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Abstract

Automated detection of retinal blood vessels plays an important role in ad-
vancing the understanding of the mechanism, diagnosis and treatment of car-
diovascular disease and many systemic diseases, such as diabetic retinopathy
and age-related macular degeneration. Here, we propose a new framework
for precisely segmenting retinal vasculatures. The proposed framework con-
sists of three steps. A non-local total variation model is adapted to the
Retinex theory, which aims to address challenges presented by intensity in-
homogeneities, and the relatively low contrast of thin vessels compared to the
background. The image is then divided into superpixels, and a compactness-
based saliency detection method is proposed to locate the object of interest.
For better general segmentation performance, we then make use of a new
infinite active contour model to segment the vessels in each superpixel. The
proposed framework has wide applications, and the results show that our
model outperforms its competitors.
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1. Introduction

Retinal blood vessels provide useful information for clinical applications,
including early detection, diagnosis, and screening of ophthalmological and
cardiovascular diseases, and optimal treatment. All these applications require
the segmentation of retinal vasculature. In line with the proliferation of
imaging modalities, there is an ever-increasing demand for automated vessel
analysis systems, for which blood vessel segmentation is the first and most
important step. Our application concerns the automated detection of retinal
blood vessels in diagnostic retinal images, such as color fundus images and
fluorescein angiograms.

The last two decades have witnessed the rapid development of methods
for vessel segmentation from different types of medical images, as evidenced
by extensive reviews [12, 17, 19]. These include a general review on this
topic [17]: a review of 3D vessel segmentation [19]; and a more recent review
on segmentation of retinal vessels specifically [12]. Broadly speaking, all es-
tablished automated segmentation techniques may be categorized as either
supervised segmentation [23, 25, 36, 37, 43, 42], or unsupervised segmenta-
tion [2, 12, 26, 27, 30, 34, 47, 51], with respect to the overall system design
and architecture.

However, the above-mentioned methods still suffer from several major
challenges. This is mainly due to the high degree of anatomical variation
across the population, and to increasing in complexity of the surrounding
tissue/organs. Moreover, artifacts during image acquisition, such as noise,
poor contrast and low resolution exacerbate this problem. As a result, it
becomes very difficult to choose optimal parameters for a particular segmen-
tation program that will work across a variety of data.

In this paper, we propose a novel infinite perimeter active contour seg-
mentation model hybrid, with salient region detection for segmenting the
vessel: a method that is not limited to retinal images, but valid also for im-
ages of vessels in other anatomical organs, and so is relevant to many clinical
applications. The proposed method consists of three phases: intensity in-
homogeneity correction; saliency analysis for initial contour generation; and
an infinite perimeter active contour segmentation model with salient region
detection.

The contributions of this paper may be summarized as threefold:
1) A Retinex-based inhomogeneity correction method is introduced. The

Retinex theory originally dealt with color constancy, which in human vision
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ensures that the perceived colors of objects remain relatively constant under
varying illumination conditions. However, when extended to vessel image
intensity inhomogeneity correction, it has demonstrated good performance
and facilitated subsequent processes.

2) A compactness-based saliency analysis of retinal images is proposed,
which aims to generate the initial contours for segmentation, leading to more
accurate segmentation. It is well established that the saliency information of
an image carries the most important features. It emerges from such charac-
teristics in particular image features as visual uniqueness, unpredictability,
or rarity, and is often localized to variations in specific image attributes,
such as color, gradient, edges, and boundaries [6, 7]. Such attributes are
characteristic of vessel-like structures in retinal imagery.

3) The proposed infinite perimeter active contour segmentation model
with salient region information is well-suited to most applications related to
vascular structures, and in particular to retinal images. It achieves the best
performance in comparison studies on four publically available datasets. In
particular, it demonstrates better performance in handling small and narrow
vessels, even in the case of poor contrast. It has the potential to become a
powerful tool for the quantitative analysis of vasculature for the management
of a wide range of diseases.

The remainder of this paper is structured as follows. In Section 2, related
work relevant to this work is briefly reviewed. Section 3 describes the pro-
posed method in detail. Section 4 and 5 describe the datasets and metrics
used for the evaluation, and the experimental results. Section 6 concludes
the paper.

2. Related Work

In this section, some background knowledge of related work will be briefly
introduced: the classic vessel segmentation models, and relevant work on
saliency analysis in medical applications.

