0=a  and mta = . 

     Obviously, the same reasoning can be applied to the case of n PMs at times naaa ...21 << . 

Thus we must find 













+++∫ ∫ ∫
− −1 12

0 0 0

}{ )(...)()(min

a aa at

PPPa

nm

i
duuduuduu λλλ . 

After differentiating and equating the result to zero, and using the same argument as while 

discussing (7), we arrive at the simultaneous equations with respect to  optimal 

niai ,...2,1*},{ =  with a solution:  

ni
n

t
ia m

i ,...,2,1,
1

* =
+

= . 

Thus under given assumptions the PMs should be performed equidistantly. When there are n  

PMs, the mission success probability, ),( mm tnF  is  

n

mPmm ntFtnF ))/((),( = ,                                                     (8) 
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where )(tFP  is defined in (1). Note that ),( mm tnF  is increasing with n, as each additional PM 

obviously increases the corresponding survival function, and  

})0()0(exp{))/((lim m

n

mPn tpntF λ−=∞→ .                                       (9) 

Equation (9) is obtained for the case 0)0()0( ≠λp . When 0)0()0( =λp , this limit is equal to 

1.  

     The minimal number of PMs to meet the requirement )( mr tP (see also (4)) can be obtained 

as  

)}())/({(min* mr

n

mPn tPntFn ≥= .                                         (10) 

 

Example 1.  Let 0,2)(},)(exp{)( 22 >=−= λλλλ ttttFP  (where, for simplicity, 1)( ≡xp ), 

which corresponds to the Weibull distribution with linear failure rate. Then (10) turns to  

)}(}/)({(exp{min* 2

mrmn tPntn ≥−= λ .                                          (11) 

It is obvious that inequality in (11) can be easily achieved by the sufficiently large n. 

 

     In practice, most of the preventive maintenance actions are imperfect. Even the 

replacement of a system by a ‘new one, strictly speaking, is not ideal as a system could be 

subject to different tests at the production phase (e.g., burn-in) and can be also stored for 

some time. There are numerous models of imperfect repair/preventive maintenance (see, e.g., 

references [8],[10-14], [20] ). We will suggest here a simple model that to the best of our 

knowledge was not considered in the literature. Furthermore, it seems to be quite realistic 

from the practical point of view. 

     After each PM, the failure rate in the considered above perfect PM model was set at its 

initial level )0()0()0( λλ pP = . We will assume now that the failure rate after the PM at 

calendar time x  and at time t  after the last maintenance has the following form 

0,0),()(),( 0 ≥>+= txtxtx Pim λλλ ,                                           (11) 

where the function 0)0(),( 00 =λλ x  is assumed to be increasing  showing the value of 

‘additional’ failure rate that is added to  )(tPλ  after each imperfect PM. The fact that )(0 xλ  

is increasing means that the quality of imperfect PM is also deteriorating with each repair. 

Thus, in accordance with (11), the survival function that describes time to the next failure 

after the PM at calendar time x  is })(exp{)( 0 txtFP λ− , where the second multiplier shows 

the effect of imperfect maintenance on the baseline survival probability. 

     Similar to (6) consider first one PM in ),0[ mt  













++∫ ∫
−a at

PPa

m

duuaduu
0 0

0 ))()(()(min λλλ .                                  (12) 

After differentiating the sum of integrals and equating the result to zero, we arrive at the 

following equation with respect to a : 

0)()()()()( 00 =−′−+−− aaatata mmPP λλλλ .                                  (13) 
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Let, for simplicity, 0)0()0( 0 == λλP .  Then rearranging (13) as  

)()()()()( 00 aatataa mmPP λλλλ ′−−−=− ,                                   (14) 

 

it can be shown (e.g., graphically) that it has a unique solution  under our assumptions. 

