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Abstract 

Enabling automatic, efficient and scalable discovery of the resources provided by constrained low-power 

sensor and actuator networks is an important element to empower the transformation towards the Internet of 

Things (IoT). To this end, many centralized and distributed resource discovery approaches have been 

investigated. Clearly, each approach has its own motivations, advantages and drawbacks. In this article, we 

present a hybrid centralized/distributed resource discovery solution aiming to get the most out of both 

approaches. The proposed architecture employs the well-known Constrained Application Protocol (CoAP) and 

features a number of interesting discovery characteristics including scalability, time and cost efficiency, and 

adaptability. Using such a solution, network nodes can automatically and rapidly detect the presence of Resource 

Directories (RDs), via a proactive RD discovery mechanism, and perform discovery tasks through them. Nodes 

may, alternatively, fall back automatically to efficient fully-distributed discovery operations achieved through 

Trickle-enabled, CoAP-based technics. The effectiveness of the proposed architecture has been demonstrated by 

formal analysis and experimental evaluations on dedicated IoT platforms. 
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1. Introduction 

The emergence of Internet of Things (IoT) has introduced new protocols to the TCP/IP network stack in order 

to accommodate the constraints of interconnected low-power sensors and actuators, aka the “fingers of the 

Internet”. Such trend started by the adoption of the IPv6 protocol in order to facilitate integrations of the expected 

billions of smart devices to the future Internet architecture. IPv6 adaptation is, however, necessary to respond to 

devices’ constraints, hence the introduction of the 6LoWPAN (IPv6 over Low-power Wireless Personal Area 

Network) adaptation layer (G. Montenegro et al. 2007). Routing in the IoT also requires novel methods, which 

account for the unreliable nature of Low-power and Lossy Networking (LLN) introducing thus, the RPL (IPv6 

Routing Protocol for LLNs) (Winter et al. 2012) and MPL (IPv6 Multicast Protocol for LLNs) (REF) routing 

protocols. This set of standards has enabled smart physical-world devices to communicate over the Internet.  

Having connected LLNs to the Internet, new application layer protocols are necessary to allow easy and 

seamless interactions in the IoT. To this end, service oriented computing along with the REST architectural style 

have been adopted in order to respond to the high heterogeneity of involved IoT entities. For instance, the 

Constrained Application Protocol (CoAP) (Z. Shelby, K. Hartke, and C. Bormann 2014) and its extensions have 

emerged as a main enabler of IoT. Indeed, CoAP and its extensions made it possible for the resources and services 

provided by smart objects to be easily queried and accessed through conventional web browsers, which sets 

ground for a web of things. 

In order to fully exploit the potential of the LLN network stack into providing successful adoptions of IoT, 

seamless and automatic discovery of available resources is an imperative. Such resource discovery solutions can 

be achieved using a multitude of techniques depending on a number of parameters including network size, 

application requirements and available infrastructure. For instance, fully-distributed solutions (Djamaa et al. 2014; 

Djamaa and Richardson 2014; Shelby 2012) can be well suited for an infrastructure-less zero-configurable IoT 

network, while a centralized solution (A. Yachir et al. 2016; Zach Shelby et al. 2016) might be deployed for large-

scale IoT networks with dedicated discovery servers. 

Both discovery approaches are being actively investigated by standardization bodies such as the Internet 

Engineering Task Force (IETF). Many standard formats and protocols are also being considered for such tasks 

including CoAP, DNS and others. Motivated by CoAP’s successful adoption in the IoT, CoAP-based resource 

discovery approaches have been widely investigated with propositions of standardized technics for both 

Sharon
Textbox
Journal of Ambient Intelligence and Humanized Computing, Vol. 8, Issue 3, June 2017 pp. 357-372
DOI:10.1007/s12652-017-0450-3


Sharon
Textbox
Published by Springer. This is the Author Accepted Manuscript issued with: Creative Commons Attribution Non-Commercial  License (CC:BY:NC 4.0).
The final published version (version of record) is available online at DOI:10.1007/s12652-017-0450-3. Please refer to any applicable publisher terms of use.


Sharon
Textbox



2 
 

distributed resource discovery (Shelby 2012) and centralized Resource Directories (RDs)(Zach Shelby et al. 

2016). Both solutions make use of the CoRE link format (Shelby 2012) as default for describing available 

resources and enabling their access. However, each solution has its motivations, required resources and target 

applications. Thus, whilst, the distributed resource discovery mechanism enables discovery without needing 

dedicated servers by relying on IP multicast, the RD solution requires the availability of resource-rich directories 

and relies on unicast communications for realizing its operations. A combined solution might provide the best out 

of both, by switching between them, depending on user requirements, available resources and network context.  

This article introduces efficient, scalable and adaptive hybrid centralized/distributed discovery of CoAP 

resources. Such solution builds upon and extends the Proactive RD Discovery (PRD) mechanism proposed in our 

conference paper (Djamaa and Yachir 2016). Indeed, PRD is being enhanced and extended to serve as a key pillar 

for achieving efficient Hybrid Resource Discovery (HRD) over CoAP. The other pillar of the proposed HRD 

solution is a novel usage of CoAP for Fully-distributed push-pull Resource Discovery (FRD) in order to ensure 

efficient discovery operations in the absence, congestion, and/or failures of RDs. The rules and mechanisms of 

switching seamlessly between these two wings of the proposed HRD architecture are also detailed. More 

precisely, this article presents the following additional contributions: 

- Proposition of a hybrid resource discovery architecture enabling automatic switch between centralized 

and distributed discovery of things and their resources using CoAP. 

- Enhancing and extending PRD by introducing two algorithms for efficient discovery of multiple RDs 

and removal of unavailable RD information, along with its usage as enabler of the proposed architecture. 

- Proposition of a novel usage of CoAP for achieving efficient distributed push-pull resource discovery 

with the necessary changes ensuring compactness and backward compatibility. 

- Design, implementation and evaluation of lightweight, reliable and cost-effective mechanisms to 

implement the proposed architecture. 

The reminder of this paper is structured as follows. Section 2 discusses existing work related to resource 

discovery over CoAP. Section 3 introduces the proposed HRD architecture with show cases of its operations and 

main mechanisms. Sections 4 and 5 detail the two main components of the proposed architectures namely PRD 

and FRD. This is followed by presenting a big picture of the functioning of HRD when combining the two 

components in section 6.  Section 7 provides an analysis of the time/cost performance of the proposed components, 

which is followed by an extensive experimental evaluation in section 8. The paper ends in section 9 by conclusions 

and ideas for future directions.   

2. Related Work 

Service/resource discovery solutions can be achieved using a multitude of techniques depending on a number 

of parameters including network size, application requirements and available infrastructure. For instance, fully-

distributed solutions (Djamaa et al. 2014; Djamaa and Richardson 2014; Shelby 2012) can be well suited for an 

infrastructure-less, small-size, zero-configurable IoT network, while a centralized solution (A. Yachir et al. 2016; 

Zach Shelby et al. 2016) might be deployed for large-scale IoT networks, having dedicated resource-rich discovery 

servers. With the emergence of CoAP as a communication protocol for the IoT, these classic discovery approaches 

are being considered with solutions provided for centralized, fully-distributed and hierarchic discovery over 

CoAP. This section will focus on reviewing such discovery solutions.  

For the centralized architecture, the CoRE working group at the IETF has proposed a resource directory 

solution (Zach Shelby et al. 2016). In such an architecture, the RD stores all resources offered by CoAP servers, 

so, requesters can discover any required resource just by querying the RD. The RD provides a registration interface 

allowing providers to register the description of their public resources at the directory by issuing POST requests. 