2.1. Vessel segmentation

Here, the term supervised segmentation we are referring to those meth-
ods that use training data to train a classifier (a decision function) so that it
can be used for the classification of image pixels in a new, previously unseen
image as either part of, or not part of a vessel. Supervised segmentation
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requires hand-labeled gold standard images for training. Each pixel is rep-
resented by a feature vector, which is obtained from either local or global
information derived from the image. The prerequisite for this approach is
that a set of features is found that, taken together, provides the necessary
discriminative ability to be extracted for training and classification processes.
These features can be extracted by different filters: for example, the Gabor
filter used in [36]. Various classifiers can be used for the classification tasks,
including k-nearest neighbors [37]; support vector machines (SVM) [33, 43];
artificial neural networks (ANN) [35]; Gaussian mixture models (GMM) [25],
or Adaboost [23], to name only a few.

In contrast, the term unsupervised segmentation here refers to methods
that achieve segmentation of blood vessels without using training data or
explicitly using any classification techniques [18]. This category includes
most segmentation techniques in the literature, such as active contour mod-
els [2], wavelets [3], and our proposed new framework. Most unsupervised
segmentation methods are filter-based: these techniques are used to enhance
the vessels for ease of segmentation. Options include an eigenvalue-based
filter [11]; a matched filter [28, 45]; an amplitude-modified second order
Gaussian filter [22]; Hessian matrix-based filters [11, 6]; local phase-based
filters [18]; multi-scale linear operators [32]; and various wavelet [3, 42] or
Gabor filters [36].

A number of active contour models have been proposed for vessel segmen-
tation problems, including the ribbon of twins (ROT) model [2]: geodesic
active contour (GAC) model [18]; variations of the active contour without
edge model (better known as the CV model [5]) [20, 38, 39, 40, 41, 52]; the
infinite perimeter active contour model [4]; and the distance regularization
level set evolution (DRLSE) model [21].

2.2. Saliency analysis in medical applications

Research on saliency detection with applications in medical imaging has
not been widely exploited [48]. In this section, we review the relevant work
on detecting abnormalities in different modalities of medical images by means
of saliency information.

Yuan et al. [44] proposed a saliency-based ulcer detection method for use
with wireless capsule endoscopy (WCE) diagnosis. It uses a multi-level su-
perpixel representation as the pre-processing phase of saliency detection, and
the final saliency map is generated by a fusion strategy of integrating all of
the saliency maps obtained at different levels. This method is capable of
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accurately representing the contours of ulcerated regions, and these regions
are then located by classification tasks. The limitation of this method is
that neither its effectiveness nor its promise are well established, because the
dataset used for validation is too small. Mahapatra and Sun [24] used the
saliency and gradient information in a Markov random field for non-rigid reg-
istration of dynamic MRI cardiac perfusion images. This approach attempts
to address the problem that most nonrigid registration algorithms fail to
give satisfactory results in the presence of intensity changes. Although the
saliency detection method provides high quality contrast-enhanced images,
the gradient information can still be influenced by noise. For example, this
method cannot accurately register the boundary of the left ventricle. A vi-
sual saliency-based bright lesion detection method is introduced in [8]. The
spectral residual saliency model [14] is employed to compute a saliency map
of the color fundus retinal images. The saliency computation obtains a sparse
representation of images, and a given image can be classified as normal or ab-
normal (having bright lesions) by reference to the obtained saliency informa-
tion. Jampani et al. [16] analyzed the relevance of saliency models in detect-
ing abnormalities in two types of medical images. They extended the Graph
Based Visual Saliency (GBVS) model [13] to detect diffuse lesions in chest
X-ray images, and high contrast lesions in retinal images. The results were
compared with those of three other popular computational saliency models:
Itti-Koch [15]; Graph Based Visual Saliency [13]; and Spectral Residual [14].
Most recently, Zhao et al. [50, 49] adapted the saliency concept to detecting
abnormalities characteristic of malarial retinopathy (MR). This method not
only has the ability to detect three types of leakage (large focal, punctate
focal, and vessel segment leakage) in images from eyes with MR, but also is
capable to detect the intra-vascular filling defects. However, makes use only
of intensity information to generate the saliency map used in the detection
process, whose accuracy may therefore be compromised if some normal areas
also have high intensities.

