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SU1~Y 

The main purpose of this research is to develop a set 
of econometric Air-Rail competition models which are 
sufficiently sensitive to measure the effects upon 
demand of policy decisions, with regard to such vari­
ables as frequency of services and fares. 

Existing Modal Competition Models have, rather uncritic­
ally, applied Multiple Regression analysis in consider­
ing only one aspect of the market, namely the demand 
for travel, ignoring therefore the effects of the supply 
upon the demand. The emergence of the so called "Simul­
taneous Equations Bias", due to the two-way dependency 
between the demand and the level of service factor ex­
pressing the supply, renders the application of the 015 
(Ordinary Least Squares) inappropriate, and hence, 
yields biased, inconsistent, and inefficient OLS coef­
ficients. 

The models, developed in this study, depart from all 
existing Modal Competition Models, and overcome some o~ 

their drawbacks. They are formulated as Multi-equation 
Supply/Demand Modal Competition Models. They introduce 
the frequency of services variable not only in the 
demand, but also in the supply equation expressing the 
level of supply in response to changes in other vari­
ables. In order to derive unbiased, more conSistent, 
and more efficient coefficients, sophisticated statis­
tical techniques, such as 2315 and JSLS (Two-Stage 
Least Squares and Three-Stage Least Squares) • are ap­
plied as a means of calibration. 

The elasticities obtained are consistent with the Supply 
and demand Microeconomic Theory. The frequency of ser­
vices appears as the most powerful explanatory variable 
in Air demand; whereas fare and income are the most 
powerful variables in Rail demand equation. This leads 



to the conclusion that Air mode is mainly higher income 
groups and/or business oriented market; and Rail mode 
lower income groups and/or personal oriented market. 
Furthermore, Air and Rail are competing on a fare basis 
in short routes; while they do not show close substitu­
tes for each other in longer ones. 

The high significance of the frequency of services, in 
Air demand, outlines its importance as a factor influ­
encing the demand, and therefore, provides the Airlines 
management with the capability of improving the demand 
by acting upon the endogenous factor. This is af' great 
interest in the scheduling fleet process. 

Similarly, the significance of Rail fare variable offers 
the Railways management the possibility of acting upon 
the demand through this controlable variable, for an 
efficient pricing policy. Rail journey time elastici­
ties, derived from these models, are very close to the 
elasticities assumed by British Railways Board, in 
their Passenger Traffic Model, 1980. 

The statistical results indicate that the elasticities 
derived are useful for both analysis and forecasting 
purposes. 
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I know of scarcely anything so apt 
to impress the imagination as the 
wonderful form of cosmic order ex­
pressed by the "Law of Frequenoy of 
Error". The law would have been 
personified by the Greeks and 
deified, if they had known it. 

Sir Prancis Galton 

Public agencies are very keen on 
amassing statistics - they collect 
them, raise them to the nth power, 
take the cube root and prepare 
wonderful diagrams. But what you 
must never forget is that everyone 
of those figures oomes in the first 
instance from the village watchman, 
Who just puts down what he damn 
pleases. 

Sir Josiah Stamp 
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INTRODUCTION 

F'orecasting travel demand is a central task for all 
sections of the transportation industry, and has in 
recent years become an extremely complex operation. 
This is particularly true in Civil Aviation, where 

demand fluctuations are a prime source of instability; 
for inaccurate demand forecasting leads to capacity 
problems, and consequently, to revenue difficulties. 

Industry analysts have recognized the sensitivity of 
the productivity of the Airlines and Aircraft manufac­
turers to their planning process which is based upon 
travel demand forecasts. Traditional methodologies 
such as trend extrapolation, were found inadequate as 
a result of the impact upon travel demand of recent 
drastic changes within the economic and operating envir­
environment : high inflation rates, fuel and labor costs 
increases. More elaborate models, based upon advanced 
econometric techniques, have generally been limited 
either by insufficient understanding of the whole trans­
portation system or by lack of relevant data. 

Need in forecasting 

Both the planner and the policy maker need to know the 
consequences of their plans, recommendations or decis; 
ions. In the context of a new transportation facility, 
they need to know who will be affected by the new 
facility, both bentficially and adversely; and the ex. 
tent of the gains and losses. Furthermore, in justify­
ing a new facility, they should have quantitative estim­
ates of its effects in order to transform them into 
terms that can be used to compare alternative projects. 

Time horizon 

The length of time ahead for which the forecasts have 
to be made is one of the problems of the transport in­
dustry, particularly in Aviation where the lead time is 
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a very important element. For fleet planning purpose, 
Airlines have to consider the time elapsing between the 
commitment to a firm order of an Aircraft and its deliv­
ery. Aircraft manufacturers need to consider the time 
it takes to develop a prototype, and then, the produc­
tion run period of pay-off for the investment in the 
project. In the case of Airports, Roskill's forecasts 
for the third London Airport exten4 15 years into the 
future, although the total construction time was estim­
ated af 7 years. 

Model validity 

The validity of the model may be judged on several 
criteria I its predictive power, the consistency and 
realism of its assumptions, the extent of the informa~ 
tion it provides, its generality, i.e, the range of 
cases to which it applies, and its simplicity. There 
is no general agreement regarding which of the above 
attributes is more important. 

The views of the analysts range from the position that 
the predictive performance is the most important 
criteria of the model validity ~o the position that 
realism of assumptions and power of the model in explain­
ing the behavior of the economic agents, producers and 
consumers, is the most important attribute of the model. 
Most economists take the position that what is the most 
relevant attribute of the model depends on its purpose, 
the use for which the model is built. 

When the model is designed for a pure forecasting ap­
plication, the predictive performance is more important. 
Realism of assumptions and explanatory power are, in 
turn, more important if the model purpose is the explan­
ation of why a system behaves as it does. The avail­
ability of relevant data is, of course, a key element 
in the modeling process; and models can only be as 
good as the data. 
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Purpose of the Thesis 

The purpose of this research effort is to develop a set 
of econometric Air-Rail competition models that are suf­
ficiently sensitive to measure the affects upon demand 
of policy decisions with respect to such variables as 
frequency of services and fares. 

Besides particular weaknesses inherent to each type of 
existing models. they all suffer from a common problem. 
by considering only one aspect of the market, the demand 
for travel, they therefore ignore the effects of the 
supply upon the demand. This may yield biased and in­
consistent estimates of the parameters. 

The models developed in this Thesis depart~ in many ways, 
from all existing models, and overcome so~e/their draw­
backs. They are formulated as Multi-equation supply/de­
mand models, and are therefore related to both aspects 
of the market, the supply of and the demand for travel. 

They introduce the frequency of services variable not 
only in the demand equation, as an important level of 
service factor explaining the demand, but also in the 
supply equation, expressing the level of supply in res­
ponse to changes in other variables. By including the 
frequency of services as an important factor influencing 
the demand, these models provide the policy maker the 
capability of acting upon the demand through this con­
trolable factor. 

They estimate the absolute value of Air and Rail traffic 
demand instead of the share by each mode, as most of the 
modal competition models do. 

Finally, the equations are simultaneously estimated 
rather than being independently or recursively calibrat­
ed. This calibration involves highly sophisticated tech­
niques, such as Two-Stage Least Squares and Three-Stage 
Least Squares, which provide unbiased, more consistent 
and more efficient estimates coefficients. 
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As a background for this Multi-equation models building, 
a literature review is presented in Part I. Instead of 
discussing the existing models one by one, the modeling 
process in this review is analysed through some import­
ant characteristics for the models, such as the type of 
data, the underlying theory of the models, their struc­
tural formulation, and their methods of analysis. 

As an illustration of this literature review, Part 11 
provides a detail~ed analysis of an econometric model, 
developed at MIT by the Plight Transportation Laboratory 
in 1916. This analysis highlights the statistical prob­
lems commonly encountered in Time Series, Cross-section­
al, and Pooled models. It outlines, through this model, 
the main weakness of Aggregate models, namely the impli­
cit assumption of the homogeneity of the market. Pinal­
ly, it illustrates the major handicap of many travel 
models, due to the two-way dependency between the demand 
and the level of service. variables. 

In order to overcome this statistical difficulty, a new 
specification of this model is atteapted, by including 
a second equation in which the level of service variable 
is expressed as the dependent variable. 

However, as the Surface Modes competition is completely 
ignored in MIT Model, a set ot Modal Competition models, 
the aim of this research, are developed in Part Ill. 
They involve the UK Domestic Air and Rail travel .arkets. 

It was originally intended to estimate the coefficients 
of these models from pure Time Series data, by conduct­
ing Region-pairs models. However, as a result of the 
low degrees of freedom consequent to the small sample 
data, and to the Multi-equation nature of these modela, 
it became necessary to combine Cross-sectional and 
Time Series data, so as to derive meaningful elasticities. 

Nevertheless, pure Time Series models are attempted by 

applying a revised Abstract .ode approach to 7 indivi­
d~l 
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London' . routes. This approach has the advantage of 
increastng the degrees of freedom by doubling the num­
ber of observations. 

Finally. pure Air travel business demand models and 
pure Region-pairs models applied to J trunk routes are 
developed and discussed. 



PAR T I 

LITERATURE REVIEW 
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INTRODUCTION 

The literature on travel demand models is quite exten­
sive, and it would be a difficult task to provide an 
exhaustive review. Models are so numerous that one may 
get the impression that there are as many models as 
modelers. 

Many classifications by types of models were attempted 
(~.g. Andreff & Bourgogne [lJ ' Taneja [2J ); and their 
multitude is only a proof of their imperfection. The 
following, for instance, is a partial list of typical 
models names I Time Series, Cross-sectional, Gravity, 
Abstract Modes, Non-Linear. A detailed analysis shows 

that the names do Dot represent unique models, but 
rather the characteristics that the author felt were 
more relevant. A model, for instance, may well be 
Time Series, or Cross-sectional, Aggregate or Disag-
gregate, Linear or Non-Linear, and Abstract at the same 

time. The name by which the model is called being its 
most important characteristic, whether it is the type 
of data (Aggregate vs Disaggregate, Time Series vs 
Cross-sectional, pooled), its underlying theory(Consumer 
Behavior Theory, Abstract Mode, etc •. ), its structural 
formulation (Linear vs Non-Linear, Single Equation vs 
Multi-equation), or its method of analysis (Regression 
analysis, Discriminant analysis ••• ). 

For the present review, rather than discussing the 
models one by one which would be a great task, we dis­
cuss the mode ling process through the characteristics 
referred to above. 

I - Types of data 
2 - Underlying Theory 
3 - Structural formulation & 

Methods of analysis 

At this stage, we are not concerned with the evaluation 
of the models as such, but rather by the analysis of 
the above characteristics. 
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Although Logit, Probit, and Discriminant analysis are 
not of great relevance to the models to be developed in 
this study, they are presented there-in-after for 
completeness. 

To close the literature review, an analysis of the 
factors explaining Air travel demand as well as those 
explaining the Choice Mode decision is provided. 

As an illustration of this review, an Econometric Model 
conducted at M1T by the Flight Transportation Laboratory 
in 1976 is discussed in details in Part 11 of this study. 
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CHAPTER 1 

TYPE OF DATA 

1.1 AGGREGATE VS DISAGGREGATE MODELS 

The use of "Aggregate" and "Disaggregate" as applied to 
the travel demand modeling is not always totally consis­
tent and a certain amount of unjustified mystique has 
been created around them. 

A totally Aggregate model is a model estimated with a 
dependent variable which represents a group of observa­
tions, whereas a totally Disaggregate model is a model: 
estimated with a dependent variable which represents an 
observation of a single occurence. 

In totally Aggregate models demand is normally treated 
in a macroeconomic context. Usually, the dependent vari­
able is the RPM (Revenue Passengers Miles), or the number 
of passengers on a large scale such as the total world 
traffic or the total US traffic, as usually forecasted 
by the ICAO, lATA, the big airlines and the air manufac­
turers. 

In totally Disaggregate models, demand is treated in a 
microeconomic context. Ideally. the totally Disaggregate 
model would be the one specifying the consumption prob­
lem for each consumer in the population i.e the number 
of trips that each consumer would take to a particular 
destination at a given time period. 

The main disadvantage of totally Aggregate models is the 
loss of information experienced in averaging the values 
of the variables affecting travel demand over the group 
of individuals in a traffic region whose demand is being 
modeled. This loss occurs because no explicit account 
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is taken of the variability of the explanatory variables 
with the traffic region in estimating the coefficients. 

The main disadvantage of a totally Disaggregate model is 
the amount of data necessary for such a modeling. 
Because of these great difficulties, researchers have 
been forced to combine somehow the data in order to 
develop models that fall between totally Aggregate and 
totally Disaggregate models. 

The desirable degree of aggregation depends, of course, 
on the purpose of the model as well as on the data. On 
the planning of new equipment, manufacturers develop 
forecasts of future world aviation activity in terms of 
RPM. Similarly, both the leAO in the.ir concern in the 
total amount of world traffic and the airlines for their 
fleet planning purpose develop total aggregate models. 

However, when the purpose is to measure the effect upon 
demand of particular variables such as fare, income, and 
quality of service the models should be somehow dis­
aggregated. The degree of such a disaggregation is 
closely related to the available data. 

In the following are some examples of these types of 
models. 

- Douglas Aircraft Company Model, this total Aggregate 
model is designed to forecast the short and long term 
Us domestic traffic to 1983, using a Time Series data 
over the period 1946 - 1974. [3]. 
The dependent variable is the RPM and the behavioral 
equation is expressed as follows. 

RPM = ~o + Pl(PCE) + ~2(VEL) + ~(RINT) + ~4(TYLD) 

+ f5 (PrL) + f6 DUMMY 
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where the variables in logarithm have the following 
definitions I 

peE I permanent income measure of personal consumption 
expenditure. 

VEL I velocity of money. 
RINT I ratio between the long and the short term rates 

of interest. 
TYLD I US sCheduled domestic yield in current _. 

PTL I US average on-line passenger trip/length. 
DUMMY' t dummy variable aimed to correct for the definition­

al change of domestic traffic to a 50 states basis. 

The aggregative nature of this model is characterised by 
the measurement of the dependent variable RPM and the 
extent of the geographical traffic over the whole US 
domestic market. Notice also the PTL variable which is 
an average on-line passenger trip/length. 

After this illustration of total Aggregate models. it 
would have been also interesting to provide an empirical 
example of a total Disaggregate model. Unfortunately, in 
our knowledge, such empirical models do not exist, How­
ever, most of the models fall between total Aggregate 
and total Disaggregate. As an illustration of such 
models, we refer to Taneja [2J who provided a quite 
interesting review. We do not discuss these models at 
this stage, since the review will refer to in different 
sections. But, it is interesting to define here their 
types of aggregation. 

- Aggregation by destinations 
R Gronau 19 ,Columbia University [4J 

- Aggregation by incomes. 
T B1ummer 1976, MIT(Massachusett Institute 

- Aggregatien by modes of destinations 
P verleger 1971,MIT [6] 

of TeChnology). 
[5J 

- Aggregation by incomes. modes and destination. 
P Marfisi 1976, Brown university [7J 
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- Aggregation by incomes, modes and destinationl 
S E Eriksen 1977, MIT [8J 

In conclusion, the choice of degree of aggregation is 
related to the purpose of the model as well as to the 
type and amount of data available. 

The main disadvantage of totally Aggregate models is the 
implicit assumption that travel demand is a homogenous 
unit such as RPM, and that the value of passenger traffic 
is related to the same parameters in all markets (for 
instance, London - Palma and London - New York are 
assumed to be characterised by the same parameters). 
They also ignore the segmentation by trip purpose modes, 
class of service, which leads to a loss in forecasting 
accuracy. 

The non totally Aggregate models, on the other hand, are 
(depending on the degree of aggregation) more accurate. 
They, however, require more data, time and effort. 

1.2 PURE TIME SERIES VS PURE CROSS-SECTIONAL MODELS 

1.2.1 Time Series 

They are models llsing a sample of data over a period of 
time with fixed time intervals. The main purpose of 
these models is the analysis of past data in order to 
establish a relationship between the dependent variable 
and a set of explanatory variables. Once this mathematic­
al relationship, over the considered period, is establish­
ed, future values of dependent variable are derived 
either by assuming the stability of this relationship 
onto the future (as most models do) or by allowing this 
relationship to vary over time. The main outcome of 
these models is the elasticities of the demand with 
regard to the considered variables throughout a period 
of time. 
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Pure Time Series are usually related to total Aggregate 
models since neither city pairs nor any travelers l 

characteristics are explicitly expressed. The Douglas 
model, refe~ed to earlier, is a typical example of a 
pure Time Series model. 

One major problem encountered in Time Series is the high 
degree of collinearity that of tan exists between different 
independent variables. The main reason for this col­
linearity is a tendency of economic variables to move 
together over time. For example, in period of booms or 
rapid eeconomic growth, the basic economic magnitudes 
grow, although some tend to lag behind others. Thus, 
income, consumption, savings, investments, prices, employ­
ment tend to rise in periods of economic expansion and 
decrease in periods of recession. 

When a strong collinearity exists, the condition for the 
application of OLS(ordinary least squares), namely the 
independence between variables, breaks down and the 
estimated parameters, according to Koutsoyiannis 
might be seriously imprecise and unstable. 

[9J · 

This statistical deficiency is present in the Douglas 
model [3], mainly due to the large secular trends of 
the personal consumption expenditures variable, trip 
length and yield which might be one of the reaso~for the 
high value of R2 (=.9988). 

Multicollinearity is a characteristic of the data rather 
than an indication of incorrect specification of the 
model. If the purpose of the model is a measure of 
variables elasticities (such as price and income) multi­
collinearity is a serious problem because it is rather 
difficult to disentangle the effect of each variable. 
However, when forecasting is the main purpose of the 
model (as in Douglas model), the deficiency is not so 
serious; for if multicollinearity remains the same over 
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the projected period, the coefficients' estimates have 
the merit of giving good forecasts. If multicollinearity 
is not maintained, the problem remains. 

There are different techniques, described in many econo­
metric books, of how to identify and to overcome multi­
collinearity: 

-'The first common method is to take the first differences 
to eliminate the time trend. An appropriate illustration 
of this method is given by the CAB (Civil Aeronautics 
Board) model [l~ developed by Brown and Watkins. This 
model focusses on the determination of price elasticity 
and uses data over 1946 - 1966, incorporating three 
independent variablesl average fares per mile, income 
per capita and clock time. The dependent variable is 
the RPM. 
Multiple regression is conducted in two ways. Time Series 
and Cross-sectional analysis. In the Time Series an\ysis, 
the introduction of first differences is aimed to combat 
multicollinearity. Both fare and income variables coef­
ficients are statistically.significant (-1.307 and 1.119). 

- The second method to overcome multicollinearity is 
conditional regression. When the explanatory variables 
are highly correlated, the influence of some of them 
could be considered as external data known from other 
sources with an assigned a priori elasticity. Such 
method is applied by Strasheim [llJ • 

- A third method, is constrained regression technique 
introduced in the North East Corrinor Project to combat 
multicollinearity due to the large number of variables 
(11 variables): 

- employment in cities i and j. 
- cost trip by each mode (Air, Rail, Bus, Car). 
- trip time by each mode. 
- per capita income in city i. 
- attractiveness of city j. 



- 14 -

The ~ethod consists of assuming linear constraints on 
the range of values which the estimates could take up 
on a priori knowledge. Each elasticity is constrained 
to have the correct sign: a mode's own price elasticity 
is constrained to be negative, cross-elasticity is cons­
trained to be positive and a maximum value is specified 
for each elasticity. 

- A fourth technique to overcome multicollinearity con­
sists of using detrended variables. Taneja [12] ,in his 
attempt to measure the impact of high inflation rates 
on the demand for air transportation, uses both the first 
and the fourth techniques. The explanatory variables 
selected in his model are: measure of consumer income, 
yield and inflation rates; and RPM is the dependent vari­
able. The method requires three steps I 
To begin with, he detrends all the variables,except the 
measures of inflation, by performing a regression of a 
trend against each var.iable(one by one), the residual 
representing the corresponding detrended variable. 
Then, he runs the following regression: 

Log(RPM*) = Log(YIELD*) + Log(INC*) + Log(INFL) 

where each of the different measures of inoomes and in­
flation is tested, so as to seleot the best measure for 
each factor. 
Finally, after obtaining the best measures, he runs the 
regression using the following equation: 

Log(RPM) = Log(YIELD*) + Log(INC*) + Log(INFL) + TREND 

where Log(RPM) is designed to retain the secular trend 

for forecasting, and the Log as well as the detrended 
forms to remove trend and to eliminate the multicol­
linearity problems. 

The "*" indicates the detrended variables. 
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Another statistical problem, often encountered in Time 
Series model. is Autocorrelation. It occurs when the 
error term is correlated with its past value(s). Most 
of the standard econometric textbooks deal with the 
simple case of autocorrelation namely the first order 
autoregressive relationship: 

The sources of autocorrelation are numerous. the most 
important ones being. the omission of explanatory vari­
ables, misspecificationof the true random term. Auto­
correlation may be positive or negative in theory. In 
practice. however. it is in most cases positive. 

Some rough idea of the existence and the pattern of auto­
correlation may be gained by plotting the ~egression 
residuals, either against their own lagged value(s) or 
against time. However. there are more accurate tests 
for incidence of autocorrelation such as Von Newman 
ratio and Durbin Watson test explained in many textbooks. 

As a general rule, the presence of serial correlation 
does not affect the unbiasedness* or consistenc~ of 
the coefficients, but does affect their efficienc~. 
In the case of positive serial correlation(l.e the most 
common case), the SE(standard errors) of the OLS(ordin­
ary least squares) coefficients are smaller than the 
true SE; i.e the coefficients appear more significant 
than they actually are. When serial correlation is due 
to misspecification of the error term U, the appropriate 
solution is to obtain an estimate ofe. In many cases, 
researchers assume e=l, and proceed in the estimation 
of the relationship expressed in the first differences 
of the variables. 

* These terms will be defined later on. 
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1.2.2 Cross-sectional models 

Contrarily to Time Series models. Cross-sectional models 
use observations in a particular point of time across 
different routes*. The main purpose is to identify the 
relationship between the total demand and some explana­
tory variables across the markets considered. Therefore, 
the elasticities derived are instantaneous elasticities. 
i.e related to the base year considered. 

The CAB have most often determined elasticities by cross­
sectional analysis. One of their best known model is 
the model developed by Brown and Watkins [101 in 1970. 
over the 300 most heavily travelled city pairs in the 
United States. 

The dependent variable is the number of passengers and 
the independent variables are. fare per mile. time per 
mile. number of stops. distance, phone messages, inter­
national passengers. income ~d competition index. 

The regression in Log linear formulation is performed 
first,for the year 1960 and 1964 separately and then. 
for both years combined. The results show a fairly high 
degree of explanation of the dependent variable (R2exceed­
ing .80). All the coefficients are significant and bear 
the right signs. 

However. Cross-sectional models do have some drawbacks. 
We recall here the potentiAl existence of heteroscedasti­
city. In a city pairs model. the er.r.or of specification 
for one market may be quite different from the error for 
another market. since different factors may explain the 
underlying process in the two markets. One market may 

* Other types of Cross-sections are.of course,possible 
such as across of ranges of incomes for instance. 
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be more pleasure oriented while the second may be more 
business oriented. ALas Vegas - San Francisco, or, a 
Los Angeles - San Francisco, for instance, could hardly 
be combined with Washington - New York, or, Chicago -
Boston markets. 

Heteroscedasticity arises when the variance of the random 
term is not constant. This can easily be understood if 
we take account of the factors whose influences are 
absorbed by the disturbance term. Notice that this term 
expresses the influence, on the dependent variable, of 
errors in its measurement and of omitted variables. 
vlhen this deficiency occurs, the OLS estimates do not 
have the minimum variance property in the class of un­
biased estimators, i.e, they are inefficient (although 
still unbiased). 
Some tests are proposed to identify the existence of 
heteroscedasticity, among them Goldfeld and Quandt tests. 
Solutions for these difficulties are described in many 
textbooks (e.g Pindyck [13] , Koutsoyiannis [9] ). It 
should be remembere d, however, that heterosceda'std.c'l ty 
is less common than multicollinearity and less serious. 

Another disadvantage in pure Cross-sectional models is 
that data taken from a specific time period may not be 
considered a typical base year from which to develop 
Cross-sectional models. 

The p~oblem of data, encountered in both pure Time Series 
and pure Cross-sectional models, and the statistical 
difficulties explained above, raise the question of 
whether a combination of both methods would constitute a 
better technique in improving the number of observations 
and possibly reducing the problems of multicollinearity, 
autocorrelation, and heteroscedasticity. 

1.3 POOLED DATA MODELS 

Most of travel demand models utilise combined data 
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across city pairs and over different time periods. An 
example of such model is the MIT' s model [14J developed 
by Eriksen, Scalea and Taneja in 1976. This model 
attempts to relate the level of air transpartation 
activity in a number of specific markets to a set of 
socioeconomic and scheduling variables. Data are pooled 
from 58 region pairs over the period (1959 - 1974). Its 
formulation is as followsl 

Log D = ~o + ~l Log(FARE) +~2 Log(BPI) +~3 Log(LOS) 

where: 
D = demand between region pairs. 

FARE = fare charged in region pair~. 
BP! = buyine power index characterising each region pair. 
LOS = level of service. 
~ i = coefficients to be calibrated. 

As this model will be discussed,later on, in greater 
details we only note at this stage the existence of 
heteroscedasticity and autocorrelation which are the 
combination of both disadvantages of Time Series and 
Cross-sectional models. 

In this type of pooling data technique, all cross-section­
al and rime series data are combined and multiple 
regression is performed on the entire data set. How­
ever, another pooling process exists. It consists of 
estimating one (or more) coefficients from the Cross­
sectional data, insert them in the original function, 
substract from the dependent variables the terms involv­
ing the estimated parameters, and then, regress the 
residual value of the dependent variable on the remain­
ing explanatory variables, obtaining estimates of the 
remaining coefficients from the Time Series sample. 

This procedure offers many advantages. According to 
Koutsoyiannis [9] ,the use of Cross-sectional data in 
combination with Time series in the estimation of demand 
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functions may avoid to a certain extent the problem of 
multicollinearity, identification*, simultaneous 
equation bias*. However, there are various snags which 
must be carefully watched, if the values of the coef­
ficients are to be properly estimated: 

- First,the Cross-section estimates are long run elasti­
cities whereas the Time Series estimates are short run 
elasticities. This difference in the meaning of the 
estimates is due to the implicit assumption underlying 
the two types of estimates: is it a long run demand 
function or a short run relationship that is estimated 
from the pooling technique? 

- Second, it is clear that from a Cross-section sample 
we obtain estimates in a particular point of time; the 
procedure implies that the Cross-section coefficients 
remain constant over the whole period of the Time Series 
sample, an assumption which may well be expected to be 
unrealistic. 

Such considerations have induced various analysts to 
argue that functions estimated from pooling techniques 
are not efficient for prediction [9] . 

1.4 CONCLUSION 

What to conclude from this "type of data" review? 

- First, the aggregation/disaggregation dile~ma is 
primarly a question of purpose of the model. If the 
main reason of the model is to draw a general picture of 
the evolution of the traffic over the total world demand 
or a given domestic market, the total aggregation 

(*) Identification and simUltaneous equation bias will 
be discussed later on. 

...... 
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approach is reasonable. On the other hand, if the 
purpose is the evaluation of the demand in a particular 
segment of the market, such as a region pair~ or a 
seg~ent of the population, the corresponding aggregation 
is more appropriate. 

- Second, the Time Series, Cross-sectional and ~ooled 
data procedures are methods of estimating e~asticities 
They consist of findine the mean of evaluating these 
elasticities (usually income and price), with reeard to 
the potential statistical and theorrtical problems in­
herent to each procedurel 
- multicollinearity and autocorrelation, particularly 
co~mon in pure Time Series. 
- heteroscedasticity, usually characterising Cross­
sectional models. 
- finally, the combination of these problems in addition 
to the ambiguity longrun/short run elasticities in 
pooled techniques. 

Once again,the availability of reliable data are the most 
determinative element in the selection of these procedures. 
Empirical travel demand mdels have invariably applied 
these methods with more or less success depending on the 
available data. However, the wide differences in the 
forecast values experienced particularly by the total 
aggregate models, raises the question of reliability of 
these models. 

The Fig. 1.1,1.2,1.3 illustrate very well such dif­
ferences. In particular, the 1968 forecast in 
Mc Donnell Douglas model(Fig 1.2)exceeds the 1965 fore­
cast by more than 133% for the year 1975. 
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CHAPTER 2 

UNDERLYING THEORY 

One of the criteria by which models are usually judged 
is the consistency of their theorttical foundation. In 
this chapter, we attempt to explain how some theor~tical 
concepts derived from economics and psychology have been 
applied to travel demand models. 

For the clarity of the presentation. we first discuss 
the theory underlying the Deterministic models.i.e. the 
models that attempt to determine the absolute value of 
traffic ,demand. and then the theory of probabilistic 
models which evaluate the probability for a consumer to 
choose a particular alternative. 

2.1 DETERMINISTIC MODELS THEORY 

The stages by which the theory of travel demand has pro­
gressed from its state, some 25 years ago. to the rather 
more satisfactory state are complex. 
The first and more important change was the recognition 
that travelers'decisions emerge out of the individual's 
optimizing behavi~. 

Another improvement was introduced by Y Young [15J in 
his PhD dissertation in the University of Washington in 
1966. He suggested that the fact. that travelers were 
willing to pay a higher price for a faster mode of 
transport, revealed their consciousness of the value of 
time and a time constrai~t in their activity. He 
argued that neoclassical consumer choice theory was 
deficient and misleading in air travel market analysis, 
in that it ignored the time constraint and the value of 
time of the consumer. He, therefore. proposed a trade 
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off between time and money, and modified the neoclassic­
al theory by introducing a time constraint analogous to 
the budget constraint. He then, formulated an empiric­
al model in which both time and fares were included as 
explanatory variables; and obtained estimation para­
meters of business and non business air travel demand 
functions separately. Both Time Series and Cross­
sectional data were used in estimating these parameters. 

The second very important element was introduced by 
K Lancaster [16] : a new and more fruitful theory of 
consumer behavio't could be devised by assuming that 
travel services can be entirely characterised by their 
attributes, and that the consumer desires to maximize 
a utility function which has commodity attributes as 
its arguments rather than quantity of the various com­
modities consumed. 

If Z is a vector of quantities of various attributes, 
X a vector of quantities of various commodities, 
p the vector of corresponding prices and 
y the level of income, 

then the consumer desires to maximize the utility 
function U(Z) subject tOI 

Z = G (X) 

PX ~y 

X,Z~O 
where G(X) describes the production of attributes by 
commodities. 

One attempt, using some of these ideas,was made by 
Quandt and Baumol [17] In their original "Abstract" 
mode model*. designed to estimate the passengers tr.ll?Et.l 

volume in the North East Corridor. they used a Single 
.equation to represent the modal choices for all modes. 

(*) They now prefer to call it "Attribute Mode". 
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The originality of the approach was that demand for 
travel by a mode was not dependent on the name of the 
mode, but on the characteristics describing the level 
of service offered by each mode. Every mode was charac­
terised by several variables specifying its supply at­
tributes. These variables were defined relatively to 
the level of that variable attained by the best mode. 
The model form was hypothesised as an adaptation of the 
gravity model form and different from the SARC-yxaft 
model [18J ' the first study to estimate demand 
relationship,for all modes. Contrarily to SARC-¥~aft's 
model in which separate demand functions were estimated 
for each mode (one equation for each mode), Quandt and 
Baumol's model evaluated parameters by pooline data 
across modes. Both models, as well as their further 
developments, assumed constant elasticities and cross­
elasticities. 

The dependency on the best mode in Quandt and Baumol's 
~odel is one of the main weaknesses of this model. The 
empirical application of the Abstract mode has not been 
successful. The model was initially usine observations 
for 16 city pairs in California across 3 modes. The 
estimated parameters showed higher variances when data 
were pooled across the modes than when models were 
specified for each mode. 

Although widely applied, the validity of this pure 
Abstract mode can be questioned. It can be debated 
whether the resulting elasticities, since they pertain 
to an average of the travel market, are sufficiently 
representative of any individual mode. 

other disadvantage of the Abstract mode was that it 
could not account for certain non quantifiable but 
very real cnaracteristics of each mode. Some travel­
lers, for instance, simply do not like train while 
others are fearful of the air travel. 
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In order to surmount these weaknesses, Quandt and Young 
[19] incorporated dummy variables for different modes 

and routes which made these models less abstract. 

In eeneral, current applications of these models have 
not been conspicuously successful. The use of SARC­
Yraft·s and Quandt and Baumol's models in the North East 

Corridor Project yielded forecasts that were considered 
to be i.mplaus i ble . 

One major theorttical problem encountered by these models 
resulted from the fact that none of these models took 
into account the idea that travel was a derived demand. 
They all were based on the application of demand theory 
to travel. Thus, given an improvement in the quality of 
services offered by all modes, total travel demand would 
be expected to rise substantially without any reference 
to what that demand would be servicing. 

Finally, the recent improvement. in the theory underly­
ing the deterministic models, was carried out by Gronau 

[4] in his PhD dissertation at Columbia University 
later published as a book in 1970. Gronau developed 
Lancaster's theory by defining the utility function 
over an "activity" space. As an example of activity is 
the "visit" which constitutes a combination of trans­
portation, accommodation, meals, travel time, Like 
young [15] , he considered the time as a constraint 
analogous to the income constraint which not included 
in Lancaster's theory. Therefore, the consumer's 
optimizatiom problem for travel activities was written 

as folIos: 

Max U = U(Zl' Z 2 ••• • .•••. Zn) 

subject tOI hi·· p. Xi = Y 
~ 

;; T· = TO 
~ 
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where: 
I'i prices of product Xi 
Y consumer's monetary travel budget 
Ti s time investment for Xi 
To consumer's travel time limit 

The specification of Gronau's model was as follows: 

X.. = (.l.. TI~~j J.Zj e Uij 
1J ~J 1J 1 

where: 
Xij number of trips to destination j by family 

TT .. 1J 
y. 