Clients then query the RD by issuing GET requests, via the RD look-up interface, looking for descriptions 

matching their requests. The default description format adopted by the RD is the CoRE link format (Shelby 2012), 

which is carried as a payload in a CoAP message. Such description has many resource attributes including resource 

type (𝑟𝑡), interface description (𝑖𝑓) and path. To achieve RD operations, new attributes have been defined in the 

RD draft such as the endpoint attribute (𝑒𝑝) specifying the endpoint hosting the resource registered in the RD, and 

the lifetime attribute (𝑙𝑡) indicating a valid registration period. A context attribute (𝑐𝑜𝑛) is also introduced in order 

to allow an endpoint to specify the 𝑠𝑐ℎ𝑒𝑚𝑒, 𝑖𝑝_𝑎𝑑𝑑𝑟𝑒𝑠𝑠 and the 𝑝𝑜𝑟𝑡 on which it will be accessible using the 

following format 𝑠𝑐ℎ𝑒𝑚𝑒: 𝑖𝑝_𝑎𝑑𝑑𝑟𝑒𝑠𝑠: 𝑝𝑜𝑟𝑡 (e.g. 𝑐𝑜𝑎𝑝://[𝐹𝐷𝐹𝐷: : 123]: 61616).  

The RD makes registered resources available at the /. 𝑤𝑒𝑙𝑙 − 𝑘𝑛𝑜𝑤𝑛/𝑐𝑜𝑟𝑒 resource. A client aware of an RD 

(via its 𝑐𝑜𝑛 attribute) issues a GET request to the RD in the following format: /. 𝑤𝑒𝑙𝑙 − 𝑘𝑛𝑜𝑤𝑛/𝑐𝑜𝑟𝑒{? 𝑠𝑒𝑎𝑟𝑐ℎ ∗
}, with the filter {? 𝑠𝑒𝑎𝑟𝑐ℎ ∗} containing known attributes about the required resources. However, to exploit the 
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RD functionalities, CoAP nodes must first discover its presence in the network. Following the success of the RD, 

other researches have tried to build upon it and provide additional functionalities. For instance, TRENDY (Butt 

et al. 2012) divides nodes to Group Leaders (GL) and Group Members (GM). GLs and GMs are constructed based 

on their locations (e.g., the nodes in a room are assigned one GL and the remaining become GMs). This mechanism 

is used by TRENDY in responding to LLN-specific requirements such as group discovery. However, TRENDY 

might induces high maintenance overhead to manage the formation of GLs and GMs and maintain the network 

consistent over time. Overall, this approach requires the presence of a resource-rich central directory able to store 

all available services and may suffer for bottleneck and single-point-of-failure issues. 

To cope with such issues, hierarchic and overlay-based discovery solutions over CoAP have been proposed. In 

(Mäenpää, Bolonio, and Loreto 2012), a use of the REsource LOcation And Discovery (RELOAD) protocol (C. 

Jennings et al. 2014) to discover CoAP resources is proposed. RELOAD forms an overlay network to provide 

storage and messaging services in a peer-to-peer (P2P) network and lets it open for applications to define use-

cases. Thus,  (Mäenpää, Bolonio, and Loreto 2012) describes a use-case on how to use CoAP with RELOAD in 

order to discover CoAP resources internetworked over a wide geographical area. Being tightened to the RELOAD 

infrastructure, this proposal might not address IoT-specific requirements. Another overlay-based work, dubbed 

Distributed Resource Directory (DRD), is proposed in (Liu et al. 2013). Alternatively to RD, DRD defines an 

overlay to play the role of an RD. DRD is constructed using a Distributed-Hash-Table P2P overlay offering 

discovery, registration and proxy services for CoAP nodes. However, the authors do not specify how to construct 

and maintain the overlay. In summary, this approach generally assumes the availability of resource-rich nodes to 

play the role of distributed directories and needs synchronization between them to keep resource information 

updated, which might imply high maintenance overhead. 

In the absence of any directory to store resource descriptions, nodes make use of multicast/broadcast of 

requests/advertisements in order to realize resource discovery. Three possible ways might be used to accomplish 

distributed resource discovery, namely push mechanisms, pull mechanisms, and hybrid mechanisms. CoAP 

resource discovery (Shelby 2012) provides a pull mechanism to discover resources available in CoAP networks. 

Thus, as by (Shelby 2012) specification, a GET request to the appropriate multicast address might be made for 

/. 𝑤𝑒𝑙𝑙 − 𝑘𝑛𝑜𝑤𝑛/𝑐𝑜𝑟𝑒. Matching nodes reply with a payload in the CoRE link format, similarly to that of RD 

and DRD. Note that in order to limit the number and size of responses, the request has to specify known attributes. 

Obviously each method has its pros and cons. We argue that a hybrid centralized/distributed approach may 

provide the best out of both worlds. Indeed, hybrid unicast/multicast CoAP-based discovery can not only ensure 

unicast- and multicast-only service but also provides hybrid operations and backup schemes in situations of 

failures. However, innovative mechanisms are required in order to make it practical. The questions on: how to 

detect the presence of RDs efficiently; how to achieve cost and time effective distributed discovery tasks over 

CoAP; and how to decide when to switch between the two modes should be addressed. These points are being 

investigated in the remainder of this article. 

3. Hybrid unicast/multicast resource discovery (HRD) 

This section presents an efficient architecture for hybrid unicast/multicast discovery based on CoAP. The 

main drive behind this architecture is providing continuous, efficient and reliable discovery depending on network 

state and available resources. Following this architecture, a node prefers to achieve the discovery of available 

resources via an RD if available as shown in Fig. 1 (a). Otherwise, the node falls-back to a fully-distributed 

discovery mechanism ensuring the continuity of services (Fig. 1 (b)). To realize such a discovery architecture two 

main points need to be treated. The first point focuses on how to achieve efficient, reliable and resource-lean 

detection of an RD in the network. The second treats the time-cost efficiency of the distributed mechanism 

ensuring fall-back services. Additionally, a third important point allowing seamless integration of both 

mechanisms is required. This latter should provide a simple and stateless way that ensures quick, efficient and 

transparent switch between the two discovery approaches while minimising the complexity of code, memory 

usage and computation operations. 

These three points are being developed in the remainder of this article. The first mechanism, in fact, presents 

a main building block for the efficiency of the proposed architecture. Indeed, before falling back to a fully-

distributed approach, a node in the network starts by trying to detect the presence of an RD. Taking into account 

the number of nodes along with response time requirements makes reactive RD discovery fairly inefficient, which 

calls for efficient Proactive RD discovery (PRD). Detecting an RD, via PRD, enables both clients and providers 

to find RD information in their respective local directories and achieve unicast discovery operations. Otherwise, 

nodes switch to fully-distributed push-pull mechanisms. The time-cost efficiency of such a mechanism is a key 
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element of the proposed HRD architecture. To this end, we propose to adopt CoAP for a push-pull discovery 

protocol that ensures time efficiency through the push-mode and cost efficiency via the pull mode (Fig. 1 (b)). 