3. Methods

The proposed segmentation framework comprises three major steps (each
with a distinct component): Retinex-based inhomogeneity correction; compactness-
based saliency analysis; and infinite perimeter active contour with hybrid
saliency segmentation. Figure 1 shows the overview of the proposed segmen-
tation framework.
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Figure 1: Overview of the main steps of our method. (a) An example image. (b) The
green channel of (a). (c) Result after applying Retinex. (d) Result after compactness-based
saliency analysis. (e) The proposed segmentation result.

3.1. Retinex-based inhomogeneity correction

Intensity inhomogeneity, often inherited from the image acquisition pro-
cess, poses a significant challenge to many subsequent image processing tasks.
For instance, the retinal images acquired with a fundus camera sometimes ex-
hibit poor contrast, due to too strong or too weak illumination conditions.In
this paper, the Retinex theory has been adopted as an effective means of
handling these problems. The Retinex theory shows that any given image
I can be modeled as a component-wise multiplication of two components,
the reflectance R and the illumination L: I = L ∗R. Typically, R reveals
the reflectance of the object of interest more objectively, and can thus be
regarded as the enhanced image I. A look-up-table log operation transforms
this multiplication into an addition, resulting in i = log(I) = log(L) + log(R)
= l + r [10]. Clearly, the recovery of l or r from I ′ is an ill-posed inverse image
decomposition problem.

To solve this challenging problem, a spatial smoothness constraint is usu-
ally imposed. In this work, by contrast, we apply a bilateral filter on Retinex
theory to normalize the input medical images [46]. In this paper, a non-local
total variation (TV) regularized formulation is adopted on the Retinex theory
to normalize the input medical images. The TV regularizer is very effective
in recovering edges of images [29]. This phenomenon complements with the
PDE-based Retinex method: the reflectance corresponds to the sharp details
in the image, and the illumination is spatially smooth. Hence, the regular-
ization can be formulated as a minimization problem, and the non-local TV
regularized model for Retinex theory is formed as:

R = arg min
l
{t
∫

Ω

|∇wl|+
1

2
|∇(l − i)|22}, (1)
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Figure 2: A comparative study of image inhomogeneity correction. (A) An example
image. (B) The green channel of (A). (C) Result after applying Histogram Equalization.
(D) Result after applying Gamma Correction. (E) Result after applying Retinex.

subject to l ≤ i. The first term indicates the regularization, and is able
to locate and define sharp details. The second term is the L2 term of the
gradient of the illumination: its role is to ensure smooth illumination. The
parameter t balances the two terms. Ω is the support of the image. For an
image, the non-local weight between pixel x and y can be defined as

w(x, y) = exp
{−K ∗ (l(x)− l(y))2

2h2

}
, (2)

where K is the Gaussian kernel, and h is the control parameter. By obtain-
ing the non-local weights, the non-local gradient operator at pixel x can be
defined as the vector of all partial difference ∇wl(x, ·):

∇wl(x,y) = (l(y)− l(x))
√
w(x,y),∀y ∈ Ω. (3)

So the non-local TV regularizer can be defined as∫
Ω

|∇wl| =
∫

Ω

(

∫
Ω

(l(y)− l(x))2w(x,y) dy)
1
2 dx. (4)

Figure 2 shows a comparative study of image inhomogeneity correction.
It can be seen clearly that Retinex corrects for inhomogeneities more effec-
tively than its competitors: it enhances the contrast between vessels and
background more cleanly, and in consequence the vessels are more easily
identifiable. Moreover, the optic disk and foveal area are also corrected as
well.

3.2. Compactness-based saliency analysis

Intuitively, a human observer perceives only the optic disc regions and
vessels as salient regions. Therefore, in this section we advocate the use
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of a saliency map for coarse pre-location of the vessel regions. It has been
observed that human observers will normally pay more attention to a more
compact object than to a more diffuse object. The measure of compactness
of an object might therefore be of use as a complementary feature for saliency
measurement, with the aim of reducing the number of falsely-detected salient
regions.