1 
U •. 1J 

in income group i 
t generalised trip cost = p. + 

. J . 
average income for 1ncome 1n 

t~. T. 
1 J 

group i 
: disturbance term 

However, these models suffer from a co~mon problem. 
They treat only one aspect of the market, namely the 
demand for travel, generally ignoring the supply. This 
omission has two short comingsl 
- One is theorftical, the omission of the supply 
restricts the scope of the analysis, since demand for 
and supply of goods and services are generally inter­
related in real world. 
- The other is statistical, the ignorance of the supply 
influence on the demand might Yield/~f:!!Jcients due 
the two way causality. 

2.2 PROBABILISTIC MODELS THEORY 

Probabilistic choice models constitute a relatively new 
area of research. They find their development in the 
field of urban transportation planning. According to 
Stopher [20J . their theorftical approach is founded 
in two disciplines dealing with behavio~1 the economics 
~f consumer behavior and the psychology of choice 
behavid'r. 
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The psycholo€ist view is that humain decisions are 
?robabilistic in nature, but are based upon evaluation 
of utilities. These utilities provide a basis for 
estimating the probabilities of choice for each 
alternative. The individual is assu~ed to have an exact 
"measurable" utility. In this approach formulized 
throue;h the application of .:..uce's axiom* of the independ­
ence of irrelevant alternatives, any alternative a has a 
utility Uia comprising attributes of the alternative Xa 
modified by the attributes of the individual Si such asz 

(1) 

Cn the other hand, the economics' view is that~ndividual 
is being deterministic maximizer. In the economic 
theory, formulated in Mc Fadden's paper, each individual 
is assumed to have a utility function as follows [21J : 

where: 
V(Si'Xa ) I the common utility of alternative a for 

individual i 
~(S. ,A') : the individual utility of alternative a 

1 a 
for individual i with socioeconomic 
characteristics Si 

This model is termed random utility model because of the 
existence of;random term in contrast with the strict 
utility model. ';:hile in the first approach (equation 1), 
the individual is assumed to assess his utilities of 
each alternative, in the second one (equation 2 ) he is 
presumed to choose the alternative k which maximizes the 
utility Uik . 

(*) The axiom states that the relative odds of choosing 
one alternative over another is unaffected by the 
presence or abs;ence of any additional alternative 
in the set. 
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In the ?sychological approach, direct correlation 
between probability of choice and utility is hypothesised 
(:'uce' 5 axiom): 

(3) 
1-Pb U(Si'Xb ) 

Assuming an exponential form U(Si'Xa ) = exp V(Si'Xa ) 
where V(Si'Xa ) is linear in Xa and M available 
alternatives, the standard multilogit model is derived 
froll (3) t 

(4 ) 

In the economics approach, however. the probability that 
an individual drawn randomly from the population with 
attributes S will choose the alternatives k is: 

p~. = rr{ V(Si':(k) + E(Si,Xk}>V(Si.Aj) + E(Si'J.. j )} (5) 

Yj-!k 

From this equation, r.1c Fadden [21] derived the multilogit 
model form analagous to the form (4). 

Therefore, as Stopher [20] points out, it may be 
asserted that multilogit model is an intuitively and 
theoretically acceptable model structure for a choice 
model, regardless of whether the choice model is 
derived from a strict utility approach or a random 
utility approach. 

According to Horwitz [22] • however. the assumption, 
contained in the equation (2), that the random 
components of utilities are independently and identical­
ly distributed implying that individuals with identical 
observable characteristics have identical tastes, cons­
titute a potentially severe restriction- of the types of 
behavi~r that can be treated by the logit model. 



- 31 -

A more general model can be obtained by assuming that 
the random comnonents of utilities are mUltivariate 
normally distributed, producing the multinomial nrobit 
model. The probit model permits tests to vary among 
individuals with identical observable characteristics 
and allows effects of unobserved variables to be cor­
related across alternatives. 

Hence, the multinomial probit model allows treatment of 
a considerable broader range of behavio~ than the multi­
logit model does. However, despite its generality, 
Tflultinomial probit received little use in travel demand 
analysis, because of its computational intractability. 

On the contrary, because of its relative simplicity the 
multilogit model has been applied successfully in a 
wide variety of forecasting contexts (Kanafani 
Benakiva & Richards [24] , Horwi tz [25] ). 

[23J ' 

As previously stated, "disaggregate behavioral demand 
models", as they came to be called, were generally 
applied in ~ode choice context though there exist other 
choice contexts. In a paper written ln 1975 Kanafani 
[23J presented a mul tinomial choice model where the 

alternatives were the choice of fares types on the 
North Atlantic market:. Again, in another short haul 
transportation demand, Eanafani [26] developed a model 
where travelers faced a choice between various routes 
in the California Corridor. 

2.) CONCLUSION 

The theory of travel demand has progressed by several 
different stages in the two last decades. The first 
important change was the assumption that the travel 
choice emerges out of the individual's optimizing 
behavidr: so, as individuals were presumed to be 
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utility maximizers, the demand for travel ought to be 

posItively related to incomes and nee;atively to prices 
of transportation services. The second considerable 
irJ'ovation was brought up by Lancaster's theory of 
consumer behavior. The general concept in an economic 
sense of the consumer choice independence from product 
names or labels led to the development of "Abstract modes" 
models mainly applied to the North East Corridor project. 

'rhese deterministic "!lode.ls derived their structure from 
the c;r8.Yity models formulation, used aggrelate data 
across city pairs and were generally calibrated by means 
of regression technique. 

Frobabilistic models,' on the other hand, were founded in 
two disciplines dealing with behaviOl', the economics of 
consumer behaviow and the psychology of choice behaviow. 
They made use of disaggregate individual data, and were 

calibrated by maximum likelihood. Contrarily to the 
above models, they did not assume the constancy of demand 
elasticities, but supposed a constant total traffic by 
all modes. Therefore, the improvement of attributes 
of one mode was presumed to capture traffic from all 

other modes. 
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CHAPTER 3 

STRUCTURAL FORMULATIONS & METHODS OF ANALYSIS 

3.1 STRUCTURAL FORMULATIONS 

One of the most critical steps, in the demand modeling 
process, is the establishment of the functional form of 
the model. Three important types of structure are re­
corded in the literature. 

- Linearity vs non Linearity formulation 
- Gravity formulation 
- Single equation vs Multi-equation formulation 

3.1.1 Linearity vs non Linearity formulation 

A model is said to be linear when the dependent vari­
able is a linear combination of the explanatory vari­
ables, e.g. 

(1) 

Some models, however, are not linear in the variables, 
but can be linearized by applying appropriate trans­
formations. Such models are termed, intrinsically, 
linear models. The most common forms of these models 
are the multiplicative or logarithm linear form, the 
exponential or semi logarithm form. 

- Multiplicative form I 

y =~o X~l X~2 ••• 

This model can be transformed to. 

Log Y = Log ~ 0 + ~ lLog Xl + ~ 2Log X2 + ••• 

+ ~ nLog Xn + LogE 

(2) 
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- Exponential forml 

(3 ) 

This model can be transformed tOI 

The choice of the general form of the demand model de­
pends, primarily, upon such factors as historical traf~. 
fic trends, data consideration, time period of forecast, 
and certain desired properties of the demand function, 
such as constant or variable elasticity of demand. 

The linear additive form is more suitable if the pre­
dictor variables are expected to be independent. con­
versely, a multiplicative form may be justified if a 
strong collinearity among these variables exists. 
Similarly, a choice betwe'en the multiplicative and the 
exponential form may be determined from an analysis of' 
the desired properties of the elasticity demand. And, 
while in the multiplicative form the coefficients re­
present partial elasticities, in the exponential form 
the elasticities are function of the variables them­
selves. 

In running his first differences models, over 17 UK 
domestic routes for the period 1954 - 1966, Ellison [27] 
recorded highly instable results, many perverse signs, 
and bad fits. He attributed the failure of these 
models to the exponential growth formulation, in being 
an inaccurate assumption to make, concerning the behav­
ior of the trend on domestic routes. He then, calibrat­
ed the models on a logarithm form, over the UK trunk 
routes, and obtained more consistent results. The fit 
was significant and the coefficients borRlthe right 
signs. 
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In the case of intrinsically non linear model(i.e, non 
linearizable), the use of the least squares procedure 
may be difficult. Under certain assumptions, non 
linear models can be handled using maximum likelihood 
technique [3] 

3.1.2 Gravity formulation 

Developed by analogy with Newton's gravity equation, 
Gravity models constitute the striking example of the 
models characterised by their structural formulation. 
Having both a long history and continuing usefulness in 
forecasting trip generation and zonal interchanges, 
these models were the starting point for the develop­
ment of intercity passenger models. The original 
formulation is based upon the assumption that travel 
demand, between two city pairs, is proportional to : 
their populations, and inversely proportional to the 
distance between them. 

. Ip P )0<1 
\ i j 

0(2 
Dij 

(4 ) 

From this simple formulation different and more comp­
licated forms have emerged. Probably, the most ela­
borate Gravity model, yet used for an analysis of 
intercity passengers demand, was the xrart-SARC's 
Model [18] . 

In his PhD dissertation, Verleger [ 6J took an original 
step in defining the mass variable. Instead of the 
product of city pairs populataons, this variable had 
the following structure. 

Where. xI 
\. k e (~i ~ ) 

-i -e i 

I group of individuals in city 1 

(5) 
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e (~i Y~) • propensity to travel for individuals i 

• average income for the group i (affect­
ing the propensity to travel in an ex­
ponential manner by giving greater 
weight to higher income levels within 
the population). 

Finally, starting from a Gravity model formulation, 
Blummer [5] developed his so called ".ode Sensitive 
Model". 

(6 ) 

Where. 
Tij I Air traffic between i and j 

Mi I effective buying income in city i 

Mj • effective buying income in city j 

Dij I distance between i and j 

f ij I share of Air travel 

1ij • total transportation inpedance 

The total transportation impedance is defined as follows. 

...l.... = 1 + 1 + 1 
2 

1ijr 
2 2 

1ij 1ija 

Where 1iju ' 1ijr 
respectively, and 
follows. 

are the impedance for Auto and Rail 
1ija the Air impedance, defined as 

1ija = block time + waiting time + fare x V 

where V • hours/dollars = l/value of time 
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This approach was quite original and departed from the 
concept regularly used in the split models. and which 
consisted of estimating the total traffic, and then,the 
fraction of the traffic captured by a particular mode. 
Instead, a hybrid single equation, formulated in (6), 

b 
was used in ~hich the component fi~ stood for the Air 
share and the remaining components stood for the total 
traffic. Besides, the total transportation impedance 
Iij had several desirable properties, its structure 
combined the impedances of all modes into a single fig­
ure; which helped to ovoid the multicollinearity,common 
to the models entering each'mode separately (Kraft, 
young), and to prevent the consideration of the "best" 
mode(Abstract Mode). 

3.1.3 Single equation vs Multi-equation formulation 

Almost all models referred to , were constructed on a 
single equation formulation. There are, however, 
multi-equation model structures, such as the PAA(Pederal 
Aviation Authority) macroeconomic forecasting model con­
sisting of three equations [28] • Two of these equa­
tions were calibrated by means of ordinary least squares 
technique. The third equation was an identity. The 
three endogenous variables werel 

- RPM I.revenue passenger miles 
- ENP I revenue passenger enplanements 
- OPS , Air carrier itinerant operations 

other multi-equation structures were attempted, 
as Eriksen Model [a], but were calibrated in a 
cursive manner, instead of a simultaneous one. 

such 
re-........ 

The models, we develop in this study. are truly simul­
taneous, and the multi-equation structure is their , 
mainoutcome. We do not introduce, here, the simulta-
neity concept which will be widely discussed l&ter. 
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Note only, that depending on the nature of the relation­
ship, between the dependent variable and the explanatory 
variables, single equation formulation may not be an ap­
propriate structure. The introduction of one or more 
equations may appear necessary when a two-way depend­
ency, between the demand and any other independent vari­
able, exists. 

3.2 METHODS OF ANALYSIS 

The fourth characteristic, that may distinguish between 
types of models, is the method of analysis app\ied to 
their calibration. These methods arel 

- Ordinary least squares regression analysis (OLS) 
- Simultaneous equations techniques analysis 
- Discriminant analysis 
- Logit and Probit analysis 

Since they are explained in many textbooks, and since 
Logit and Probit models have already been referred to, 
in Chapter 2, we will briefly present the first tkree 
methods. 

3.2.1 Ordinary least squares regression analysis 

This method attempu to relate the variation in traffic 
to the variation of some logically relevant variables, 
such as economic variables, demographic variables, 
transport factors. The calibration involves the 
empirical manipulation of various functional relation­
ships. The aim is to find the relationship that 
produces the least deviation between the computed 
demand and the actual observed demand. This methOd 
is the most commonly employed, and multiple regression 
packages are available almost everywhere. As will be 
explained next, other estimation procedures are more 
appropriate when the assumptions of 018 are violated. 



- 39 -

3.2.2 Kulti-eauation techniques analYsis 

In the general linear model. 

, 

one major assumption of the validity of the OLS is 
that COV(Xi,t) • 0 Vi. This means that the explana­
tory variable Xi must be uncorrelated with the error 
term. If this assumption is violated, it follows the 
unsatisfactory consequences. 

- the estimates ~i are biased, inconsistent, and 
inefficient 

- the estimate of the variance of £, is biased 
- the usual t and P tests are not appropriate 

A necessary condition for COV(Xi ,£) • 0 Vi is that 
the variables Xi should be truly exogenous. When this 
is not verified, it yields what is often called ·Simul­
taneous Equations Bias·, and several problems ariael 

- the problem of identifioation of the parameters 
of individual relationships 

- the problem of estimation 

One, therefore, should choose a .ulti-equation struc­
ture for the model, and an estimation other than the 
018 technique. There are several methods tor this 
purpose, the most common are. 

- The reduced form method or Indirect Least Squares 
- !wo-stase Least Squares (2S18) 
- Limited Information Maximum Likelihood 
- Three-Stage Least Squares (3SLS) 
- Full Information xaximum Likelihood (PIIIL) 

The first four methods are named single eqUltion 
methods. because they are applied to one equation of 
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the system at a time. The 3SLS and FIML are called 
system methods. because they are applied to all the 
equations of the system simultaneously. 

Since the models developed in this study involves 2SLS 
and 3S18. a general presentation of these techniques 
is provided in Part Ill. The selection between alterna­
tive multi-equation estimation techniques is not 
straightforward. The choice may depend. in part, upon 
the purpose for which the estimated system of equations 
is to be used. Simultaneous equations packages are not 
widely available and their computer costs are generally 
high. 

;.2.; Discriminant analysis 

This technique is one of the earliest to be considered 
in the choice models calibration. It was originally 
developed in the field of biology [20]. It is based 
upon the assumption that there exists,in a population 
two or more distinct subgroups that can be distinguished 
by means of a discriminating function. 

'rt! .. Leeds study [291 adopted this technique, as a method of 
analysis, in order to isolate the factors influencing 
the choice of travel mode, between Air and Rail. It 
consists in -establishing a mathematical function" in 
terms of travel and travelers variables, which best 
separates the two types of passengers. 

In addition to considering each route separately,*'teeds 
study attempted to obtain two discriminant functions, 
for work and non work travels covering the 5 routes 
considered. The examination,of the discriminant func­
tions obtained, suggests that the model choice decision 
process varies from route to route. and indicates the 

abs'ence of a general law, governing a traveler's 
choice of mode. 
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3.3 CONCLUSION 

The choice of the general form of a model depends, 
primarily, upon such factors as historical traffic trends, 
data consideration,and certain desired properties of the 
demand function. Most of travel demand models were of 
logarithm~linear form. This form is attractive because~b 
easy to conduct, and because its estimated coefficients 
represent elasticities. 

Gravity models formulation was the starting point of the 
intercity passengers demand models which found their 

application in the North East Corridor Project. Many 
sophisticated forms have been developed since, from the 
simple original one. 

Most of the travel demand models were constructed on a 
single equation form. Only a few were structured as 
Multi-equation models. Instead of being simultaneously 
calibrated, these models were recursively estimated. 

ordinary Least Squares are the most commonly used tech­
niques of calibration in travel demand models. However, 
when a tw~-way causality between the dependent variable 
and any explanatory variable exists, the application of 
OLS is no longer valid. Then, the introduction of ad­
ditional equation(s) may appear more appropriate. For 

~ 

such/Multi-equation structure, many calibration techni-
ques are open to the modeler such as Indirect Least 
Squares, Instrumental variable, 2SLS, 3SLS, Limited or 
Full Information Maximum Likelihood. The selection 
between these techniques may depend upon the modeler's 
purpose and the nature of the data available. 

Discriminant Analysis, Logit and Probit Analysis are the 
methods applied in Choice models. Th~y were originally 
developed in the field of Biology. Empirical tests of 
Discriminant Analysis seem to confirm that this techni­
may be inferior to Logit and Probit Analysis. 
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CHAPTER 4 

FACTORS EXPLAINING TRAVEL DEMAND 

4.1 AIR TRAVEL DEMAND FACTORS 

These factors are of two types I exogenous variables 
which are determined independently to the transport 
system and upon which the Airline management has no 
control; endogenous variables defined within the system 
and which are under his control. 

For the following presentation these factors will be 
categorized into: 

- non transport factors 
- transports factors 

Note, however, that transport factors are not necessari­
ly endogenous t e.g, the fare is a transport factor, 
but can be endogenous. 

4.1.1 Non transport factors 

Apart from traditional simple models such as Judgement­
al and Extrapolation models (based upon clock time fac­
tor only), most of the Air travel demand models are 
seeking to identify the causality of the demand. The 
original idea,underlying the development of what came 
to be called Econmetric models, was that socio-economic 
factors were the elements that generated the need for 
travelling. Businessmen travel by reason of developing 
their own business, and because of economic expansion at 
home and abroad. Personal travelers make a trip either 
for leisure or shopping, or for VFR(visiting friends 
and relatives), or for satisfying intellectual curiosity 
needs. Therefore, modelers retained socio-economic 
factors as variables likely to explain the demand. 
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Income 

Income has been recognized as the main element deter­
mining the consumption of a good or a service. Several 
economic factors measuring the level of income, such as 
GNP(Gross National product), GDP(Gross Domestic product), 
Personal Income, National Income, personal Disposible 
Income, Corporate Profits before tax, Total Personal 
Consumption Expenditure, etc .• , are generally investi-
gated in the modelling process. Some might be more 
meaningful than others with regard to the purpose of 
the model. 

- Business travel demand, for instance, is thought 
to be better interpreted by factors such as GNP, Export, 
Import, the level of investment abroad, and the balance 
of paymen~1 and is considered to increase in recession 
situations. However, the economic factor that is 
generally selected is the one that provides the best fit. 

- Personal travel demand is generally thought to be 
related ~he persomal income, since personal travelers to/-
unlike most businessmen have to bear the cost of their 
travel expenses. Some models incorporate the income 
distribution variable; the idea being that Air travel 
is a superior good, and hence, Air travelers are likely 
to belong to the @ighest income brackets. As recalled 
earlier, Verleger [61 disaggregated the travelling 
population by income, and gave greater weight to high­
er income groups within the population by assuming 
their propensity to travel as an expential factor of 
their income. 

Many stUdies were carried out, providing interesting 
information_ on travel demand by tranche of incomes. 
The Roski]1. Commission [30 J figures, for nonbusiness 
travelers, are an interesting source from which income 
elasticities could be derived. There is a general 
belief that income elasticities are not constant, 
neither from a range of income popUlation to another 
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in a given point of time , nor from one period to the 
other in a given range of income population . The French 

and UK Study [31J, for instance , revealed that the hi gh­
er the income , the higher the income elasticity . 

Inflation 

Inflation is generally considered as a fa ctor i nfluenc­
ing the demand . In the specification of the model struc­
ture , some questions invar iably arise concerning the ex­
planatory variables . Should permanent income rather 
than current income , or price expe ctat ion rather than 
market price , or fixed rather than current pr ices be 
used? All these questions ar e , in fa ct , relat ed to 
whether to take into account the infla t ion or not . 

According t o Thompson 1)2J "raw da t a are always be t ter 
t han deflated dat a . When data ar e de f lated there i s 
always some loss of deta i l tha t may s ignif icantl y mask 
the identification of underlying trends ". However, 
most s tud ies have taken account of the inflation. This 
was gener a l l y achieved by use of various deflators for 

price and income. 

Proba bly the only model, that attempted to treat infla­
tion as a separate variabl e, was t he model developed at 
MIT in 1975 by Vi teck and Tane ja [12J. Its main purpose 
was to determine whether or not high inflation rates 
were significant factors in estimating the demand. The 
answer was positive and according to the authors, in­
flation should be included, explicitly, as a separate 

factor. 

occupation and social structures 

Many surveys argued that the travelers' characteristics 
were important e l ements in the travel deciSion, and 
should, therefore, be retained in the modelling process. 
These cha.racteristics being : occupation, education, age, 
life cycle, family structure. The Survey (source: The 
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Registrar General's Statistical Review 1972) showed that 
the propensity to fly was greater in the I 

- 35-45 age group, for business travelers 
- 50-55 age group, for holiday travelers 

- 35-55 age group, for VFR travelers 

It also revealed that 70% of leisure passengers, travel-
ling from London by Air in 1972, had no children under 
the age of 15 in their household. 

Probably the most successful model thatto.ok into account 
these relevant factors was the Port of New York Authori­
ty Model [33], known as the Cells Model. The main 
purpose of this model was to determine whether a person 
was a "flier",and if so, how many trips were taken each 
year. The market was divided into a large number of 
travel "cells", for personal and business travel. 
personal travelers cells were classified by age, occupa­
tion, education, and income, and business cells by indus-

. try, occupation, and income. A total of 134 individual 
cells were defined. 

City characteristics 

Among the factors infl~ing the demand, the characteris­
tics of the cities were also retained. Recreational 
cities are likely to attract more leisure travelers than 
business ones. According to Quandt [J4] "cities with 
high concentration of financial intermediaries, educa­
tional and governmental institutions and other service 
industries give rise to more travel per capita than 
cities with predominantly manufacturing industries". 

Real but not so clear is 'the influence of a factor that 
caae to be called "community of interest" between cities. 
An original step was taken by Brown and Watkins [35J in 
adopting the number of long distance telephone messages 
and the number of internatio~l passengers between city­
pairs as prGxies for community of interest. 
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4.1.2 Transport factors 

Many studies have recognized the importance of trip 
cost, trip time, comfort, safety, reliability, and con­
venience as relevant factors affecting Air travel demand. 
While some of these elements, such as trip cost and trip 
time, are relatively easy to measure; others, more 
qualitative than quantitative, are rather hard to 
evaluate. 

Obviously, one of the key elements in travel demand is 
the price factor that responds to the simple law, making 
the consumer buying more at lower prices and less at 
higher prices. The consideration of fare variable 
always rlUses the question of which fare to choose. 
Should first class fare, coach fare, or discount fare 
be used? 

Most models selected the average fare actually paid by 
the traveler. This average was obtained, first, by ag­
gregating the various fares applicable to a given route, 
then, by taking a second average calculated on the basis 
of the various routes grouped together (Total Aggregate 
Models) . According to Lippke and Stewart [36J the elas­
ticity, calculated on the basis of an average fare, is 
biased and the exact value of the average price elasti­
city is lower than the estimated one. 

Fare elasticity, particularly in Total Aggregate Models, 
could hardly be interpreted, since it reflects the 
behavior of an imaginary individual(part businessman, 
part tourist, etc •• )paying just an imaginary fare, and 
therefore bears little relationship to the personal 
behavior. 

In their Report at MIT in 1976 ~4J the authors tested 
three types of fares for comparative purposes standard 
fare, estimated fare, and actual average fare. 
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Their results showed no significant differences between 
the three types. 

Since one of the main purpose in travel demand models 
is the estimation of fare elasticities, many studies 
attempted to analyse the factors influencing these elas­
ticities. 

- A well known factor is the characteristics of the 
traveler. It has always been stated, for instance, that 
business travelers are less fare elastic than personal 
travelers. This assumption has most often been support­
ed by empirical investigations. Probably, one of the 
earliest studies, segmenting the travel market by trip 
purpose (business/personal), was conducted by Young in 
his PhD dissertation at the University of Washington 
in 1966. The results, in both Time Series and Cross­
sectional analysis, corroborated the above assumption. 

- Another factor, suspected to influence fare elas­
ticity, is the trip length. It is sometimes argued that 

Air travel has better substitutes for short trips than 
for longer ones, henceforth, the sensitivity to fares 
should decline as the length of the journey increases. 
In a Paper, given at the American Statistical Associa­
tion Annual Meeting at Fort Collins (Colorado) in 1971, 
Brown and Watkins ~5J attempted to test this assumption 
by an empirical investigation. A Regression analysis 
was carried out in which the fare coefficient was made 
function of five dummy variables standing for the dis­
tance group of ·the city-pair, as follows. 

Where Dl , D2 , D3, D4 , DS were dummy variables corr.espon­
ding to the range of distances. 

The Regression used Cross-sectional data of 438 domestic 
city-pairs for the year 1969, and the results showed no 
tendency for fare elasticities to decrease numerically 
with the trip length. However, although the use of 

dummy variables seems quite reasonable, the approach is 
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questionable. It would have been more appropriate to 
apply this approach to the only personal travelers 
market, since business travelers are less sensitive to 
the fare factor. 

Other studies related the fare elasticities to the dens­
ity of the market. In his Model Verleger [6] concluded 
that fare elasticities had a tendency to be more unifor-

mely significant in high density markets, while in the 
low density markets few were significant. He suggested 
that elasticities decreased as traffic increased. 

Quality of service factor 

Because of the regulated nature of Air transportation 
services, which takes prices out of the Airline control, 
the market share belonging to each competing carrier is 
mainly determined by the quality of service provided. 

In his theory for Domestic Airlines Economics R Simpson~7] 
defined the quality of trip by a vector quantity in four 
major categories. 

Q1 t trip time Qz I trip reliability 

Q) t trip comfort Q4 I trip convenience 

- Trip time • Probab~y the most important variable 
determining the level of service is the trip time. Many 
models considered the whole components of this variable 
(access time, waiting time. flying time, egress time). 
R Simpson defined the trip time as follows. 

Where, 

(1 ) 

to I constant 

tl I ~ where v=speed 

t z constant to express average waiting time 

n ,frequency of services 

As the speed is a t ·hn· eo 1cal performance. USually beyond 
the Airlines control, the only way to improve the 
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quality of service is to reduce the waiting time, access 
and egress times through an efficient scheduling process 
and better facilities at the terminals. 

The inequal importance, given to the travel time factor 
by the travlers, has raised the question of whether and 
to what extent this importance is related to the charac­
teristics of the travelers. As stated earlier, the first 
model to analyse the concept of time on a theoretical 
ground was Young's Model ~5]. Gronau [4],later on, 
estimated a monetary value of time for various income 
groups 

Prom the Simpson equation (1), the frequency of services 
n becomes a quality of service variable. In this model, 
since the inverse of the frequency has the dimension of 
time, the frequency of services n was included in the 
trip time variable. In fact, n constitutes the effec­
tive quality of service variable under the Airlines 
control; since neither the flying time nor the access 
or egress times are truly under such a control, while 
the waiting time is a function of the frequency. 

Contrarily to Simpson's Model, others explicitly intro­
duced the frequency of services as a separate variable. 
In the MIT Report ~4J ' the authors tested the frequen­
cy as a factor determining the level of service. They 
defined this variable as the product of the number of 
flights offered in each direction. However, as this 
variable did not take account of the time departure and 
the number of stops in a given trip, they developed an 
index called LOS (Level Of Service), scaled from zero 
to one. This index represented the ratio of non stop 
jet flight time to the average total passenger trip time. 

-
The comparison of the model containing the frequency of 
services variable and the one using LOS variable reveal­
ed the superiority of the second model over the first 
one. But with LOS Model, rather restrictive assumptions 
were implicitly presumed I the uniformity of the Air 
travel demand throughout the day and the infinite seat 
capacity. 
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- Trip reliability I is measured in terms of probabi-
lity. 

Q~ I probQbility of space available,which is a 
function of LF(Load Factor) and the spread 
of the distribution of requests for the 
flight. Thus, considering LF linked to 
the quality of service through this measure 
Simpson defined an upper bound for LF to 
maintain a desired availability and named 
it LFMAX . 

Q~ I probability of time departure and arrival. 

Q~ I probability of cancellation • 

Q~ I probability of injury/death (or damage/loss) 

- Trip comfort I including all on board services 
such as meals, stewardesses, etc •. 

- Trip convenience I covering items such .• as time and 
cost to get reservations, to get tickets, and to pay for 
the trip. 

These variables are kept at pr~ically the same high 
level by the Airlines and, therefore, could hardly be 
considered as important factors in the Airlines competi­
tion. Besides, they are very difficult to measure. 

4.2 MODAL COMPETITION FACTORS 

The last sectQon reviewed the factors explaining the 
travel demand, in a unimode context (Air mode) without 
reference to any mode competition. The present section 
discusses the common factors traditionally considered 
by the Choice Mode Models. These models seek to inter­
pret the choice decision in terms of mode's attributes 
and user's characteristics. The mode's attributes in­
volvevariables such as time ,and trip costsl and the 
user's characteristics refer to the socio-economic 
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features of the traveler. The earliest of these models 
were developed in the United Kingdom by Stopher ~8J , 
Quar~mby [39] , and Leake [40J J and in the United States 
by Lisco ~J] ,and Warner ~~ 

4.2.1 Modes' characteristics 

Time variabl.e 

The consideration of time variable in Modal Choice 
Models usually raises two questionsl 

- Which part of the journey time, the time variable 
refers to? 

- What is the best relationship between the time by 
each mode (ratio or difference)? 

With regard to the first question, Watson ·~3J observed 
lilt seems reasonable to treat time spent on different 
activities as different, for time spent in a car seems 
different from time speMt waiting in a line or waiting 
between vehicles". 

Stopher and Lisco took a different view and selected 
total journey time, while Quaramby considered~ore ap­
propriate to separate in-vehicle time from time spent 
walking and waiting. 

The second question concerns the expression of the 
relative journey time variable. Basically, it is possi­
ble to express .this variable as diffe~ence or ratio of 
time by different modes. Accordinslwa~son, since the 
model is an attempt to represent actual behavior, it 
seems better to use differences; for the traveler is 
more likely to perceive relative times in terms of dif­
ferences rather than in terms of ratios. A difference 
formulation is ,therefore , based upon a subjective judge-

ment about the way in which people think. However, 
Warner and Leake used time ratio whereas Quaramby and 
Lisco prefe~~~d time difference. 
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Cost variable 

The cost variable raises the same questions as the time 
variable, referred to above. And, as in the case of 
time variable, it is impossible to provide a sound ob­
jective justification for the selection of any formula­
tion of this variable. Again, Stopher adopted the cost 
difference whereas Quaramby took the cost ratio. In his 
Discriminant analysis, Leake found that the cost ratio 
gave more significant results than the cost difference. 

4.2.2 Travelers' characteristics 

Previous studies incorporated a number of variables re­
flecting the characteristics of the traveler. The most 
important are t 

Income 

It is generally agreed that the level of a subject's 
income affects his choice of travel modes. Modelers 
handled income variables in at least two ways I 

- B¥ stratification I Many analysts believe that 
each income group has a decision process that should be 
modeled separately, and the operational results of this 
point of view is that the sample is divided into income 
groups that are analysed as distinct samples~Leeds 
Study [29J ' for instanoe, found that the journeys for 
work by Air we~e undertaken by the highest household 
income levels; while non work journeys by Rail were 
travelled by the lowest income level groups. Medium 
household income levels vary from route to route. The 
disadvantage of this method is that a large sample is 
required to make such stratification possible. 

- In combination with other variables I The attempt, 
to explain the complexities of the process by which 
income affects modal choice, AaS led some analysts to 
conclude that income operates through or in conjuncture 
with other variables, such as cost, time and comfort. 
In some cases, it is argued, the cost difference is 
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important only in relation to income, so that a given 
cost difference will produce a different reaction in 
higher-income-group traveler than in a lower one [43] . 
A suggested solution is to combine the income and the 
cost variables to produce a new variable, say, the ratio 
of cost difference to income. In other cases, it is 
argued, it is the time difference that is perceived dif­
ferently by different income groups. High-income-group 
travelers are more sensitive to this difference,because 
they value their time more highly (assuming that the 
value of time rises with income). 

Age/sex 

The age and sex of the traveler have been included in a 
number of models. But,there is no easy way of predict-
ing their effect; and it is difficult to relate their 
cofficients to any specific real world interpretation. 
Accordingly, their inclusion is only judged on the basis 
of fitting consideration. The proportions of travelers, 
less than 25 years and above 64 years of age. were found by 
Leeds Study lower on Air than on Rail for both work and 
non work journeys. 60% of non work journeys were being 
made by men. 

other factors such as household size, car availability, 
party size, were also investigated as explanatory 
factors in the Choice Mode process. 

4.3 CONCLUSION 

The factors explaining Air travel demand are numerous. 
Different economic factors aimed to measure the level 
of income were investigated such as GNP, GDP, Personal 
Income,Personal Disposable Income, Personal Consumption 

Expenditure, etc •. The selection among these factors 
was generally founded on the basis of statistical fit. 

Many surveys outlined the importance of the traveler's 
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characteristics as factors explaining the decision to 
travel. The well known "Cells Model" of Port of New York 
Authority introduced all these relevant characteristics 
(business and personal characteristics, age, occupation, 
education, income). 

The city characteristics, as well as the so called 
"community of interest" were also considered in Air 
travel demand models. 