The main advantage of the HRD architecture is seamless, automatic and efficient service discovery operations 

in different network scenarios. Take a scenario where the RD is not available in the network, our model will 

directly and automatically switch to a fully-distributed discovery (Fig. 1 (b)) with near zero-cost in time and 

network resources. Thus, providers failing to detect the RD automatically push their resources to neighboring 

nodes via multicast using the algorithm detailed in section 5. Clients also starts the direct discovery approach to 

locate available services in a zero-configuration, infrastructure-less manner. In the presence of an RD, however, 

thanks to the reliability of PRD (section 4), nodes find RD information locally and start discovery tasks through 

it. An important point of this architecture is that such a process is done at each discovery attempt ensuring 

continuity of service in case of failed or congested RDs while returning back to centralized discovery tasks after 

recovery. This way, our architecture prefers centralized discovery in the presence of non-congested RDs, ensures 

continuity of service at failures, congestion times and/or absence of RDs, and more importantly switch back to 

unicast discovery as soon as RDs become available. Finally, it should be noted that the proposed architecture 

natively supports both local and global discovery of available resources. For instance, an authorized remote client 

can query the RD over the Internet for available resources, while local clients might use both unicast and multicast 

discovery modes to discover available resources as shown in Fig. 1.  

 

 

Fig. 1 Overview of the proposed architecture 

Having presented an overview of the proposed architecture and its enabling mechanisms, the following 

sections introduce and detail their functioning, interoperability and integrations. 

 

 

  

      

  

        

          

      C P 

 

Resource Directory 

Local resource discovery Global resource discovery 

 

P 

    

  
  

  

  

  
  

 Registration (CoAP POST) 

  
Request (CoAP GET) 

 Provider Client 

Reply 
C 

P C 

Push mode Pull mode 

Local resource discovery 

(a) Centralized resource discovery 

(b) Fully-distributed push-pull  resource discovery 



5 
 

 

4. Proactive RD Discovery (PRD) 

4.1. PRD Overview 

PRD allows a resource directory to proactively advertise its presence and provided capabilities for nodes to 

cache locally. The proposed mechanism makes use of CoAP messages and methods to achieve the discovery of 

an RD. It particularly adopts POST requests to proactively push RD information to the network in a CoAP message 

called Directory Advertisement (DA) as depicted in Fig. 2. The forwarding of such message is governed by a 

Trickle timer (Levis et al. 2011)  as will be detailed in section 4.2. The advertised RD information is then cached 

for a specified lifetime, updated using either PUT or POST methods, and propagated in a wavelike pattern from 

nodes near the RD to those at the edge of the network as shown in Fig.2. Using Trickle ensures that, with time, 

all nodes will receive the RD’s DA message. However, a node requiring to use RD services before receiving the 

DA can issue a single-hop multicast Directory Solicitation (DS) GET request looking for resources having the 

attribute 𝑟𝑡 =  𝑐𝑜𝑟𝑒. 𝑟𝑑 (section 4.3). Upon reception of a DS request, a node having matching RD information 

may issue a response. Finally, PRD envisages a state maintenance mechanism (section 0) providing seamless 

reactions to network dynamics. 

4.2. DA generation and forwarding 

The RD generates and maintains its DA messages using a Trickle algorithm (Levis et al. 2011). Trickle allows 

nodes to get into a consistent state as quick as possible by relying on simple primitives. To do so, nodes 

periodically exchange their data to detect potential inconsistencies. When inconsistencies are detected, nodes 

shrink their transmission periods to the minimum interval size (𝐼𝑚𝑖𝑛). In the absence of inconsistencies, the 

period is exponentially increased up to a configured maximum interval size (𝐼𝑚𝑎𝑥). To minimize generated 

traffic, Trickle proposes a suppression mechanism. Thus, a node only transmits if the counted consistent received 

messages in an interval, via the consistency counter 𝑐, is less than the configured redundancy constant 𝑘. This 

Trickle behavior is summarized in the steps presented in Table 1.  

Table 1 Trickle algorithm 

Step Action 

1 Choose an interval size 𝐼 randomly from [𝐼𝑚𝑖𝑛; 𝐼𝑚𝑎𝑥] 

2 When an interval starts, resets 𝑐 to 0 and picks 𝑡 randomly from [𝐼/2; 𝐼). 

3 If receiving a consistent transmission, increments 𝑐. 

4 At time 𝑡, only transmits if and only if 𝑐 is less than 𝑘 (𝑐 <  𝑘). 

5 At an interval’s end, double the interval size 𝐼 up to 𝐼𝑚𝑎𝑥 and go to step 2.  

6 If an inconsistency is received while 𝐼 > 𝐼𝑚𝑖𝑛, put 𝐼 to 𝐼𝑚𝑖𝑛 and go to step 2. 

 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_ 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔_𝑝𝑜𝑠𝑡_𝑟𝑒𝑞𝑢𝑒𝑠𝑡 (𝐷𝐴)  

IF  𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡_𝐷𝐴_𝑓𝑟𝑜𝑚_𝑛𝑒𝑤_𝑅𝐷  THEN  

 Create_new_resource_info (DA) 

 Create_new_trickle_timer (RD) 

 Trickle_inconsistency (RD)   //step 6 of Trickle 

ELSE IF (𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡_𝐷𝐴_𝑓𝑟𝑜𝑚_𝑘𝑛𝑜𝑤𝑛_𝑅𝐷) 

THEN  

       update_existing_resource_info (DA)   

       Trickle_inconsistency (RD)   //step 6 of Trickle    

ELSE IF (𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦) THEN 

       Trickle_consistency (RD)     //step 3 of Trickle       

ENDIF 

Fig. 2 Proactive RD discovery Fig.3. DA Forwarding Algorithm 

Using Trickle, in PRD, consists mainly of defining what constitutes a consistent/inconsistent DA 

transmission. To comply with the consistency model of Trickle, DA messages make use of the 16-bit 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 −

𝐼𝐷 field of a CoAP message. Thus, a consistency is defined as receiving a DA message from a specific RD with 

  

      

  

        

  
      

  

  

    

Directory 

Node 

    

1st wave 

2nd wave 

DA message 

DS message 

3
rd

 wave 



6 
 

the same 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 − 𝐼𝐷 as the cached one. Likewise, an inconsistency is specified as receiving a DA message of 

a specific RD having a different 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 − 𝐼𝐷 than the corresponding cached one. It should be noted that the 

𝑀𝑒𝑠𝑠𝑎𝑔𝑒 − 𝐼𝐷 of a DA is saved in a stable storage and only incremented by the RD when: 

 The RD becomes enabled, reboots and/or when the lifetime of the previous DA is about to expire; 

 The IP address and/or port number on which the RD is accessible change; 

 Each time any advertised RD resource attribute changes (e.g., a change in the RD path). 

Such DA message is then POSTed to the link-local multicast address. After receiving such a DA message, 

the receiver processes it and updates its resource list (creates a new resource if the information is from a new RD, 

updates inconsistent information of an existing RD, or discards a consistent message). The receiver then updates 

the corresponding Trickle timer accordingly as specified by the algorithm of Fig.3. It should be noted that PRD 

suppresses responses to DA messages similarly to CoAP group communication (A. Rahman and E. Dijk 2014). 

Finally, note that a node receiving a new DA message should create resource at a path inferred from the 𝑐𝑜𝑛 

attribute, which ensures its uniqueness, and includes it into its /. 𝑤𝑒𝑙𝑙 − 𝑘𝑛𝑜𝑤𝑛/𝑐𝑜𝑟𝑒 resource for the sake of 

making it discoverable to other nodes issuing DS messages. 

Fig. 3 Directory advertisements  

4.3. DS generation and processing 

In case of missing a DA, on-demand directory solicitations can be issued using the DS message. In addition 

to speeding up RD discovery, this functionality is particularly important for new nodes joining a network. For 

instance, a new node joining the network can discover the RD by issuing a DS message as shown in Fig. 4. DS 

messages are sent a MAX_DS_TRANSMISSIONS times separated by a DS_TRANSMISSION_INTERVAL. If 

still there are no responses, the originator switches to a slower transmission rate. The transmission of a DS is 

cancelled by receiving a response or a DA containing the requested information. For responding to DS messages, 

a node having matching resources generates a unicast response to be sent back to the DS originator, similarly to 

the standard resource discovery mechanism (Shelby 2012). Such response would have the format shown in Fig. 