Indeed, both symmetrical curves )(aPλ  and )( atmP −λ  that cross at 2mta =  are shifted 

lower but maintain the zero values at 0=a  and mta = , respectively, therefore they have to 

cross as well. For instance, for the specific case, 21201 ;)(,)( kktkttktP >== λλ  (see the next 

example), it is easy to see that 2/mta =  is still a solution to (14). A similar reasoning can be 

applied to the case of n PMs at times naaa ...21 << . Thus we must find 













+++++∫ ∫ ∫
− −1 12

0 0 0

010}{ ))()((...))()(()(min

a aa at

PnPPa

nm

i
duuaduuaduu λλλλλ . 

that corresponds to optimal ),(* ntF mP  for the fixed n , i.e., 

.))()((...))()(()(minexp),(*
1 12

0 0 0

010}{

























+++++−= ∫ ∫ ∫
− −a aa at

PnPPamP

nm

i
duuaduuaduuntF λλλλλ

 

As derivatives of the sum of integrals with respect to  niai ,...,2,1, =  , similar to (13), involve 

only two terms, the simultaneous equations have an optimal solution   *....** 21 naaa <<<  

that can be obtained numerically. As ),(* ntF mP  is increasing in n , the optimal n*  can be 

obtained. 

 

Example 2. Let 21201 ;)(,)( kktkttktP >== λλ . Then it can be shown by simple derivations 

that, similar to the perfect PM case, ni
n

t
ia m

i ,...,2,1,
1

* =
+

= .  The optimal number of PMs 

can be obtained from the relation: 

)}.(),(*{min* mrmPn tPntFn ≥=  

Assume that the mission success probability requirement is given as 9.0)( =mr tP  and let 

005.01 =k  ,  0018.02 =k , 10=mt . Then  81.0)0,( ≈mP tF and we need preventive 

maintenance to improve this probability. Table 1 and Fig. 1 show how the mission success 

probability approaches the required value with the number of PMs increasing from 1 to n. 

Thus 9007.0),(* =∗ntF mP , 10=∗n . 

  

n 1 2 3 4 5 6 7 8 9 10 

),(* ntF mP  0.8437 0.8665 0.8781 0.8851 0.8899 0.8933 0.8958 0.8978 0.8994 0.9007 

 
Table 1. Values of the mission success probability for different n 
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Fig 1. Values of the mission success probability for different number of PMs, n 

 

4. Extending the lifetime by PMs  

The reasoning in the previous section was aimed at achieving the required reliability 

characteristics for a given mission time without direct consideration of the corresponding 

costs. In this section, for the same basic setting with minimal repairs and a major (fatal) 

failure (end-of-life event), we will deal with a problem of minimizing expected costs on a life 

cycle of a system until its major failure and will obtain an optimal  strategy for the 

corresponding PMs. Note that for the non-reparable and partially repairable systems, the 

classical PM strategies described in the Introduction do not work, as we do not have a 

stationary regime in this case, however, we can consider a single cycle and look at the 

optimal strategy of PMs in this case that will minimize overall or per unit time operational 

costs. 

     First, we must define the corresponding cost structure. Let pmm CxC ),(  be the costs of the 

minimal repair and of the preventive maintenance, respectively. Let the latter, for simplicity, 

does not depend on the calendar time x , however the time-dependent case can be also 

considered. It is reasonable to assume also that as a system is wearing out, its minimal repair 

cost )(xCm  is increasing. The expected operational costs before the major failure, in 

accordance with (1)-(3) and Boland [22] are 

dxdyxxCyfC

y

qmPp ∫∫
∞

=
00

)()()( λ ,                                                  (15) 

Thus the average cost rate on a lifecycle is   

p

y

qmP

p

dxdyxxCyf

c
µ

λ∫∫
∞

= 00

)()()(

 ,                                                 (16) 

where ∫
∞

=
0

)( dxxFPpµ  is the mean time to the major failure. 