Among the transport factors, fare was recognized as one 
of the most important. Many empirical studies supported 
the assumption that business travelers were less fare 
elastic than non business ones. Finally, other factors 
more qualitative than quantitative such as comfort, 
reliability, convenience found little application. 

The Choice Mode process is dictated by such factors as 
Mode's attributes and travelers' characteristics. Time 
and cost variables were invariably investigated in Choice 
Mode Models. The same questions have often taised such 
as I which part of the journey time or the journey cost 
these variables referred to; and which relative value, 
ratio or difference, to consider. Modelers took differ­
ent views, though it is quite difficult to provide a 
sound objective justification for the selection of any 
formulation. 

Travelers' characteristics such as income level group, 
age, sex, party size, and car availability were inves­
tigated, in many models, as factors influencing the 
choice mode decision. 



PART I I 

US DOMESTIC MARKET ANALYSIS 
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INTRODUCTION 

As an illustration of the literature review, discussed 
in Part I, we provide, in this Part, an analysis of an 
econometric model, developed at MIT by the Flight Trans­
portation Laboratory in 1976. This analysis concentra­
tes, essentially, on three points. 

First, different statistical tests highlight the statis­
tical deficiencies from which this model is suffering, 
illustrating, therefore, the common problems encounter­
ed in Time Series, Cross-Sectional, and Pooled models 
such as Multicollinearity, Heteroscedasticity, and 
Serial Correlation. 

Second, this analysis outlines, through this model, the 
main weakness of Aggregate models, namely the implicit 
assumption of homogeneity of the market. Indeed ,series 
of CHOW tests, applied to different markets, reveal the 
significant differences between the Aggregate models of 
these markets and the Region-pairs models, correspond­
ing to their individual routes. 

Third, the particular specification of the model, as a 
single demand equation, illustrates the major handicap 
of most of the models discussed, so far, in the litera­
ture review. By considering only one aspect of the 
market, the demand for travel, they ignore the effect 
ot the supply onto the demand. This may lead to bias­
ed, inconsistent, and inefficient coef~icients estimates. 

Finally, attempts to overcome the two-way dependency 
supply/demand problem are achieved by the introduction 

of a second equation to the original model, and the ap­
plication of 2SLS (Two-Stage Least Squares) as a means 
of calibration. 
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For this purpose, the analysis is conducted as follows, 

Chapter 5 

Chapter 6 

Chapter 7 

ANALYS IS OF 'rHE STUDY 

5.1 Presentation of the study 

5.2 Statistical evaluation of the 
study 

5.3 Conclusion 

AGGREGA'r ION MARKET ANALYS IS 

NEW MARKET DEFINITION AND 

SPEC IF ICAT IONS 

7.1 Aggregation Business/Leisure 

7.2 Variables analysis by 
individual routes 

7.3 simultaneous Equations 
Specification 
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CHAPTER .5 

ANALYSIS OF THE STUDY 

In this chapter, we analyse the study. "A methodology 
for determining the relationship between Air transporta­
tion demand and the level of service", conducted at NIT 
by Eriksen, Scalea, and Taneja. 

5.1 PRESENTATION OF THE STUDY 

The objective of the NIT Study is to relate the level of 
Air transportation activity, measured by the number of 
origin to destination passengers carried in a number of 
specified markets, to a set of economic, demographic, 
and scheduling variables. 

-Market selection 

Since an Airport generally attracts demands from a 
larger area than its respective city. the authors chose 
to define the markets as Region-pairs rather than the 
more traditional City-pairs. For this aim, they used a 
study conducted by the Bureau of Economic Analysis in 
1972, in which the United States was divided into 173 
regions (organised, primarly, along county lines). Of 
15.000 possible Region-pairs, a 3 x 2 x 3 cross-classi­
fication sample was chosen from a matrix of market 
density, extent of competition (between Airlines), and 
length of haul. 

-Market density 

This factor was defined by the average number of passen­
gers carried each way each day. Data was obtained from 
the 1970 CAB Origin/Destinat~on Survey. Three classifi­
cations were retained. 
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Low Density: less than 50 passengers per day 
Medium Density: 50 to 200 passengers per day 
High Density:. more than 200 passengers per day 

- Competition factor 

The markets were defined as monopolistic and competitive. 
A monopolistic market is a market in which the second 
most active Airline carried less than 10% of the number 
of passengers carried by the most active Airline (using 
1970 as the base year). 

- Length of haul factor 

Five classifications were defined. 

Ultra-short haul I routes with distances 260 km 
Short haul • routes with distances 260-560 km 
Medium haul I routes with distances 560-880· km 

Long haul I routes with distances 880-2410km 
Ultra-long haul I routes with distances 2410 km 

The final sample contained data from 58 Region-pairs 
over a 16 year period span, 1959 - 1974. 

- Variables 

The variables selected are the following I 

LOS I the level of service index is a dimensionless -
number scaled from zero to one, representing 
the ratio of non-stop jet flight time to the 
average total passenger trip time. 

~ I is the average of the standard coach fare de­
flated by the consumer price index. 

BPl I the buying power index is an aggregation of 
three important socio-economic characteris­
tics of a given area selected to reflect the 
level of economic activity in the specified 
region. 
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Where I 
I· = percentage of national income in area i 

1 

R· = percentage of national retail in area i 1 

Pi = percentage of national population in area i 

- Model specification 

The general form of the model iSI 

which is an intrinsically linear function that can be 
put into standard linear additive form by the appropria­
te logari thmtttransformation of the data. This form of 
the equation can, then, be estimated using Ordinary 
Least Squares. 

Log DMD = Log ~ 1 + ~ 2Log FARE + ~ 3Log BPI 

+ p 4Log LOS + LogE. 

The equation estimated with the 58 Region-pairs was. 

Log DMD = 12.2758 -.4941Log FARE +.3226Log BP! 
(.1461) (.0746) 

+1.2672Log LOS 
(.1707) 

The results corresponding to the different aggregation 
schemes are shown in Table 5.1 • 

This is the point at which the MIT study ends. The fol­
lowing section begins with the next step. testing the 
validity of the model. The most critical part of any 
research modeling effort is not fitting the model, but 
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rather testing whether the correct specification had 
originally been selected. 

5.2 STATISTICAL EVALUATION OF THE STUDY 

Although choosing to use a linear model ia a typical ap­
proach to demand analysis, Linear Regression imposes 
strict assumptions which must be met in order that the 
estimation procedure can be valid. 

For the purpose of this test analysis, we concentrate 
on the following assumptions of OLS. 

. /' 
- The res1duals (e = Y - Y) must be random variables 

with a mean of zero (Normality) 

- The variance of the error term (e) must be constant, 
.i.e, the dispersion of e around its mean zero must 
not increase or decrease systematically over time 
or with changes in the levels of the independent 
variables (Homoscedasticity) 

- The error terms, must be independent over time. 
Knowledge of the residual in time t, must tell no­
thing about its size in time t+l (No Serial Correla­
tion) 

- Finally, the independent variables must not be high­
ly correlated with each other (No Collinearity) 

Normality of the errors distribution 

One test for the normality of the error term distribu~: 
tion is the CHI-SQUARE goodness of fit test. This test 
determines how closely the observed frequency distribu­
tion of the error term fits the normal probability dis-

tribution, by comparing the observed to the expected 
frequencies. 

For this purpose, a Regressi.on analysis. over SO Region­
pairs, is run with the specification (1). and its resi-

duals are standardized. Recall that standardiZing a 
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residual consists of dividing its value by the standard 
error of the estimate (i.e, standardized residual:: ei ). 

SE 

Table 5.2 displays, in column 2, the observed frequen­
cies of the standardized residuals corresponding to dif­
ferent ranges of magnitudes. The expec~frequencies 
from the normal distribution are given in the third 
column. The remainder of the table is used to compute 
the value of the CHI-SQUARE. The further the expected 
value is from the observed values (the larger value of 
i2), the poorer is the fit of the hypothesized dis­
tribution. 

In the present case, X2 = 19.33. This value is greater 
than the critical n2 value. ~1.95,4) :: 9~49. There­
fore, we may conclude that the error terms of the model 
are not normally distributed. However. it is difficult 
to determine whether the violation of this assumption is 
serious, because non normality is a difficult condition 
to interpret. This non normality 1s often the results 
of other departures from the model; so. even though 
the sample size is large. it is difficult to decide 
whether the normality is real, or is a function of inap­
propriate regression formulation, or is a non constant 
variance. 

Constant variance 

A common way to check for Heteroscedasticity is to plot 
"... 

the resitduals against the estimated Y's, and then. exami-
ne the shape. Constant variance would make the residua­
Is appear as a solid horizontal band. 

Fig S.l and Fig 5.2 are plot of residuals against the 
estimated values. for a monopolistic market and a com­
petitive one. While Fig 5.1 corresponding to the mono­
polistic market does not show any serious divergence 
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from constant variance; Fig 5.2 , however, clearly in­
dicates the existence of specification error. Indeed, 
Fig 5.2 exhibits two groups of plots strikingly dis­
tinct. The first group. corresponding to the lowest . 
values of the demand in the competitive market, reveals 
systematic negative residuals; that is to say, these 
observations are overestimated. On the contrary, the 
second group, corresponding to medium values of the 
demand, shows positive residuals; which means that their 
respective observations are underestimated. 

Time dependency of errors terms 

The lack of indepecdency of the error terms over time, 
Autocorrelation, can lead to the loss of the efficiency 
properties of the estimators. This makes the coeffi­
cients appear more significant than they really are. 
It does not, however. affect their unbiasedness or con. 
sistency. 

The usual test. for Autocorrelation, is the Durbin -
Watson test which compares the size of the difference 

. between adjacent (in time) residuals to the absolute 
value of the residual itself. In order for the test to 
be valid,the observations must be in some meaningful 
order by time. This is impossible with Aggregate 
models, because there is more than one observation per 
time period. one tor each individual market. As a 
result, the DW test on the Aggregate (50 Region-pairs) 
model, though very low (=.329), may not be of great 
signification. However, an investigation of the data, 
disaggregated onto individual markets, shows the exis­
tence of Serial Correlation in most routes, where the 
corresponding DW values are very low (see Table5.3;5.4;5.5 
and Table ;.6 ) I 

IUlticollinearity 

The problem of MUlticollinearity is not so much in 
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detecting its existence, but rather in determining its 
severity. The seriousness of Multicollinearity can, 
usually, be examined in the correlation coefficients of 
the explanatory variables. How high can the correla­
tion coefficient reach before it is declared intoler­
able? This is a difficult question to answer, since it 
varies from case to case, and among different analysts. 

To identify which individual variables are most affect­
ed by Collinearity, an F - distributed statistic, pro­
posed by Farrar and Glauber [44J ' tests the null hypo­
thesis ( H I variable Xj is not affected against the 
alternative, HI I variable Xj is affected). 

This test is de.f1i'ned as follows I 

F *' n (n - p , p-l) = (r J - l) r - p) 
p - I 

Where. r*j denotes the jth diagonal element of the in­
verse matrix of simple correlation coefficients. The 
null hypothesis Ho is rejected if the calculated 
F - distributed statistic exceeds the critical 
F(~,n-p,p-l), where n is the number of independent 
variables including the constant. 

In the present case, the correlation matrix correspond­
ing to the Aggregate model (50 Region-pairs) computed 
iSI 

LOS FARE BPI 

LOS 1.000 .326 .600 

FARE .326 1.000 .334 
BPI .600 .334 1.000 
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The inverse matrix of the matrix above iSI 

where a 

Applying the 

I 
1.606 
-.227 
-.888 

-.227 
1.157 
-.250 

* r (LOS) = 

r* (FARE) = 
r*(BPI) = 

test above,one getsa 

'(LOS) = (1.606 - 1) 

, (FARE) = (1.157 - 1) 

F(BPI) = (1.616 - 1 

-.888 I 
-.250 
1.616 

1.606 

1.157 

1.616 

800 - 4 
( 4 ) 

- 1 

(BOO - 4 ) 
4 - 1 

}(BOO - 4.) 
. 4 - I 

= 160.8 

= 41.7 

= ~63.4 

All the calculated F statistics exeed the critical 
F(.05,BOO-4,4-l) = 8.53. Thus, the null hypothesis 
can be rejected, and the alternative that all variables 
are significantly affected by Multicollinearity can be 
accepted. 

5.3 CONCLUSION 

The analysis of the NIT Model reveals many violations of 
the assumptions of OLS, namely Non Normality of the 
error terms distribution, Heteroscedasticity (though not 
too serious), Serial Correlation, and Multicollinearity. 

These violations have some tndesirable effects on the 
estimators I characteristics, such as biasedness, and in-
efficiency. Many reasons could be suggested for these 
defects, in particular, the wrong specification of the 
model and the omission of important factors in the speci­
fication. 
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In fact, as will be explained in the next Chapter, one 
unique aggregate equation is clearly inappropriate for 
describing the nature of demand and predicting new 
demands in any individual market. 
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MARKETS cst LOS FARE BPI R2 

12.133 1.264 -.444 .165 .65 
MONOPOLISTIC ( .078) ( . 060) ( .032) 

12.042 1.340 -·379 .332 ·74 
COMPETITIVE (.099 ) (.066 ) ( . 038) 

6.748 .689 .935 .382 .79 
ULTRA-SHORT ( .098) (.279) (.040 ) 

15.159 1.446 -1.208 .105 .76 
SHORT ( .07) ( . 334) (.034 ) 

12.909 1.183 -.667 .272 .76 
MEDIUM ( .069) ( . 368) ( .063) 

13.440 1.258 -.705 .433 .86 
LONG (.086 ) (.203 ) (.033) 

15.209 ·927 -1.338 .633 .82 
ULTRA-LONG (.078) ( .183) (.040 ) 

\ , 

Table 5.1 

MIT MODEL RESULTS 
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CHI-SQUARE COMPUTATION 

RANGE OF O· E· 
~ ~ 2 

STANDARDIZED OBSERVED EXPECTED (0. - E.) 
~ ~ 

residuals FREQUENCIES FREQUENCIES E. 
~ 

- -1 118 126.96 .632 
-1 -·5 91 119.84 6.920 

-.5 0 179 153.20 4.380 
0 .5 183 153.20 5.840 

.5 1 107 119.84 1.370 

1 122 126.96 .194 

TOTAL 800 800.00 19.33 

Table 5.2 
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.OIOPOLIS!IC IlRKBT 



- 69 -
-.66 - 1 

1 
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COIIP!!I'! IVE IARUT 
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RP Idx est LOS FARE BPI R2 SE DW 

3.32 .131 -.667 -.821 .34 .087 1.01 1 (.101) (.526 ) (.614 ) 
5.88 -.001 -1.393 3.416 .28 .143 ·57 2 (9.990) (1. 074 (1.699) 
6.91 ·331 -2.110 3.955 .96 .043 2.48 

3 ( .164) (.577) (.649) 

8.10 .511 -2.468 1.339 ·99 .033 1.10 
4 (.153) (.682 ) (.370 ) 

1.04 .868 -4.040 4.789 .85 .114 .75 '5 ( .. 180 ) ( .872) (2.236 ) 

2.35 .502 -.080 4.218 .97 .059 .60 
6 (.265 ) ( .288) (1.158) 

8.92 .893 -.082 -4.201 .81 .111 .77 
7 ( .251) (1.155) (2.730) 

2.31 .611 1.398 .709 .74 .064 1.01 8 ( .195) (.600 ) (4.989) 
1.41 .093 1.99~ 4.366 .47 .111 .61 

9 (.095) (1.735) (2 .. 223) 

4.11 .426 -1.175 3.683 ·97 .063 .70 10 ( .137) (.527 ) ( • 860) 

6.59 .478 -.998 2.427 .95 .049 .53 11 ( .• 134 ) ( .674 ) (. 596) 

5.99 1.070 -.807 .458 .91 .063 .45 12 ( .100) (.934 ) (1.885) 

2.41 .730 -1.619 -1_99'5 .78 .116 1.36 
13 (.285 ) (.756 ) (1.999) 

8.05 .965 -1.872 1;789 ·91 .075 .50 14 ( .180) (1.169) (.829) . 

7.11 .657 -1.596 1.152 ·95 .048 .76 15 (.113) ( .578) (.375) 

fable 5.' REGION-PAIRS MODELS 
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RP ldx est LOS FARE BPl R2 SE DW 

8.45 .342 -2.569 1.380 .94 .076 .37 
16 (1.459) (1.005) (1.124) 

7.44 .074 -·965 -3.501 .30 .115 .81 
17 ( .484) (1.12Q) (1.847) 

6.15 .832 -2.652 -.148 .38 2.471 .95 
18 ( .340) (1.717) (.779 ) 

2·92 .746 -.820 -3.618 .81 .088 2.20 
19 (.213 ) (. 597) (2.040 ) 

4.88 .208 -.538 3.276 .99 .027 1.33 
20 ( .087) (.509) ( .271) 

7.14 .044 -2.101 2.378 .94 .046 .67 
·21 ( .123) (.938) (.374 ) 

8.~2 .013 -1.210 3.770 .95 .048 .57 
22 (. 543) (.799) (1.118) 

7.44 .684 -·301 -2.890 .84 .051 2.53 
23 ( .153) ( .299) ( .438) 

11.82 .521 -li397 -1.998 .88 .052 1.51 
24 ( .128) (. 624) ( .497) 

~ 

2.362 15.08 .401 -6.453 ·91 .077 .16 
25 ( .184) (.184 ) (1.383) 

11.02 .472 -2.702 -1.516 .85 .066 1.50 
26 ( .128) (.846 ) (1.274 ) 

8.18 .758 -2.431 -.335 .88 .060 1.61 
27 ( .183) ( .696) (1.247) 

Table 5.4 

REGION-PAIRS MODELS 



- 72 -

RP Idx est LOS FARE BPI R2 SE DW 

8·39 .381 -1.483 -8.515 .88 .097 1.93 28 ( .106) Cl. 456) (2. 313) 

12.50 .027 -4.666 .101 .97 .074 2.11 
29 ( .188) (1.046 ) ( . 283) 

1·55 .147 1.436 -2.899 .93 .047 1.71 
30 ( .133) (.738) ( .653) 

4.72 -.008 -.437 -2.663 .96 .024 1.44 
31 (.089) ( .242) ( .327) 

5.62 .492 -1.315 -2.638 .96 .033 1.35 
32 ( .083) (.756 ) (.402 ) 

5.59 .351 -1.387 1.753 .46 .081 1.05 
·33 ( .217) (.447 ) (1.470) 

4·35 .219 -.241 2.047 .60 .064 1.60 
34 ( .080) (.795 ) ( .886) 

4.91 1·307 -.079 .300 .92 .065 1.14 
35 

. (.145) (.177) ( . 838) 

5.70 .505 -1.640 .006 ·95 .78 1.01 
36 

( .078) (.598) (.060 ) 

7.79 1.270 -1.756 .893 .66 .289 1.31 
37 ( . 080) (.660 ) ( .400) 

5.00 .759 -.384 1.954 .98 .039 2.79 
38 ( .086 ) (.348) (.521) 

14.58 .170 -5.915 -.916 .89 .087 .97 
39 (.238) (.978) (1.062) 

Table 5.5 

REGION-PAIRS MODELS 
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RP Idx est LOS FARE BP! R2 SE DW 

6.52 -.038 -1.176 1.804 .92 .059 1.15 
40 (.179) (.324 ) (.437) 

10.17 .614 -3.350 4.970 .92 .067 1.01 
41 ( .088) (. 580) (1.420 ) 

11:20 .971 -4.040 1.975 .90 .096 .75 
42 ( .229) (1.423 ) (3.260 

5.63 .755 -1.146 -1.708 .88 .079 2.28 
43 ( .187) (1.343 ) (1.054) 

5.93 .605 -.761 -1.867 .90 .042 1.70 
44 (.134 ) (.487 ) (1.020) 

5.43 2.054 -.249 -3.003 .58 .132 .84 
45 ( .568) (1.443) (1.677) 

9.32 .623 -2.739 -.090 .79 .112 1.49 
46 ( .132) (.880 ) (.120 ) 

8.26 .447 -2.544 1.558 .96 .063 1.25 
47 (.189 ) (.530) ( .428) 

4.06 .343 -.002 1.454 .96 .042 1.10 
48 (.111 ) (5.609) (.242 ) 

4.09 1.176 -1.608 2.852 .74 .083 1.30 
49 (.393 ) (.640 ) (1.550) 

13.01 -·0.93 -4.750 1.574 .96 .066 2.09 
SO (.167 ) (.696 ) (.906 ) 

Table 5.6 

REGION-PAIRS MODELS 
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CHAPTER 6 

AGGREGATION MARKETS ANALYSIS 

This chapter outlines the main weakness of Aggregate 
models, namely the assumption of homogeneity of the 
market. Indeed, these models considere the travel 
demand as a homogeneous unit related to the same para­
meters in all markets. For instance, the model, analys­
ed so far, assumes constan~ elasticities throughout the 
50 Region-pairs, regardless of the peculiarities of 
each individual one. 

In an attempt to aggregate the domestic US market into 
different homogeneous sets, the authors suggested three 
classificationsl 

DENSITY 

COMPETITION 

LENGTH 
of 

HAUL 

- Low density markets 
- Medium density markets 
- High density markets 

- Monopolistic markets 
- Competitive markets 

- Ultra-short haul markets 
- Short haul markets 

Medium haul markets 
- Long haul markets 
- Ultra-long haul markets 

The authors, then,conducted series of Regression ana­
lysis for these markets, recorded in Table 5.1 . 

In this chapter, we go one step further, we analyse 
the subclassificationswithin each of the above classi­
fications, and test whether the former constitute homo­
geneous markets. For this purpose, sets of markets, 
randomly drawn from each 8ubcl8.saifio8.tion, as well as 



- 75 -

the individual routes, composing these markets, were 
analysed. 'rables 6.1 (a,b) provide the list of the 
Region-pairs corresponding to each set. 

Regression analysis, using equation (1), were run forthe 
selected markets above, and their individual routes. 
Their results are displayed in Table 6.2 

To show whether the equation, corresponding to a given 
market, is truly representive of the equations of the 
individual routes composing this market, a CHOW test 
was computed for each market and its respective routes. 
In other words, this test examines whether the individu­
al routes observations and the corresponding aggregate 
market ones belong to the same regression line. 

The CHOW test formula is as follows, 
k 

(SSR - ~SRi)/P(k-l) 

Fp(k-l), (n-pk) = 

Where': 
SSR = sum of squares of residuals of pooled market 

~SRi = sum of squares of residuals corresponding to 
each route 

p = number of estimated parameters (including 
constant) 

n = total number of observations 
k = number of sub samples (i.e, number of routes) 

The above ratio is an F-distributed statistic, with 
p(k-l) degrees of freedom at the numerator, and (n-pk) 
degrees of freedom at the denominator. 

The results of these computations displayed in Tablesl 
6.3. 6.4. 6.5. show the following values of_ 

PG> (k-l) , (n-PkD 
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Low density F = 2).18 
Medium density F = 2).)2 

High density F = )7.71 

Monopolistic market F = 11;.43-

Competitive market F = )~.)4 

Ultra-short market F -= 26.41 
Short market F = 9.17 

Medium market F = 65.29 
Long market F = 16.58 

Ultra-long market F = 5).49 

Therefore, since the computed F values are all higher 
than the cr~tical ones, we conclude that Region-pairs 
models equations are significantly different from their 
corresponding Aggregate models equations. This may 
well be due to the fact that these subclassifications 
do not take account of the particular characteristics 
of the Region-pairs, and the different segmentations 
of the markets. A current assumption in Air demand is 
that travelers with dissimilar ecomomic, social, and 
demographic characteristics have different reactions 
towards traveling. While leisure travelers are general­
ly more sensitive to the trip cost and the availability 
of complementary activities at the destination point; 
business travele.rs are more sensitive to the level of 
service. time of day schedule, number of flights avail­
able, comfort, reliability, and service on board. 

Since the purpose of the authors is the determination 
of the relationship between the demand and the level of 
service, the classification adopted ignores an import­
ant factor in this relationship, namely the segmenta­
tion business/leisure. In fact, the "competition" 
factor classification considers Region-pairs,such as 
Washington-Houston, and New orleans-Houston, as belong-
ing to the same competitive market; and Detroit-Atlanta 
or Miami-LOS Angeles , as belonging to the same 
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monopolistic market. However, although considered as 
"competitive", a market such as Washington-Houston is 
certainly not segmented in the same way as New Orleans­
Houston. While the former is most likely mainly busi­
ness oriented, the latter is rather more leisure orient­
ed. Equally, Detroit-Atlanta is mainly a business 
oriented market, while Miami-Los Angeles is essentially 
a leisure oriented one. This argumentation is also 
true for the density and length of haul classifications 
where business and leisure oriented markets are, some­
times, aggregated altogether. In the next chapter, we 
attempt to aggregate markets across this segmentation 
business/leisure. 
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Idx 

1 
9 

13 
18 
33 
J4 
36 

~'~c:,'<~ -",,' ,,',', '.'~-">~':''f''"~' .. ,,\., ,",' '':-:;'.' 0 
-

LOW "~'f .. JIPIft .sDIUJI DEBSI'.rY "JWtDT HIGH DENSITY ~KBT . ~-. 

REGION-PAIRS IdX~: REGION-PAIRS Idx REGION-PAIRS 

BINGHAMPTON-ALBANY 3 ~ CINCINNATI-NASHVILLE 8 DETROIT-CLEVELAND 
ERIE-DETROIT 17 MILWAUKEE-CHICAGO 23 NEW YORK-CHICAGO 
LINCOLN-OMAHA 12 LUBBOCK-DALLAS 21 NEWORLEANS-HOUSTON 
MINOT-BISJlARK 19 MINNEAPOLIS-FARGO 44 ST LOUIS-KANSAS 
RICHMOND-NORFOLK 28 NORFOLK-PHILADELPHIA 49 WASHINGTON-NEW YORK 
RICHMOND-RALEIGH 31 PETTESBURG-CINCINNATI 40 SAN FRANCISCO-LAS VEGAS 
SACRAMENTO-RENO 32 PETTESBURG-DAYTON 4 DALLAS-ATLANTA 

MONOPOLISTIC MARKET COMPETITIVE MARKET 

Idx REGION-PAIRS Idx REGION-PAIRS 

2 NEWORLEANS-LAS VEGAS 8 DETROIT-CLEVELAND 
3 C INCINNAT I-ATLANTA 10 HOUSTON-DETROIT 
5 DENVER-CLEVELAND 13 LINCOLN-OMAHA 
6 DETROIT-ATLANTA 14 MENPHIS-KNOXVILLE 
9 ERIE-DETROIT 18 MINOT-BISMARK 

26 NEW YORK-KANSAS 20 NEWORLEANS-HOUSTON 
27 OMAHA-CHICAGO 31 PETTESBURG-CINCINNATI 

.- - ---------- --- --- - -- I 

MARKETS and corresponding REGION-PAIRS Table 6.1a 

......, 
CD 



1JLR1-aBoa! BAIL _.Ift SHORt HAUL II&JU[ft DDIUII HAUL lidO! 

IdX aB UGIOlf-PAIRS IcIx RBGIOII-PAIRS IcIx REGIOII-PAIRS 

8 DEfR0 ft-CLBVELAIm 2 CIIICIKNlTI-KASHVILLE 3 CIRCINMl~I-ATLlMfA 

9 ERIE-DETROIT 12 LUBBOCK-DAI.T.AS 11 DALLAS-JACKSON 
13 LIlfCOLK-OIWfA 19 MIKNBAPOLIS-PARGO 14 MBRPHIS-KNOXVILLE 

11 MILKWAUKBE-CHICAGO 21 NBWORLBANS-HOUSTON 20 NEWORLBANS-ATLANrA 
18 .IIIO'l-BISIlARK 31 PBfTESBURG-CIICIKNATI 21 OIWiA-CHICAGO 
23 IIIW YORK-AI,BAIIY 32 PBTfBSBURG-DAYTOM 30 PE!TESBURG-ALBAMY 
33 RICHIIOlU)-BOBPOLK 44 ST LOUIS-KANSAS 35 ROCHEST-CHICAGO 

J4 RICHIIOlU)-RALBIGH 4S ST LOUIS-OKLAHOMA 40 SAlf PRARCISCO-LAS VEGAS 

LOnG HAUL 1lARKB'l ULTRA-LOIfG HAUL 1lARKB'l 

Idx REGION-PAIRS lcix REGION-PAIRS 

4 DALLAS-ATLANTA 16 MIAMI-LOS ANGELES 
5 DBlWBR-CLEYBLAIm 22 RBWORLEA.NS-LAS VBGAS 
6 DBTROIT-ATLUTA 2S IlEW YORK-DERYBR 

15 .~I-CIMClRilTI 29 PORTLAND-DAT·I·AS 
26 mnr YORK-D.lISAS 41 SAB PRAlfCISCO-OIlAHA 
31 Sd DIKGO-DBlfYBR 42 SAlt . PRAItCISCO-ST LOUIS 
41 WASHIBGTOlf-HOUS!ON 46 TUSCOR-CHICAGO 
48 .ASHIIG!OK-.I'~ 50 WASHIlfGTOB-POR'lLAlID 

URKftS and corresponding REGIOI-PAIRS fable 6.1b 

-...J 
\0 

I 
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MARKETS Cst LOS FARE BPI R2 SE .DW 

5.54 1.185 -.621 .)82 .82 .168 1.,1 
MONOPOLISTIC (.095) (.100) ( .041) 

• 
3.97 1.575 .547 .080 .83 .253 . 48 

COMPETITIVE ( .162) (.07.5) (.0.59) 

3.50 .382 .012 .377 .72 .243 .)8 
LOW DENSITY (.079 ) (.089 ) (.047 ) 

4.45 .996 -.065 -.216 .55 .183 1.32 
KED DENSITY (.094 ) ( .076) (.047 ) 

4.84 1.055 -.131 .048 .48 .170 .4.5 
HIGH DENSITY (.113 ) (.058 ) (.057 ) 

8.768 .781 -2.440 .703 ·90 .177 1 . .57 
ULTRA-LONG (.071 ) (.201) ( . 035) 

6.927 1.107 -1.408 .417 .61 .2.53 1.0.5 
LONG (.119) ( .238) ( .062) 

_,f 

5·380 1.212 -.502 .067 .67 .218 .64 
MEDIUM (.082) ( .385) (.064 ) 

5·557 1.398 -.560 .008 .86 .140 .51 
SHORT (.051) (.150 ) ( .037) 

2.863 .668 .920 .450 .88 .253 .89 
ULTRA-SHORT (.100) (.228) (.037) 

fOTAL MARKET 4·963 1.035 -.370 .433 ·74 ·317 .33 
(50RP) (.044) (.037) (.021 ) 

Table 6.2 

MARKETS AGGREGATION RESULTS 
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LOW DENSITY MARKET MED DENS ITY MARKET HIGH DENSITY MARKET 

SSR=6.380 SSR=3.620 SSR=3.120 

n=112 p=4 k=7 n=112 p=4 k=7 n=112 p=4 

Idx SSR· Idx SSR· Idx SSR· 
l. l. l. 

1 .091 3 .022 8 .049 
9 .148 17 .159 23 .031 

13 .161 12 .048 21 .025 
18 .238 19 .093 44 .021 

33 .077 28 .113 49 .084 
34 .049 31 .007 40 .042 

36 .073 32 .013 4 .013 

2SSR i=·8J7 - L SSRi=.45O ~SRi=.265 

F=2~.18 F=23.32 F=37·71 

CHOW TEST FORMULA F= 
(SSR- ESRi )/P(k-1) 

ZSSRi/(n-Pk) 

CHOW TEST COMPUTATIONS 

k=7 

SSR = sum of squares of residuals of the total market 
SSRi = sum of squares of residua1s of the Region-pair i 
p = number of estimated parameters(including constant) 
n = total number of observations 
k = number of subsamples (i.e, Region-pairs) 
Idx = index of the Region-pair 

Table 6., 
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MONOPOLISTIC MARKET COMPETITIVE MARKET 

SSR=3.050 SSR=6.910 

n=112 p=4 k=7 n=112 p=4 k=7 

Idx SSR· l. Idx SSRi 
2 .245 8 .049 

3 .022 10 .048 

.5 .1.56 13 .161 
6 .042 14 .067 
9 .148 18 .238 

26 .0.52 20 .008 
27 .0.50 31 .007 

~SRi=·715 ~SRi=·.578 

F=11.43 F=38.34 

CHOW TEST COMPUTATIONS 

Table 6.4 



~ 
,~ 
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ULTRA-SHQRT HAUL SHORT HAUL MEDIUM HAUL LONG HAUL ULTRA-LONG HAUL 
MARKET MARKET MARKET MARKET !ARKET 

SSR=7.937 SSR=2.470 SSR=5.890 SSR=7·937 SSR=3.885 

n=128 p=4 k=8 n=128 p=4 k=8 n=128 p=4 k=8 n=128 p=4 k=8 n=128 p=4 k=8 

Idx SSRi Idx SSR. 
1 

Idx SSR. 
1 

Idx SSR. 
1 

Idx SSR. 
1 

8 .049 2 .245 3 .022 4 .013 16 .069 
9 .148 12 .048 11 .029 5 .156 22 .028 

13 .161 19 .093 14 .067 6 .042 25 .071 
17 .159 21 .025 20 .008 15 .028 29 .066 
18 .238 31 .007 27 .050 26 .052 41 .O~ 

Q) 
\.0) 

23 .031 32 .013 30 .026 37 1.000 42 .110 
33 .077 44 .021 35 .050 47 .048 46 .150 
34 .049 45 .209 40 .042 48 .021 50 .052 

ESRi =·912 ~SRi=·9.17 2!BRi =·294 l!SRi =1.360 ESR i =·2J4 

F=26.4l F=9.17 F=65.29 F=16.58 Ft::53.49 

CHOW TEST COMPUTATIONS Table 6.5 
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CHAPl'ER 7 

NEW MARKET DEFINITION & SPECIFICATION 

7.1 BUSINESS/LEISURE AGGREGATION 

By their socioeconomic, geographic, and touristic 
characteristics, cities have different degrees of at­
tractiveness for travelers. While cities, like Las 
Vegas, Miami, New Orleans are likely to be more attrac­
tive for tourists, on the contrary, cities like Houston, 
Seatle, Boston are probably mo~attractive for business 
trave1ers. 