4. Note that, after receiving a response, a node might re-activate the Trickle timer to stay consistent. 

Fig. 4 Directory solicitation 

Since multiple nodes might respond to a multicast DS, the congestion control mechanism suggested by CoAP 

should be used. Thus, nodes should insert a random delay, called leisure time, before issuing their responses. The 

lower bound of the leisure time can be approximated based on an estimate of the group size 𝐺, the data transfer 
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rate 𝑇 and the response size 𝑆 as follows: 𝐿𝐵𝐿𝑒𝑖𝑠𝑢𝑟𝑒 =  𝑆 × 𝐺𝑇. If endpoints are not able to estimate such 

parameters, a default value of 5𝑠 might be used. 

4.4. State maintenance 

Being a proactive approach, PRD might suffer from network inconsistencies by keeping information about 

an RD which no longer exists. To deal with this, PRD envisages the following mechanisms.  

The first enables a directory to advertise its graceful disappearance. This is done by issuing a DA message 

with the DELETE method to the path inferred from the 𝑐𝑜𝑛 attribute of this RD which is unique for each RD as 

shown in Fig. 5. The forwarding of this message is governed by the same rules defined in section 4.2.  Note, that 

a separated stopping Trickle timer that only manages DELETE messages might be preferred. This can have the 

advantage of handling DELETE requests differently from DA messages by using bigger values of 𝑘, for example. 

It also demonstrates a case were the infinite intervals of Trickle is not required (gossiping about a resource to be 

deleted a number of times is required for reliability purposes). Hence, for this mechanism to work efficiently, 

nodes should keep information about a deleted message for KEEP_DELETE_PERIOD before a definitive delete. 

Note that responses to DELETE messages are suppressed.  

In addition to the explicit delete mechanism above, the lifetime-based soft deregistration mechanism (using 

the 𝑙𝑡 attribute) is responsible for deleting stale RD information. An RD should periodically generate new DA 

messages in order to refresh its information and confirms its presence. Finally, when contacting an RD and finding 

that it does not respond, nodes delete corresponding cached information. 

 

Fig. 5 Graceful suppression of RD information 

4.5. Support of multiple RDs 

Having multiple RDs might be preferable not only for redundancy reasons but also to support and provide 

different services. Indeed, a provider might be willing to register with an RD that supports a specific content-

format/protocol. Similarly, a client might prefer to query an RD supporting its required parameters. PRD provides 

support of the discovery of multiple RDs in a network. To do so, each RD manages a separate Trickle. This 

requires nodes to keep separate Trickle timers per RD in a parallel Trickle approach. Such an approach might 

increase the burden on sensor/actuator nodes. However, taking into account the simplicity of Trickle code along 

with the small number of expected RDs in a network, this solution may present a fair trade-off. In section 6.1, an 

optimized version for supporting multiple RDs will be introduced. 

Finally, it should be noted that by supporting discovery of multiple RDs, PRD can play a pivotal role into 

distributing hints allowing both providers and clients to be aware of available services of each RD and giving 

them all necessary information to access such services. For instance, PRD can distribute information about the 

content formats supported by an RD using the content type (𝑐𝑡) attribute. Clients and providers might use this 

information to select preferred content formats for interacting with RDs. 

5. Fully-distributed pull-push resource discovery 

Having presented PRD, this section introduces a CoAP-based Fully-distributed pull-push Resource Discovery 

(FRD) mechanism to achieve resource discovery in the absence of RDs. The dissemination part of the proposed 

mechanism builds upon that proposed in (Djamaa et al. 2014). The description part of the proposed mechanism 

leverages CoRE link formats with necessary adaptations as will be detailed below. 

As depicted in Fig. 1 (b), FRD provides both pull and push-modes of distributed discovery. Indeed, FRD 

leverages a push-mode in which nodes proactively advertise descriptions of their own and cached resources. To 

 DELETE coap://ll-mult-add/urd-path 

 DELETE coap://ll-mult-add/urd-path 

Node 1 Node 2 RD 
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minimize resource utilization, FRD’s push mode leverages on the advertisement algorithm proposed in (Djamaa 

et al. 2014), which is summarized in the following subsection. Additionally, FRD provides a pull mode for 

forwarding on-demand requests. For instance, a node not having required resources in its cache might issue a 

request to be propagated across the network. Upon finding a resource matching the requested criteria, a response 

is generated. A basic flooding algorithm or a multicast routing protocol (e.g., MPL) might be used to disseminate 

resource requests.  

5.1. Trickle-based proactive advertisement 

In (Djamaa et al. 2014), a Trickle-based mechanism is proposed for minimizing the traffic generated by 

proactive push of available resources. The mechanism mainly proposes another version of Trickle, which attaches 

the consistency counter to data items (resource descriptions in FRD). Thus, every resource description in a node’s 

local directory has a consistency counter, which is updated following the below rules. In addition, and in order to 

minimize the generated maintenance traffic, a node only resets the consistency counters of its resources when 

starting new intervals. While this approach might not ensure strict consistency, it fits fully-distributed push-pull 

protocols well and gives it attractive proprieties. To achieve such proprieties each resource entry contained in an 

advertisement message (𝑎𝑑𝑣_𝑚𝑠𝑔) is modeled using mainly a vector (𝑟, 𝑓, 𝑚) representing the resource 

description 𝑟, its sequence number 𝑓 and a metric 𝑚 (distance in hops). The former of the two parameters is used 

to ensure loop-free transmissions and it is incremented only by the provider, whilst the latter is used to limit entry’s 

propagation; it is incremented by each forwarder.  

The proposed advertisement algorithm in (Djamaa et al. 2014) decides on the eligibility of a resource entry 

for advertisements depending on its consistency. A resource entry in an 𝑎𝑑𝑣_𝑚𝑠𝑔 is considered consistent when 

the corresponding resource description is already in the node’s local directory and considered as older, or 

announced as being far. More precisely, a consistent entry verifies the following points:  

 The received entry (𝑟, 𝑓, 𝑚) is already in the node’s local directory, noted (𝑟, 𝑓′, 𝑚′), and has a lesser 

value of 𝑓 (𝑓 < 𝑓′) or;  

 The received entry (𝑟, 𝑓, 𝑚) is already in the node’s local directory, noted (𝑟, 𝑓′, 𝑚′) and has the 

same value of  𝑓 (𝑓 = 𝑓′) and a greater or equal value of 𝑚 (𝑚 ≥ 𝑚′).  

A consistent entry is not eligible for advertisement. The algorithm only increments its consistency counter 𝑐. 

Otherwise, the entry is inconsistent. The algorithm proceeds to the registration of such an entry for the specified 

lifetime, increments and updates its distance 𝑚 and reinitialise its consistency counter 𝑐 to zero. If a first-

inconsistency model is adopted, the Trickle timer is reset to allow its fast dissemination. Otherwise, the algorithm 

increments the inconsistency counter (𝑖𝑐) until reaching the configured value for resetting the timer. At time 𝑡 of 

a Trickle interval, the algorithm includes in the outgoing message all entries whose distances are less than or equal 

the configured maximum advertisement distance having counters 𝑐 less than the redundancy constant 𝑘 (𝑐 < 𝑘). 