To measure compactness, the Retinex-processed image is firstly parti-
tioned into Q clusters, {C1, C2, ...CQ}. After clustering, the compactness of
each cluster can be measured. In this framework, The SLIC superpixel al-
gorithm [1] is adopted to replace the rigid structure of the pixel grid. The
SLIC is a k-means clustering-based method, and is able to assign pixels to
a particular superpixel according to their respective intensities and spatial
locations. The superpixel clustering procedure starts with the generation of
initial cluster centers. Then a distance measure D to cluster centers for all
pixels is defined, with the aim of associating each pixel to its nearest cluster
center. The Euclidean distance (dc) and spatial distance (ds) are used to
define this measure:

D =

√
d2
c + (

ds
S

)2m2, (5)

where S =
√
N/k is the grid interval, k is the desired superpixel number and

N is the total number of pixels. m indicates a parameter whose function is
to balance the weighting of intensity and coordinates.

For superpixel Pj, its compactness c(Pj) is defined as

c(Pj) = exp
(
− ασx,j + σy,j√

X2 + Y2

)
, (6)

where σx,j and σy,j are the standard deviations of the x and y coordinates
of the centroid of the superpixels in Pj, and α is a constant factor that is
empirically set to 15. X and Y are the width and height of the input image.

By incorporating the compactness feature with the intensity feature of a
given image, the measure of dissimilarity in compactness between Pi and Pj
can be defined as

discompact(Pi,Pj) = ‖l(Pi)− l(Pj)‖ ×
(

1 +
c(Pj)− c(Pi)

2

)
×exp

(
− βd(Pj,Pi)√

X2 + Y2

)
,

(7)
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Figure 3: A comparative study of image inhomogeneity correction. (a) and (c): the
example images. (b) and (d): the saliency maps of (a) and (c), respectively.

where term ‖l(Pi) − l(Pj)‖ indicates the distinctiveness of the average in-
tensity (l) characteristics of superpixels Pi and Pj. d(Pj,Pi) is the relative
average distance of superpixels Pj and Pj, as proposed in Eq. (3). The
constant factor β is empirically set to 300. The larger discompact(Pi,Pj), the
higher the probability that human attention will shift focus from superpixel
Pi to Pj.

Hence, if it is to assist in saliency detection, discompact(Pi,Pj) should
obey the following rules. If Pi is distinct from Pj, discompact(Pi,Pj) should
be large, and yield a high saliency value for Pj. If Pi is very similar to Pj,
discompact(Pi,Pj) should be small, and obtain a low saliency value. If Pi has a
high compactness value, the discompact(Pi,Pj) should be large, suggesting Pi
to be more salient. If Pi has a low compactness value, the discompact(Pi,Pj)
should be large, showing that Pi draws less attention (is less salient).

According to Eq. (6), the compactness-based saliency value of Pj can be
written as

CS’(Pj) = 1− exp
(
−

n∑
j=1,j 6=i

discompact(Pi,Pj)
)
. (8)

Again, we calculate the final compactness-based saliency value using the
mean value of the different superpixel levels: the fusion is also performed
pixel by pixel: CS = 1

L

∑L
l=1 CS’.

Figure 3 illustrates the results of compactness-based saliency maps. It
can be seen that the details of the vessels are far more clearly visible when
compared to their appearance in original images.
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3.3. Saliency-driven infinite perimeter active contour model

In earlier work, a heuristic strategy is commonly used to determine an
‘optimal’ threshold for segmentation of the enhanced vessel maps [3]. This
segmentation is fast, but equally makes generalization of these methods to
other applications difficult. In consequence, more robust models such as
active contours are to be preferred. The Infinite Perimeter Active Contour
(IPAC) model was proposed for the segmentation of objects with irregular
boundaries [4]. Denoting a given image by u0(x), the energy function is given
as:

F IPAC(Γ, c1, c2) = L2(γ − Γ)

+ λ1

∫
inside(Γ)

|u0(x)− c1|2 dx

+ λ2

∫
outside(Γ)

|u0(x)− c2|2 dx.

(9)

where c1 and c2 are the average of u0(x) inside and outside (Γ) respectively,
L2 is the 2D Lebesgue measure of the γ-neighborhood of the edge set Γ and
λ1 and λ2 are fitting term parameters.

Inspired by the IPAC model, we propose a novel extension that would
integrate hybrid saliency information into the segmentation model. This
model considers hybrid region information in an image, such as the saliency
map and intensity, in order to achieve reliable segmentation. This model
is also effective in detecting vessels mimicking an object with irregular and
oscillatory boundaries.