In order to outline these different characteristics, 
cities were grouped into three broad categories. Indus­
trial, trade centers, and recreational. Whereas for 
many cities, it is not easy to decide which category 
they belong to, others are easy to classify under these 
three headings. 

Industrial 

Detroit 
Cleveland 
st Louis 

Boston 
Seattle 

Kansas City' 
Houston 

Trade Centers 

New York 
Chicago 
Dallas 

Washington 
Atlanta 

Recreational 

San Francisco 
Denver 

New Orleans 
Miami 

Las Vegas 

Given this classification, it is. not unreasonable to 
assume that routes between the two first groups· and the 
third one are mostly leisure, while routes between the 
two first groups are mainly business travelled. 

In order to test this assumption, two sets of 10 routes 
each were selected. .The first, called BSNS, involves 
routes between or within th~/first groups, and the 

two 
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second, named LESR includes routes between the third 
and the two first groups. The Regression analysis,ap­
plied to these sets, provides the following results. 

et LOS FARE BP! RG SE 

BSNS 5.02 1.377 -.379 .673 .88 .205 
(.089 ) (.065 ) ( .038) 

LESR .65 .689 -1.329 .554 .77 .229 
(.104 ) (.084 ) (.051 ) 

These results are interestingl 

1 - All the variables bear the correct sign, and are, 
according to their t ratio values, significant at 
more than 99% level of confidence. 

2 - The LOS and FARE variables are significantly dif­
ferent from one model to the other. 

3 - In BSNS model, not only has FARE variable coeffi­
cient the smallest magnitude compared to LOS and 
BP! variables coefficients; but it has also the 
lowest t value,i.e. the lowest significance. 
Since the demand appears FARE inelastic (-.379). 
and highly LOS elastic (1.377). we should admit 
that this market is most likely business oriented. 

4 - On the other hand, LESR model shows the opposite 
pattern, since FARE variable coefficient has the 
highest magnitude in absolute value (1.329), and 
the highest t ratio value, compared to LOS and BPI 
variables coefficients. Besides, LOS elasticity is 
less than 1. Therefore. this market shows a leisure 
characteristic, which confirms our previous assump­
tion. 

Having established this new classification businessjlei­
sure. we may need to test the homogeneity of each market 
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within this classification, by verifying whether each 
market is truly representative of its corresponding in­

dividual Region-pairs. As previously, a CHOW test was used. 

Once again, the results in Table 1.1 show that the two 
Aggregate markets are different from their correspond­
ing Region-pairs. 

What these CHOW tests, as well as those conducted earlier, 
indicate more than anything else, is the fact that one 
Aggregate equation is clearly inappropriate for explain­
ing the variation of demand in any individual market. 
These differences are outlined in the following section. 

7.2 ANALYSIS OF VARIABLES BY INDIVIDUAL ROUTES 

In order to get a more accurate picture of the differen­
ces that exist between behavidral equations of different 
routes, it is worth examining the individual Regression 
results of Tables.5.). 5.4, 5.5. 5.6 , summarized in 
Table 1.2 and Table 1.)· •• 

The strikingly heterogeneous nature of the markets ap­
pears clearly in these results. Four markets show no 
significant Regression relation at all, while others ex­
press a relationship based only on one variable (19 mar~ 
kets), or only on two variables (20 markets). Finally, 
only 7 markets have equations in which all the three 
variables are significant. 

LOS appears as the most frequently significant variable, 
since it is significant 36 times out of 50 (i.e, 72~)J 
while FARE and BPI variables are only significant 24 
times and 20 times respectively (i.e, 48% and 40%), 
and bear the counterintuitive sign 3 times and 19 times 
respectiv·ely (Le, 6% and 38%)· 

In general, the intra-market variances are more than 
14 times smaller than the variance generated by the 
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Aggregate equation. Indeed, the variance corresponding 
to the total Aggregate equation iSI (.)17) = .100 (see 
Table 6.2 ). The weighted variance corresponding to 
the intra-market iSI 

i=50 

Z 1=1 = .007 
50 

Where SE i is the standard error of the Regression i. 

This decrease in variance (.007 vs .100) indicates the 
advantage in terms of minimizing error that can be gain­
ed from a Disaggregation*. However, the results obtain­
ed by this Disaggregation are still not satisfactory, as 
manifested by the low frequency of the significance of 
the variables. 

The conclusion to be drawn,from these results!a~ wall as 
from the statistical deficiencies recalled earlierl 
Multicollinearity, Heteroscedasticity, Serial correla­
tion, is that an important factor is still missing. 
This may be due either to omitted variables or to a 
wrong specification in the MIT Model. 

Next section discusses the specification of this model, 
and suggests a new structure t a Simultaneous Equations 
model formulation. 

• Such a Disaggregation, however, is not always possible; 
particularly, when the observations by individual 
routes are not large enough to conduct meaningful 
Regressions, because of the low degree of freedom. This 
is the case of the MUlti-equation models to be develop­
ed in Part III with the UK Domestic Market. 
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BUSINESS MARKET LEISURE MARKET 

SSR=6.556 SSR=8.180 

n=160 p=4 k=10 n=160 p=4 k=10 

Idx SSR i Idx SSRi 
4 .. 156 5 .156 
6 .042 15 .028 
7 .148 16 .069 
8 .049 20 .008 

10 .048 21 .025 
24 .032 22 .028 
26 .052 39 .091 
44 .021 40 .042 
47 .048 41 .054 
49 .084 42 .IlIO 

ESRi =·680 ~SRi=·'11 

F=28.80 F=41.24 

CHOW TEST COMPUTATIONS 

fable 1.1 
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REGION-PAIR NUMBER OF 
INDEX LOS FARE BPI SIGNIFICANT VARIABLES 

1 * 0 
2 x 1 
3 x x x 3 
4 x x x 3 
5 x x x 3 
6 x x 2 

7 x * 1 
8 x * 1 
9 * x 1 

10 x x x 3 
11 x x 2 
12 x 1 
13 x x * 2 
14 x x 2 
15 x x x 3 
16 x 1 
17 * 0 
18 x * 1 
19 x * 1 
20 x x 2 

21 x x 2 
22 x 1 

23 x * 1 
24 x x * 2 

25 x x 2 

Table 7.2 

SIGNIFICANCE OF VARIABLES BY INDIVIDUAL ROUTES 

* variable with a wrong sign 

x signifioant variable at 9~ level of confidenoe 
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REGION-PAIR NUMBER OF 
INDEX LOS FARE BPI SIGNIFICANT VARIABLES 

26 x x * 2 
27 x x * 2 

28 x * 1 

29 x 1 
30 * * 0 

31 * 0 

32 x x * 2 
33 x 1 
34 x x 2 
35 x 1 
36 x x 2 
37 x 1 

38 x x 2 
39 x * 1 
40 x x 2' 

41 x x x 3 
42 x x 2 
43 x * 1 
44 x * 1 
45 x * 1 
46 x x * 2 

47 x x x 3 
48 x x 2 
49 x x 2 
50 x x 2 

Table 7.) 

SIGNIFICANCE OF VARIABLES BY INDIVIDUAL ROUTES 

* variable with a wrong sign 
x Significant variable at 9~ level of confidence 
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7.3 SIMULTANEOUS EQUATIONS MODEL 

As stated earlier, one major assumption for the validity 
of OLS (Ordinary Least Squares) is that the independent 
variables must be uncorrelated with the error term. 
This means that all independent variables must be truly 
exogenous. Otherwise, the coefficients obtained by the 
015 are biased and inconsistent. 

The FARE and BPI variables are not dependent upon Air 
travel demandJ since the fi~st one is fixed by the CAB 
(Civil Aeronautics Board), and the second one is a 
socioeconomic characteristic of the Region-pair. The 
level of service LOS is, however, dependent upon Air 
travel demand, since carriers would increase the number 
of flights and the level of service, if the demand in 
a given market were to increase. Hence, a two-way 
causality exists, and LOS is no longer a truly exogenous 
variable. In such case, the application of the Ordinary 
Least Squares is not appropriate. 

In order to get around this difficulty, a second equa­
tion, in which Los is the dependent variable is added 
to the model. The new formulation is as follows. 

D =~O +Pl LOS +~2 FARE +~3 BP! +f.l 

LOS =0{0 +0<1 D ..0(2 DIST + f,2 

Where the variables in logarithm have the same meaning 
as previouslYI and where DIST is the inter-distance 
between two regions in a Region-pair. 

To ~olve this Simultaneous Equations Model, a technique 
called 2515 (Two-Stage Least Squares) has been applied •. 
Since this technique as well as other Multi-equation 
calibration techniques are fully discussed later on, 
we provide, there-in-after, only a brief presentation 
of 2515. 
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This technique works in two stages as followsl 

- The first stage, consists in determining the reduced 
form of the model, the form in which the endogenous 
variables (demand and LOS) are expressed only in 
terms of exogenous variables,FARE, BPI, DISTANCE. 
Then, this reduced form is solved, using Ordinary 
Least Squares. For each observation, the values of 
exogenous variables are substituted to obtain "obser­
ved" values of D and LOS in the following equations, 

D = '6 10 + '6 11 FARE + '6 12 BPl + i 13 D IST 

LOS = '6 20 + '6 21 FARE + ~22 BPl + "6 23 DlST 

- The second stage, consists in performing the Ordinary 
Least Squares on the modified structural form, in 
which D and LOS variables are replaced by their 
values fitted in the first stage. 

Statistical Results 

Twelve models,corresponding to the following markets, 
have been calibrated in the new specification. 

Ultra-short 
Short 
Medium . 
Long 
Ultra-long 

Competitive 
Monopolistic 

Low Density 
Medium Density 
High Density 

BSNS 
LESR 

The results of these models are displayed in Table 1.4 • 

As a general observation LOS elasticity, assumed purged 
of any correlation with the error term, has systematic­
ally increased in the new formulation. 
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Apart from the variation in the magnitude of the coef­
ficients, the general conclusions are almost similar to 
those obtained by the authors in the single equation 
formulation. However, the following remarks should be 
retained: 

LOS elasticity increases from ultra-short to long 
haul, and decreases in ultra-long haul market; while 
it starts decreasing in long haul market in the ori­
ginal specification. 

- In Leisure Market, FARE elasticity is lower than LOS 
elasticity. 

Finally, the DW test reveals the existence of posi­
tive Serial Correlation in all the runs, except in 
Monopolistic, Medium density, Ultra-long haul and 
Long haul markets models. This means that important 
factors are still missing. 

In fact, one very important factor, the surface modes 
competition, is completely ignored in these models. 
Indeed, Air mode is treated as a totally independent 
mode, and no other substitute is assumed. However, while 
there are long distances transportation situations, where 
the multi-modal context becomes irrelevant, and where 
the Aircraft becomes the only feasible mode of transport, 
there are in turn, situations where surface modes are 
strongly c'ompetitive with Air mode. The ignorance of 
this factor may well be one of the reasons for the fail­
ure of these models, particularly, in ultra-short, short, 
medium haul markets. 

7.4 CONCLUSION 

The analysis of the MIT Model has been conducted under 
different anglesl 
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1. Validity of the statistical assumptions 

The original model manifests some departures from the 
necessary conditions for the application of the Ordin­
ary Least Squares, such as the non Normality of the 
residuals distribution, their non constant Variance, 
their Serial Correlation, and the Collinearity of the 
variables. 

2. Homogeneity of the markets 

A serie c of CHOW tests reveals that not only does the 
total Aggregate Market (50 RP) not constitute a homogen­
eous market, but also the classifications,by market dens­
ity, competition, length of haul, business/leisure, do 
not yield separate homogeneous markets. Moreover., the 
variances of the error terms are lower than those of the 
total Aggregate (50 RP). 

Besides, the analysis of the individual Region-pairs 
discloses the high variations of the elasticities from 
one region to another. 

What these findings, essentially, indicate is the fact 
that one Aggregate equation is clearly inappropriate for 
explaining the variation of the demand in any individual 
market. 

3. Model specification 

The behavioral equation of the original model suffers 
from a two-way causality effect, due to the dependency 
of LOS variable upon the demand, wbich engenders ,biased, 
inefficient and inconsistent coefficients. To overcome 
this difficulty. a second equation with the level of 
service as the dependent variable, has been .added to the 
model with the 2SLS technique as a means of calibration. 
The results. however, still show positive Serial Cor~ . 
relation. particularly, in medium, short, and ultra­
short haul markets models. This implies that some other 
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explanatory factor is still missing. 

Indeed, one major omission is the surface modes competi­
tion which is very strong in short distances, particular­
ly, the Air/Car competition. 

The main purpose of Part III is, precisely, the calibra­
tion of competition models formulated as Multi-equation 
models. The market involved in this modeling process 
is the Domestic UK Air and Rail Markets. 



. 
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MARKETS Cst LOS FARE BPI R2 SE 

6.05 1.495 -·791 .341 .81 .171 
MONOPOLISTIC (.187 ) ( .142) ( .048) 

-3.31 2.887 .503 -.288 .71 .323 
COMPETITIVE (.410 ) (.097) ( .124) 

5.64 1.615 -·554 .289 .72 .449 
LOW DENSITY (.370) ( . 227) (.080 ) 

5.62 3.034 .078 -.627 .69 .437 
MED DENSITY (1.420) ( .208) (.305) 

-5.61 -15.330 1.164 -.585 .73 2.490 
HIGH DENSITY (64.400 ) (5.160)(2.630) 

7.74 1.637 -1.627 .484 ·79 .255 
ULTRA LONG (.155) (.309 ) (.059) 

7.76 2.570 -1.288 .261 ·73 .372 
LONG (.282 ) (.349 ) (.094 ) 

5.32 1.917 -.083 -.120 .49 .143 
MEDIUM ( .130) (.480 ) (.083 ) 

5.67 1.619 -.511 -.029 .84 .185 
SHORT (.058) (.158) (.041 ) 

4.32 1.619 -.511 -.029 .84 .185 
ULTRA-SHORT (.058 ) ( .158) ( .041) 

4.52 2.23~ .385 .921 .80 .401 
BUSINESS ( .159) (.652 ) (.098) 

6·98 3.315 -.632 -.159 .79 .509 
LEISURE ( .529) ( • 225) (.172) 

fWO-STAGE LEAST SQUARES ESTIMATES ·1 DEMAND EQUATIONS 

fable 7.4 

DW 

1.86 

.42 

.54 

1.61 

.31 

2.35 

1.61 

.65 

.45 

.76 

.77 

.65 



Idx 

1 
2 

3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

·-
DENSITY COJlPETITION LENGTH OF HAUL 

REGION-PAIRS L • H MONO COIIP U-Sh Sh Md Lg U-Lg 

BINGHAMPTON-ALBANY x x x 

CINCINNATI-NASHVILLE x x x 

CINCINNATI-ATLANTA x x x 

DALLAS-ATLANTA x x x 
DENVER-CLEVELAND x x x 

DETROIT-ATLANTA x x x 
DETROIT-BOSTON x x x 
DETROIT-CLEVELAND x x x 

ERIE-DETROIT x x x 
HOUSTON-DETROIT x x x 

DALLAS-JACKS ON x x x 
LUBBOCK-DALLAS x x x 
LINCOLN-OMAHA x x x 
MENPHIS-KNOXVILLE x x x 
MIAMI-CINCINNATI x x x 

MIAMI-LOS ANGELES x x x 
MILWAUKEE-CHICAGO x x x 

REGION-PAIRS and corresponding CHARACTERISTICS 

TRIP PURPOSE 

BSNS LESR 

x 
x 

x 

x 
x 

X 

x 
x 

Table 7.5 

I 

I 

i 

I 

\() ...., 



DENSITY COMPETITION LENGTH OF HAUL 

Idx REGION-PAIRS L • H MONO COMP U-Sh Sh Md Lg 

18 MINOT-BISJlARK x x x 

19 MINNEAPOLIS-FARGO x x x 
20 NEWORLEANS-NTLANTA x x x 
21 NEWORLEANS-HOUSTON x x x 
22 NEWORLEANS-LAS VEGAS x x 
23 NEW YORK-ALBANY x x x 
24 NEW YORK-CHICAGO x x x 
25 NEW YORK-DENVER x x 
26 NEW YORK-KANSAS x x x 
27 OMAHA-CHICAGO x x x 
28 NORFOLK-PHILADELPHIA x x x 
ze PORTLAND-DALLAS x x 
30 PETTESBURG-ALBANY x x x 

31 PETTESBURG-CINCINNATI x x x 

32 PETTESBURG-DAYTON x x x 

33 RICHMOND-NORFOLK x x X 

J4 RICHMOND-RALEIGH x X x 

REGION-PAIRS and corresponding CHARACTERISTICS 

U-Lg 

x 

x 

TRIP PURPOSE 

BSNS LESR 

-

x 
x 
x 

x 

x 

-

Table 7.6 

'" (X) 



Idx 

'5 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

DENSITY COMPETITION LENGTH OF HAUL 

REGION-PAIRS L M H MONO COMP U-Sh Sh Md Lg U-Lg 

ROCHEST-CHICAGO x x x 
SAHREMENTO-RENO x x x 

SAN DIEGO-DENVER x x x 
SEATLE-DENVER x x x 

SEATLE-SAN DIEGO x x x 

SAN FRANCISCO-LAS VEG x x x 
SAN FRANCISCO-OMAHA x x x 
SAN FRANCISCO-ST LOYIS x x x 
ST LOUIS-DAYTON x x x 

ST LOUIS-KANSAS x x x 
ST LOUIS-OKLAHOMA x x x 
TUCSON-CHICAGO x x x 
WASHINGTON-HOUSTON x x x 
WASHINGTON-MIAMI x x x 
WASHINGTON-NEW YORK x x x 
WASHINGTON-PORTLAND x x x 

REGION-PAIRS and corresponding CHARACTERISTICS 

TRIP PURPOSE 

BSNS LESR 

, 

x 
x ! 

! 

x 
x 

x 

x 

x 

~.---. 

Table 1.1 

I 

\0 
\0 

I 



PART III 
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INTRODUCTION 

Part II provides an analysis of the MIT Model, and sug­
gests a Multi-equation specification structure for the 
original model. However, the ignorance of the Surface 
Modes Competition renders the short haul market results 
questionable. This part is aimed to bridge the gap by 
constructing several Modal Competition Models that es­
timate Air and Rail demands traffic over 7 Londoner 
routes. 

The purpose of this mode ling process is threefold : 

- To establish a behavioral relationship evaluating 
the traffic demand by each mode. 

- To relate this demand to some supply factors un­
der the control of the carrier, so as to emable 
him to act upon the demand through these control­
able factors. 

- To derive unbiased, more consistent, and more ef­
ficient structural estimates coefficients, re~ 
presenting level of service, fares, and income 
elasticities. 

Consequently, in order to meet the above objectives, ;; 
the present models have the following characteristics I 

- They are Modal Competition Models. 

- The demand, by each mode, is partly expressed as 
function of the frequency of services variable 
which is under the carrier control. 

- In order to combat the Simultaneous Equations 
Bias due to the two-way dependency supply/demand, 
the supply endogenous factors are expressed, in 
the supply equations, as dependent variables. 
2SLS and JSLS are applied as a means of calibra­
tion, so as to provide unbiased, more consistent, 
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and more efficient estimates coefficients. 

The restriction of the competition to the Air and Rail 
modes only is essentially dictated by data consideration 
problems. It was originally intended to conducted this 
model building in a pure Time Series analysis. However, 
due to the low degrees of freedom, consequent to the 
small sample data, and to the Multi-equation structure 
nature of the models, it was necessary to combine Cross­
sectional and Time Series data, so as to derive meaning­
ful elasticities. In order to achieve a reasonable 
data combination, an aggregation by length of haUl is 
undertaken. 

Nevertheless, pure Time Series models are also estimat­
ed for the 7 individual routes under study. This has 
been made possible by use of the Abstract Mode approach 
which has the advantage of increaSing substantially the 
degrees of freedom by aggregating data across modes for 
each route. 

Finally, pure Air travel demand models of two types are 
constructed : 

- Pure Air business travel demand over the OK Domes­
tic market. 

- Pure Air Time Series for 3 individual trunk routes. 

This model building process is set up throughout 9 chap­
ters summarized in the following I 

- The first, Chapter 8, begins with the definition 
of the catchments areas of the Airports and the 
Rail stations, considered in this study. It re­
views the sources of data, explains the methods 
of construction of the different variables and 
their underlying assumptions. 

- Chapter 9 draws a brief transportation economic 
analysis outlining the peculiarities of the 
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transport product and of the transportation ser­
vices industry. It lays out a theoretical demand 
and supply model in which the frequency of ser­
vices is included, not only in the demand equation 
as an important level of service factor explaining 
the demand, but also in the supp+y equation as a 
dependent variable expressing the level of supply. 
Furthermore, Rail fare, recognized as an endogen­
ous variable for both Air and Rail demands, is 
introduced in a fifth equation as function of 
these demands. 

- Chapter 10 explains the step by step procedure 
adopted in the course of modeling, selects a set 
of variables choosen among many candidates ones, 
and discusses the Multi-equation calibration 
techniques to be applied in the subsequent models. 

- Chapter 11 constitutes the most important part of 
this research. Six Aggregate Multi-equation 
Modal Competition Models are run over the period 
1968 - 1978 on the 7 following routes. 

London-Glasgow 
London-Edinburgh 
London-Newcastle 

London-Liverpool 

London- Manchester 
London-Birmingham 
London-Leeds 

Three structural formulations, among the six above, 
are selected on both theoretical consideration 
and statistical significance, and applied to the 
length of haul aggregation retained. This comes 
up with Long Haul and Shopt Haul markets models, 
and a detailled discussion of their results. 

- Chapter 12 selects the best formulation among 
the remaining three, and provides a statistical 
evaluation of the selected model by testing the 
validity of the assumptions underlying the 28LS 
and 3SLS. Finally, in order to measure the ac­
curacy of the forecast, an Ex post Forecast is 
simulated and its "estimates" compared to the 
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actual Air and Rail demands observations for the 
years 1976, 1977, 1978. 

- Chapter 13 runs 7 pure Time Series models in an 
Abstract Mode approach. 

- Chapter 14 conducts respectively a pure Air busi. 
ness demand model over the UK Domestic market, and 
three pure Air Time Series models over the period 
1961 - 1978, on the following trunk routes. 

London-Glasgow London-Edinburgh London-Belfast 

- Chapter 15 illustrates the application of these 
models. 

It should be emphasized at this point, that although 
these models are formulated as supply/demand models, 
our primary purpose remains the identification of the 
Air and Rail travel demand functions. The introduction 
of the supply and Rail fare equations is ess&ntially 
aimed to reduce as much as possible the Simultaneous 
Equations Bias, due to the dependency of the level Qf 
service and Rail fare variables on both Air and Rail 
demands. 

The Multi-equation structure adopted as well as the 
2S13 and )SLS techniques, by reducing to a certain 
extent this bias, yield less biased, mo~e consistent, 
and more efficient parameters than the ones that would 
have been obtained by OLS. 

Since these structural parameters are the ones expres­
sing the behavidral relationships between the demands 
on one hand and the level of service, fares, and 
incomes on the other, we focuss our analysis on the 
Structural Forms of the models rather than on their 

Reduced Forms. 
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CHAPTER 8 

DATA CONSTRUCTION 

8.1 CATCK~NT AREAS 

Recent moves, in Origin/Destination air passengers flows 
models, have come to consider the "Region Pairs" concept 
rather than the "City Pairs", because Airports are 
thought to attract demands from larger areas than their 
own cities [14J. The modeling process on a region 
basis, however, is highly dependent upon the quality and 
accuracy of the delineation of the regions themselves. 

The problem is even more complicated when one comes to 
model the competition between Air and Rail, since the 
passengers flows are assumed to originate in the same 
region and to end in the same other one for both modes. 

Although the problem is relatively simpler when the Rail 
stations are near to the Airports, in which case they 
belong to the catchment areas of their nearest Airports; 
there are situations where Rail stations are, somehow, 
equally distant from two Airports. This is, for instance, 
the case for Motherwell and Perth Rail stations in 
Scotland. In this case ITl) on table 8.1]. we have 
assumed that half rail traffic originating ( or ending) 
at these stations belongs to Glasgow Airport catchment 
area and half to Edinburgh Airport catchment area. 

On the other hand, Airports that are near to each other 
are considered as a unique Airport. Heathrow and 
Gatwick,for instance, are regarded as a unique Londonian 
Airport. This is also the case of Leeds and Bradford 
Airports. 

In the course of delineation of the catchment areas, we 
tried as much as possible to take account of existing 
administrative boundaries, such as standard planning 
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1977/78 1973/74 
- -

AIRPORTS RAIL 1974/75 1971/72 

STATIONS METROPOLITAN CONNURBATIONS 
COUNTIES 

Central London 
Guildford 
Brighton 

London Ashford 
Airport Canterbury Greater Greater 

(Heath + Chatham London London 
Gatw) Croydon 

Woking 
Slowgh 
Southend 

Birmingham west West 
Birmingham Wolverhampton Midlands Midlamds 

Liverpool 
Liverpool 
Southport Merseyside Merseyside 

Leeds 
Leeds Bradford \fIest V/est 

(Leeds/ Huddersfield Yorkshire Yorkshire 
Bradf) Wakefield 

P. Manchester 
Manchester Oxrd. Manch Greater 

Vic •. Manch Manchester * 
Newcastle Newcastle Tyne & Wear Tineside 

Glasgow 
.. (1) Motherwell Central Central 

Glasgow (1) Perth Clydeside Clyde~ide 

Port William 

Edinburgh 

Edinburgh 
(1) Motherwell 

Lothian (1) Perth * 
, . Kircaldy 

it Aberdeen Aberdeen G:rampian 
, . * 
* I Non available 'fable 8.1 
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regions, counties and connurbations. The advantage is 
that ~any socio-economic data are available at these 
levels (Inland Revenue Personal Income Surveys, Family 
Expenditures, Regional Statics, Registrar General's 
Annual Census of Population ... ). 

Note in passing, that regional boundaries changed over 
the period considered in this study which complicated 
the derivation of the desired data. Finally, the catch­
ment areas for Airports and Rail stations have been de­
fined as displayed in table 8.1 e. 

The two last columns of table 8.1 , indicate the catch­
ment areas represented by metropolitan counties in the 
1974-1978 period,and by the con1furbations in the 1971-
1974 period. The two first columns indicate the Air­
ports and the Rail stations corresponding to these catch­
ment areas. For instance, any passenger originating (or 
ending) at either Heathrow or Gatwick Airports, or at 
any Rail station in the first row is considered to be 
originating (or ending) in Greater London area. For 
simplicity, Airports and Rail stations in the same 
catchment area will have the same name, usually, the 
name of the Airport like Glasgow or Edinburgh; or the 
name of the main Airport like Leeds (instead of Leeds/ 
Bradford); or the group name like London Airports (or 
simply IJondon). for Heathrow and Gatwick. Therefore, in 
this study these Airports represent the catchment area 
they belong to (unless the opposite is stated). 

8.2 AIR DATA 

These data have been obtained from disparate sources. 

- Traffic passengers 

The main sources of these data have been the CAA Annual 
Statistics [4~ and surveys ~6J. The first has 
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provided annual domestic traffic passengers between the 
Airports considered for the period(1968-1978). Prior 
to this period, data for trunk routes (London-Glasgow, 
London-Edinburgh, London-Manchester, London-Belfast) 
have been taken from Edwa.rd Reports [47J. 

The ratios of business traffic figures have been derived 
from different CAA Surveys(1970, 1971/72, 1975/76) and 
from British Airways Inflights Surveys (1974, 1977, 1978). 
These ratios, applied to the total domestic traffic have 
yielded the business traffic for the corresponding 
periods on the following routes: 
London-Glasgow 1971, 1974, 1975, 1976, 1977, 1978. 
London-Edinburgh I 1971, 1974, 1975, 1976, 1977, 1978. 
London-Belfast 1974, 1975, 1976, 1977, 1978. 
London-Manchester I 1971, 1975. 
London-Aberdeen I 1975. 
London-Leeds • 1971, 
London-Liverpool • 1971, 
London-Newcastle I 

Belfast-Leeds I 

Belfast-Liverpool I 

Belfast-Manchester: 
Glasgow-Manchester. 1971, 

1976. 
1976. 
1976. 
1976. 
1976. 
1976. 
1976. 

The dependent variables corresponds to the two-way 
passengers traffic. 

- Air fares 

Air fare corresponds to the normal economy single fare 
taken from ABC GuidJ·ttor the period (1961-1978) for 
each route. In order to take account of the seasonal 
fare variations, the two months figures (April and 
October) of each year have been considered. These 
values have been deflated by the Consumer's Price Index 
(taken from National Income and Expenditures [49J ), in 
order to eliminate the inflation effect. The base year 
corresponds to 1975. 
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- Frequency of services 

The frequency of services, used in this study, corres­
ponds to the product of the number of flights offered 
in each direction between two Airports. It has been 
shown [14J that the product form was more appropriate 
than the sum, as the former more accurately measures 
the effect of substantial imbalance in the number of 
flights offered in the two directions. It seems logical 
that a route with 3 daily flights in each direction, for 
instance, is better served than with 1 flight in one 
direction and 5 in the other. The use of the sum of 
flights, ~s proxy for the level of service, would not 
measure this imbalance whereas the product does (the sum 
being equal for the two cases, but the products are 9 
for the first and 5 for the second). 

Furthermore, as the number of flights a day in each 
direction shows some variations from one day to another, 
the product considered has been the product of the week­
ly number of flights by direction derived from ABO Guide. 

- Time variable 

Trip time figures for the period (1961-1978) have also 
been taken from ABC Guide. They correspond to the trip 
time in each route. As time variable is to be analysed 
in a competing context, it appeared more appropriate to 
consider not only the flying time but also the waiting, 
access and egress times for each mode. 

For the purpose of this study, total trip time variable 
has been constructed by adding to the flying time the 
hypothetical following figures taken from Guwilliam [5oJ 
city centre - Airport time 

Loading time 
unloading time 

= 54 minutes for London 
= 30 minutes for other Airports 
= 30 minutes 
= 15 minutes 
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i.e, 120 minutes for London routes and 105 minutes for 
other routeS'. 

- IJoad factor 

This variable has been constructed by taking the ratio 
of seat/km available and seat/km used in the "scheduled 
services by UK Airlines" 1965-1975 and 1967-1977 ~lJ. 
The figures prior to 1965 have been taken from Edward 
Report. 

8.3 RAIL DATA 

All Rail data, except the "electrification" variable, 
have been provided by British Railways: 

- Traffic passengers between different Rail stations 
have been aggregated by catchment areas as explained 
earlier (two ways traffic). 

- The Rail frequency of service has also been expressed 
by the product of the weekly numbers of trains in each 
direction. 

- Trip time variable includes the. waiting time, but does 
not take account of any access or egress time; the as­
sumption being that Rail stations are usually in the 
city centre (or town centres). 

- Fare variable corresponds to the published single 
economy fare in each route. Again these values have 
been deflated by the consumer price index. 

-"Electrification" variable designed to measure the 
effect of the electrification is the ratio of the 
number of kilometres of electrified routes and the 
distance between them. These figures have been taken 
from CSO Annual Abstract of statistics 1979. (52] . 
. All the above data are available for the following 
routes for the period (1968-1978)1 
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London-Glsgow 
London-Manchester 
London-Leeds 

London-Edinburgh 
London-Birmingham 
London-Liverpool 

London-Newcastle 

8.4 INCOME VARIABLES 
[53J 

Derived trom Regional Statistics (1973 and 1979)/.these 
variables have been rather ditficult to construct be­
cause ot the changes in the administrative boundaries 
ot difterent regions. 

- per'sonal incomes betore tax and atter tax 

These variables have been set up tor the Airports in 
table 8.2 . In the tirst column is included the list 
ot the Airports concerned (except Aberdeen and BdinbUrgh). 
In columns 2 and 3 are comprised the corresponding catch­
ment areas. The income variables, tor ~hese catchment 
areas, are published in Regional Statistics tor the two 
periods 1977/78-1974/75 and 1973/74-1911/72 (except tor 
Jlanchester) . 

1977/18-1974/15 1973/74-1971/72 1970/71 
AIRPORTS METROPOLITAN C01qfuRBA!IONS -

COUNTIES 1967/68 

le.castle !yne A Wear Tyneside • 
Leeds • Yorkshire 1f Yorkshire • 

1)' 

Greater London London Greater 'London G London 
,irmingham west .id1ands west ~d1ands • 
anchester G llanchester • • , , Liverpool .erseyside .erseyside • , 

:; ":"> 

Glasgow Centr C1ydeside 
t 1 

centr Clydeside 
t 

"!o' ~ 

:. .. Ion available !able 8.2 
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Por the third period 1967/68-1970/71, the figures do not 
exist at Counties or Co~urbations levels (apart from 
Greater London), but still exist at regional levels. 
Therefore, the figures desired have been derived by 
comparing the figures for both Co~bations and Regions 
for the period 1971/72-1973/74 and applying the ratio of 
these figures to the period 1970/11-1961/68. For 
Manchester, the figures for the second and third periods 
have been derived from ratios computed in the first 
period. The planning regions considered for deriving 
these figures are shown, below, with their corresponding 
Airports. 

AIRPORTS PLANNING REGIOns 

Newcastle North 
Leeds Yorkshire • Humberside 

Birmingham West Midlands 
.. nchester North west 

Liverpool North West 
Glasgow Scotland 

Por Edinburgh·and Aberdeen, . the population figure., 
taken from Census Population 1911, have been compared 
to Glasgow population figures. Assuming that incomes 
are equally proportional to the populations in the.e 
three areas, income variables have been coaputed for 
Edinburgh and Aberdeen. 