To illustrate the functioning of the above algorithm, let’s take the example presented in Fig. 6, reproduced 

from (Djamaa et al. 2014), which depicts a network constructed of three nodes 𝑥, 𝑦 and 𝑧. Node 𝑦’s local directory  

before receiving an 𝑎𝑑𝑣_𝑚𝑠𝑔 is depicted in Fig. 6 (a) and contains  three resource entries R1, R2 and R3 with 

their respective sequence numbers and distances from their providers. Upon receiving an 𝑎𝑑𝑣_𝑚𝑠𝑔 containing 

the resources R1, R2 and R4 with their respective values of 𝑓 and 𝑚 (Fig. 6 (b)), the algorithm investigates each 

entry. R1 is already present in node 𝑦’s local directory and received with the same sequence number and distance 

(𝑓 = 𝑓′𝑎𝑛𝑑 𝑚 = 𝑚′), thus the algorithm only increments its 𝑐 counter. R2 is already present in node 𝑦’s local 

directory but received with a new sequence number (𝑓 > 𝑓′), the algorithm updates it and resets its 𝑐 to zero. If 

the first-inconsistency approach is employed, the Trickle timer 𝐼 is reset to 𝐼𝑚𝑖𝑛. R4 is new; the algorithm creates 

an entry for it with 𝑐 set to zero. At time 𝑡, the algorithm loops over node 𝑦’s local directory and includes in the 

outgoing advertisement entries with 𝑐 counters less than 𝑘. Thus, if a constant 𝑘 = 1 and a configured maximum 

advertisement distance = 4 are used, the outgoing advertisement contains R2 and R4 as illustrated in Fig. 6 (c). 

Having summarized the functioning of the push-mode of FRD, the following sections detail its incorporation 

with CoAP. To this end, subsection 5.2 deploys CoRE link format for the push-mode and tweaks the proactive 

Trickle-based mechanism accordingly, while section 5.3 presents an optimized pull-mode for FRD. 
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Fig. 6 An example of execution of the push-mode’s dissemination algorithm  

5.2. CoAP-based push resource discovery 

This section introduces the necessary additional attributes to the CoRE link format in order to make the above 

dissemination algorithm compatible with CoAP along with new optimizations. Thus, advertisement messages 

have to follow the format imposed by CoAP (Fig. 7). To do so, we reused standard attributes whenever possible 

and added a few others. The fact of having multiple entries in a single advertisement message is achieved in CoAP 

by separating the multiple resource descriptions contained in the payload of a CoAP message by the “;” character. 

Besides reusing the link format parameters introduced in (Zach Shelby et al. 2016), this section introduces 

the following attributes: the 𝑑 attribute to represent the distance travelled by a resource description and the 

sequence number attribute of the description (𝑠𝑒𝑞). The following points present each attribute, its semantics and 

default value. 

 𝑐𝑜𝑛 : this attribute is defined in with the following format 𝑠𝑐ℎ𝑒𝑚𝑒: 𝑖𝑝_𝑎𝑑𝑑𝑟𝑒𝑠𝑠: 𝑝𝑜𝑟𝑡. The 𝑐𝑜𝑛 

attribute is mandatory for FRD since it allows to identify uniquely a provider of the resource 

description. It also enables to define the location of a resource in a unique manner by combing it 

with the resources path at its provider. This facilitates the update of such resources using the PUT 

method. It is also useful in the case of graceful departure of such a resource. 

 𝑠𝑒𝑞 : this is a newly added attribute to ease Trickle operations. It actually plays the role of the 𝑓 

factor described in the above section. Therefore, it is managed exactly as above and hence increased 

for each update. 

 𝑑: this is also a newly introduced attribute to limit the propagation of a resource description in the 

network. It plays exactly the same role as metric 𝑚 defined in the previous section and hence 

managed in the same way. 

With these attributes, the generic advertisement message described in section 5.1 will be mapped to a non-

confirmable CoAP POST message as depicted in Fig. 7. 

                          (a) Network state                                                                                   (b) Registration algorithm 

(c) Advertising algorithm 

 x  y  z 
  

node y’s local directory 

 x   y   z 
  

node y’s local directory 

node x’s advertisement 

 x   y   z 
  

node y’s local directory 
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Fig. 7 CoAP mapping of the proposed push-model 

5.3. Optimized CoAP-based pull mode 

Besides limiting the distance of a request using the TTL field of the IPv6 header, the pull mechanism of the 

proposed FRD might render similarly to CoAP’s distributed resource discovery. Hence, a client issues a multicast 

GET request to /. 𝑤𝑒𝑙𝑙 − 𝑘𝑛𝑜𝑤𝑛/𝑐𝑜𝑟𝑒? 𝑠𝑒𝑎𝑟𝑐ℎ ∗ sent to the allocated all-coap-nodes multicast address (Z. 

Shelby, K. Hartke, and C. Bormann 2014). Such requests risk to create a response storm problem. In addition, a 

client might be aware of some resources but requires others. In order to optimize the discovery, the newly 

introduced FETCH method (Stok, Bormann, and Sehgal 2016) will be used by FRD for the sake of minimizing 

the amount of responses along with specifying the required exact format of sought resources.  

Unlike with GET, the request parameters are constituted of both URI options and multiple FETCH payloads. 

Thus, the client might insert in the payload of a FETCH request information about known resources in order to 

inform responders to eliminate such resources from their responses. Additionally, the client might specify the 

required content format and any useful information to accurately filter the responses only to the ones required. In 

the current version of FRD, this optimization is only implemented by the source of a request. Giving intermediate 

nodes the possibility of modifying the content of a FETCH request is envisaged in order to further minimize the 

number and size of expected responses. It should be noted that while featuring the above optimizations, FRD 

remains backword compatible with CoAP. 

6. Hybrid resource discovery in practice 

Having presented the two main pillars of HRD, this section presents the mechanisms allowing it to efficiently 

address the requirements of LLN discovery. Indeed, it shows an incorporation of PRD with FRD for efficient code 

and memory usage, and presents a big picture on the functioning of HRD. 

6.1. PRD in FRD for code and memory optimizations 

Because of the similarities between PRD and FRD forwarding algorithms, it might be preferable to consider 

a way of integrating them in a simple code that responds to both requirements. Although FRD’s Trickle-based 

proactive advertisement does not need strict consistency in its generic form, it can provide strict consistency for 

a few crucial resources if needed. For instance, a flag in a resource entry of an 𝑎𝑑𝑣_𝑚𝑠𝑔 can indicate that this is 

an important resource, and hence nodes keep gossiping about it (as if it is one of their own resources) to ensure 

that it reaches all network entities. 

With this propriety of FRD’s Trickle algorithm, incorporating PRD functions into FRD translates into adding 

another CoRE link format attribute, resource criticality (𝑟𝑐), for specifying the criticality of a resource. 𝑟𝑐, if 
present in a received resource entry, indicates that the resource is critical and hence must arrive at all nodes. Thus, 

𝑟𝑐 must be present in all entries representing RD resources in order to indicate to FRD to keep gossiping about 

them at each interval as in PRD. In the absence of such an attribute or having its value to zero, the resource is 

assumed not critical and FRD, as described in section 5, is responsible on forwarding it. When not suing the first-

inconsistency model, it is important to reset the Trickle timer of FRD when receiving the first resource entry 

having the 𝑟𝑐 attribute set to 1 in order to speed up its propagation. Finally, it should be noted that while the push 

algorithm of FRD can be disabled, it must be enabled to forward critical resources. Thus, a node receiving such 

resources must activate its Trickle timer if it is disabled.  