The energy of the infinite perimeter active contour with hybrid saliency
model (IPACS) is:

F IPACS(Γ, rn) = L2(γ − Γ) +
N∑
n=1

λnSn, (10)

where L2 is the 2D Lebesgue measure, Sn is the nth region information, and
N is the total number of different region terms. Here we consider L2(γ−Γ) ≈∫

Ω
e−(

φ(x)
γ

)α , for a large and even number α, which is an approximation of the
γ-neighborhood area in a given image u0(x).

For this vessel segmentation application, we used the saliency map as the
‘vesselness map’ v0 of an image, and the image intensity u0 as two distinct re-
gion terms when in combination serve to extract vessels mimicking an object
with irregular and oscillatory boundaries.
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Using the Lipschitz level set function, the energy function of our new
model can be written:

min
φ(x),cV1 ,c

V
2 ,c

I
1,c

I
2

F IPACS(φ(x), cV1 , c
V
2 , c

I
1, c

I
2) =

µ1

∫
Ω

g(u0(x))e−(
φ(x)
γ

)α +
µ2

2

∫
Ω

(|∇φ(x)| − 1)2 dx

+λV1

∫
Ω

|v0(x)− cV1 |2H(φ(x)) dx

+λV2

∫
Ω

|v0(x)− cV2 |2(1−H(φ(x))) dx

+λI1

∫
Ω

|u0(x)− cI1|2H(φ(x)) dx

+λI2

∫
Ω

|u0(x)− cI2|2(1−H(φ(x))) dx,

(11)

where µ1, µ2,λV1 , λV2 , λI1, and λI2 are weighting parameters. The parameters
λV1 and λV2 are for the vesselness based term are while λI1 and λI2 for intensity-
based terms. g(u0(x)) is the edge stopping function. The second term of
Eq 11 is introduced for the purpose of distance regularization, as proposed
by Li et al. [21].

4. Materials and Evaluation Metrics

Two publically available retinal datasets are used in this work to evalu-
ate the proposed segmentation framework: STARE and DRIVE. DRIVE1

(Digital Retinal Images for Vessel Extraction): consists of a total of 40 color
fundus photos, obtained in the course of a diabetic retinopathy screening
program in the Netherlands. The images were acquired using a Canon
CR5 non-mydriatic 3-CCD camera (Canon, Tokyo, Japan) with a 45 de-
gree field of view. Each image resolution is 768×584 pixels. The set of 40
images was divided into a test and a training set, each containing 20 images.
STARE2(STructured Analysis of the Retina) was conceived and initiated at
the University of California. This database contains 20 color photographic
images of the fundus, 10 of which show evidence of pathology. The digitized
slides were captured by a Topcon TRV-50 fundus camera (Topcon, Tokyo,
Japan), and the photos were digitized to 605×700 pixels.

1http://www.isi.uu.nl/Research/Datasets/DRIVE/
2http://www.ces.clemson.edu/~ahoover/stare/
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These datasets were chosen primarily because of the availability of ref-
erence standards from manual annotations of the retinal vessels by experts.
The segmentation performance is measured by sensitivity (Se), specificity
(Sp), accuracy (Acc), and the area under a receiver operating characteristic
(ROC) curve, also known as AUC. This measure has the ability to reflect
the trade-offs between the Se and Sp. The first three parameters are defined
as tp

tp+fn
, tn
fp+tn

, tp+tn
tp+fp+tn+fn

, respectively and AUC = Se+Sp
2

. tp, tn, fp and
fn indicate the true positive, true negative, false positive, and false negative,
respectively.

5. Experiments and Results

In this section we present experiments to evaluate the performance of our
proposed model.

5.1. Results

In order to establish the effectiveness of our proposed method, we com-
pared its with that of the existing state-of-the-art vessel detection methods
on the DRIVE and STARE datasets. The results are shown in Table 1, and
the chosen methods have been ordered by the categories to which we assigned
them earlier: the most recent six supervised methods [25, 23, 36, 37, 42, 43],
and seven unsupervised segmentation methods [2, 3, 26, 12, 27, 30].

Overall, our framework outperforms its competitors, by taking into ac-
count both global features of the image through the Retinex analysis, and
local features through the compactness-based saliency analysis. The result is
that more fine vessels are detected. To be more specific, the sensitivity of the
proposed method is in the top two in both the supervised and the unsuper-
vised methods, with Se = 0.782, only 0.003 behind the highest performing
highest performing supervised method [31]. The specificity, accuracy, and
AUC are 0.979, 0.957, and 0.875 respectively, which are also the highest
values achieved by any method tested.