- Gross~do ... tic product (GDr) and app per capita 

GDP figure. published in Regional Statistics (1913 and 
1919) are only on a re,ion level.!he figures corres­
ponding to the c~dment area. considered earlier, have 
been derived by comparing t~e income before tax 
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variables on a region level with those obtained on a 
county level, and extending the proportionality to the 
published GDP variable .• 

Por Edinburgh and Aberdeen, however, the Scotland GDP 
by head has been multiplied by their corresponding 
population. The assumption being that these two areas 
have the same GDP per capita as Scotland has. 

Pinally, the GDP per head has been forthwith taken from 
the published data by assuming that the Counties(or 
Co~urbations) have the same GDP per head as the stand­
ard Regions they belong to. 

All incomes variables, considered so far' before tax, 
after tax, GDP, GDP per head),have been deflated by the 
Index number of GDP (income based) £1915 • lOO, taken 
from National Income and Expenditures (1979). 

- Personal inCOmeS (before tax> by ranges of incomes 

!he process of constructing these variables has taken 
two stepss 
First, trom several personal incomes by ranees of inoomes 
figures for standard regions displayed in Regional Statis­
tics, the number of tax units corresponding to four 
ranges of inoo.es has been caloulated, 

people with incomes 
people with incomes 
people with inoomes 
people with incomes 

£1,000 
£1,000 - £2,000 
£2,000 - £5,000 
£5,000 

per year 
per year 
per year 

per year 

!hen, by taking the ratio of the population in the 
standard regions and the corresponding catchment areas, 
and assuming that the distribution of inco.es in a catch-
ment area is the same as the distribution of incomes in 
the standard regions it belongs to, the desired variable 
has been obtained. 



- 113 -

Finally, once all the income variables, described 
earlier (before tax, after tax, GDP. GDP head, range. 
of incomes), have been con~tructe4'for eachcstchment &rea, 
the income variables for each route are obtained by 
taking the product of the variables co~responding to 
the origin/Destination catchment areas. 

These routes are as followsl 

London-Glasgow 
London-Edinburgh 
London-Manchester 
London-Birmingham 
London-Leeds 
London-Liverpool 
London-Newcastle 
London-Belfast 
London-Aberdeen 

Belfast-Birmingham 
Belfast-Glasgow 
Belfast-Leeds 
Belfast-Liverpool 
Belfaat-Manchester 

Birminghaa-Edinburgh 
Birmingham-Glasgow 
Glasgow-lBnohester 

While Air data are available for all these 11 routes, 
Rail data are available for the first 1 London.~r routes 
only" Plots of the relevant variable. are displayed in 
the figure. numbered from 8.1 to 8.18 • 
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CHAPrER 9 

TRANSPORTATION ECONOMICS ANALYSIS 

In order to better understand the process of demand 
modeling in commercial transportation, it is important 
to draw a brief analysis 01 the economics of this 
industry. 

In general, the classical theories of Microeconomics are 
applioable to transportation economics. The law of 
supply and demand, and the concept of elasticity still 
hold. However. due to the transportation product at­
tributes and the peculiarities of this industry, the 
supply and demand of transport, as will be seen in thls 
chapter, show some differences with the classical theory. 

9.1 TRANSPORTATION DEMAND IS A DERIVED DEMANP 

The demand for travel is· not an end in itself. Travel­
ers are not buying any physical object which become. 
the ir property. The product they purchase is the 
servioe of their transportation from one point to an· 
other. This service is derived from what they oan 
achieve in being at the point of destination, either 
for business pUrpose or personal reasons. Therefore, 
unlike demand for traditional goods which is related to 
the good itself,travel'demand is very sensitive to the 
demand for the product at the point ot destination. 

9.2 TRANSPORTATION PlODUCT IS PlRISHtDLI 

The product of transportation is E'rishable, and in this 
respect is similar to a newspaper or a christmas tree. 
Unlike traditional goods. a seat mile~available in a . 
particular departure cannot be stocked to the next 



- 115 -

departure, if it has not been sold. It remains, however, 
that its cost is essentially the same for the carrier as 
if it has been purchased. 

Industries with storable goods do not encounter this 
problem, and can generally gear production to a steady 
output, relying on a store to act as a reservoir. As 
transportation services do not enjoy the freedom of 
being able to store surplus products, they must come to 
some decision about the level of supply to offer on the 
market. 

9.3 TRANSpoRTATION SERVICES ARE REGULATED 

In an ideal world of economists' perfect competition, 
there might be no need for government intervention in 
transportation policy. A perfectly functioning market 
could be left to determine the quality. the quantity 
and the price of transportation services, according to 
consumer preferences and subject to resources cons~ 
traints. Such an ideal does not exist, and the control 
of the government takes different aspects though vary­
ing from time to time, from mode to mode, and from 
country to country. 

9.3.1 Air transportation pricing regulation 

Airline industry is subject to a great deal of regula­
tion, and various reasons have been advanced for the 
degree of regulation that exists, namely the mainten­
ance of safety standards and the maintenance of public 
service requirements by ~voiding disruptive competition 

00· 
within the United States, Air fares are fixed by the 
CAB (Civil Aeronautics Board) which prescribes a piece-
wise linear concave function of intercity distance for 
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the standard coach fare. First class and discount fares 
are computed 801ely on the'basis of the percentage of 
the standards fares.. Thus, Air fares at a given point 
of time are function only of distance and independent 
of absolute consumer demand in the market and fluctua­
tions in this demand. That is why Air fare variable has 
always been considered by the modelers as an exogenous 
variable in Air demand models. 

Within the United Kingdom (Domestic routes including 
routes to the Channels Islands), the former ATLB (Air 
Transport Licensing Board) which has been replaced since 
by the CAA, consequently to the Civil Aviation Act 1911, 
used to determine, after a public hearing, the tarifrs to 
be charged. 

The Civil Aviation Act 1971 ,declares that it should be 
the main objective of the CAA to secure that British 
Airlines provide services which satisfy public demand 
at the lowest charges consistent with a high standard of 
safety and an economic return on investment. The sub­
sequent policy guidance, further required the CA! to 
secure tariffs that are rational, simple and enforceable 

[sSJ. 
9.).2 Rail pricing policy 

Railways in Britain, as in many other countries, have 
been subject to rigorous controls, both for their fare 
levels and the quantity, quality and nature of services 
provided. 

(.) According to Richard A IPpolito, in 1982 Air fares 
will no longer be regulated. 

( Journal of Transport Economics & policy) 
January 1981 
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During the fifties and the early sixties (1953-1961), 
Railways were under the authority of the Transport 
Tribunal which had power to set maximum fares. Under 
the 1962 Act, this was removed and Railways were allowed 
to charge fares which could cover their financial targets. 
The only remaining controls were over London fares. 

In theory, this left the Railw.ys free to pursue the 
policy of vigorous price discrimination for its services. 
discrimination between routes by times and by class of 
travel as they thought best. This evolution in Rail 
fares policy is of crucial importance in the analysis 
and the modeling of Air-Rail competition @7]. It 
means that since 1962, statistical estimation procedures 
would have to recognize that to evaluate Air demand 
function, with included Rail price Crosselasticities, 
might mean considering an unconstrained operator (Rail) 
and a constrained one (Air). There is, theretore, a 
possibility of obtaining "perverse" cross-price elastici­
ties*, since Railways have been, theoretically, able to 
react promptly within the year to any price change 
introduced by Air. 

In practice, as Gwilliam [so] pointed out, "it has taken 
a number of years for the steps away from a per mile 
fare structure to be taken". We will turn to this point 
when considering the Air/Rail competition. 

9.4 DEIAND FUNCTION 

As explained earlier, the classical demand approach 
~ores the characteristics or quality attributes of 
commodities and instead, treats them as uni-diaensional. 

-(* ) This will be explained in section 8.6.3 of this 
chapter. 
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The most important modification, introduced by Lancaster 
in his Consumer Behavior Theory [l~ , upon which are 
based our models, is that the consumer is regarded as 
deriving utility from characteristics or attributes. 

As will be seen in the Methodology approach chapter, a 
set of different Air and Rail demand equations are tested 
in order to identify the best relationship between the 
demand and the most relevant factors. The structural 
demand equation by each mode has been of the following 
type. 

D = f(NFL, FARES, INCOME) 

where. 
NFL • is the level of service of the mode in-

variably represented by the frequency of 
services variable. 

FARES • is the price of the trip represented 
either by the absolute fare of the mode or 
by.a relative fare( i.e, ratio of 2 fares). 

INCOME • is a measure of an income variable charac-
terising the region pair. 

Further discussion of these variables and the structur­
al relationship above will be provided later. 

9.5 SUPPLY FUNCTION 

Unlike classical economic models tor goods markets, the 
units used to measure the quantity of demand (passengers) 
are different from those designed to measure the quanti­
ty of supply. Indeed, since the transport product 1. 
only sold in batch, the unit of output for a scheduling 
process is a set of vehicle departure, called a flight 
(or simply departure for~ail.ode). 
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It is generally assumed that suppliers in transportation 
services are seeking to maximize their profit, although 
this is not necessarily true in the real world. British 
Railways aim, for instance, "is to meet the financial 
obligations imposed by PSO. (Public Service Obligation) 
and cash limits, and broadly within that objective to 
maximize passenger miles. They direct their pricing 
policy towards achieving this objective which is some­
what different from a purely commercial maximization of 
revenue" [s6] . 

Offering the maximum level of service. is not necessarily 
an optimum decision for a supplier. Thus, for a given 
demand function, there is an optimal number of flights 
(or departure for rail) that an operator can offer. 
Therefore, the supply function for any mode may have the 
following forml 

NFL • f( D, VARIA1UJ::S) 

Where I 
NFL f is the level of service variable 

desoribed earlier. 
VARIABLES I are other variables to be explalneG 

later on. 

9.6 APPLICATION TO THE STyPY 

We have drawn so far a brief analysis of the transporta­
tion services economics. We have first examined the 
attributes of the transportation product that distin­
guishes it from other common goods, and then analysed 

* a PSO is defined as an activity which a transport 
undertaking would not assume' to the same extent or 

under the same conditions if it were considering 
only its own commeroial interests ~J. 
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the demand and supply of transport and the difference 
they show with the traditional economic theory. 

Yet. for the application to our empirical models. we 
have to define some restrictive assumptions, mainly 
dictated by the unavailability of the data. 

Air mode supply function 

In order to select the best variables for the equation, 
a step by step procedure has been conducted. This 
procedure is largely explained in the methodology chapter. 
Note at present, that it uses the stepwise regression 
analysis as a means of selection of the best variables 
among a set of canditates ones. 

Earlier canditates variables to include with the demand 
variables in the supply equation NFL = f(D,VARIABLES) 
were. LF(Load factor) and capacity variables, 

IQ'~ • ~OD~l LFF2 CAPACl'ty'3 

However. the inclusion of LP variable poses an identifi­
cation problems indeed, for a given demand and aircraft 
capacity the LP is closely related to the frequency of 
service which means that there is a two-way dependency 
(i.e, LP is also an endogenous variable). Therefore, a 
third equation with LF as the dependent variable would 
have been necessary to introduce. This equation,that 
might have been called "operational equation", would 
have had, for instance, the following forml 

LP II:)S' 0 11 l(p;f2 CAPAC ITYo J 

In order to keep the problem manageable and to ovoid any 
two-way dependency in the supply equation NPL • f(D.VAR). 
it has been decided to include the past year load factor 
LP(_l) instead of the actual year load factor. In this 
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way, this variable is truly exogenous and no fear of bias 
exists. It even sounds theorttically better. it is 
reasonable tor an operator to supply flights for a given 
period, according to the load factor experienced during 
the last period. 

On the other hand, Aircraft Capacity variable, as seen 
from the data, shows no real variation. Therefore, it 
is considered constant and the definitive air supply. 
equation is as follows. 

NFL =~o Jl .)2 
where LF is the load factor of the past year (since there 
is no confusion, we write LP instead of LP(_l» 

Rail mode supply function 

Here again, the step by step' procedure for selecting the 
variables has been applied. Unfortunately, since Rail 
data do not contain anyLF or Capacity variables, other 
variables have been investigated. This necessarily leads 
to handle differently Rail and Air modes supply equations. 
This is not, however, of serious concern. All along this 
study many differences are being outlined between these 
modes, not only on their regulations such as their pric­
ing policy but also on their operational nature. 

Finally, by this step by step procedure the supply equa­
tion retained in the selection process is of the follow­
ing type, 

Where. 
D • is the Rail demand 
Time • is the Rail trip time 
ELEC I the electrification variable eXplained in the 

data section. 
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Both TIME and ELEC variables are expressions of the 
quality of service, since the more you improve the trip 
time the more you improve the quality of service, and 
equally the more you improve the electrification of the 
routes the more you improve the quality of service. 

Incidently, the idea of including such variables has been 
derived from a study conducted at KIT by Mathaisel & 
Tane ja in 1977 ~7J. The authors have developed an Air 
Quality of Service index through Principal Component 
Analysis, by considering the combination of 5 quality 
of service variables. However, their objective,contrar­
ily to ours, is not to construct a supply equation for 
use in a simultaneous equation model, but rather to 
design one factor which can be used as a proxy for the 
quality of service in a single equation model. Principal 
Component Analysis takes the 5 variables and makes a 
linear combination of them in such a manner that it 
captures as much of the total variation as possible. 
This combination, or principal component, serves as a 
proxy for their level of service variable. 

In conclusion, Air and Rail modes supply. equations re~ 
tained are as follows. 

where. 

NFL • n DA~l LP~2 
1 rO 

15 1 ~ 
NFL2 =(50 DR 1 TIME 2 ELEC 3 

NFLl and NFL2 • are respectively the Air and Rail 

DA and l)R 

LP 

TIME 
Em:C 

level of service variables. 
• respectively the Air and Rail 

d$lI&nds. 
• Air load factor (past period) 

• Rail trip time. 
t electrification variable. 
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Both TIME and ELEC variables are expressions of the 
quality of service, since the more you improve the trip 
time the more you improve the quality of service, and 
equally the more you improve the electrification of the 
routes the more you improve the quality of service. 

Therefore the aiT and rail modes suppl~ equations retained 
are as follows : 

wh.ere : 

NFL1 and NFL2 

DA and DR 

LF 
TIME 
ELEC 

LF~ 2 

02 
TIME 

1" ELEC 3 

are respectively the air and rail 
level of service variables. 
respectively the air and rail 
demands~ 

air load factor (past period) 
rail trip time. 
electrification variable. 
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Rail fare equation 

Up till now, we have defined the de-.nd and supply 
equations for both Air and Rail modes. Before introduc­
ing the fifth and last equation, let us return to the 
problem of "perverse" elasticity briefly mentioned when 
we have discussed the Railways fare policy. 

We have stated that after the 1962 act, Railways have _ 
been theoretically able to react promptly within the year 
to any price changes introduced by Airlines. 

Assume a decrease in Air fare Which induces an increase 
in Air demand and consequently a decrease in Rail d~mand. 
Although Air and Rail are not necessarily supplying at 
the same price, the effect would be to force Rail down 
its supply curve and perhaps to lower its price in turn. 
The observations in the regression would show an increase 
in Air demand and a decrease in Rail fare, leading there­
fore to a negative Rail cross fare elasticitYI 

Air fare \ Air dell8.rld) Rail demand \ Rail fare\ 

Thus. 
Rail fare • f ( DA,DR ) 

This means that while Air fare is still an exo~enous 
variable for the constrained operator (Air), Rail fare 
appears as an endogenous variable for both Air and ~ail 
modes. This endogenous nature will be established later 
on. 

9.7 BQUILIBBIUII 

We have, so far, defined Air and Rail demand equations, 
Air and Rail supply equations. and Rail fare equation. 



- 124 -

The equilibrium is,-therefore, defined by the following 
simultaneous equations model. 

1. DA = f(NFLl , FARES, INCOME) 

2. DR = f(NFL2 , FARES, INCOME) 

3. NFLl = f(DA.LF) 

4. NFL2 III f(DR,TIIlE2 , ELEC) 

s. FARE2 = f(DA.DR) 

FARE 1 = Exogenous 

In the literature review, we have analysed the .odal 
Competition models and discussed the different structures 
proposed by the modelers. 

Besides particular disadvantages characterising each 
type of models, they all suffer from a oommon problem 
as earlier stated. they oonsider only one aspect of the 
market, namely the demand for travel, generally ignoring 
the supply side. 

This omission has two negative consequences. 

- 'he first is a theoretioal aspect. The omission of 
the supply in the analysis of the market constitutes an 
important restriction to the analysis. Since demand 
and supply of goods and services are generally inter­
related in the real world, such a restriction may throw 
Some doubts on the consistency of the analysis. 

- The second is a statistical problem. The ignorance 
ot the supply influence on the demand might yield biased 
coefficients due to the two-way dependency between the 
demand and the variable expressing the SUpply. 
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9.8 ORIGINALITY OF THE STUDY 

Our model··departs f"rom all other models discussed so f"ar, 
overcomes some of" their drawbacks and has the f"ollowing 
advantages. 

- It is not restricted to the demand aspect only, but is 
also related to the supply side. This is achieved by 
the introduction of the frequency of services variable, 
not only in the demand equation as an important factor 
explaining the demand, but also in the service equation 
expressing the level of supply in response to changes in 
other variables. 

- By including the f"requency of" services f"actor as an 
expression of the level of service as well as of" supply, 
the policy maker is given the capability of acting upon 
the demand through this controlable factor. 

- It estimates the absolute value of traffic by each mode 
instead of only the share by mode and does not assume the 
constancy of total traffic, since it also allows the 
growth of traffic's modes independently to each other. 

- Instead of being independently (or recursively) estimat­
ed, the equations of this model are simultaneously 
calibrated. This simultaneity permits the feedback 
demand-supply, by allowing the variables to interact with 
each other across the equations. It also overcome the so 
oalled "Simultaneous Equations Bias", since the calibra­
tion is achieved by means of multi-equation techniques 
(2 stage least squares and 3 stage least squares) instead 
of the ordinary least squares. 

- Finally, the ooefficients obtained by such sophisticated 
techniques are less biased, more consistent and more ef­
ficient and therefore, more reliable than those obtainable 
by OLS regression. 
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CHAPrER 10 

MODAL COMPETITION MODELS STRUCTURE 

10.1 METHODOLOGY 

A critical step in developing models is the choice of 
the most suitable set of independent variables to in­
clude in the model. To keep the problem manageable, 
only a few variables should be included. First, because 
a large number of variables are expensive to maintain, 
update and store. Second, because a small number is 
easier to understand, to analyse and to forecast while 
a large number increases the probability of multicol­
linearity between them. 

Thus, the problem is not one of finding a set of explan­
atory variables that provides the utmost control for 
policy analysis. nor one of finding the set which best 
predicts the behavior of the dependent variable, but 
rather one of reducing the number of these variables to 
a minimum. 

For this purpose, a step by step procedure has been 
applied. It consists in adopting at an early stage, 
Stepwise Regression Analysis as a means of investigation. 
First, because of its low computer cost. Second, be­
cause it has the advantage of entering the variables 
one by one into the regression. At each step,the added 
variable is the one which makes the greatest reduction 
in the error sum of squares. Also, at each step, it 
shows the improvement induced by the new variable on 
the overall fit of the equation. It allows the detection 
of any mu1ticollinearity between the added variable and 
the already included ones, by comparing their standard 
errors, and therefore, permits the choice between the 
candidates variables. 
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Alternative model specifications have been evaluated in 
terms of magnitude of the estimated coefficients and 
their signs. Finally, after discarding options by this 
investigation procedure, the simultaneous estimations 
have been applied to the remaining specifications. The 
following section provides a good illustration of the 
first stage of this step by step approach. 

10.1.1 Variables selection 

- Income variable 

The candidate income variables collected in the data 
investigation process, GDP (Gross Domestic Product), 
GDPHEAD ( GDP per head), BFTAX ( Personal Income Before 
Tax), AFTAX ( Personal Income After Tax), cannot be , of 
course, included all together in the equation and a 
choice should be made in this preselection stage. 

It could be argued, since business demand is more sensi­
tive to the economic activity, that GDP might be a 
better explanatory variable whea modeling the business 
travel demand. Si.milarly, Personal Income' (before or 

be 
after Tax) might/a more relevant variable in a personal 
travel model, for the propensity to travel, for personal 
reasons, is generally related to the household incomes. 

Since data collected are not disaggregated by trip pur­
pose, there is no a priori reason why selecting one 
particular variable instead ot· another. Therefore, the 
selection choice has been based upon the statistical 
significance of each variable in the regression and its 
improvement on the overall fit of the equation. 

For the purpose of this selection, the following Air 
demand equation has been regressed on the 17 Regions­
Pairs, one by one over the period (1968-1978). 
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For each run, one particular income variable has been 
used. 

~ o<..x 0( 0( 
j =0<0 NFL 1 FARE 2 FARE 3{time)INCOME 4 INCOME 5{time)+~ Cl) 

where. 
Dij • demand between i and j 

NFL • frequency of services variable 

FARE • Air fare 

INCOME • income variable representing, at each run, 
one of the 4 income variables. GDP, GDPHEAD, 
BFTAX. AFTAX 

0(3 (time) • 0(3 Log time 

e>(' 5 (time) I 0<5 Log time 
where tmme is the clock time 
starting at the year zero. 

1960. 

The reason for the explicit inclusion of the clock time 
into the equation will be discussed later on. 

The analysis of the results of the 68 runs Cl? x 4) is 
summarized in Table 10.1 I Por each regression and 
each type of income correspond three values, the Multiple 
Regression Coefficient R, the F test and the index of 
the variables selected in the regression*. 

From Table 10.1 , it appears t.hat GDP is a better ex~ 
planatory variable than the other income variables. 
This, with regard to the R coefficient and I test that 
are almost higher with GDP than any other variable, 
except in London-Liverpool where GDPHlAD .odel has a 

(*) We retain the variables contained in the step a.fter 
~which one or more variables are not Significant. 
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COMPARISON BETVVEEN INCOME VARIABLES 

ROUTES BFTAX GDPHEAD GDP AFTAX 

R F NV R F NV R F NV R F NV 

LDN-GLS .74 13 1 .74 14 1 .77 16 1 .83 11 2 

LDN-EDB .96 125 1 .99 20 2 .99 234 2 .96 123 1 
LDN-MCH .70 11 1 .70 11 1 .70 11 1 .70 11 1 

LDN-BLF .80 20 1 .80 20 1 .88 11 2 .86 14 2 

LDN-BRM .90 40 1 .90 40 1 .93 27 1 ·90 40 1 

LDN-ABR .99 367 1 .99 352 1 ·99 339 1 .98 201 1 
" 

LDN-LDS .80 19 1 .93 18 3 ·90 21 2 .86 32 1 
LDN-LVP .65 8 1 .85 8 2 .81 6 2 .65 8 1 

tDN-NWC .95 50 2 ·92 60 1 .93 67 1 .96 57 2 

BLF-BRM .51 3 1 .51 3 1 .51 3 1 .64 3 2 

BLF-GLS .93 59 1 .93 29 4 .93 59 1 .93 59 1 

BLF-LDS .34 1 0 .72 2 0 .72 4 3 .23 1 0 

BLF-LVP .60 5 4 .70 4 2 ~87 5 4 .59 5 1 

BLF-MCH ·92 14 3 .88 31 1 .93 9 4 .93 31 2 

BRM-EDB ·91 12 3 ·97 19 5 .97 18 5 ·97 17 5 

BRM-GLS .87 7 3 ,.93 6 5 .94 7 5 .96 7 3 

GLS-MCH .89 15 2 .86 27 1 .86 27 1 .90 18 2 

T.O.H.V 2 7 3 6 4 5 9 8 7 7 5 5 

Table 10.1 

BFTAX I income before tax AFTAX I income after tax 

GDP I gross domestic product GDPHEAD t GDP per head 

NV I number of significant variables retained 

!.O.H.V I times occurences of highest values 
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greater R but where NFL variable has a very low t test, 
and in London-Newcastle where BFTAX and AFTAX Kodels 
have a greater R but a wrong sign in their NFL variable. 

Table 10.1 also shows that in GDP Model the number of 
significant variables, retained in the regression, is 
higher than elswhere, particularly in the Belfast­
Liverpool, Belfast-Manchester, Birmingham-Edinburgh. and 
Biraingham-Glasgow Models where almost all the variables 
are included and are very significant. 

The main conclusion is that while statistical tests (R 
and F) are very high in almost all the routes and the 
variables bear nearly always the right signs, the speci­
fied variables are not all together included in the 
equation. 

For the 9 first routes(i.e, Londonian routes) the only 
explanatory variables selected are either NPL (number 
of flights),or Income variable, or both, but there is 
no Fare variable in these models. On the contrary, for 
the remaining 8 routes, except Glasgow-Manchester, Fare 
variable. is systematically included either alone or with 
NPL and Income variables. 

Finally and curiously enough, the only selected variable 
in London-Aberdeen route is the INCOIE(Log time) variable 
with a high level of significanceand the highest R(-.99). 
This means that income elasticity is a logarithmioal 
function ot time. The selection of this unique variable 
may explain the drastic,·: growth of Air traffic, mainly 
due to the important economical expansion activity in 
Aberdeen (North Sea oil) during this decade. 

The reason for the explicit.i~clusion of the clock time 
into the equation (1) is whether or not Fare and Inoome 
elasticities vary with the time, To make it clearer, 
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take the logarithm of the demand so as to linearize the 
model. 

Log D = 0{ 0 + 0< 1 Log NFL +~ 2Log FARE + 0< 3Log time Log FARE 

+O<4Log INCOME ~5LOg time Log INCOME 

where the fare and income elasticities are respectively 
the following. 

and 

It could be argued that this functional form of the elas­
tioity is quite arbitrary, and there is no way, indeed. 
of refuting this argument on a theoretical ground. How­
ever, sinoe it is commonly admitted. in the literature. 
that the variation of this elasticity is very slow the 
logarithm form has been retained. 

Note also, that the separate inolusion in the equation 
of the two parts of the elasticities - constant parts 

0(2 and 0( 4' and variable partse( 2Log time and 0( SLog till.e -
allows the determination of the significance of each part 
onto the regression, such that each part might well be 
significant while the other might not (Both. of course, 
might or might not be simultaneously significant). 

It is at this.investigation stage that the stepwise re­
gression technique is of interest, since it introduces 
the variables one by one and permits the analysis at 
'each step. 

- Competition faotors 

~he competition between aodes could take ditferent foras. 
tares, frequency of services, trip time, oomfort,etc. 

Por the purpose of this study, the variables thought to 
be of importance in Air-Rail modes competition are, 
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apart from the own fares and frequencies of the modes, 
the following relative values. 

, 

where index 1 indicates Air mode, and index 2 Rail mode. 

Once again, stepwise regression technique has been used 
to identify the best variables to be selected, and the 
results correspond to the following model, run for all 
London routes combined (except London-Belfast and 
London-Aberdeen, for which there exist no Rail data). 

0< 0< 0< ( ) DA 0( . NFL 1 FARE 2 FARE 3 time 
= 0 ~ 1 1'(6 1 ~ 

FARE 5 TIME NFL 7 

( PARE~ ~ ~TlME~1 tNFL~ 
~ 

(INCOME) 9(time) + El 

The results are as follows. 

NFL1 I is always very highly significant 

FAREl I is always significant and always more 
PABEl s~gnificant than PAREl and PARE2 

(2) 

{ 

PAREl 

and I are either rejected from the equation 
FARE 13 (time) or not significant at all if included 

FARE2 I when included is significant 

The conclusions to be drawn from these results are. 

1 - The high significance of NFL variable is very import­
ant. .ost of Air models have neglected this supply 
factor ·as an iaportant factor explaining and deter­
mining travel demand. 
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2 - The ratio PAREl is a better explanatory variable 

PARE 2 
than FAREl and FARE2• This explaifts the importance 
of Air - Rail competition. It may also suggest that 
this relative fare is better perceived (from a 
traveler point of view) than the absolute fare dif­
ference. 

3 - FARE2 (i.e, Rail cross fare) appears to be a better 
explanatory variable than PAREl , since FAREl has been 
rejected while FARE, has been included. This cor­
robores the idea that Air mode may not be an 10-
dependent mode, but also a mode that is explained 
by.the cost of other sUbstitutes (e.g, Rail). 

However, one should, at this stage, investigate whether 
or not Rail fare is fixed independentlY to Air fare, for 
if it is not, it can no longer be considered as an 
exogenous variable in the Air demand equation. 

For the purpose of this investigation, PARE2 has been 
regressed upon Air and Rail demands in the following 
model. 

The results are as follows. 

Log FARE2 = -1.046 + .258 Log DA 
(.0145) 

R' = .83 SE = .06 

-.231 Log DR 
(.0128) 

P • 225.4 

The coefficients DA and DR are highly Significant with 
t values respectively equal tOI 17.75 and 18.10. R2 and 
P test are high. 

Therefore, one should admit that PARE, is a function of 
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Air demand,and consequently, is an endogenous variable 
with regard not only to Rail demand but also to Air 
demand. 

This constitutes a very important result, and its conse­
quence is that the introduction of FARE2 in Air demand 
equation might induce the so called "Simultaneous 
Equations Bias" due to the two-way dependency between 
Air demand and FARE2• 

Thus, a multi-equation structure is necessary, and the 
application of OLS ( ordinary least squares) as a means 
of calibration is no longer valid. 

- Fare and income elasticities analysis 

It appears, from the results of equation (2), that income 
variables. AFTAX, GDP, GDPHEAD. show an acceptable signi­
ficance but an independencY to the clock time, while 
BFTAX variable shows a high significance and a dependency 
upon time. Its elasticity is as follows. 

ELASTICITY = .527 -.05 Log (time) 

The coefficient of time is so small that it will take a 
long time befo~e this elasticity decreases significantly. 
For instance, it will take more than 128 years in order 
that this elasticity decreases by 2~. 

On the other hand, FARE elasticity shows no dependency 
with time. Therefore, we will not take account of any 
dependency on time of income or fare variables. 

In conclusion, the prese1ected variables in demand func­
tion at this stage of investigation are. 

NFL1 , NFL2 , FAREl , FARE2 , FAREl , GDP 

FARE2 



- 135 -

Since the potential explanatory variables have been 
selected and the necessity of a multi-equation struc­
ture has been recognized, we move to the next step. the 
multi-equation models. However, before doing so, we 
will first discuss the statistical problems brought up 
by such a structure. 

10.2 SIMULTANEOUS EQUATIONS BIAS 

It has been recorded, in chapter 4, that one major assump­
tion of the validity of OLS is that COV(Xi,t)= 0 Yi, 
which means that the explanatory variables Xi must be 
uncorrelated with the error term. A necessary condition, 
for COV(Xi'~)=O Vi, is that the variables Xi should be 
truly exogenous. When this condition is not satisfied, 
it arises what is called "Simultaneous Equation Bias", 
that is to say, that the equation belongs to a wider 
system of equations. Such system describes the relation­
ship among all the relevant variables. 

In our model the variables NPL1 , NPL2 , FARE 2 , included 
in the demand equation, are endogenous. Therefore, one 
should estimate the coet.ticients by a means of multi­
equation calibration techniques. For the purpose of 
this study, we have selected two of these techniques, 
namely 2SLS and 3SLS, that are briefly presented in the 
following section. 

10.3 STATISTICAL CALIBRATION TECHNIQUES 

The presentation of 2SLS and 3SLS below is taken from 
Koutsoyiannis [ 9] . 

Two stages least squares 

This method has been developed by Theil and independent­

ly by Basemann and aims, like other sillultaneous tech­
niques", at the elimination, as far as Possible, of the 
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Simultaneous Equations Bias. It boils down to the ap­
plication of 018 in two stages. 
- In the first stage, OLS is applied to the reduced form 
equations to obtain an estimate of the exact and the 
random components of the endogenous variables. 
- In the second stage, 018 is applied to the structural 
equations in which the endogenous variables in the right 
hand of the equations are replaced by their computed 
values found in the first stage. 

Assumptions of 2SLS 

They may be outlined as followsl 

I - The error term u of the original structural equations 
must satisfy the usual stochastic assumptions of zero 
mean, constant variance and zero covariance. 

2 - The error term v of the reduced form equations must 
satisfy the same above assumptions and must be in­
dependent of the exogenous variables of the whole 
structural model. 

3 - The explanatory variables are not perfectly multi­
collinear. 

4 - The specification of the model is assumed to be 
correct so far as the exogenous variables are con­
cerned(it is not neoessary to know the mathematical 
formulation of the whole system in all its details, 
but the exogenous variables of the system must be 
all known correctly). 

5 - The sample is assumed to be large. 

Provided that the above assumptions are satisfied, the 
2SLS are unbiased, consistent and efficient when the 

. samples get large. 
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Three stage least squares 

Developed by Zellner and Theil, 3SLS is a system method, 
that is, it is applied to all the equations of the model 
at the same time and gives estimates of all the para­
meters simultaneously (contrarily to the 2SLS). 

It utilizes more information than the single equation 
techniques (such as 2SL5), that is, it takes into ac­
count the entire structure of the model with all the res­
trictions that this structure imposes on the values of 
the parameters. 

In simultaneous equations models, it is almost certain 
that the random variable of any equation will be cor­
related with the random variable of other equations. 
This fact is ignored by single equation methods (such as 
25LS) • 

Of course, the computations of 3S18 are much more comp­
licated and the data requirements are enormous. While 
in 25LS we may use a small sample, since for each equa­
tion we use the same sample anew, in the 35LS all the 
parameters are estimated at the same time', so that the 
sample must contain more observations than the total 
number of parameters of the entire system. 