     Let )(xCm  be also a constant, i.e., mm CxC ≡)(   Then (16) simplifies to  

 

1 2 3 4 5 6 7 8 9 10

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91
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p

y

qPm

p

dxdyxyfC

c
µ

λ∫∫
∞

= 00

)()(

.                                               (17) 

     We want to improve now the performance characteristics of our system by implementing 

PM. Let us perform periodic perfect PMs at  0,...;2,1, >= anna  . As the perfect maintenance 

brings the failure rate to its initial )0(Pλ , and )(tPλ  is increasing, the PMs will increase the 

expected time to a major failure. For instance, when 0→a , in the limit, the time to a major 

failure tends to the exponentially distributed random variable with parameter )0()0( λp ). 

Therefore, without considering costs of PMs: 

)0(

)0(
)( 0

p

q
CaC map →→ , 

)0()0()( 0 λqCac map →→ . 

This relationships show the potential minimal costs of minimal repairs, and similar to (5) can 

be used for preliminary analysis of the problem. Assume, in what follows that 

)()(),()( xpxxqx pq λλλλ == , i.e., pxpqxq ≡≡ )(,)( .  Implementing the PM actions will 

increase the expected costs as the cost of each PM is pmC . Therefore, we must find an 

optimal period a  that minimizes the expected costs. Denote by )(aS  the probability of 

survival (without a major failure, but with possible minor failures that are instantaneously 

minimally repaired) of our system between the two perfect PMs. Then, in accordance with 

(1), 








−= ∫

a

p dxxaS
0

)(exp)( λ . 

Then the expected number of PMs before the major failure, in accordance with the 

corresponding geometric random variable, is  

)(1

)(
....))(1)((3))(1)((2))(1)(( 32

aS

aS
aSaSaSaSaSaS

−
=+−+−+− .               (18) 

Therefore, the expected cost till the major failure can be obtained as  

∫∫∫ +
−








+=

y

q

a

Pm

a

qmpmp dxdyxyfC
aS

aS
dxxCCaC

000

)()(
)(1

)(
)()( λλ ,                      (19) 

where the first term is just the product of the expected number of PMs and the expected cost 

for one PM cycle and the second term defines the expected cost on the last terminated by the 

major failure PM cycle. On the other hand, the expected time to the major failure is  

)(
)(1

)(
)( a

aS

aS
aa pap µµ +

−
= ,                                                  (20) 

where paµ  is now a conditional expectation of a mean time to a major failure in [0,a) ( the 

time since the last PM and to the failure)  given the failure had occurred in this interval, i.e., 
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a
aS

dxaSxS

a

a

pa <
−

−

=
∫

)(1

))()((

)( 0µ . 

As mentioned, the second terms in (19) and (20) correspond to the period of length a  where 

the major failure had occurred. Due to the Wald’s inequality, the first term in (19) is the 

product of expected costs between two PMs and the expected number of PMs, whereas the 

first term in (20) is the product of the length of the PM period a  and the expected number of 

full periods before the major failure. Thus  

)(
)(1

)(

)()(
)(1

)(
))((

)( 000

a
aS

aS
a

dxdyxyfC
aS

aS
dxxCC

ac

pa

y

q

a

Pm

a

qmpm

p

µ

λλ

+
−

+
−

+

=
∫∫∫

.                       (21) 

and our optimization problem of obtaining the optimal PM period *a is formulated as  

)(min*)( 0 acac pap >= . 

     It is not so simple to analyze the shape of )(ac p  analytically and we will consider the 

corresponding numerical examples further. However, some simple intuitive reasoning can be 

sufficient for the general considerations on existence of the optimal a  that minimizes (21). It 

can be easily seen that  

∞== →→
a

C
ac

pm

apa 00 lim)(lim , 

whereas by applying the L’Hopital’s rule: 

∞==
∫∫

∞→∞→
pa

y

q

a

Pm

apa

dxdyxyfC

ac
µ

λ
00

)()(

lim)(lim , 

which means that )(ac p  has, at least, one minimum in ),0[ ∞ . 