The optic disk and foveal area in retinal images frequently result in in-
stances of false detections when analysed by most existing vessel segmen-
tation methods [3, 30]. In this work, after application of the Retinex, the
optic disc region has been normalized to a similar level with the background.
Therefore, the optic disc will not be misidentified as a vessel after segmen-
tation, a common problem when the Retinex is not used. This implies that
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Figure 4: Illustrations of the importance of Retinex based inhomogeneities correction.
(a) An example image. (b) IPACHS segmentation result without Retinex applied. (c)
IPACHS segmentation result with Retinex applied.

improved specificity values are likely to be seen after the application of the
Retinex: and this is confirmed by the scores seen in Table 1.

By contrast, the sensitivity scores are very similar irrespective of the
presence or absence of the Retinex. Table 1 also presents the evaluation
results in terms of the proposed framework with and without application
of the Retinex pre-processing algorithm. This confirms that the Retinex
contributes significantly to the final performance results.

In addition, the results of the proposed IPACHS model without Retinex
applied are also provided in Figure 4 and Table 1. Usually, the optic disc and
foveal area often cause false detections by most existing vessel segmentation
methods. In our work, the optic disc region has been normalized to a similar
level with the background by applying Retinex, and lead to better segmen-
tation performances: more small vessels have been identified and extracted,
and the Se, Sp, Acc, and AUC have raised been 0.022, 0.011, 0.011, and
0.022, respectively, when compared the IPACHS without the Retinex. These
scores reinforce the conclusion that Retinex contributes significantly to the
proposed segmentation model.
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5.2. Effectiveness of vesselness maps

The proposed segmentation model requires a vesselness map, and in this
paper a compactness-based saliency map is utilized. In order to demonstrate
the importance of the compactness-based vesselness map in the proposed
segmentation framework, it has been compared with three vesselness map
generators: an eigenvalue-based filter [11], a wavelet-based filter [3], and a
local phase-based filter [18]. The parameters recommended in the respective
were used. Eigenvalue-based scales: 18, scale ratio: 2; wavelet scales: 23;
local phase scales: 23. These parameters may be adjusted to obtain better
results according to the nature of the images, but any such adjustment is un-
likely to affect the ranking of the overall segmentation model when compared
to other state-of-the-art models.

Figure 5 gives an example of the segmentation results. The vesselness
maps were generated by the eigenvalue-based, wavelet-based, local phase-
based, and the proposed saliency-based filters, respectively. It can be seen
that the saliency-based filter is not only sensitive on large vessels, but also
exhibits high performance on small vessels, which results in the whole vessel
structure standing out more clearly from the background.

The segmentation results derived from these vesselness map are also
shown in the bottom row of Figure 5. As expected, the segmentation result
based on the proposed saliency-based vesselness map confirms that more ves-
sels are segmented than in the results obtained by the other three methods.
Table 2 further confirms this observation. The evaluation of LP in terms
of Se, Sp, Acc, and AUC obtains the highest values in each of the three
datasets. In addition, the statistical analysis results show that the: Se, Sp,
Acc, and AUC values of the saliency-based method are significantly higher
than those of the other three filters (all p < 0.001).

5.3. Effectiveness of active contour models

In this section, the proposed IPACHS segmentation model is compared
with four other active contour models: Chan-Vese (CV) [5], Ribbon of Twins
(ROT) [2], distance regularized level set evolution (DRLSE) [9] and infinite
perimeter active contour (IPAC) [4]. The CV, IPAC, ROT, and DRLSE seg-
mentation models are implemented as in the original papers. The evaluation
results of these models on the DRIVE and STARE datasets are demonstrated
in Table 3.

It can be observed from Table 3 that in terms of the Se, Sp, Acc and
AUC parameters IPACHS outperforms its competitors on both the DRIVE
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Figure 5: Illustrative vesselness results, using different methods and their subsequent
IPACHS-based segmentation results. Top row, (a)-(e): sample image, eigenvalue-
based [11], wavelet-based [3], local phase-based [18], and the proposed saliency-based,
respectively. Bottom row, (a)-(e): manual annotation of (a), and automated segmenta-
tion results (b)-(e), respectively.

and STARE datasets. In particular, the Se, Sp, Acc and AUC of the IPACHS
model have the highest scores on the DRIVE dataset: 0.782, 0.979, 0.957,
0.862, and 0.886, respectively. For the STARE dataset, the Se, Sp, Acc and
AUC of the IPACHS model also record the highest scores: 0.789, 0.978, 0.956,
0.885 and 0.801, respectively.