3SLS is a logical extension of Theills 2SLS and involves 
the application of least squares in three stages I 
- The first two stages are the same as 2S18, except that 
we deal with the reduced form of all the equations of 
the system. 
- The third stage involves the application of least 
squares to a set of transformed equations, in whch the 
transformation required is obtained from the reduced-form 
residuals of the previous stage. 

Assumptions of 3S18 

1 - The complete specification of the entire system is 
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correctly known (not only should we know the vari­
ables which appear in each equation, but also its 
mathematical form). 

2 - The random of each equation is serialy independent 
(no autocorrelation). 

3 - The random variables of the various relations of the 
system are contemporaneously dependent (if they are 
independent, the)SLS reduces to the 2818). However, 
as stated by Koutsoyiannis, taking account of the 
nature of economic phenomena and the simplifications 

which we adopt in specifying the econometric models, 
we may expect the uts to be contemporaneously cor­
related. That is, E(Ui Uj # 0), where i refers to 
the ith equation and j to the jth equation. 

As will be seen in our study. for various reasons, 
we include explicitly in the relationship only the 
most important explanatory variables leaving the 
influence of the other, less important, variables 
to be absorbed by the random variables of the rela­
tion. Therefore, it is inevitable that the u's of 
these relations are correlated and hence, the ap­
plication of JSLS is appropriate. The application 
of the 2SLS under these circumstances would ignore 
one part of the information included in the entire 
system,and the estimates of the parameters would be 
less efficient. 

4 - The system is overidentified. 

Inferences about structural-equation slopes 

Consider, the following structural equation having 
or more jointly dependent variables. 

two 

H J" 
Yl +[2 ~iYi +Li OK ZK ~ u (1 ) 

where the yts are jointly dependent, the Z's predeter-
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mined, u is disturbance and the ~ • s and ~. s are un.;. 
known.parameters. 'lbe parameters (2, equal to VAR(u) 
is also unknown. 

According to Christ Ga1 the following statistics (an­
alogous to the "t" ratios in single equation) have 
approximately (not exactly) the normal distribution. 

(2) !i~'i <r i) 
A "... 

K = 1 • J 

where ~ i and ~ K are the estimators of equati~ (1) A 

calibrated with a multi-equation technique. ~i andtK 
are only approximately normal (not exactly). The~'s 
are estimators of the approximate (not the exact) stan- I 

dard deviations of ~. sand 1· s and the \\ ~ presumably 
have the ~2 distribution, only approximately at best. 

According to Christ, the appropriate degree of freedom 
for the approximate distribution (2) is not clear. lost 
pra\i~tioners use the sample size diminished by the 
number of unknown parameters in the equation (i.e, 
T - H + 1 - J) in analogy to the correct number tor 
least squares estimation of a reduced form equation. 

Goodness of fit of structural equations 

Consider_ the calculated residuals and values of 11 in 
equation (1) as follows. 

~ • Ylt - Ylt • Ylt - t=: ~ i Yit -L 1?K ZKt (3) 

According to Christ, a statistic can be defined that 
estimates the variance of the structural disturbance by 

"" taking the ~an squares of the residuals Ut form (3). 
T ",,2 '6 2 • est. ~ 2 • 1 L . Ut 

T-H+I-J 1 
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One might think of a statistical analogous to the R2 
and defined as, 

1 - ,\"""T _ 2 
Ll (Ylt -: Yl ) 

However, whereas R2 must lie between 0 and 1 inclusive, 
Basmann has pointed out that the statistic discussed 

* 2 - 2 here can be negative, because Ut can exceed (Ylt-Yl ) 
and that can happen even when a correct model is being 
used. 

According to Christ, a statistic called Trace correlation, 
has been prpposed by Hooper,which measures the propor­
tion of the total variance of the jointly dependent 
variables as a group that is explained by the predeter­
mined variables as a group in a structural model. 

* This can be seen later, on some of our empirical 
models. 
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CHAPTER 11 

MULTI-EQUATION MODELS BUILDING 

As stated earlier on, it was originally intended to 
conduct this study in a pure Time Series data. Such an 
analysis, by region pairs market, would indeed take ac­
count of the peculiarities of different routes. We 
already have outlined in Part 11 the disadvantages of 
the aggregation process, and shown that an aggregate 
equation was clearly inappropriate for describing the 
variation of demand in routes with different charac­
teristics. 

However, due to the small sample data and the multi­
equation structure nature of our models,which lowers 
even more the degree of freedom*, it became necessary 
to combine Cross-sectional and Time Series data,in 
order to derive meaningful elasticities. 

Indeed, when the degree' of freedom is too low, the coef­
ficients are not reliable, particularly with 2SLS and 
3SLS, which require a large number of observations. 
According to Pindyck [13J • the knowledge about the 
properties of multi-equation estimators relates to 
large samples. but little is known about the small 
samples properties of these estimators. 

In order to aChieve a reasonable compromise between the 
usefulness of a disaggregation by region pairs, which 
would take account of the peculiarities of the indivi­
dual routes and the imperative necessity of ensuring a 

• The degree of freedom,ina mUlti-equation calibration 
technique, is not only dependent on the number of pre-

determined variables but also on the number of 
equations. 
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reasonable degree of freedom, pooling up data, by length 
of haul, has been retained. Various other types of ag­
gregations have been shown in the US market (Part 11). 
but the lack of data and the low number of routes have 
not allowed other aggregations. 

In fact, besides its traditional use in Air travel 
demand analysis, the length of haul aggregation does 
sound reasonable in Air/Surface Modes Competition. 
It is commonly admitted by the analysts that such 
competition is stronger in short distances than in very 
long ones where the aircraft may become almost the only 
feasible means of-- transport. 

Defining short, medium and long distances does always 
bear some arbitrariness. But, since the purpose of this 
delimitation is the analysis of the Air-Rail competition, 
such delimitation should be the one which best reflects 
the modal split. 

[59] 
According to a study/conducted by Southampton's Univer­
sity, the major modes of transport are Road up to 
175 km, Rail between 175 km and J75 ka, and Air above 
375 km. Incidently, our restriction of Air/Surface 
Modes Competition to the Bimodes Air/Rail one.seems to 
derive an interesting empirical support from the 
Southampton's findings, since the routes considered in 
this analysis are all longer than 175 km. Accordingly, 

_ the main modes to consider for these routes are Air or 
Rail. 

Finally, taking the range of 375 km as a reasonable 
limitation between shorter and longer routes, the 7 
routes are aggregated as followSI 

L05 ROUtES 
( 375 km ) 

London-Glasgow 
London-Edinburgh 
London-Newoastle 

548 km 
540 km 
440 km 



SHORT ROUTES 
( 375 km ) 
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London-Birmingham 180 km 

London-Manchester 260 km 
London-Liverpool 280 km 
London-Leeds 290 km 

11.1 POOLED MODELS 

The starting point in the multi-equation modeling 
process has been the following model. 

DA =0(0 + 0<'1 NFLl + o{2 FAREl + 0('3 FAUZ +0(4 GDP + tl 

DR =~O + ~l NFLZ + ~z FAREl + ~3 PAREZ +~4 GDP + t-z 

NPLl =="6 t) + '11 DA + '6 z LP + £ 3 

NPL2 = f 0 + ~l 'D~ + f2 TIlE + f3 ELEC 

FARE2 == eo + el DA + e 2 DR 

Where the variables in Logarithm are as previously 
defined. This model corresponds to the total pooled 
model, aggregated across the 7 routes over the period 
1968 - 1978 (i.e, 11 years - 77 observations). 

The initial r"esul ts (not displayed ) showed perverse 
cross-elasticities, most likely due to the collinearity 
between fares variables illustrated in the correlation 
matrix below by their mutual correlation factor. In­
deed, the value (.894) of this factor is higher than 
the partial correlation values of both fares with both 
demands which may indicate the existence of a strong 
collinearity. When multi-collinearity is serious, it 
is difficult if not impossible to disentangle the 
separate influences of each variable. It is then im­
possible to estimate the separate effects of each vari­
able. 
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Therefore, it appears reasonable to ovoid the inclusion 
of the two variables in the same equation. and the 
following modifications were introduced in the demand 
equations (ignoring the intercept and the random term 
in each equation, for simplicity). 

MODEL 1 

MODEL 2 

MODEL J 

MODEL 4 

MODEL 5 

= 1 NFLl + Z FAREl + 3 GDP 5 DA 

lDR = 1 NFLZ + Z PAREZ + 3 GDP 

{ 

DA = 1 NFLl + Z FAREl + 3 GDP 

DR = 1 NFL2 + Z ~l + 3 GDP 
FAREz 

DA· 1 NFLl + Z FAREl + 3 GDP 
PAREz 

DR = 1 NFLZ + Z FARE2 + J GDP 

-L + FAREl + GDP 1 ~r 1 Z 3 
FARE 2 

{

DA = 

DR· 1 NFLZ + Z FAREl + 3 GDP 
FAREZ 

DA = 1 NPLl + Z FAREl + 3 GDP 
FAREz 

DR· 1 NFLZ + Z TlMEl + 3 GDP 
TIDz 

{ 

DA· 1 NFLl + 

.ODEL 6 

DR = 1 NFLZ + 

Z TIBl + 
TIllEz 
TIlEl + 

Z 

3 GDP 

3 GDP 
TIJlEZ 
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All the other equations remained unchanged, except in 
Models 4 and 5 where FARE2 equation is formulated as 
follows. 

FARE 
_--=1 =- t 1 DA + ~ 2 DR 
FARE 2 

(ignoring the intercept and the random term) 

Finally, in Model 6,FARE2 equation is not included at 
all, since this variable has been removed from demand 
equations. The results are displayed on the tables 
numbered from 11.1 to 11.6. 

Corre1atjon Matrix 

DA DR NFLl NFL2 FARE 2 FARE 1 GDP 

1.000 .425 .961 .230 .475 -.275 .414 
1.000 .347 .845 -.498 .646 .903 

1.000 .121 .491 .340 .356 
1.000 -.504 -.619 .316 

1.000 .8~ -.449 
1.000 -.525 

1.000 

11.2 POOLED IQDELS. RESULTS AND DISCUSSIONS 

The six pooled models have been estimated by a means of 
two-stage least squares (2S15), and three-stage least 
squares (3S15) .. 

At this preselection stage of the most acceptable form, 
we first analyse the results in rather general terms. 
the main purpose being the identification of the 
Common characteristics of these models, their overall 
fit, and the elimination of the less satisfactory 
models. Then, the remaining oneS are analysed in 



EQ. DA 

NFLl 

FARE 1 

GDP 
Gst 

EQ. DR 

NFL2 

FARE 2 
GDP 
cst 

EQ. NFL1 

DA 
LF 
Gst 

EQ. NFL2 

DR 
TlME2 

ELEC 
Cst 

EQ. FARE2 

DA 
DR 
Cst 
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2SLS 

Goef Se t 

.692 .035 19.770 

-.262 .184 -1.420 

.011 .063 1.746 
-.109 

R2=.92 SE=.132 

-.176 .171 -.029 

-.951 .284 -.348 

1.366 .218 6.266 
-2.315 

R2=.76 SE=.265 

1.414 .054 26.180 
-1.660 .903 1.840 

2.822 

R2=.23 SE=.123 

.762 .081 9.407 
-1.011 .222 -4.554 

:3.078 .612 5.029 
4.328 

R2=.82 SE=.276 

.264 .016 16.500 
- .254 .013 -19.540 
-.999 

R2=.81 SE=.06J 

Table 11.1 

POOLED MODEL 1 

3SLS 

Goef Se t 

.688 .023 29.913 

-.095 .051 -1.863 

-.026 .020 -1.300 
.167 

R2=.21 SE=.lJ2 

-.498 .153 -3.255 

-1.479 .259 -5.714 

1.647 .199 8.291 
-2.701 

R2=.58 SE=.270 

1.473 .044 33.477 
-.323 .280 -1.153 

.306 

82=.92 SE=.201 

.707 .080 8.837 
-1.041 .220 -4.732 

3.643 .564 6.459 
4.909 

R2=.82 SE=.285 

.259 .016 16.187 
-.259 .013 19·92) 
-.972 

2 R =.81 SE=.068 

Se= stand. error ofCoe!. SE= stand. error of Equa. 



EQ. DA 

NFL1 

FARE 1 

GDP 
cst 

EQ. DR 

NFL2 

FARE 1 
FARE2 

GDP 
cst 

EQ. NFL1 

DA 
LF 
Cst 

EQ. NFL2 

DR 
TlME2 

ELEC 
Cst 

EQ. FARE2 

DA 
DR 
est 
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2SLS 

Coef Se t 

.725 .035 20.714 

-.394 .185 -2.130 

-.035 .064 -.547 
-.164 

2_ R -.22 SE=.12Z 

.348 .088 3.954 

-.854 .317 -2.694 

.802 .132 6.076 
-1.003 

R2=.86 SE=.206 

1.366 .051 26.784 
-2.106 .885 -2.380 
3.722 

R2=.92 SE=.122 

.787 .076 10.355 
~.961 .216 -4.449 

3.094 .612 5.055 
4.250 

R2=.82 SE=.2Z6 

.282 .015 18.800 
-.246 .013 -18.923 

-1.060 

B2=181 §E=.062 

Table 11.2· 

POOLED MODEL 2 

3SLS 

Coef Se t 

.734 .024 30.583 

-.200 .060 -3.333 

-.044 .021 -2.095 
.003 

2_ 
R -.21 SE=.142 

.383 .080 4.787 

-.881 .291 -3.027 

.741 .119 6.227 
-.916 

2_ 
R -.22 SE=.208 

1.392 .049 28.408 
-.604 .879 -.681 

.982 

R2=.93 SE=.196 

.815 .068 11.985 
-.896 .195 -4.595 

1.871 .590 3.171 
3.237 

2_ 8 R -. 1 SE=.283 

.285 .010 28.500 
-.248 .009 27.555 
3.237 

2 B =.81 SE=.06~ 



EQ. DA 

NFLl 

FARE 1 
FARE2 

GDP 
Cst 

EQ. DB 

NFLz 

FARE 2 
GDP 
Cst 

EQ. NFL1 

DA 
LF 
cst 

EQ. NFL2 

DR 
TlME2 

ELEC 
Cst 

EQ. FARE2 

DA 
DR 
Cst 
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2SLS 

Goef Se t 

.583 .018 32.889 

-.555 .172 -3.227 

-.107 .047 -2.276 
1.022 

82=.26 SE=.086 

.107 .028 3.821 

-.847 .070 -12.100 

.287 .037 7.757 

.604 

R2=.93 SE=.062 

1.365 .061 22.377 
-.600 .800 -.750 

.562 

R2=.94 SE=.164 

-1.069 .503 -2.125 
-3.103 .575 -5.397 

2.005 .574 3.509 
10.080 

R2=.77 SE=.210 

.174 .029 6.000 
-.441 .049 -9.000 
-.221 

B2=.20 ~1=·05!t 

Table 11.) 

POOLED MODEL J 

JSLS 

Goef Se t 

.613 .016 38.312 

-.195 .090 -2.167 

-.021 .024 -.875 
.531 

B2=·24 SE=.02~ 

.030 .023 1.304 

-1.037 .060 -17.283 

.292 .036 8.111 

.662 

R2=.90 SE=.OZl 

1.491 .054 27.611 
-.175 .420 -.417 
-.257 

R2=.94 SI-.164 

-.843 .470 -1.794 
-2.901 .543 -5.342 

1.908 .534 3.558 
9.230 

R2=.77 SE=.210 

.159 .028 5.678 
-.461 .048 -9.604 
-.128 

82=.82 §E=. O~~ 



EQ. DA 

NFL1 

FARE 1 
FARE 2 

GDP 
cst 

EQ. DR 

NFL 2 
FAREl 
FARE 2 

GDP 
Cst 

EQ. NFL1 

DA 
LF 
Cst 

EQ. NFL2 

DR 
TlME2 

ELEC 
Cst 

L FAREl 
FARE 2 

DA 
DR 
cst 
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2SLS 

Coef Se t 

.619 .032 19.344 

-.807 .600 -1.345 

.101 .035 2.886 

.238 

R2=.96 SE= .113 

-.400 .:318 -1.058 

4.563 2.430 1. 878 

1.868 .549 3.402 
-3.379 

R2=.15 SE=. 505 

1.422 .055 25.854 
-1.581 .906 -1.745 
2.661 

R2=.93 SE=.123 

.. 752 .082 9.171 
-1.;.033 .224 -4.612 

3.070 .612 5.016 
4.364 

R2=.82 SE=.276 

-.065 .014 -4.643 
.025 .012 2.083 
.343 

2_ 
R -.25 SE=. 0~8 

Table 11.4 

POOLED MODEL 4 

3SLS 

Coef Se t 

.642 .025 25.680 

-.657 .422 -1.557 

.031 .017 1.823 

.365 
2 R =.2Z SE=.112 

-.868 .247 -3.514 

9.053 1.480 6.117 

2.432 .388 6.268 
-4.816 

R
2* SE=.852 

1.486 .048 30.958 
-.064 .618 -.103 

.186 

82=.92 8E=.122 

.715 .081 8.827 
-1.024 .220 -4.654 

3.000 .567 5.291 
4.410 

R2=.82 SE=.2Z2 

-.059 .013 -4.538 
.028 .011 2.545 
.323 

2 
R: =.22 SE=.060 

* negative coef. 



Eg. DA 

NFLl 

FAREl 
FARE2 

GDP 
Cst 

EQ. DR 

NFL2 

TIMEl 
TlME2 

GDP 
cst 

EQ. NFLl 

DA 
LF 
Cst 

EQ. NFL2 

DR 
TIE2 

ELEC 
cst 

~ FARE1 
FARE2 

DA 
DR 
cst 
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2SLS 
Coef Se t 

.603 .024 25.125 

.117 .482 .243 

-.187 .073 -2.562 
1.060 

R2=.94 SE=.02° 

-.187 .064 -2.922 

1.570 .176 8.920 

.197 .052 3.788 
3.128 

R2=.87 SE=.080 

1.581 .483 3.273 
-.480 .798 -.601 

.316 

R2=.24 SE=.160 

~1.400 .542 -2.583 
-3.472 .619 -5.609 

1.850 .608 3.043 
11.140 

2 R =.74 SE=.220 

.034 .031 1.097 

.230 .053 4.340 
-.509 

B,2=.26 SE=.060 

Table 11.5 

POOLED MODEL 5 

3SLS 
Coef Se t 

.627 .020 31.350 

.232 .274 .847 

-.061 .035 -1.743 
.195 

82=.22 SE=.02~ 

-.148 .044 -3.364 

1.438 .125 11.504 

.241 .046 5.239 
3.560 

82=.86 SE-,085 

1.602 .053 30.245 
.058 .485 .119 
.285 

2_ 
R -.22 SB=.164 

-1.248 .477 -2.616 
-3.282 .553 -5.935 

2.863 .459 6.237 
11.760 

R2=.73 SI=.226 

.016 .030 .533 

.194 .048 4.042 
- • .540 

2 B =.26 SE=.06,2 



EQ. DA 

NFLl 

TIME1 
TIME2 

GDP 
cst 

EQ. DR 

NFL2 

TIME1 
TIME2 

GDP 
Cst 

EQ. NFL1 

DA 
LF 
cst 

EQ. NFL2 

DR 
TlME2 

ELEC 
Cst 
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2SLS 

Coef Se t 

.511 .073 7.001 

-.728 .365 1.994 

.373 .148 2.520 
-.665 

2_ 4 R -.9 SE=.121 

-1.026 .446 -2.300 

2.143 .789 2.716 

2.128 .463 4.596 
.531 

R2=.27 SE=.469 

1.424 .055 25.891 
-1.561 .906 -1.723 
2.620 

R
2=.9J SE=.19J 

.• 682 .081 8.419 
-1.175 .222 5.293 

3.024 .615 4.917 
4.600 

B2=.82 SE=.2ZZ 

Table 11.6 

POOLED MODEL 6 

* negative coeeffic1i-ent 

3SLS 

Coef Se t 

.552 .041 13.463 

-.548 .206 2.660 

.240 .080 3.000 
-.319 

2 B =·2J SE=.12J 

-1.560 .302 -5.165 

3.192 .570 5.600 

2.435 .348 6.997 
.472 

R2* SE=.635 

1.473 .049 30.061 
-.753 .547 -1.376 
1.040 

R
2=.93 SE=.194 

.638 .079 8.076 
-1.195 .217 -5.507 

2.514 .483 5.205 
4.355 

82=.81 SE=.2Z2 



- 152 -

greater details. and finally. applied to the length of 
haul market aggregation. 

The most striking result is that Air frequency of 
services elasticity is highly significant. bears the 
correct sign. and has a rather stable and reasonable 
value in all the following models. 

MODEL'S 
INDEX 1 2 3 4 5 6 

2SLS .692 .725 .583 .619 .603 .511 

3SLS .688 .734 .613 .642 .627 .552 

This result is very important, since it is in accord­
ance with the economic theory reviewed earlier. In 
particular, the fact that these values are ~l is 
interesting and shows that the demand vs freque'ncy 
curve is of the following expected form. 

D 

NPL 

This means that an increase in NPL induces an inorease 
less than proportional in traffio. In other wor ds, 
there is a diminishing retur.n of demand. 
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It is also interesting to note that fare variable" 
either absolute or relative, has the right sign in all 
Air demand equations, and is generally significant, 
except in Model 5 where it has neither significance nor 

correct sign. This result too, is consistent with 
the economic theory, since demand appears to be a de­
creasing function of fares. 

In Model 6 the variable TIMEl ' which replaces fare vari-

TIEz 
able, has also the expected sign and is significant. 
Its negative sign means that demand increases when the 
relative time decreases. However, income elasticity 
appears very low, or rather not significant at all, in 
Air demand equations. 

In Rail demand equations, NFLZ bears a wrong sign in 
most modes, which contradicts the economic theory, 
whereas fare variable, absolute or relative, as well as 
income variable seem to behave correctly. 

Finally, the supply equations appear to be reasonable. 
and this confirms the endogenous nature of NFLl and 
NPLZ as well as PARE2 • 

Now that we have commented these results in general 
terms, we should remove the models that Show either bad 
overall fit or are in contradition with the economic 

. theory. 

The first two models to be removed are Model 4 and 
Model 6, because of their bad fit in Rail demand equa­
tions. Their R2 coefficients. are, respectively, .15 
and .21 when using 2SLS. and are surprisingly negative. 
when using 3SLS. They also show systematic negative 

• The pOSSibility of negativetmultiple regression coef­
ficientNin multi-equation systems, has been disoussed 
in Chap. 10. 
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NFL2 coefficient in Rail demand equations which is in 
contradiction with the economic theory. 

The third model to be removed is the Modle 5, because 
it combines two defectS·"" it shows, like Model 4, a 
low fit in the fifth equation where R2 = .26 for both 
2SLS and 3SLS estimationsJ and a wrong sign for NFL2 
in Rail demand equations. 

The remaining models are, (1), (2), and (3) . Although 
some of their coefficients still bear incorrect sign, 
they all provide good overall fits with 2515 and 3515 
estimations. 

Therefore, the analysis will focus on these models 
which will be applied to the length of haul markets 
segmentation. However, before doing so, let us return 
to the results of these models,on the table. above, and 
compare Air and Rail medes throughout these results. 

The results show that Air and Rail modes are following 
different, if not oPPosite, patterns. As stated earli­
er, income elasticity appears very low, or rather not 
significant at all, in Air demand equations, while it 
is high and highly significant in all Rail demand equa­
tions. This elas ticity varies as follows, 

MODEL 1 MODEL 2 MODEL 3 

2S18 1.366 .802 .287 

3SLS 1.647 .741 .292 
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On the contrary, while the frequency of services vari­
able elasticity, in Rail equations, shows a low signifi­
cance, and even a wrong sign in Model 1; it shows a high 
significance and rather stable values in Air demands, 
as indicated below, 

MODEL 1 MODEL 2 MODEL 3 

2SLS .692 .725 .583 

3SLS .688 .734 .613 

Combining these results with the fact that fare elas­
ticity, absolute or relative, is systematically lower 
than the Air frequency elasticity, and higher than the 
Rail frequency elasticity, we may conclude that Air 
travel is a business and/or a high incomes users 
oriented market, while Rail travel is a personal and/or 
a low incomes users oriented market. 

This conclusion emerges from the utility maximization 
concept assumption. Travelers are assumed to choose 
the mode, the attributes of which maximize their 
utility functions. Since business travelers do not, 
generally have to bear the cost of their travel, they 
choose the mode that provides the highest level of 
service, caring a little about its fares. On the 
contrary, personal travelers attribute greater import­
ance to the trip cost than to the level of service. 
Similarly, high incomes travelers, comparatively to 
the low incomes ones, do generally accord higher 
importance ,to the level of service and lower one to 
the trip cost. 



- 156 -

Since the frequency of services, which is a measure of 
the level of service, is the most significant variable 
in the Air demand; and since fare and income are the 
most significant variables in Rail demand, the logical 
conclusion is that the Air mode is mainly selected by 
businessmen and/or high income users, whereas Rail mode 
by personal and/or low incomes travelers. 

11.3 LONG AND SHORT HAUL MODELS 

It is of great importanoe to the planner and the polioy 
maker to appreciate the orientation of the travel mar­
ket, according to the routes serviced by both Air and 
Rail modes, so as to achieve an efficient "fleet" 
scheduling, able to match the demand and ensure a profit­
able price' differentiation. 

The revenue, that a supplier is able to extract from 
travelers, depends upon its ability, in praotice, to 
disoriminate between them. The better he is able to 
discriminate, the more nearly will he be able to relate 
its actual revenue to what the market will bear. 

Later, we will discuss the applioation of these models 
to planning purposes. Before doing so, let us analyse 
the coefficients, derived from the length of haul ag­
gregation, and interpret their signification. The 
results, for long haul markets (Glasgow, Edingurgh, 
Newcastle), are displayed on the tables, 11.7. 11.8. and 
11.9. and for short haul markets (Birmingham, Manchester, 
Liverpool, Leeds), on the tables. 11.10, 11.11, 11.12. 

11.3.1 Air demand equation 

Frequeney of servioes variable 

In all three models. the frequency of services is the 
most powerful variable. in terms of statistical 
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significance, and bears the correct sign. It displays 
higher elasticity in short than in long haul markets, 
as shown below. 

2SLS )SLS 

MODEL 

INDEX 1 2 ) 1 2 ) 

SHORT .766 .789 .646 .766 .188 .6)9 

LONG .492 .484 .492 .502 .492 .489 

The fact that this elasticity is, systematioally, great­
er in short than in long haul markets, may well be dUe 
to the high ratio of business Air travelers, in short 
haul, who place the level of service at a high rank in 
their preferences scale. 

Fare variable 

Trip cost has been represented by the absolute Air fare, 
in Model 1 and Model 2a and by the relative Air fare/ 
Rail fare ratio, in Model ). 

In the three models, the fare variable coeffioient bears 
the correct sign, and is significant in short haul, but 
not in long haul markets (see below). Its significanoe, 
in short hauls, accounts for the travelers who may 
shift from one mode to the other, according to their 
relative fares a while its non significance, in long 
hauls, may suggest that little substitute to Air mode 
exists. This is of importance from an Airline point 
of view. It means that a decrease in the relative fare, 
in short hauls, induces an increase in demand, but an 
increase of it, in long hauls, may not cause a subs­
tantial decrease in the demand. 



Note, however, that such an increase in Air demand,does 
not necessarily mean, of course, an increase in the 
profit. One should balance the yield, induced by the 
additional demand against the loss experienced by lower­
ing the fare. 

2SLS 3SLS 

MODEL 
INDEX 1 2 3 1 2 3 

SHORT -.685 -.763 -.971 -.205 -.606 -.443 

LONG -.032 -.006 -.098 -.010 -.005 -011 

11.3.2 Rail demand equation 

Frequency of services variable 

Rail demand shows a quite opposite pattern to Air demand 
with respect to the frequency of services and fare 
variables. 

The Rail frequency of services coefficients are found 
highly significant in the three long haul models, and 
not signif icant at all (with even a wrong sign,) in 
short haul modelS. However, as Model 2 does not show 
a high goodness-of fit in the Rail demand equation. 
its results are less credible, and thus, the disoussion 
will focuss on the other two models. 

The non significance of the frequency variable, in short 
hauls, outlines its low rank in the travelers'prefer­
ences scale within this market. Its magnitude , al­
though significant in long haUls, remains low oompara­
tively to Air frequency of services in the following 
markets. 
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MODEL 1 MODEL 3 MODEL 1 MODEL 3 

RAIL .166 .168 .153 .163 

AIR .492 .492 .502 .489 

2SLS 3SLS 

Fare variable 

Rail fare variable turns out to be the most determina­
tive factor in Rail demand, in both short and long 
haul markets. Its elasticity, the highest in Rail 
demand equations,has the following valuesl 

MODEL 1 MODEL 3 MODEL 1 MODEL 3 

LONG -.959 -.927 -1.046 -.970 

SHORT -.952 -.730 -1.046 - .. '921 

2SLS 3SLS 

This elasticity seems to show almost the same magnitude 
in short and long haul markets. However, despite this 
similarity, the interpretation of these elasticities 
are quite different from one market to another. 

In fact, as explained earlier, the striking superiority 
of Air mode over surface modes is, significantly, re­
duced in short distances, because of the high propor­
tion of the ,ti~e spent on the take off, landing and 
operations ground in these routes. The shift, of the 
travelers, from one mode to the other is highly related 
to the relative fares, since FAREl , in Air demand 

FARE 2 
equation, shows an elasticity of -.971 and -.443 

( in 2SLS and 3SLS respect'ively). 
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On the contrary, since FAREl is not significantly dif-
FAREZ 

ferent from zero in Air equation, and since Rail fare 
is highly significant, one should admit that Rail 
demand is not very sensitive to Air fare, in long haul 
markets. 

Income variable GDP 

As explained earlier, the income variable GDP (Gross 
Domestic Product) shows different, if not opposite, 
patterns in the two demand equations. In~Rail equation, 
this variable is highly significant, in both long and 
short routes, and bears the correct sign; whereas in\~ 
Air equation, this variable shows neither significance 
nor a correct sign. 

MODEL 1 
AIR RAIL AIR RAIL 

SHORT -.293 .685 -.162 .505 

LONG .002 .298 .001 .)14 

2SLS 3SLS 

MODEL) 
AIR RAIL AIR RAIL 

SHORT -.048 .45) .068 .)00 

LONG -.003 .294 -.00) .551 

2SLS )SLS 

In conclusion, the analysis of these demand equations 
shows that. 

- The frequency of services variable NFLl is, in 
terms of significance, the most important ex­
planatory variable in Air demand. while fare 
and income variables are the most important ones. 
in Rail demand. 
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- Air travel demand is highly business and/or high 
incomes users oriented market, while Rail travel 
demand is highly personal and/or low incomes 
oriented one. 

Air and Rail modes compete on a fare basis, in 
short routes; but do not constitute a close sub­
stitute to each other in longer ones. 

- In short haul markets, a reduction in Air fare 
induces a rise in Air traffic, whereas, in long 
haul markets. an Air fare increase does not seem 
to cause a substantial loss in traffic. 

- An improvement of the level of service, in terms 
of frequencies, generates relatively more Air 
traffic but conversely less Rail traffic, in 
short than in long haul. 

11.3.3 Supply equations 

Air and Rail demand coefficients DA. DR 

The significance of Air and Rail demand coefficients, 
in the supp~y equations NFLl and NFLZ ' outlines their 
impact on the Air and Rail supply and the existe.nce of 
the two-way dependency between the demands and the 
frequency of services NFLl and NFLZ • 

However, whereas the Air demand coefficient DA is high 
and highly significant in all models, the Rail demand 
coefficient DR is significant only in short haul 
models, as shown next. 



- 162 -

2SLS - DA DR DA DR DA DR 

SHORT 1.635 1.900 1.582 1.901 1.073 1.915 

LONG 2.008 -.946* 2.016 -.953* 2.000 -1.078* 

.ann 1 MODEL 2 MODEL 3 

DA DR DA DR DA DR 

SHORT 1.568 2.037 1.550 2.298 1.180 2.117 

LONG 1·990 -.803* 2.024 -1.118* 2.040 -.998* 

MODEL 1 MODEL 2 MODEL 3 

* coefficient not significantly different from zero 

The value of DA coefficient,around 2, in long haul 
markets means that for a percentage increase in DA 
corresponds twice this percentage in the Air frequency 
increase. This figure is, however. lower in short 
haul (around 1.6). 

Once again. Rail mode seems to behave inversely to 
Air mode. Rail frequency of services is more sensi­
tive to the Rail demand variation, in short "than in 
long haul markets. 

Load factor 

The results shoW' no significance to the load factor 
variable except in Pooled Model 2. This is, probably, due 
to the inappropriate measurement of the LP variable, 

which is an average -value of the LP rec-orded thrOugh-
out all domestic routes. That is, probably, why it 

proves to be Significant only in a pooled model. 



- 163 -

Trip time and electrification variables 

In the Rail supply equation, the LF variable has not 
been included because the corresponding data are not 
available. Instead, trip time and electrification vari­
ables are introduced to allow the frequency of services 
variable to pick up their effect. Indeed, it seems 
reasonable to expect an increase in the frequency of 
services in anticipation of the demand induced by the 
trip time and electrification improvements. 

- Trip time ooefficient. appears quite stable, highly 
significant and bears the right sisn throughout the 
three models. It shows higher values in long than in 
short haul markets. which means that the variation in 
the frequency of services is relatively more sensitive 
in long routes than in short ones. 

2SLS 3SLS 

MODEL 
INDEX I 2 3 1 2 3 

", 

SHORT -.912 -.921 -.899 -.780 -.639 -.725 

LONG -4.734 -4.740 -4.850 -4.537 -4.750 -4.770 

It -is interesting to note that the simultaneous equations 
nature of these models permits the evaluation of Rail 
demand elasticity with respect to the trip time vari­
able. This can be achieved by considering the Rail 
demand and supply equations below. 