Incorporating PRD in FRD provides another way of treating multiple RDs. Indeed, instead of using a Trickle 

timer per RD, FRD allows the information of multiple RDs to be managed by one Trickle timer. This optimizes 

the code, memory and even energy since larger messages generally consume less energy than the same amount of 
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data transmitted in smaller messages. This is especially true if the radio duty cycling protocol deploys a multicast 

burst forwarding mechanism (Djamaa et al. 2015). 

6.2. Hybrid resource discovery in practice 

Having introduced the generic architecture for hybrid centralized/distributed resource discovery for the IoT 

and introduced the components participating in realizing such an architecture, we present in this section a big 

picture for the functioning of such a solution. 

In an ideal environment, an RD should not receive multicast advertisements and multicast requests. However, 

due to network losses and other factors, an RD might still receive such messages as some nodes might not be 

aware of its presence temporarily. Receiving such messages could give the RD hints that a client and/or provider 

is not aware of its presence. The RD can issue a confirmation to the provider or a response to the client informing 

them of its presence, which prompts them to switch to centralized discovery operations. Similarly, a node aware 

of the existence of an RD, knowing that the RD is still available, which receives multicast requests/advertisements 

might transmits via unicast directly to the RD. When the RD issues confirmations/responses the originator of the 

message, it will be aware of RDs presence. On the other hand, when an RD disappears from the network and in 

case of failure of the PRD state maintenance mechanisms (Section 0), some nodes might still hold its information 

temporarily. After a specific number of attempts at an RD, a provider and/or a client might switch to FRD to 

continue its operations.  

Finally, it should be noted that the above mechanisms on switching between unicast and multicast discovery 

can ensure the correctness, accuracy and speed of discovery within the proposed architecture. For instance, a 

provider missing RD information for whatever reason will switch automatically and instantly to fully-distributed 

discovery by advertising its resources via FRD. When arriving to a neighbor having information about the RD, 

the resources will be sent via unicast to the RD, allowing thus a client to discover all available resources in the 

network by fetching the RD. 

7. Formal performance analysis 

This section provides a formal analysis of the two components of the proposed HRD architecture (PRD and 

FRD) and their combination. The parameters and notations used in the analysis are summarized in Table 2. 
Table 2 parameters and notations 

Parameter Meaning 

𝑁 Number of nodes in the network 

𝑁𝑟 Number of new resources in an interval 

𝑅 Total number of resources in the network 

𝑅𝐷𝑠 Number of RD nodes in the network 

𝐷 Network Diameter   

𝑘 Trickle’s redundancy constant  

7.1. PRD analysis 

With the default RD discovery (Shelby 2012) and since each node needs to issue a request in order to discover 

an RD, the number of generated application-layer requests is proportional to the number of nodes and hence it 

grows linearly with network size (application-layer overhead complexity in 𝑂(𝑁)). Taking into account the fact 

that each request can result into multiple multi-hop multicast messages, the overhead generated by a request is 

considerably higher. In a scenario, where the multicast routing protocol deploys a simple flooding algorithm, each 

node will forward a single request at most once giving an overhead on 𝑂(𝑁) per request, which makes the actual 

number of transmissions generated for discovering an RD using the default mechanism grows on O(𝑁2). 

Furthermore, since the RD has to respond to each node’s request separately, the number of responses also grows 

linearly with the number of nodes. Moreover, taking into account the multi-hop aspect of LLN networks, a single 

RD response results into multiple transmissions, which are proportional to the diameter of the network (𝐷). 

Besides overhead, the time of discovering an RD is also proportional to the diameter of the network. Thus, request 

propagation requires theoretically 𝐷 transmission times with a similar time required to receive a reply. 

Since the number of RDs is drastically smaller than the number of nodes in an LLN network, PRD provides 

an efficient solution to both overhead and time issues of the default RD discovery mechanism. Thus, having an 
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RD advertising its presence to the network, nodes will simply skip the discovery of the RD and start using unicast 

primitives to exploit its services. Indeed, using PRD, the overhead of discovering an RD is proportional to the 

number of RDs; which is very small compared to the number of nodes and hence the application-layer message 

complexity of PRD is in 𝑂(𝑅𝐷𝑠). Taking into account the multi-hop aspect of LLNs, the worst-case message 

complexity for an RD using flooding goes in 𝑂(𝑁). Note that using Trickle minimizes this complexity into 𝑂(𝑘) 

transmission per interval in a perfect lossless network, but in this analysis, we considered a worst-case scenario 

for both default resource discovery and PRD. Moreover, PRD saves the traffic that would be incurred by 

generating responses since no requests/responses are exchanged. Finally, the time complexity of the PRD can be 

zero since in most of the cases the RD information is locally available. Table 3 summarizes the message and time 

complexities of both approaches. 

Table 3 PRD’s message and time complexities. 

RD discovery mechanism App. Requests Transmissions App. Responses Discovery Time 

PRD 𝑂 (𝑅𝐷𝑠) 𝑂 (𝑁 × 𝑅𝐷𝑠) 0 0 or  𝑂 (𝐷) 

Resource discovery 𝑂 (𝑁) 𝑂 (𝑁2) 𝑂 (𝑁) 𝑂 (𝐷) 

7.2. FRD analysis 

In (Djamaa et al. 2014), a formal analysis of the proactive advertisement algorithm is presented. Such an 

analysis remains valid for FRD since the main difference resides in the description format and the only parameter 

changing is the size of a resource. Thus, this section adds on such an analysis to include the performance of PRD 

when integrated with FRD and compares it with FRD and a fixed-period push mechanism. As in (Djamaa et al. 

2014), the analysis is limited to lossless single hop networks. The methodology presented in (Levis et al. 2004) 

may be used to generalize the discussion to lossy multi-hop networks. The performance is analyzed over one 

Trickle interval w.r.t the number of exchanged advertisements, the size of an advertisement, the total amount of 

generated push traffic and the inconsistency resolution time. This is done when assuming that a provider provides 

at most one resource. For ease of the analysis, we also assume that all the resources have the same 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑖𝑧𝑒. 

In FRD and since nodes are assumed to provide unique resources, each node will send its resource description 

even after it hears other nodes’ consistent descriptions. This makes FRD depend only on the number of new 

resources (𝑁𝑟) occurring in an interval, which gives the number of advertisements a good scalability as the 

number of new resources in an interval is generally much less than the total number of resources. When combining 

FRD with PRD, a node may send an extra message per RD in a worst case where RD information occur after 

sending that of a previous RD, making its message complexity on 𝑂(𝑁𝑟 + 𝑅𝐷). Finally, in fixed-period push 

algorithms where each node transmits once per interval, the number of messages scales linearly with the number 

of nodes.  

FRD presents a very attractive characteristic regarding the maximum size of an advertisement as it is bounded 

by (𝑘 + 1) × 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑖𝑧𝑒 i.e. the maximum number of entries included in an advertisement message is 𝑘 + 1. 

When combining PRD with FRD, critical resources should be included in the advertisement message increasing 

its size by the number of RDs in a worst case scenario. In a fixed-period push algorithm, however, where each 

advertisement contains all stored entries, the size of an advertisement might reach the number of resources 𝑅, 

giving it a linear scalability with the number of resources. With regards to the total amount of traffic generated in 

an interval, which has a direct impact on the communication’s energy consumption, FRD sends in a worst case 

approximately (𝑘 + 1) × 𝑁𝑟. When combining PRD with FRD the amount of generated traffic will be 

(𝑘 + 1 + RDs) × 𝑁𝑟. The same analysis gives fixed-period push algorithms a total amount of generated push 

traffic in 𝑂 (𝑁 × 𝑅).  