     On the other hand, we can also approximate (19) by 

)(1

1
))((

]1
)(1

)(
)[)(()(

~

0

0

aS
dxxCC

aS

aS
dxxCCaC

a

qmpm

a

qmpmp

−
+=

+
−

+=

∫

∫

λ

λ

 

and (20) by  ))(1/( aSa − . The meaning of this approximation is in substitution of the last 

terminated PM cycle by the full one of length a . Therefore, the accuracy of this 

approximation increases with the number of periods before the major failure (i.e. as a  

decreases). Thus  
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a

dxxCC

ac

a

qmpm

P

))((

)(~ 0

∫+

=

λ
 .                                            (22) 

Expression (22) can be easily analyzed now. Let ∞→)(xλ  as ∞→x  . Note that our 

reasoning can be easily adjusted to the case when the failure rate is increasing to a constant. 

By similar reasoning as above, ∞→)(~ acP  when 0→a  and ∞→a . Thus, )(~ acP  has, at 

least, one minimum. As (22) is much simpler than (21), we can go now further in our 

analysis. Equating  )(~ acP′  to 0, the condition for minimum can be expressed as  

∫ =−
a

m

pm

qq
C

C
dxxaa

0

)()( λλ .                                                  (23) 

It can be seen that under our assumptions (assume for simplicity additionally that  )(xqλ is a 

convex function, e.g. as for Weibull distribution with increasing failure rate), the l.h.s. of (23) 

is increasing from 0 to ∞  and, therefore, there is a single minimum for the function )(~ acP  

that approximates )(ac p . However, the accuracy of this approximation is not always 

sufficient that can be seen from the example below. Indeed for various values of parameters 

)(~ acP  can provide a very good approximation for )(ac p when  a  is relatively small. 

However as a  increases  )(~)( acac Pp −  also increases and the value of the approximate and 

the ‘exact’ optimal period can differ substantially. Therefore, the suggested approximation is 

useful for a general analysis, however, in practice one should rather use the exact relationship 

(21).   

 

Example 3. Let 100=pmC , 10=mC , tt 005.0)( =λ . 

a. Let p=0.005.  Then  

2.52=∗a    ;    290896.3)( =∗ac  

4.63~ =∗a    ;    348055.3)~(~ =∗ac  

b. Let p=0.05. Then 

6.41=∗a    ;    353932.3)( =∗ac  

9.64~ =∗a    ;    082207.3)~(~ =∗
ac  
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(i)                                                                           (ii) 

Fig 2. Approximate (dash) and ‘exact’ (solid) cost rate function for (i) p=0.005 (ii) p=0.05 

 

Remark 1. The imperfect PM model (similar to (11)) can be also considered for systems with 

minimally repaired minor failures. However, its presentation is much more cumbersome and 

will be reported elsewhere, whereas in the current paper our aim was to introduce this new 

approach and to illustrate it via simple practical examples.  

 

5. Concluding remarks 

 

In this paper, we consider perfect and imperfect preventive maintenance actions for systems 

with minor and major failures. Minor failures are minimally repaired, thus forming the 

corresponding non-homogeneous Poisson process with rate )(tqλ  defined in (3), whereas the 

major failure terminates the operational function of a system and, therefore, can be 

considered as an end-of-life event. Traditionally, we assume that repair and PM are 

instantaneous, as usually in practice the corresponding durations are negligible in comparison 

with times to failures. 

      The PM considered in Section 3 increases the mission success probability. In the simplest 

case, it is optimal in the defined sense when planned equidistantly. The imperfect repair of 

the specific form is also discussed, however, in this case, computational methods should be 

used for obtaining the sequence of optimal PM times.  

     The PM in Section 4 increases the time to a major failure of a system. As the 

corresponding costs are involved in this case, the PM schedule should be cost-optimal. The 

suggested approach defines the cost rate and deals with its optimization. Usually, this setting 

characterises deteriorating complex systems with relatively long lifetimes. As an example, we 

can think about automobiles or road machines when probability of a major failure (non-

repairable) increases with time. Another important example is a biological organism, whose 

death can be considered as a major failure. PM for the latter setting is an interesting and 

important novel application and we plan to report the relevant results elsewhere. It seems also 

reasonable to consider the generalization of the suggested model to the case when 

performance of a system is characterized by the output function [23]. 
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