DR = ~ 0 + ~lNPL2 + ~2FARE2 + ~3GDP + £3 

NFL2 = f 0 + ('lDR + f2~IME2 + \ 3ELEC + f 4 

where. 
~ 1 I is the elasticity of DR with respect to NFL2 

(2\ I is the elasticity of NFL2 with respect to TlME2 
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Therefore, the elasticity of Rail demand DR with regard 
to TlME2 variable is given by the product I ~lf2 

The following are the derived values of TlME2 elasticity 
corresponding to the long haul markets. 

MODEL 1 MODEL 2 MODEL 3 

2SLS .786 -1.095 -.815 

3SLS .694 -1.211 -·777 

It is also interesting to note the consistency of the 
above elasticities with the trip time elasticities 
values, assumed by British Railways Board in their 
Traffic Passenger Model @oJ. These hypothetical 
values are the following I 

Lower 
-·70 

Standard 
-.85 

Upper 
-1.0 

- Electrification variable coefficient. the values of 
this coefficient are consistent with the previous as­
sumption that the frequency of services may be in­
creaaed in anticipation of the rise in the demand in­
duced by the electrification improvements of the routes. 
The coefficient of ELEC variable is, as expected, posi­
tive and highly significant in short routes. It shows, 
however, a slightly high magnitude (as displayed below) 
and a very low, if not inexistent, significance in long 
routes. 

MODEL 1 MODEL 2 MODEL 3 

2SLS 3.454 3.459 3.461 

3SLS 3.503 2.946 3.445 

Short haul markets 
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11.3.4 Rail fare variable equation I FARE2 =:f (DA,DR) 

In the fifth equation, Air and Rail demands coefficients 
are significant in almost all models. This confirms 
the endogenous nature of Rail fare with regard to Rail 
demand and the two-way dependency between Rail fare and 
Air demand. 

However, surprisingly enough, Rail fare seems to be in­
dependent of Rail demand in long haul models. 

In his attempt to test whether Air and Rail fares were 
simultaneously determined, Ellison [2~ posed the 
following reduced forms equations. 

where. 
P = price, D = number of passengers, Y = income, 
A and R 4esignating Air and Rail variables. 

He lan equation (1) and (2) on the London-Newcastle and 
London-Glasgow routes, for the period 1963 - 1965. The 
data was di~ided up into quarters and seasonal dummies(d) 
were included. The results for Newcastle were as 
follows. 

Log PA = .59 + .007Log DA - ,~04 Log DR - .05Log Y 
(.028) ( .20) (.;) ) 

+ .06Log dl + .08Log d2 + .0)Log d; 
(.002 ) (.006 ) (.001) 

R2 = .82 DW = 1.1 (; ) 
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Log PR = ).07 + .0lLog DA - .65Log Y - .04Log DR 
(.01) (.22 ) ( .1)) 

+ .06Log dl + .0)Log dZ + .OlLog d) 
(.01 ) (.04 ) (.05 ) 

2 R = .87 DW = 1.69 (4 ) 

From the above results, Ellison concluded that the 
simultaneity between Rail and Air fare was not shown to 
be significant, and therefore, Air and Rail fares could 
be used as exogenous variables, in the UK domestic 
routes, without fear of any bias. He then ran different 
models on 17 domestic routes using Air and Rail fares 
in the Air demand equation. 

This methodology calls for the following comments. 

~ First, the formulation of the reduced form with the 
endogenous variables, Air and Rail demands, on the 
right side of the equation does not seem to be clear. 

- Second, given the significant correlation that most 
li~ely exists between the demands and income variables, 
equation (3) and (4) could hardly provide unbiased coef­
ficients owing to the multicollinearity between these 
variables. ~herefore, the significance of these coef­
ficients are questionable. 

- Finally, the third and most crucial remark is that 
even if the test,conducted for London-Newcastle and 
London-Glasgow routes, were conclusive (i.e, that the 
simultaneity between Air and Rail fares exists), it 
would not necessarily mean that it should be alike for 
the other routes. In fact, London-Newcastle and 
London-Glasgow are both long routes, and the conclusions 
drawn from their results could hardly be extended to 
the short haul routes without appropriate tests. 
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The results obtained by Ellison, for the 7 models on 
the 17 domestic routes, were highly unstable and many 
perverse signs were recorded. Besides, the multiple 
regression coefficients R2 are drastically low. Out of 
106 coefficients R2 I 67 are lower than .20, 20 are 
betweem .20 and .)0 and 10 are between .)0 and .40; 

while the highest R2 among the remaining coefficients 
is .68. 

Ellison attributed the failure of these models to the 
exponential growth being an inaccurate assumption to 
make concerning the behavior of the trend on domestic 
routes. Then, he cut back the number of the routes to 
the most important ones. 

London-Glasgow 
London-Newcastle 

London-Manchester 
London-Edinburgh 

There is, however, no reason to believe that the failure 
of these models was due to the Simultaneous Equations 
Bias. Such bias, which might have been induced by the 
Simultaneity between Air and Rail fares, could not have, 
in fact, existed because most evidence showed that the 
Railways had not taken advantage of the pricing freedom, 
at least before 1968 which is beyond the forecast period 
considered by Ellison. 

With regard to these pricing policies, Gwilliam stated 
in "Economic and Transport Policy" 197). 
"In the sixties, the Railways management was guilty of 
a failure to take advantage of the pricing freedom 
conferred by the 1962 act. Not until after 1968 
PIB Report did market pricing for passenger journeys 
begin. NOW, the Railways have taken advantage of the 
freedom to price flows of traffic according to their 
demand elaSticity". 

This assertion explains why Air demand equations that 
include Rail fares could be considered without fear of 
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the Simultaneous Equations Bias, when using data prior 
to 1968 (as in Ellison models); but would well be af­
fected by this bias after 1968 as shown in the fifth 
equation of our models. 



EQ. DA 

NFLl 

FARE1 

GDP 
Cst 

Eg. DR 

NFL2 

FARE2 

GDP 
cst 

EQ. NFLl 

DA 
LF 
cst 

EQ. NFL2 

DR 

TlME2 

ELEC 
Cst 

EQ. FARE2 

DA 
DR 
Cst 

- 16, -

2SLS 

Coef Se t 

.492 .0)4 14.470 

-.0)2 .200 -.160 

.002 .049 .041 

.851 
2_ 6 R -.2 SE=.045 

.166 .0.22 7.545 

-.959 .156 -6.147 

.298 .041 7.268 

.243 
2 R =.83 SE=.043 

2.008 .078 25.74) 
-.474 .571 .830 
-.896 

B2=.22 SE=.021 

-.946 .538 -1.758 
-4.734 .586 -8.078 

1.073 .587 1.828 
10.280 

2 R =.87 SE=.142 

.203 .036 5.639 
-.011 .091 -.121 

-1.484 
2 B =.66 SI=·OJZ 

Table 11.7 

MODEL'l Long Haul 

3SLS 

Coef Se t 

.502 .017 29.529 

-.010 .025 -.040 

.001 .007 .143 

.8)6 

R2=.26 SE=.046 

.153 .022 6.954 

1.046 .154 6.792 

.314 .040 7.850 

.149 

82=.81 SE=.044 

1.990 .065 30.615 
-.102 .075 1.360 

-1.501 

R2=.26 S~=.022 

-.803 .513 -1.565 
-4.537 .563 -8.059 

.828 .555 1.492 
9.572 

B2=.86 SE=.1)8 

.205 .036 5.694 

.004 .091 .04) 
-1.509 

B2
=1 61 §E=.OJ2 
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NFL2 

FARE 1 
FARE 2 

GDP 
Cst 

EQ. NFL1 

DA 
LF 

cst 

EQ. NFL2 

OR 

TlME2 

ELEC 
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EQ. FARE2 

DA 
OR 
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2SLS 

Coef Se t 

.484 .0)) 14.667 

.006 .195 .0)1 

.009 .048 .187 

.888 
2_ 6 B -·2 SE=.04!2 

.231 .0)5 6.600 

.)57 .2)4 1.526 

.211 .054 ).907 
1.160 

R2=.65 SE=.061 

2.016 .078 25.846 
-.450 .571 -.788 
-.958 

B2=.96 SE=.091 

-.95) .523 -1.822 
-4.740 .579 -8.186 

1.071 .587 1.824 
10.)10 

R2=.85 SE=.143 

.20) .091 2.2)1 
-.028 .091 -.)08 

-1.4)0 
2_ 6 B -: 1 ~B=. 038 

Table 11.8 

MODEL 2 Long Haul 

)SLS 

Coef Se t 

.492 .015 )2.800 

-.005 .020 -.250 

.00) .006 .500 

.872 

R2=.26 SE=.04!2 

.255 .0)2 7.969 

.201 .175 1.148 

.218 .050 4.360 
1.086 

R2=.64 SE=.062 

2.024 .062 )2.645 
-.092 .076 -1.210 

-1.616 

R2=.96 SE=.092 

-1.118 .49) -2.268 
-4.750 .550 -8.6)6 

1.242 .523 2.)73 
10.890 

R2=.84 SE=.150 

.200 .0)6 5.555 

.016 .090 .178 
-1.550 

2 B =.61 SE=.OJ8 
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GDP 
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EQ. DR 

NFL2 

FARE 2 

GDP 
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DA 
LF 
cst 

EQ. NFL2 

DR 
TlME2 

ELEC 
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EQ. FARE2 
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2SLS 

Coef Se t 

.492 .021 23.428 

-.098 .153 -.640 

-.003 .048 -.062 
.916 

2_ 6 B -·2 SE=. 04~ 

.168 .022 7.636 

-.927 .157 -6.019 

.294 .041 7.171 

.279 
2 R =.83 SE=.043 

2.001 .079 25.316 
-.482 .571 -.844 
-.875 

2_ 6 R -.9 SE=.091 

-1.078 .583 -1.849 
:"4.850 .628 -7.723 

1.030 .610 1.688 
10.710 

2_ 8 R -. 5 SE=.148 

.205 .036 5.694 

.009 .090 .100 
-1.550 

R2=.61 SE=.038 

Table 11~9 

MODEL 3 Long Haul 

3SLS 

Coef Se t 

.489 .016 30.562 

-.011 .023 -.478 

-.003 .007 -.428 
.899 

2_ 6 R -.2 SE=. 04~ 

.163 .022 7.409 

-.970 .154 -6.299 

.300 .040 7.500 

.234 
2_ 8 R -. 2 SE=.044 

2.030 .066 30.757 
-.030 .090 -.333 

-1.770 
2 

R =.96 SE=.092 

-.998 .560 -1.782 
-4.770 .612 -7.794 

.663 .590 1.124 
10.150 

R2=.85 SE=.146 

.206 .036 5.722 

.010 .090 .111 
-1.550 

2 R =.61 SE=.038 



EQ. DA 

NFLl 

FARE 1 

GDP 
Cst 

Eg. DR 

NFL2 

FARE 2 

GDP 
cst 

EQ. NfL1 , 

DA 
LF 
cst 

EQ. NFL2 

DR 
TlME2 

ELEC 
cst 

EQ. FARE2 

DA 
DR 
cst 
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2SLS 

Coef Se t 

.766 .085 9·011 

-.685 .336 -2.039 

-.293 .185 -1.584 
.373 

R2=.82 SE=.124 

-.141 .104 -1.356 

-.952 .173 -5.503 

.685 .212 3.231 

.015 

R2=.66 SE=.068 

1.635 .109 15.165 
.763 1.383 .055 

-1.985 
2_ R -,92 SE=.125 

1.900 .299 6.354 
-.912 .293 -3.113 

3.454 .365 9~463 

.925 
2_ R -.92 SE=.101 

.184 .026 7.077 
-.704 .070 -10.057 
.587 

R2=.§2 SI=·042 

Table 11.10 

MODEL 1 Short Haul 

3SLS 

Coef Se t 

.698 .058 12.034 

-.205 .165 -1.242 

-.162 .076 -2.131 
.537 

R2=.82 SE=.112 

-.138 .080 -1.725 

-1.064 .1)4 . -7.940 

.505 .173 2.919 
.524 

R2=.59 SE=,024 

1.568 .087 18.023 
-.309 .526 -.587 

.072 
2_ R -.90 SE=.125 

2.037 .294 6.928 
-.780 - .290 -2.689 

3.503 .356 9.840 
.482 

R2=.91 SE=.103 

.145 .023 6.304 
-.784 .070 -11.200 

.920 

R2=.22 SI-.02J 



EQ. DA 

NFLl 

FAREl 

GDP 
est 

EQ. DR 

NFL2 

FARE 1 
FARE2 

GDP 
cst 

EQ. NFL1 

DA 
LP 

Cst 

EQ. NFL2 

DR 
TlME2 

ELEC 
Cst 

EQ. FARE2 

DA 
DR 
Cst 
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2SLS 

Coef Se t 

.789 .086 9.174 

-.763 .342 -2.231 

-.323 .190 -1.700 
.347 

82=.84 SE=.128 

.331 .062 5.339 

-.117 .242 - .483 

-.153 .158 -.968 
2.412 

R2=.61 SE=.07J 

1.582 .106 14.924 
.373 1.369 .272 

-1.178 

R2=.90 SE=.174 

1.901 .295 6.444 
-.911 .290 -3.141 

3.454 .364 9.489 
.922 

82=.92 SE=.101 

.206 .025 8.240 
-.670 .069 -9.710 

.429 
2 R" = 181 SE=.048 . 

Table 11.11 

MODEL 2 Short Haul 

3SLS 

Coef Se t 

.788 .057 13.824 

- .606 .140 -4.328 

-.217 .078 -2.782 
.107 

R2=.84 SE=.lJO 

.338 .055 6.145 

.142 .137 1.036 

-.129 .141 -.915 
2.219 

R2=.52 SE=.074 

1.550 .080 19.315 
.435 .489 .889 

-1.228 
2_ R -.90 SE=.175 

2.298 .278 8.266 
-.639 .277 -2.307 

2.946 .338 8.716 
-.802 

B2=.82 SE=.114 

.220 .024 9.167 
-.608 .067 9.075 

.210 

B2=.82 SE=.048 
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GDP 
Cst 

EQ. DR 

NFL2 

FARE2 

GDP 
cst 

EQ. NFLl 

DA 
LF 

cst 

EQ. NFL2 

DR 

TlME2 

ELEC 
cst 

EQ. FARE2 

DA 
DR 
Cst 
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2S1S 

Coef Se t 

.646 .036 17.944 

-.971 .349 -2.782 

-.048 .127 -.378 
.746 

2_ R -.91 SE=.103 

-.015 .082 -.183 

-.730 .135 5.407 

.453 .169 2.680 

.632 

R2=.74 SE=.058 

1.073 .114 9.412 
.305 1.407 .217 

-1.038 

R2=.92 SE=.174 

1.915 .297 6.448 
. -.899 .291 -3.089 

3.461 .365 9.482 
.878 

R2=·22 SE=.101 

.193 .026 7.423 
-.674 .069 -9.768 

.471 

B2:.8J §1=·048 

Table 11.12 

MODEL 3 Short Haul 

3S1S 

Coef Se t 

.639 .033 19.364 

-.443 .134 -3.306 

.068 .050 1.360 

.182 
2_ 8 R -. 2 SE=.106 

-.109 .070 -1.557 

-.921 .115 8.009 

.551 .153 3.601 

.414 

R2=.67 SE=.066 

1.180 .090 13.111 
-.237 .510 .465 
-.081 

82=.90 SE=.175 

2.117 .292 7.250 
-.725 .288 -2.517 

3.445 .359 9.596 
.166 

R2=.90 SE=.10~ 

.169 .025 6.760 
-.738 .068 -10.853 

.723 
2_ 8 B -. 1 SE=.O~O 
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CHAPTER 12 

SELECTION OF THE BEST SPECIFICATION 

12.1 MODEL SELECTION 

Models 1, 2, 3, displayed on the tables. 11.1;11.2,11.3. 
are the models remaining from the step by step modeling 
process after different forms and variables investiga­
tions. Although they are geneFa11y providing similar 
conclusions with regard to the mode competition and 
all showing reasonable statistical tests, it is. how­
ever, necessary at this stage to select the definitive 
model, for forecasting and analysis purposes. 

- Model 1 does not explicitly include any direct com­
petition factor, via a comparison of cost or service 
performance of the two modes, though the competition 
may well be indirectly involved through the last equa­
tion FARE2 = f(DA,DR). 

- Model 2.and Model 3 introduce explicitly a competi­
tion factor FARE I in their Air demand equation. 

FARE 2 
Model 3, however, systematically shows a better overall 
fit than Model 2 in all equations. So, Model 3 is 
preferable to Model 1 and Model 2. 

The introduction of FARE I variable in Model 3 does 

FARE 2 
not, comparatively to the formulation of Model I, alter 
drastically the coefficients . ~either in the demand ·or in 
the supplyequations. But, it does provide a better 
understanding, on a theorttical ground, than Model 1. 
It also improves significantly the statistical tests I 

2 R • SE. 

The significance of PAREl variable,in Model 3 retained, 
PARE 2 
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confirms the previous results. 

The existence of the competition in short haul, and 
its almost non existence in long haul. 

The fact that FAREl is not significant in long 

FARE2 

haul, neither in Air (Model 3) nor in Rail (Model 2) 
while FARE2 is highly significant only in Rail, 
suggests that,··in long haul, both Air and Rail are 
independent of the fare competition. It also 
implies that, in long routes, Rail attracts other 
than potential Air travelerst either strictly 
potential Rail or other surface mode. travelers. 

However, before declaring Model 3 as a definitive selec­
ted model, we felt it reasonable to find out whether or 
not it could be improved by altering the income vari-. 
able, since it displays a wrong sign in long haul. 
The following section analyses the introduction of a 
new variable. the range of incomes variable (RANKOM). 

12.2 RANGE OF INCOMES VARIABLE. 

The income variable GDP, selected up till now, does not 
take account of the population of the region pairs and 
the income distribution among them. Furthermore, it 
has often been argued that the propensity to travel is 
closely related to the traveler's range of incomes, and 
that Air travelers belong to the highest income brackets. 

In order to test the above assumptions, and thereby , 
to improve the selected model, the income variable GDP 
was replaced by socioeconomic variables that take into 
account the income distribution. These variables, named 
RANKOM have the following forml 

Yk Yk 
RANKOlll(i,j) = ~ (Xik Xjk ) 
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Where, 

Xik 11 people in range income k within city i (ex­
pressed in millions) 

Yk • the weighted average income in range income k 

with, 
Xil 11 people in range income , £ 1,000 per year 

Xi2 • people in range income £ 1,000 - £ 2,000 

XiJ 11 people in range income £ 2,000 - £ 5,000 

Xi4 11 people in range income ) £ 5,000 

Note, however, that in order to give greater weight to 
higher income travelers within the population, the 
power from has been selected instead of the multiplica-
tive one. i.et 

Yk Xik rather than 

Notice also that to qvoid excessive values for these 
powers, the variable, representing the population num­
ber in region i within the level ot income k, is expres­
sed in millions. 

Three models have been estimated with these new construc­
ted variables. 

- The first. model, introducing separately the variables 

Yk Yk 
( Xik X jk ) 

into the demand equation, was designed to measure the 
individual elasticity of each variable. The results 
(not displayed) showed perverse signs, and no signifi. 
cance to the coefficients. One of the reasons ot this 
failure, might be the inaccuracy of the aeasure.ent 
of the population within a given range of inco.es 
throughout the historical period. the inco.es being 
expressed on current values instead of constant ones. 
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- In order to reduce this drawback, a constant average 
income Yk was used and expressed on constant £(1915). 

Yl • £ 150 

Y2 = £ 1,500 

Y3 • £ 3.000 

Y4 • £ 1,000 

Furthermore, to prevent any potential malticollinearity 
between the variables 

a combination of them into a single variable has been 
retained. 

4 
~L( 

t=l 

The results of this model (not displayed) showed no 
significance to this variable, neither in Air nor in 
Rail demands. 

- In a third attempt, we considered only two ranges of 
incomes I 

- above £ 5,000 
- below £ 5,000 

in Air demand 
in Rail de.and 

This stipulation has the advantage of assigning high 
level incomes to Air market only, and ot reducing the 
inaccuracy o.f the measurement of the population within 
different incomes ranges • 

. In the Air demand equation, the results of this model, 
displayed on Table 12.1 , do not manitest drastic 
changes or a significanoe to RANKOK variable. 

In Rail demand equation, it renders the NPL2 ooeffioient 
signifioant, but deoreases the signifioanoe ot PARB2 
without making RARKOK variable more significant than GDP. 

In the third equation, the ela8tici~ies of IlLl remain 
stable, while in the fourth and fifth equations, the 
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2SLS JSLS 

Coef Se t Coef Se t 

EQ. DA 

NFLl .594 .019 31.263 .619 .017 36.412 

FARE 1 -.645 .180 -3.583 -.149 .077 --1.935 
FARE 2 

RANKOM1 .026 .014 1.857 .010 .007 1.428 

Cst .613 .421 

R2=.2~ SE=.082 2_ 4 SE=.020 R -.2 
Eg. DR 

NFL2 .176 .040 4.400 .057 .024 2.375 

FARE 2 -.969 .101 -9.594 -1.244 .069 -18.029 

RANKOM2 .011 .018 .061 .055 .011 5.000 

cst 1.172 1.343 

82=.86 SE=.167 2_ 
SE=. 162 B -.,,23 

Eg. NFL2 

DR -1.097 .916 -1.197 -.315 .811 -.J88 
TlME2 -3.148 1.017 -3.095 -2.323 .964 -2.410 

ELEC 1.753 .795 2.205 1.710 .731 2.339 
Cst 10.010 7.218 

R2=.78 SE=.20) R2=.80 SE=.180 
Eg. FARE2 

DA .076 .042 1.809 .016 .027 .592 
DR -.605 .074 -8.176 -.704 .05i -13.803 
cst .500 ·938 

EQ. NFL1 
82=.89 SE=.060 R2=.87 SE=.058 

DA 1.582 .054 29.296 1.592 .053 30.038 
LF -.602 .800 .752 -·598 .750 .997 
Cst -.554- -·578 

B2=12J SE=.162 2 B =.2J -SE=. 16Z 

Table 12.1 
pOOLED MODEL 3 (with RANKOM variable) 
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the DR coefficient becomes significant. 

However, this new variable does not appear to be as 
significant as GDP. Moreover, when comparing the minor 
improvements induced by this variable with the loss of 
the goodness-of-fit, and the enormous difficulties of 
forecasting the income distribution among the popula­
tions, one should admit the superiority of GDP. Accord­
ingly, the definitive selected model remains Model ;, 
estimated in the previous section. 

12.; STATISTICAL EVALUATION OF THE MODEL 

Now that we have selected Model 3, we move to the next 
steps testing its validity. 

As in the case of OLS, various assumptions, concerning 
the error terms and the variables, should be met in 
order that multi-equation calibration techniques can be 
applied. These assumptions concern the normality of 
the error terms distribution, the constancy of their 
variance, their independency upon time and the non cor­
relation of the exogenous variables. Thereafter, we 
provide statistical tests for Model 3. 

12.;.1 Normality of the errors distribution 

To test the normality of the errors distribution of the 
structural form equations, the CHI-SQUARE goodness-of­
fit test has, once again, been applied. The standard­
ized residuals, corresponding to the Air and Rail 
structural form equations, have been computed and their 
distribution oompared to the normal distribution. The 
results, displayed on Table 12.2 and Table 12.3, Show 
that, for each equation, the oomputed CHI-SQUARE, is 

les8 than the critical ).(~.95,4) • 9.49. Therefore, 
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NORMALITY OF RESIDUALS DISTRIBUTION 

CHI-SQUARE COMPUTATION 

RANGE OF °i Ei 
(Oi - Ei)2 STANDARDIZED OBSERVED EXPECTED 

RESIDUALS FREQUENCIES FREQUENCIES El 

- -1 14 12.220 .259 

-1 -.5 8 11.535 1.083 

-.5 0 11 14.745 .951 
. ,., 

ZSLs 0 .5 19 14.745 1.231 

.5 1 12 11.535 .019 

1 13 12.220 .050 

TOTAL 77 77.000 3.693 

- -1 12 12.220 .004 

-1 -.5 12 11.535 .019 

-.5 0 14 14.745 .037 

)SLS 0 .5 15 14.745 .004 

·5 1 12 11.535 .019 

1 12 12.220 .004 

TOTAL 77, 77.000 .087 

Table 12.2 

AIR DEMAND EQUATION 
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NORMALITY OF RESIDUALS DISTRIBUTION 

CHI-SQUARE COMPUTATION 

RANGE OF O· E· 
(0. _E.)2 1 1 

STANDARDIZED OBSERVED EXPECTED 1 1 

RESIDUALS FREQUEftGmS FREQUENC IES Ei 

- -1 14 12.220 .259 

-1 -.5 10 11.535 .203 

-.5 0 16 14.745 .108 

2SLS 0 .5 13 14.745 .118 

.5 1 12 11.535 .019 

1 12 12.220 .004 

TOTAL 77 77.000 .711 

- -1 13 12.220 .050 

-1 -.5 12 11.535 .019 

-.5 0 15 14.745 .004 

, 3SLS 0 .5 11 14.745 .949 

.5 1 10 11.535 .203 

1 16 12.220 1.169 

TOTAL 77 77.000 2.394 

Table 12.3 

RAIL DEMAND EQUATION 



- 18) -

the hypothesis that the error terms are normally dis­
tributed can be accepted. 

COMPUTED CHI-SQUARE 
2SLS )SLS 

AIR DEMAND 3.693 .087 

RAIL DEMAND .711 2.394 

12.3.2 Constant variance 

To check up the existence of the heteroscedasticity, the 
above residuals are plo~ed against the estimated values 
of the dependent variable in each structural equation, 
as illustrated in Fig. 12.1, 12.2, 12.3, and Pig. 12.4 • 
These figures show no discernable patterns or concentra­
tions. Thereupon, we may reject the hypothesis of any 
serious heteroscedasticity. 

12.3.3 Time dependency of the error terms 

The low values manifested by the computed DW tests, may 
suggest the existence of serial correlation. However, 
since the 77 observations are not ranked on a truly 
chronological order (aggregation of 7 region pairs), 
these DW values may notJof great meaning. Besides, 

. be 
Serial Correlation, even serious, does not affect the 
unbiasedness or consistency of the coefficients. 

12.3.4 Multicollinearity 

The correlation matrix, below, corresponding to the five 

exogenous variables FAREl ,LP, TIMEZ' ELEC, GDP,doea 

FARE 2 

not show high values to their mutual correlation coef. 
ficients. Therefore, we reject the hypothesis of 
perfect collinearity between the exogenous variables. 
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Correlation Matrix 

FAREl LF TlME2 ELEC GDP 
FARE 2 

1.000 .007 -.284 -.129 -.037 
1.000 -.217 .087 -.128 

1.000 -.114 -.067 
1.000 .199 

1.000 

12.3., Goodness-of-fit. TRACE CORRELATION 

As stated earlier in section 10.3, a statistic called 
Trace correlation* has been proposed by Hooper, which 
measures the proportion of the total variance of the 
jointly dependent variables as a group that is explain­
ed by the exogenous variables as a group in a structur­
al model 

A package, providing the Trace Correlation statistic, 
has been run with Model 3 and the results are the 
following. 

MODEL 3 
POOLED LONG SHORT 

l TRACE CORRELATION .725 .717 .772 

The above results show that the predetermined variables 
as a group explain about 72~ of the variance of the 

* In section 10.3. we have seen that the statistic 
analogous to the R2, based on the estimate of the 
variance of the structural disturbance defined as. 

1 - ~;;t ~Yt - y)2 can be < 0 • 
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dependent variables as a group in pooled and long haul 
models. In Short Haul Model, this explanation is even 
higher than 77%. 

12.).6 Simulation forecast 

Another criteria, for evaluating a Simultaneous Equa­
tions Model, is its ability to provide accurate 
"forecast" in a simulation context. It consists in 
estimating the model by using only part of the observa­
tions available; then, begi~ng the forecast at the end 
of the estimation period and extending it to the present, 
and finally, comparing the results of the simulation 
with the actual observations not yet used. This type 
of simulation is called Expost Forecast~ and is often 
performed to test the forecasting accuracy of a model. 

J3ackast ;tXpost forecas\ 
Tl T2 T) ________ ~----------__ --~--------------+_---- TIME 
(Estimation period } Today 

An expost forecast has been conducted with Air and Rail 
demand equations of the selected model, in order to 
examine how closely these demands track their corres­
ponding historical data series. The estimated period 
has been restricted to the period 1968 - 1975, the three 
years observations 1976, 1977,1978. being retained for 
the comparison with the "forecast". The calibration 
of the model, over the 7 routes, has provided the 
results displayed in Table 12.4 . 

* Another type of simulation called "Backast Simula­
tion" consists of simulating a model backward in 
time begining at the start of the estimation period. 
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2SLS 3SLS 

Coef Se t Coef Se t 

EQ. DA 

NFLl .574 .017 32.707 .592 .016 36.599 

FARE 1 -.762 .241 -3.157 -.249 .114 -2.182 
FA1m2 

GDP -.066 .053 -1.241 -.004 .026 -.158 
cst .969 .564 

2_ 6 ~E=.080 R2=.2.2 SE=.08Z B -·2 
EQ. DR 

NFL2 ~126 .032 3.937 .046 .026 1.728 

FARE2 -.863 .091 -9.483 -1.121 .076 -14.823 

GDP .284 .041 6.927 .245 .038 6.526 
cst .529 .668 

2_ 4 SE=.055 2_ SE=.068 
EQ. NFLl 

R -.2 R -.91 

DA 1.293 .071 18.211 1.550 .058 28.619 
LF -.551 .874 -.630 -.131 .425 -.)08 
Cst .297 -.525 

2_ SE=.l.2:2 2 SE=.1.22 R -.2.2 B =·2.2 EQ. NFL2 

DR -1.034 .621 -1.665 -.771 .558 -1.)82 
TlME2 "-3.155 .726 -4.346 -2·911 .662 -4.394 

ELEC 2.163 .782 2.766 1.188 .661 1.798 
Cst 10.126 8.482 

2_ SE=.218 2 SE=.214 
EQ. FARE2 

R -.7Z R =.Z7 

DA .135 .029 4.655 .108 .027 3.992 
DR - .458 .049 -9.347 -.498 .046 -10.697 
Cst -.093 .089 

2 B =.21 SE=.04Z 2 
R =:21 SE::;. 042 

Table 12.4 

POOI,EP MOPE!. 3 (Historical period I 1968 - 1975) 
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In order to appreciate how closely Air and Rail demands 
fit their corresponding data, four measures have been 
computed. 

1 - The Root Mean Square error (RMS) is defined as follows, 

where. 

RMS = l~ TL t=l 

, the simulated value of Yt 

, the actual value 

T a number of periods in the simulation 

RMS is thus a measure of the deviation of the simulated 
variable from its actual time path. 

2 - RMS per cent error = 

This is also a measure of the deviation of the simula­
ted variable from its actual time path, but in percent­
age terms. 

:3 - Mean Error -= 1 ~ ( yS -~) , t 
t=l 

4 - Mean per, :cent error = 1 t yS -~ ( t , ~ ) 
t 

The results of these computations are shown in Table 12.5. 
and Table 12.6 • 
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LONDONIAN ROUTES ACTUAL 2SLS )SLS 
TO AND FROM OBSERVATIONS FORECASTS FORECASTS 

,. 000) ,. 000) "000) 

1976 887 998 900 
GLASGOW 1977 709 102) 760 

1978 903 863 903 

1976 677 716 597 
EDINBURGH 1977 655 906 724 

1978 738 643 624 

1967 282 286 233 
NEWCASTLE 1977 221 310 261 

1978 282 287 250 

1976 456 371 410 
MANCHESTER 1977 393 391 436 

1978 534 481 527 

1976 99 112 139 
BIRMINGHAM 1977 104 144 177 

1978 122 220 255 

1976 123 118 123 
LEEDS 1977 129 118 135 

1978 148 127 132 

1976 119 141 146 
LIVERPOOL 1977 102 140 146 

1978 138 184 180 

Table 12.5 

EX POST FORECASTSIComparison with actual observations 

AIR DEMAND SIMULATION 
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LONDONIAN ROUTES ACTUAL 2SLS 3SLS 
TO AND FROM OBSERVATIONS FORECASTS FORECASTS 

( • 000) (. 000) ( • 000) 

1976 503 589 519 
GLASGOW 1977 721 613 551 

1978 693 606 533 

1976 379 442 405 
EDINBURGH 1977 493 469 481 

1978 543 484 464 

1976 570 625 549 
NEWCASTLE 1977 635 637 583 

1978 614 665 596 

1976 1335 1237 1065 
MANCHESTER 1977 1459 1292 1139 

1978 1616 1363 1142 

1976 1695 2550 2468 
BIRMINGHAM 1977 1739 2557 2475, 

1978 1718 2654 2556 

1976 866 1070 1047 
LEEDS 1977 975 1138 1128 

1978 1029 1082 1057 

1976 1030 985 913 
LIVERPOOL 1977 1141 1125 1076 

1978 1202 1185 982 

Table 12.6 

EX POST FORECASTS I Comparison with actual observations 

RAIL DEMAND SIMULATION 



- 194 -

LONDON RE RE per cent 
TO AND FROM error error 

2SLS 3SLS 2SLS 3S15 

·GEAS'G'OW 193.71 30.41 26.7% 04.2% 

EDINBURGH 156.57 89.73 23.6% 11.8% 

NEWCASTLE 52.10 40.93 23.4% 15.9% 

MANCHESTER 57.84 36.58 12.2% 08.6% 

BIRMINGHAM 61.40 90.38 51.8% 74.6% 

LEEDS 14.10 9.93 09.9% 06.8% 

LIVERPOOL 36.54 38.28 30.6% 33.1% 

MEAN MEAN per cent LONDON 
error error TO AND FROM 

2SLS 3SLS 2SLS 3SLS 

128.)) 21.)0 17.4% 02.9% GLASGOW 

65.00 -41.67 10.4% -00.6% EDINBURGH 

26.67 1).67 12.4% -03.5% NEWCASTLE 

-46.67 -3.33 -09.7% -00.1% MANCHESTER 

50.00 81.67 43.6% 72.7% BIRMINGHAM 

. -12.33 -3.57 -08.9% -02.2% LEEDS 

35.13 37·50 29.3% 32.0% LIVERPOOL 

Table 12.7 

EX POST FORECASTS Period t 1968 - 1975 

FORECAST YEARS I 1976, 1977, 1978 

AIR DEMAND SIMULATION 
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LONDON RE RMS per cent 
TO AND FROM error error 

2SLS 3SLS 2SLS 3SLS 

GLASGOW 93.9 135.0 14.9% 19.1% 

EDINBURGH 51.3 48.2 11.7% 09.3% 

NEWCASTLE 43.3 33.8 07.3% 05.4% 

MANCHESTER 184.0 365.1 12 . 0"/0 24.1% 

BIRMINGHAM 871.0 783.2 50.7% 45.7% 

LEEDS 156.0 138.1 16.9% 15.2% 

LIVERPOOL 29·3 148.0 02.7% 12.9% 

MEAN MEAN per cent LONDON 
error error TO AND FROM 

2SLS 3SLS 2SLS 3SLS 

-36.3 ... 104.7 -07.7'fo -11.5% GLASGOW 

-20.7 -67.1 00.2% -03.5% EDINBURGH 

36.0 -30.1 06 • 0% -04. 9% NEWCASTLE 

1-172.7 -354.7 -11 • .5% -23.8% MANCHESTER 

869.7 782.3 50.6% 45.6% BIRMINGHAM 

140.1 120.7 15.1% 13.1% LEEDS 

-26.1 -66.1 -02.4% -11.8% LIVERPOOL 

Table 12.8 

EX POST FORECASTS Period I 1968 - 1975 

FORECAST YEARS I 1976, 1977. 1978 

RAIL DEMAND SIMULATION 
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Since the results presented in Table 12.1 and Table 12.8 
will be fully discussed in section12.4.2, we simply 
mention at this stage the low values of RMS per cent 
error and Mean per cent error; which indicates a good 
accuracy of the forecasts. 