For inconsistency resolution time, FRD can detect and react to an inconsistency in a fixed time span in 𝑂(1) 

since the first inconsistency resets the Trickle timer for fast propagations, which is in the same order of fixed-

period push algorithms. A summary of this performance analysis is given in Table 4. 

Table 4 summary of FRD’s time and message complexities  

algorithm/parameters # messages max adv_size Total traffic Inconsistency time 

FRD O(Nr) O(K + 1) O((K + 1) × Nr) O(1) 

FRD + PRD O(Nr + RDs) O(K + 1 + 𝑅𝐷𝑠) O((K + 1 + RD) × (𝑅𝐷 + 𝑁𝑟)) O(1) 

Fixed-period push O(N) O(R) O(N × R) O(1) 
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8. Performance Evaluation 

Experimental evaluations of the proposed architecture are done in two parts. The first focuses on PRD 

performance, while the second evaluates the performance of FRD. 

8.1. Experimental model and performance metrics 

To evaluate the performance of the proposed HRD solution, we implemented it in Contiki OS. To put results 

into context and in order to provide a comprehensive evaluation, the mechanisms building our solution are 

compared to state-of-the-art algorithms. For instance, PRD is compared with RD’s default discovery mechanism 

based on CoAP’s built-in resource discovery. To allow resource discovery across a multi-hop network, the MPL 

implementation in Contiki was used. Note that such an implementation follows the specifications of draft-1 of 

MPL called Trickle Multicast (TM). For providing a fair comparison, the same Trickle parameters were used for 

both TM and PRD. For FRD, its performance is compared, in a home automation scenario, to that of CoAP’s 

resource discovery using the SMRF multicast protocol (Oikonomou, Phillips, and Tryfonas 2013). By comparing 

PRD and FRD with state-of-the-art solutions, we aim to demonstrate the capabilities of the proposed architecture. 

Two simulated network scenarios depicted in Fig. 8 were considered. A ten node scenario is used to validate 

PRD and show its advantages even in small-size networks. A 31 node scenario of a publically available network 

configuration1 is used to show the performance of FRD in home automation and similar network scenarios. 

Emulated Sky motes (Polastre, Szewczyk, and Culler 2005) were used in order to show the lightweight aspect of 

our algorithms. Each mote in our scenarios can play the role of either a client requesting required resources or a 

provider registering its resources or both roles. In all cases, a node is required to be aware of the RD before 

accessing it or deciding to switch to the fully-distributed mode.  

Table 5 simulation parameters 

Parameter Value 

Simulation time 200 and 600 seconds 

Number of nodes / iterations 10 and 31 / 10 

Radio environment UDGM 

Communication range/bandwidth 50m / 250Kb/s 

Network / Adaptation Layer IPv6 / 6LoWPAN 

MAC / RDC Protocol CSMA-CA / CX-MAC 

TM /  PRD / FRD Trickle parameters 𝐼𝑚𝑖𝑛 =  1𝑠, 𝐼𝑚𝑎𝑥 =  8 𝑠, 𝑘 =  1 

For this evaluation, we developed applications running the two components of HRD above UDP in 

constrained 6LoWPAN networks running Contiki. At the routing layer, default resource discovery deploys TM 

to ensure multicast routing of RD discovery requests. RPL was operating in order to route unicast requests, 

registrations and responses between involved entities. At the link layer, the CX-MAC (Buettner et al. 2006) radio 

duty cycling protocol was used. Simulation configuration parameters are summarized in Table 5. 

  

Fig. 8 network scenarios used in the evaluations 

                                                           
1 https://github.com/contiki-os/contiki/blob/master/examples/ipv6/rpl-udp/rpl-udp.csc 
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To be able to draw conclusions on the time/cost performance of the evaluated approaches, the number of 

generated messages, the average discovery time, the average RD discovery time and the radio duty cycle, as proxy 

of energy consumption, were measured when varying the number of clients and providers in the network. The RD 

discovery time is measured as the time spent from sending a request until receiving the reply, averaged over all 

requests. The number of generated messages is measured at the routing layer for resource discovery and averaged 

over all nodes. The network duty cycle (the percentage of time spent in active state), as an indicator of energy 

consumption, is measured using Contiki’s power profiler (Dunkels et al. 2011). Each experiment was repeated 10 

times. The mean is reported in the graphs of Fig. 9 and Fig. 10. 

8.2. Results and discussions 

8.2.1. PRD discussions 

 

Fig. 9 PRD simulation results 

As can be seen from Fig. 9 (a), the number of messages generated by the resource discovery mechanism 

increases drastically with increasing number of RD requesters in the network reaching about 10 times that 

generated by PRD for nine active requesters. The traffic generated by PRD, on the other hand, stayed independent 

of the number of requesters yielding a small generated traffic, which demonstrates the performance of PRD in 

terms of generated traffic. Concerning reliability, Fig. 9 shows that PRD can achieve a 100% RD discovery rate 

independently from the number of requesters thanks to Trickle reliability mechanisms making the information 

about the RD reaching each node. The default resource discovery mechanism, however, showed a decrease in 

discovery rates with increasing number of requesters reaching about 88% at 9 concurrent requesters. This decrease 

in reliability is expected to continue with increasing number of requesters because of an abundant number of 

concurrent multicast requests being forwarded. 

Concerning energy consumption, Fig. 9 (c) shows that PRD achieves smaller radio duty cycles, hence smaller 

energy consumption when compared with resource discovery. Thus, even when resource discovery registered less 

number of messages, the energy consumed to deliver them was about twice that of PRD. This can be explained 

by the growing size of control traffic generated by the routing protocols along with the expensive cost of multicast 

communications. Finally, Fig. 9 (d) shows that in a best case, where all nodes requesting RD services find the 

information locally, PRD can achieve zero discovery time. In a worst case, where the requesters need to wait for 

the information to be pushed, the discovery time of PRD is still better than that of the default resource discovery 

mechanism. 
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8.2.2. FRD discussions 

  

  

 
Fig. 10 FRD simulation results  

Fig. 10 (a) shows that the discovery time of the default resource discovery registered a higher value of around 

six times that of PRD. This can be explained by the fact that resource discovery needs to wait for a request to get 

propagated throughout the whole network and the response to be sent back over long distances. FRD, however, 

benefited from the proactive push of available descriptions, which allowed sought descriptions to be found a 

limited number of hops from the client. This way FRD gained in both request and response times. 

Concerning the discovery success rate, the graph in Fig. 10 (b) shows that the default discovery mechanism 

only achieved around 40% success rate. This low rate might be caused by generating big multicast traffic spanning 

long distances, which increased the chances of collisions and losses. FRD, however, achieved a satisfactory 

success rate nearing 100% towards the end of the simulation as shown in Fig. 10 (b). This is explained by the fact 

that at the start of the simulation, requests have to propagate throughout the network in order to find sought 

resources with high risk of losses. When resources get propagated through the network, clients find them nearby 

and from multiple sources increasing thus the discovery rate towards its maximum.  



16 
 

For the total amount of traffic generated in the network, Fig. 10 (c) shows that FRD outperforms by large the 

default resource discovery mechanism. This performance is partly achieved thanks to Trickle suppressions. 

Additionally, FRD saves a considerable amount of traffic by annulling request propagation over long distances 

thanks to the availability of sought descriptions in nearby devices, while resource discovery keeps on sending 

multicast requests across the whole network. Moreover, losses and collisions, diminishing the success rate (Fig. 

10 (c)), might have incurred more retransmissions at lower stack layers. Note that this result might change in 

frequently dynamic environments as the generated push traffic may become more important. 