6. Discussion and Conclusions

The detection of vessels is usually the first and most important step for
automated vessel analysis tools. If a segmentation method cannot handle the
relevant image factors, such as intensity, color and local shape effectively, then
its performance will be less satisfactory, or at least will not be generalizable
to wider applications. For most of the segmentation models [36, 47], vessel
enhancement depends on assessment of the intensity parameter only. Such
methods may not be able to overcome the degree of intensity variation present
in the original image.

In this paper, we have proposed a new framework for the vessel seg-
mentation problem that exploits the advantages of Retinex-based intensity
inhomogeneity correction, compactness-based saliency estimation, and an in-
finite perimeter active contour with hybrid saliency model. Active contour
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Table 2: Segmentation performance of different vesselness map estimation methods:
(eigenvalue-based. [11], wavelet-based [3], local phase-based [18], and the proposed
saliency-based methods).

Dataset vesselness method Se Sp Acc AUC

eigenvalue-based 0.686 0.867 0.853 0.776
DRIVE wavelet-based 0.716 0.978 0.946 0.848

local phase-based 0.744 0.978 0.953 0.861
saliency-based 0.782 0.979 0.957 0.886

eigenvalue-based 0.634 0.967 0.938 0.801
STARE wavelet-based 0.776 0.954 0.943 0.865

local phase-based 0.780 0.975 0.951 0.874
saliency-based 0.789 0.978 0.956 0.885

Table 3: Performance of different segmentation models on the DRIVE, and STARE
datasets. Se: sensitivity; St: specificity; Acc: accuracy; AUC: area under curve.

DRIVE STARE
Se Sp Acc AUC Se Sp Acc AUC

CV 0.679 0.924 0.939 0.802 0.775 0.950 0.937 0.863
ROT 0.728 0.955 - 0.842 0.752 0.968 - 0.860
DRLSE 0.718 0.974 0.941 0.846 - - - -
IPAC 0.721 0.966 0.944 0.843 0.758 0.964 0.946 0.861
IPACHS 0.782 0.979 0.957 0.886 0.789 0.978 0.956 0.885

models appear to be a natural choice for automatic segmentation purposes,
as they can take into account the geometry information of the object as well
as other useful information geometric such as intensity. The proposed frame-
work has been applied to two publicly-available retinal datasets: the results
demonstrate that each component of the framework can provide the level
of performance expected, and that the overall framework outperforms most
existing methods in terms of accuracy and efficiency.

Although in this paper we have evaluated our proposed framework on
retinal imagery alone, due to the limited availability of public-access datasets,
the method is well suited to address segmentation problems in images of other
organs, acquired using different imaging techniques. Figure 6 (b) shows the
segmentation result of a fluorescein angiography retinal image (Figure 6 (a))
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Figure 6: Segmentation results on different imaging modalities. (a) A fluorescein an-
giogram retinal image from VAMPIRE; (c) A color fundus retinal image with diabetes;
(e) A pelvis MRI image; (g) A coronary angiography image; (b), (d), (f) and (h) are
the segmentation results of (a), (c), (e) and (g) respectively. (e) and (g) are publically
available from http://www.osirix-viewer.com

from the VAMPIRE database3. It illustrates that the proposed method can
achieve good performance in extracting the vessels from these kinds of retinal
images. Figure 6 (d) shows the segmentation results on a retinal image
(Figure 6 (c)) from a patient with diabetes, taken from the ARIA dataset.
It can be seen that the proposed segmentation method gives a promising
result on images of the diseased retina. To demonstrate that our method
is applicable to wider applications, we also apply our method to both MRI
(Figure 6 (e)) and X-Ray (Figure 6 (g)) images, and the results (Figure 6 (f)
and (h)) demonstrate its good performance in detecting thin vessels even in
low contrast areas.

In conclusion, in this paper we have proposed an efficient and effective
framework for vessel segmentation with good performance. This will be a
powerful tool in analysis of vasculatures for management of a wide spectrum
of vascular related diseases.

3http://vampire.computing.dundee.ac.uk/vesselseg.html
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