Finally Fig. 10 (d) and (e) show the energy consumption aspects of both solutions. CoAP resource discovery 

consumed more energy as shown in Fig. 10 (d), which can be explained by the large number of multicast messages 

generated and propagated throughout the network. FRD consumed less energy thanks to minimizing the number 

of multicast packets. Fig. 10 (e) shows that CoAP resource discovery might not distribute energy consumption 

equitably between the nodes because it builds upon the RPL graph. Conversely, FRD nodes showed similar energy 

consumptions thanks to Trickle balanced forwarding decisions. 

As a synthesis, both PRD and FRD showed important performance when compared with state-of-the-art 

standardized solutions. This gives the proposed architecture the necessary mechanisms for achieving efficient 

hybrid resource discovery.  

9. Conclusions and Outlook 

In this paper, a hybrid unicast/multicast resource discovery architecture is proposed. The architecture builds 

upon two main mechanisms, namely PRD and FRD allowing it to ensure efficient, scalable and quick discovery 

of available resources. Formal analysis along with extensive time-accurate emulations in dedicated IoT platforms 

have demonstrated the capabilities of such mechanisms concerning time efficiency, resource economy and 

reliability when compared with state-of-the-art solutions. Future work consist on extending the formal analysis to 

other scenarios along with further evaluations and optimizations in publicly available testbeds. A specification to 

be presented to the IETF is also planned. 

References 

A. Rahman, and E. Dijk. 2014. ‘Group Communication for the Constrained Application Protocol (CoAP)’. RFC 7390, IETF, 

October. http://tools.ietf.org/html/rfc7390. 

A. Yachir, Y. Amirat, A. Chibani, and N. Badache. 2016. ‘Event-Aware Framework for Dynamic Services Discovery and 

Selection in the Context of Ambient Intelligence and Internet of Things’. IEEE Transactions on Automation Science 

and Engineering 13 (1): 85–102. 

Badis Djamaa, Mark Richardson, Peter Barker, and Mohamed Aissani. to appear. ‘Multicast Burst Forwarding in Constrained 

Networks’. In . Glasgow. 

Buettner, Michael, Gary V. Yee, Eric Anderson, and Richard Han. 2006. ‘X-MAC: A Short Preamble MAC Protocol for Duty-

Cycled Wireless Sensor Networks’. In Proceedings of the 4th International Conference on Embedded Networked 

Sensor Systems, 307–320. SenSys ’06. New York, NY, USA: ACM. doi:10.1145/1182807.1182838. 

Butt, Talal Ashraf, Iain Phillips, Lin Guan, and George Oikonomou. 2012. ‘TRENDY: An Adaptive and Context-Aware 

Service Discovery Protocol for 6LoWPANs’. In Proceedings of the Third International Workshop on the Web of 

Things, 2:1–2:6. WOT ’12. Newcastle, United Kingdom: ACM. doi:10.1145/2379756.2379758. 

C. Jennings, B. Lowekamp, E. Rescorla, S. Base, and H. Schulzrinne. 2014. ‘REsource LOcation And Discovery (RELOAD) 

Base Protocol’. RFC 6940, IETF, January. http://www.hjp.at/doc/rfc/rfc5911.html. 

Djamaa, Badis, and Mark Richardson. 2014. ‘Towards Scalable DNS-Based Service Discovery for the Internet of Things’. In 

Lecture Notes in Computer Science. Ubiquitous Computing and Ambient Intelligence. Personalisation and User 

Adapted Services, 432–35. Lecture Notes in Computer Science 8867. Springer. 

http://link.springer.com/chapter/10.1007/978-3-319-13102-3_70. 

Djamaa, Badis, Mark Richardson, Nabil Aouf, and Bob Walters. 2014. ‘Towards Efficient Distributed Service Discovery in 

Low-Power and Lossy Networks’. Wireless Networks 20 (8): 2437–53. doi:10.1007/s11276-014-0749-3. 

Djamaa, Badis, and Ali Yachir. 2016. ‘A Proactive Trickle-Based Mechanism for Discovering CoRE Resource Directories’. 

Procedia Computer Science 83: 115–22. doi:10.1016/j.procs.2016.04.106. 

Dunkels, Adam, Joakim Eriksson, Niclas Finne, and Nicolas Tsiftes. 2011. ‘Powertrace: Network-Level Power Profiling for 

Low-Power Wireless Networks’. Technical Report T2011:05. Swedish Institute of Computer Science. 

http://soda.swedish-ict.se/4112/. 

G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. 2007. ‘Transmission of IPv6 Packets over IEEE 802.15.4 Networks’. 

RFC 4944, IETF, September. http://tools.ietf.org/html/rfc4944. 

Levis, Philip, T. Clausen, J. Hui, O. Gnawali, and J. Ko. 2011. ‘The Trickle Algorithm’. RFC 6206, IETF. 

http://www.hjp.at/doc/rfc/rfc6206.html. 

Levis, Philip, Neil Patel, David Culler, and Scott Shenker. 2004. ‘Trickle: A Self-Regulating Algorithm for Code Propagation 

and Maintenance in Wireless Sensor Networks’. In In Proceedings of the First USENIX/ACM Symposium on 

Networked Systems Design and Implementation (NSDI), 15–28. 



17 
 

Liu, Meirong, Teemu Leppanen, Erkki Harjula, Zhonghong Ou, Archana Ramalingam, Mika Ylianttila, and Timo Ojala. 2013. 

‘Distributed Resource Directory Architecture in Machine-to-Machine Communications’. In IEEE 9th International 

Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), 319–24. 

doi:10.1109/WiMOB.2013.6673379. 

Mäenpää, Jouni, Jaime Jiménez Bolonio, and Salvatore Loreto. 2012. ‘Using RELOAD and CoAP for Wide Area Sensor and 

Actuator Networking’. EURASIP Journal on Wireless Communications and Networking 2012 (1): 1–22. 

Oikonomou, George, Iain Phillips, and Theo Tryfonas. 2013. ‘IPv6 Multicast Forwarding in RPL-Based Wireless Sensor 

Networks’. Wireless Personal Communications 73 (3): 1089–1116. doi:10.1007/s11277-013-1250-5. 

Polastre, J., R. Szewczyk, and D. Culler. 2005. ‘Telos: Enabling Ultra-Low Power Wireless Research’. In Fourth International 

Symposium on Information Processing in Sensor Networks, 2005. IPSN 2005, 364–69. 

doi:10.1109/IPSN.2005.1440950. 

Shelby, Zach. 2012. ‘Constrained RESTful Environments (CoRE) Link Format’. RFC 6690, IETF. 

http://xml2rfc.tools.ietf.org/html/rfc6690. 

Stok, P. van der, C. Bormann, and A. Sehgal. 2016. ‘Patch and Fetch Methods for Constrained Application Protocol (CoAP)’. 

Internet Draft, IETF. http://tools.ietf.org/id/draft-ietf-mmusic-rfc2326bis-40.html. 

Winter, T., P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik, J. P. Vasseur, and R. Alexander. 2012. 

‘RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks’. RFC 6550, IETF, March. 

Z. Shelby, K. Hartke, and C. Bormann. 2014. ‘The Constrained Application Protocol (CoAP)’. RFC 7252, IETF. 

http://www.rfc-editor.org/rfc/pdfrfc/rfc7252.txt.pdf. 

Zach Shelby, M. Koster, C. Bormann, and Peter van der Stok. 2016. ‘CoRE Resource Directory’. Internet Draft, IETF, draft-

ietf-core-resource-directory-08, , July. http://tools.ietf.org/html/draft-ietf-core-resource-directory-05. 

 