12.4 SELECTION OF THE BEST CALIBRATION TECHNIQUE 

In comparing different multi-equation calibration tech­
niques, many modelers agree that there is no general 
rule for selecting the best one. The answer is dif­
ficult for two reasons. First, the choice of an 
estimation procedure may depend,in part, upon the pur­
pose of the model; second, most of the knowledge about 
the properties of estimators relates to large samples, 
in which case, estimators are known to be consistent, 
and (sometimes) asymptotically efficient. However. ac­
cording to Pindyck, little is known about the small 
sample properties of these estimators. 

In general, it remains to the modeler himself to decide 
which technique is best according to his purpose, the 
data available, the degree of accuracy desired, and 
the amount of time and money to spend. 

In our case, since the purpose is both policy and fore­
cast. the criteria for the selection is based upon. 

- the characteristics of the coefficients (unbias­
edness, consistency and efficiency), and their 
t values. 

- the accuracy of the forecast. 

12.4.1 Coefficients analysis 

FO,r the coefficients characteristics criteria, the 
parameters values obtained by both specifications, 
2818 and 3818, as well as their standard errors are 
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displayed, for comparison in tables. 12.9 and 12.10. They 
correspond to the selected Model 3, applied to the 
following maarketsl 

- Pooled markets (1968 - 1975) 
- Pooled markets (1968 - 1978) 
- Long haul markets (1968 - 1918) 
- Short haul marke~s (1968 - 1978) 

The standard errors of the coefficients, obtained with 
3SLS are systematically lower than those estimated with 
2SLS. This is not, in fact, particular to these models, 
but is rather a characteristic of 3S18 technique, which 
provides more efficient coefficients than 2S15 does. 

From the t values comparison, the general remark is that 
3SLS is much more superior within the length of haul ag­
gregate models than within the pooled ones. One of the 
reasons might be the high sensitivity of 3SLS to speci­
fication errors or errors in data. Since the pooling 
process reduces the homogeneity of the observations, 
this loss in homogeneity is most likely to be more 
penalizing with 3SLS than with 2S15, which leads to the 
loss in significance in 3SL5 coefficients .• 

Nevertheless, even in the pooled models, 3515 seems to 
be superior. to 2S15. 

- First, the most important explanatory variables 
in demand equations, namely the Air frequency of 
services in Air demand, and Rail fare in Rail 
demand, have higher absolute t values in 3S18 
than in 25LS I 

NFLl = 3.8.390 and 36.599 against 33.013 and 
32.707 

FARE 2 --11.35 and -14.823 against -12.013 and 
-9.435 

- second, the GDP coefficient in Air equation, and 
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DR coefficient in NFL2 equation, both having 
wrong signs, are not significant in 3SLS while 
they are in 2S15. 

- Third, the LF coefficient, not significant in both 
estimations, has smaller absolute value in 3S13 
than in 2SLS. 

- Fourth, if we except the coefficients that have 
either a wrong sign or no significance at all, 
among the remaining coefficients 5 have higher 
t values in 3S15 than in 2S15, while 4 have high­
er t values in 2S18 than in 3SLS. 

Lastly, in the length of haul aggregate models, 3S18 
appears much more superior than 2SLS. Indeed, in long 
haul markets, 6 coefficients have higher t values in 
3SLS than in 2SLS, while only 1 has greater value in 
2SLS than in 3SLS. Similarly, in short haul markets, 
8 coefficients have higher t values in 3SLS than in 
2SLS, while only 2 have greater t values in 2SLS than 
in 3SLS. The coefficients with a wrong sign or no sign­
ificance are not considered. 

12.4.2 Accuracy of the forecast 

A close examination of Table 12.7 reveals the superior­
ity of 3S15 over 2SLS in all routes, except in Liverpool 
and Birmingham. 

- In the RMS error figures, only 2 values are higher than 
41.0 in 3SLS while 5 out of 7 are higher in 2SLS. 

- For the RMS per cent error, 5 values are higher than 
16~ in 2SLS against only 2 in 3SLSI with 3 values even 
less than l~ in 3SLS. 

- For the Mean error, 5 values are less than 40.0 in 3SLS 
against only 3 in 2SLS, with 3 even less than 15.0 in 
3SLS against only 1 in 2SLS. 

- Finally, for the Mean per cent error, all the values 
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are higher than 3.~ in 2SLS against only 1 in 3SLS. 

Undoubtedly, 3S15 specification appears to be more ac­
curate than 2S18. In order to measure the relative ac­
curacy of 3SLS over 2SLS, the ratio of all the 3S15 
measures over the 2SLS ones are computed and displayed 
belowl 

RMS RMS " MEAN MEAN" 

Glasgow .157 .157 .166 .167 
Edinburgh .573 .500 .641 .058 
Newcastle .786 .679 .512 .282 
Manchester .632 .705 .071 .010 
Birmingham 1.472 1.440 1.634 1.667 
Leeds .704 .687 .289 .247 
Liverpool 1.048 1.082 1.067 1.092 

The above results clearly show the gain in accuracy 
attached to 3SLS estimation. In Glasgow route, for 
instance, the values of the measurements with 3SLS are 
about the sixth their corresponding values with 2SLS. 
This ratio is, however. higher in Edinburgh route where 
it slightly exceeds the half for all the measures, 
except for the Mean per cent error for which the ratio 
is around the sixteenth in favour of 3SLS. 

In Rail simulation, however, 3SLS does not show such a 
striking superiority over 2SLS(888 Table 12.8). 

In conclusion, in both estimators characteristics and 
forecasting accuracy criteria, 3S15 ,specification has 
shown remarkable superiority over 2SLS. On the other 
hand. a close examination of the residuals correlation 
matrix in Table12 .11, corresponding to the reduced 
forma.reveals substantial correlations between residu­
als across equations. This constitutes a violation of 
the 2SLS assumptions, and therefore, renders 3SLS more 
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appropriate. Indeed, one of the assumptions of )SLS is 
that random errors are contemporaneously dependent. 
This is, particularly, striking in short haul model cor­
relation matrix, where the correlation between the 
residuals across the equations is almost perfect. All 
coefficients are :>.990. According to Koutsoyiannis 
"taking into account the nature of economic phenomena 
and the simplifications which we adopt in specifying 
the econometric models, we may well expect the u's to 
be contemporaneously correlated". 

As we already have pointed out, for various reasons such 
as multicollinearity and data availability, we have ex­
plicitly included in the equations only the most impor­
tant variables, leaving the influence of the others, 
less important, to be absorbed by the random terms. If 
some variables are omitted from various equations, it 
is inevitable that the random terms of the equations 
are correlated, and hence, )SLS is appropriate. 

To summarize, all the criteria discussed so far as well 
as the contemporaneous dependency between random error.s, 
are in favour of )SLS calibration technique. 

CONCLUSTON 

The previou~ chapter and the present one constitute undoubtedly 
the most important part of this research, and it is necessary 
at this point to explain their link with the following chapters. 

Up to now, for 
to conduct our 
disaggregation 

data avaibi1ity problems we have not been able 
analysis on a time series basis and the only 
scheme considered has been the length of haul. 

The next chapters (13 and 14) explain how and why the following 
disaggregations can also be attemp~ed : 

- Disaggregation by routes 
- Disaggregation by trip purpose. 



COEPPICIENT 

NFL1 

FARE 1 
FARE 2 

GDP 

NFL2 

FARE2 

GDP 

DA 

LF 

DR 

TIME2 

ELEC 

DA 

DR 

POOLED MODEL 1968 - 1978 POOLED MODEL 1968 - 1975 
Std error t Ratio Std error t Ratio 

2SLS JSLS 2SLS 3SLS 2SLS JSLS 2SLS JSLS 

.018 .016 33.073 38.390 .017 .016 32.707 36.599 

.172 .090' -3.220 -2.169 .241 .114 -3.157 -2.182 

.047 .024 -2·302 -.883 .053 .026 -1.241 -.158 

.028 .023 3.782 1.312 .032 .026 3.891 1.728 

.070 ·.060 -12.013 -17.350 .091 .076 -9.435 -14.823 
i 

.037 .034 7.725 8.503 .041 .038 6.925 6.526 

• 061 .054 22.378 27.611 .071 .058 18.162 26.672 

.800 .400 -.150 -.418 .874 .425 -.630 -.308 

.503 .470 -2.124 -1.792 .621 .558 -1.664 -1.382 

.575 .543 -5.393 -5.342 .726 .662 -4.347 -4.394 

.573 .534 3.494 3.574 .782 .661 2.765 1.798 

.029 .028 5.892 5.640 .029 .027 4.656 3.992 

.049 .048 -8.905 -9.648 .049 .047 ..;9.289 -10.697 

STANDARD ERRORS anti t VALUES COItPARISON between 2SLS and 3SLS Table 12.9 

l\) 
o ..... 
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LONG HlDL IlODEL 1968 - 1978 SHORT HAUL MODEL 1968 - 1978 

Std error t Ratio Std error t Ratio 
C0JrIi7.IClENT 

2SLS JSLS 2SLS \ JSLS 2SLS JSLS 2SLS JSLS I 

NFL1 .021 .016 23.081 29.696 .036 .033 17.694 19.106 i 

FARE 1 .153 .02)" -.642 -.459 .349 .134 -2.778 -3.308 
FARE 2 

GDP .048 .007 -.057 -.041 .127 .050 -.381 1.373 

NFL 2 .022 .022 7.600 7.443 .082 .072 -.183 -1.516 

FARE 2 .157 .• 154 -5.907 -6.284 .136 .115 -5.384 -7.981 

GDP .041 .040 7.165 7.435 .170 .154 2.676 3.588 

DA .079 .066 25.475 30.763 .114 .090 9·412 13.111 

12 .571 .090 -.845 -.337 1.407 .509 .217 -.466 

DR .583 .560 -1.850 -1.783 .297 .292 6.447 7.253 

TlME2 .629 .612 -7·727 -7.792 .292 .288 -3.082 -2.512 

ELEC .611 .593 1.695 1.117 .365 .359 9.479 9.603 

DA .036 .036 5.6)0 5.648 .026 .025 7.466 6.784 

DR • 092 1 .• 092 .100 .106 .069 .065 -9.791 -11.398 

STANDARD ERRORS and t VALUES COMPARISON between ZSLS and )SLS Table 12.10 

N 
o 
N 
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RESIDUALS CORRELATION MATRIX 

Reduced forms 

EQUATION 1 EQUATION 2 EQUATION 2 EQUATION 4 EQUATION 5 

1.000 
-.772 

.988 

.465 

.889 

!1.000 
-.741 

·995 
.613 
.927 

L.Q:OO 

-.991 
.999 

-.990 
.996 

1.000 
-.801 
-.246 
-.873 

1.000 
-.794 
-.317 
-.842 

1.000 
-.991 

.997 
-·997 

1.000 
.434 
.892 

POOLED MODEL 

1.000 
.592 
.924 

1.000 
.470 

1.000 
.673 

LONG HAUL MODEL 

1.000 
-.990 

.996 

SHORT HAUL MODEL 

Table 12.11 

1.000 
-·996 

1.000 

1.000 

1.000 
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CHAPTER 13 

ABSTRACT MODES MODELS 

The low degree of freedom, consequent to the small num­
ber of observations and the multi-equation structure 
nature of our models that reduces further more the degree 
of freedom, has not allowed a Pure Time Series analysis, 
i.e, Region Pairs models. 

In order to overcome this data problem, an abstract mode 
approach is conducted for the 1 individual routes. This 
approach has the advantage of increasing the degre~of 
freedom by aggregating data across modes.: 

Here also, the Stepwise Regression analysis is applied, 
so as to select the most powerful explanatory variables 
and to detect any multicollinearity. 

The Regression analysis is, first, applied to the fol­
lowing traditional abstract modes formulation. 

D =0<0 +0(1 ~ +rJ2 FARE +~3 TIME +0(4 NFLB 
NF~ FAREB TIJlEB 

+0( 5 FAREB + 0(6 TIMEB +0(7 GDP + Z. 

Where the variables are in logarithm and index B relates 
to the best mode. 

This single equation model is run on the two most import­
ant routes. London-Glasgow and London-Manchester. 

In the London-Glasgow run, the Stepwise Regression has 

selected ~'as the most explanatory variable in the 

NFLB 

first step, and entered GDP variable in the second. The 
variables introduced in further steps are not significant. 
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While in this run, no serious collinearity shows between 
~ and GDP variables; in London-Manchester results, a 

NFLa appears 
collinearity/between FARE (the first variable to enter) 

FAREB 
This can be observed in the two following and NFL -

NFLB 
first steps of the regression. 

R2 F NFL FARE 
RFLi PAREB 

Stepl .96 539 - .205 
(.OBB) 

St~p 2 .98 385 .278 -1.556 
(.098) (.179 ) 

London-Manchester Model 

This collinearity is illustrated by the drastic vari­
tion of FARE variable coefficient and its standard 

PAREB 

error. This coefficient and its SE have respectively 
varied from -.205 and .088, in the first step, to 
-1.556 and .179, in the second step. 

The conclusion to be drawn is that while in London­
Glasgow, NFL is, in terms of statistical significance 

NFLB 
and increase in R2, the most important variable, in 
London-Manchester, FARE variable is the most impor­

FAREB 
tant one. The variables other than GDP show no signi-
ficance, in both models. 

This conclusion suggests that long haul markets to 
which London-Glasgow belongs, and short haul markets 
to which London-Manchester belongs • may well be 
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respectively estimated by the following models. 

Long Haul 
MODEL 1 

Short Haul 
MODEL 2 

) D 

1 NFL 

NFLB 

D 

FARE = ~ ,0 + ~ 1 D 
FAREB r r 

This structural form departs from the traditional abs­
tract modes formulation, since it introduces a second 
equation. This is, in fact, dictated by the necessity 
of identification. Indeed, the variables NFL and NF~ 
in Model 1, and FAREB (i.e, Rail fare) in Model 2 are 
endogenous. Hence, any effect on NF~ and FAREB ' 
induced by the demand variation, might well be trans­
mitted to NFL and FARE • Therefore, the two latter 

NPtB FAREB 
variables are plausibly endogenous, and their inclusion, 
in the second equation, is appropriate. 

The results, displayed in Table 13.1 , are interesting. 
First, the statistical tests R2 and SE are very good; 
the DW test shows no serial correlation. Second, the 
magnitude of the demand equations coefficients are 
significantly different with regard to the length o,t 
haul; which means that the method of competition is 
highly correlated with this factor. 

The most powerful explanatory variables, NFL for the 
NFLB 
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long haul and FARE for the short haul, are highly 
FAREB 

significant, even at 99% level of confidence, and bear 
the right sign. 

1st equation GLASGOW EDINBURGH NEWCASTLE 

NFL coef .167 .248 .508 -
NFLB (.018 ( .045) (.024 ) 

Long Haul 

1st equation MANCHESTER BIRMINGHAM LEEDS LIVERPOOL 

FA-RE- coef -2.138 -5.781 -3.087 -3.766 
FAREB ( .094) (.585) ( .128) (151) 

Short Haul 

In long routes, GDP variable is highly significant, 
though in Newcastle its significance is only at 9~r' 
whereas, in short routes, it shows no significance at 
all. 

In the second equations, the most important coefficients, 
namely Air and Rail demands, bear the right sign and 
are significant at 99%, except for Glasgow where the 
significance is at 80%. 

2nd equation GLASGOW EDINBURGH NEWCASTLE 

D coef .642 1.290 3.114 
(.330) ( .520) (1.180) 

Iiong Haul 
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2nd equation MANCHESTER BIRI(INGHAM LEEDS LIVERPOOL 

D coef -.520 -.575 -.284 -.248 
(.070) ( .177) (.054 ) ( .078) 

Short Haul 

Finally, in long haul, except in Newcastle, TIME shows 
TINEB 

a significance at 99% level of confidence, whereas, in 
short haul, except in Birmingham, it shows no signifi­
cance. 

It could be argued, however, that the "supply" equations, 
defined by ~ and FARE ,have no real economic mean-RFLB FAREB 
ings, which is quite true. In fact', the introduct ion 
of NFL and FARE is a pure statistical device designed 

'RPIi FAREB 
to purge these endogenous variables from their correla-
tions with the error terms, in the demand equations" 
and thereby, to prevent the Simultaneous Equations Bias. 
In this sens, these variables constitute a technical ex­
pression rather than a "supply" one. 

Furthermore,/o~n~~imary purpose is the derivation of 
the demand elasticities, the inclusion of truly supply 
equations is not of a vital necessity to our analysis, 
as long as the coeffici~nts in the demand equations are 
being purged from any bias. Therefore, the "supply" 
equations results could well have been ignored and not 
displayed at all. 



NFL LONG HAUL NFLB 

.167 
LOND-GLAS (.018 ) 

.248 
LOND-EDINB ( .045 

.508 
LOND-NEWCAS (.024 ) 

SHORT HAUL FARE 
FAREB 

-2.:136 
LOND-MANOR (.094 ) 

-5.781 
LOND-BIRM (.585 ) 

LOND-LEEDS 
-3.087 

( .128) 

-3.766 
LOND-LIVERP ( .151) 

• 

FIRST EQUATION 

GDP 

.214 
(.094 ) 

.413 
(.129 ) 

.174 
(.123) 

GDP 

.122 
(.171 ) 

1.743 
(.984 ) 

.194 
(.239 ) 

.Q61 
(.266 ) 

Cst R2 SE DW 

-2.23 .83 .038 1.83 

-1.76 .69 .050 2.62 

-3.27 .95 .053 1.66 

Cst R2 SE DW 

-3.50 .95 .060 2.02 

3.19 .78 .37 1.84 

-2.56 .98 .084 2.26 

-2.84 .98 .09 1.86 

Table 13.1 

ABSTRACT MODES MODELS 

SECOND EQUATION 

D TIME Cst R2 
TIMEB 

.642 -2.675 1.85 .98 
(.434) (.242) 

1.290 -1.070 3.55 .75 
(.529 ) ( .282) 

3.114 -3.620 8.32 .90 
(1.180) (3.740) 

D TIME Cst R2 
TIMEB 

-.520 1.8'75 -1.64 .96 
( .070) (2.670) 

-.575 .271 -1.90 .89 
(.117) (.119) 

-.284 -.894 -.89 .97 
(.054) (1.173) 

-.248 -.016 -.76 .97 
( .078) .071) 

---------- -~ 

SE 

.054 

.121 

.152 

SE 

.029 

.050 

.030 

.020 

DW 

2.19 

2.61 

1.63 

DW 

2.03 

1.87 

2.26 

1.86 

I 

l\) 
o 
\0 

• 
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CHAPrER 14 

PURE AIR DEMAND MODELS 

14.1 REGION-PAIRS MODELS 

In this section, we attempt to conduct three pure ~ime 
Series models on the following trunk routes • 

London-Glasgow London-Edinburgh . London-Belfast 

The restriction to these only Region-pairs is dictated 
by the reasons below. 

- These routes are the only ones for which a large num­
ber of Air observations are available, since the histo­
rical period span has been extended. 1961 - 1918 instead 
of 1968 - 1978 • 

- These routes pertain to the long haul markets and are 
highly business oriented. Therefore, it is not unrea­
sonable to conduct pure Air demand models on a Region­
pair basis. 

DA .0{ 0 + 0<'1 NPLl +cXz PAUZ + l..l 

NFLl • ~ 0 + r 1 DA + P 2 IJI + t2 

Where the variables in logarithm are aa previously 
detined. The reaaons tor this structure are straight­
forward. 

- In the demand equation, only Air fare is considered, 
since the available data do not COVer the whole period. 

- As the income variable GDP doeS not aaniteat any 
a~ificanoe in the long haul modela, conducted so tar, 
it has been re.oved tro. the demand equation above. 
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LONDON-GLASGOW LONDON-EDINBURGH LONDON-BELFAST 

DA 

NFLl .672 .545 .397 
(.092) ( .110) (.053 ) 

FARE 1 -.006 .123 -.004 
( .091) ( .150) ( .056) 

Cst .138 .556 1.240 

R2=.92 SE=.040 2 R =.89 SE=.060 2 R =.92 SE=.039 
DW=1·92 DW=1.60 DW=1.9? 

lilL1 

UA 1.511 1.456 2.585 
(.243 ) (.229) (.630 ) 

LF .044 -.665 .114 
(.673) (.853 ) (1.465) 

Cst -.343 .931 -3.480 

2 R =.91 SE=.060 2_ 8 R -. 9 SE=.098 2 R =.88 SE=.099 
DW=1.92 DW=1.60 DW=1.98 

Pure Air Models(1961 ~ 1978) 

The results of the three runs above show the very good 
overall fit of the demand equation. the absence of $erial 
correlations, the high significance of the frequency of 
services variable; and the non significance of the fare. 
In the second equation, the demand coefficients are all 
Significant; but LF coefficients are not. Statistical 
:t.i ts are very good. 
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These results are consistent with those obtained so far; 
and, once again, the preponderance of the frequency of 
services, as the most powerful explanatQry variable, is 
confinned. This can be observed in the Stepwise Regres­
sion technique results. The first step of this tech­
nique shows the contribution of NFLI variable on the 
explanation of the demand. This contribution is as fol-
10wsI 

R2 = 

SE = 
F = 

LONDON-GLASGOW LONDON-EDINBURGH LONDON-BELFAST 

·92 

.042 

193.1 

.88 

.066 

113.1 

.89 

.041 

131.2 

The above values of R2 indicate that the frequency of 
services variable,alone, explains more than 8~ of the 
demand variation. The significance of NFLl as an im­
portant factor explaining the demand, and the non signi­
ficance of FARE confirms, once again, the business 
characteristics of these trunk routes. 

The above results are obtained by 2S18 and are identical 
to the 3SLS estimation results, since the Model is !!!2-
tly identified. This can be easily verified when con­
sidering the order condition for identification, below, 

G- 1 ~ 
Where, 

G , is the number of endogenous variables included 
in the equation 

K a is the number of exogenous variables exoluded 
from the equation 

When the model is identified, and the order condition. 

* Note that the order condition is a necessary condi~ 
tion for identification, but not a sufficient one. 
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above, is, for each equation, an equality rather than 
an inequality, the model is exactly identified. In 
such a case, all Multi-equation techniques provide the 
same estimators. This is the case of our models. 

14.2 PURE AIR BUSINESS TRAVEL DEMAND MODELS 

Since all along this study, Air mode has shown some 
business oriented characteristics, it appears reasonable 
to estimate pure Air business travel demand models. 

Data were collected from various CAA surveys conducted 
at different periods, in different Airports. One of 
the characteristics of these surveys was the information 
concerning the value of business traffic. As explained 
in the data chapter, the business travelers'figures have 
been derived from the surveys undertaken in 1970, 1971, 
1972, and 1975/76, involving the following routes. 

London-Glasgow 
London-Edinburgh 
London-Belfast 
London-Manchester 

London-Aberdeen 
London-Leeds 
London-Liverpool 
Glasgow-Manchester 

The two following models have been run. 

DA =0( 0 +0<1 NFL + 0<2 FARE + OS GDP + ~l 

NFL=~O+~lDA +~2DIST +£.2 

DA =t>( 0 + 0(1 ltFL .... 0(2 GDP + £1 

NFL = f 0 + fl DA + ~ 2 DIST + f.2 

Where the variables in logarithm are. 
DA • business demand 
DIST= distance between Airport pairs 
NFL, FARE, GDP ;: as previously defined. 
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AIR BUSINESS MODELS 

Equation DA Equation NFL 

NFL FARE GDP Cst DA DIST Cst 

.577 -.034 .228 ..... 2l9 1.609 .247 .449 
2SL8 (.048) (.315) (.387) (186 ) ( .517) 

2 R =.94 SE=.101 2_ 4 R -.9 SE=.101 
DW=1.75 DW=1.70 

.590 -.109 .130 -.199 1.509 .20? -.401 
38LS (.032) ( .236) ( • 279) ( .186) ( .510) 

2 R =.94 SE=.106 2_ 4 R -.9 SE=.106 
DW=1.75 DW=1.70 

Equation DA Equation NFL 

NFL GDP cst DA DIST Cst 

2S1S .5?3 .238 -.203 1.561 .363 -.391 
and 

3S1S (.046 ) (.401 ) (.226 ) ( .605) 

R2=.93 SE=.106 DW=1.66 R2=.94 SE=l.?? DW=1.65 

The above results show very good statistical fits and 
reasonable DW test values. Once again, and as expected, 
the frequency of services variable NF1 is highly signi­
ficant in both models (even at 9~). while FARE vari­
able is not significant at all. This confirms the 
business characteristics of these markets. 

In both models.·~DP and DIST variables are not signi­
ficant. The non significance of GDP may well be ex­
plained by its inappropriate ability to reflect the 
income of the highest group of the population to 
which these travelers generally pertain. I 
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ly 
However, in the second equation, surprising/enough. the 
frequency of services elasticity appears to be indepen­
dent of the length of haul. This seems to suggest that 
business travelers respond in a similar manner to the 
frequency of services, whether in short or long haul • 

It is interesting to compare the elasticity of the 
frequency of services variable. in these two models, 
with its corresponding value recorded in Pooled Model 3. 
selected in Chapter 12. 

Pooled Business Pooled Business Pooled Air/RAIL 
MODEL 1 MODEL 2 MODEL 3 

~~ .577 .57; .583 

;SLS .590 .57;* .61; 

NFL Coefficient 

* 2SLS and ;SLS values are identical, the model being 
exactly identified. 

The comparison above shows that although the samples. 
considered for the business models and the competition 
model, are completely different. the frequency of ser­
vices elasticity still has the same magnitude, around .60. 
This confirms our previous results with regard to the 
business characteristics orientation of the Air mode, 
and provides additional confidence to their consistency. 
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CHAPTER 15 

APPLICATION OF THE MODELS 

As stated at the begining, the purpose of this research 
is to develop models that are sufficiently sensitive, 'so 
as to quantify the variation of the traffic demand con­
sequent to any changes in the explanatory variables. 
These models are also responsive, in the senS(that they 
enable the policy maker to estimate the impact of alter­
native policies. 

be 
These models can/applied in forecasting; Chapter 12 has 
provided measures of their forecasting accuracy. In 
this section, we give examples of how these models could 
be applied to the analysis of the demand variation , due 
to changes in the frequency of services, trip time and 
fares. These changes may well be due to technological 
improvements in Air or Rail services, or implementation 
of managerial strategies within the existing framework. 

15.1 SCHEDULING FLEET PROBLEM 

One of the most complex and critical tasks, facing the 
management, is the scheduling fleet problem, because it 
involves a balancing of conflicting objectives, such as 
public requirements, economic efficiency, and operation­
al feasibility. 

One of the most important inputs to the development of 
the schedule is the level of demand, in a given region­
pair, since the main purpose of any scheduler is to at­
tempt to match the volume of supply to the amount of 
the services demanded. 

The public requirements provide an essential input to 

the scheduling process, which has to be balanced against 
the economic considerations on one hand, and the 
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operational feasibility on the other. Since the unit 
of supply is the flight, it becomes necessary to consi­
der the cost as well as the potential revenue of each 
flight. 

The scheduler looks at the profitability of a flight, 
in terms of aircraft utilization and load factor which 
are not independent of one another. One facet of uti­
lization is related to the length of haul. With short· 
hauls, a high utilization is difficult to achieve , be­
cause a higher percentage of the total block to block 
time is spent on ground,and in the take off and landing. 

In the final analysis, economic efficiency would neces­
sitate some trade-off between utilization, load factor, 
and frequency. The weight attached to each of these 
factors would vary according to the market. 

In general, suppliers are assumed to be seeking to maxi­
mize their profit, that is to say, to maximize the dif­
ference between the revenues and the cost. P • R - C , 
subject to the maximum load factor constraint, and the 
availability of the fleet. 

In considering our models, we notice that Air demand 
equations ,are characterised by the important role play­
ed by the Air frequency of services as the most deter­
minative factor explaining the demand. Moreover, this 
factor is the only one that is truly under the Airline 
control, since Air fares are subject to government re­
gulations. Our models enable the planner to assess 
different values of the objective function P , corres­
ponding to different values of the frequency, there­
after, it only remains to choose the frequency that 
maximizes this function, with regard to the maximum LP 
constraint, and the fleet availability. 
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15.2 EFFECT OF FARE 

One of the common purposes of the econometric models is 
the determination of the demand elasticity, with respect 
to some traditional variables such as fare and income. 
One advantage, particularly appreciated in Log-linear 
models formulation, is that the estimated coefficients 
represent the elasticities. 

Since Air fare is not strictly an endogenous variable, 
the capability of the Airlines to improve the demand by 
acting upon this variable is rat,her restricted. How­
ever, the elasticities derived from these models allow 
the planner to estimate different levels of demand, cor­
responding to hypothetical variations in both Air and 
Rail fares. 

Table lS.l displays the following hypothetical reductions 
in Air farel ~. l~, lS~, 2~, 2S~. For every reduc­
tion correspond four hypothetical ones,in Rail fare. 
S~, l~, l~, 2~. The fare elasticities applied are 
those of Model 3 (short haul). selected in Chapter 12. 

Table lS.l shows that Air demand may decrease, even if 
Air fare decreases, because Air demand does not respond 
to the absolute fare reduction, but rather to the rela­
tive one. 

- In particular, when· Air fare decreases by S. and when 
Rail fare. respectively, decreases by l~, lS~, and 2~, 
accordingly. Air demand decreases by 2.~. 5.2~. 8.3~. 

- Equally, when Air fare decreases by l~ and when 
Rail fare,respectively decreases by lS~. and 2~. Air 
demand decreases by 2.6~. and 5.S~. 

- Finally, when Air fare decreases by lS. and when Rail 
fare decreases by 2~, Air demand decreases by 2.~. 

On the contrary. Rail demand is related to its absolute 
fare, which is under the Railways control. Prom Model 3 
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results, the following variations in Rail demand, conse­
quent to different reductions in Rail fare, can be es­
timated. 

RAIL FARE RAIL DEMAND INCREASE 

REDUCTION Short Haul Long Haul 

5% 4.8% 4.6% 
10% 9.7% 9.2% 
15% 14.5% 13.8% 
20% 19.4% 18.4% 

15.3 TRIP TIME EFFECT 

Instead of deriving the Rail trip time elasticity from 
the Rail demand equation, these Air-Rail models enable 
us, as explained earlier, to derive it indirectly 
through the fourth equation. This elasticity is measur­
ed by the product ~lf2 ' where. 

~ 1 1 is the elasticity of the Rail demand with 
r regard to the Rail frequency of servioes 

I is the elastioity of the Rail frequenoy of ser­
vioes with regard to the trip time 

In the following are displayed Rail demand variations, 
corresponding to hypothetical decreases in Rail trip 
time. 

" TIME2 5% 10% 15% 20% 2~ 30% 

~ DR 3.~ 7.~ 11.7tfo 15.6" 19.5" 23.4" 

Long Haul Markets 

The derivation of trip time elasticities is impor­
tant to the Rail management. It permits to assess 
the effect upon demand of improvements in journey 
time, such improvements being the resultso! techno­
logical developments, and efficient scheduling. 
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FARE1 FARE2 FARE 1 AIR DMD % RAn. DD " FARE2 
% % % Short Lons Short 

5" 0% 0% 4.6% 4.8% 
10% 5.5% -2.4% 9.2% 9.7% 

5% 15% 11.8% -5.2% 13.~ 14.5% 
20% 18.7% -8.3% 18.4% 19.4% 

-
5% -5.3% 2.3% 4.6% 4.8% 

10% 
10% 0% 0% 9.2% 9.7% 
15% 5.9% -2.6% 13.8% 14.5% 
20% 12.5% -5.5% 18.4% 19.4% 

5% -10.5% 4.6% 4.6% 4.8% 
10% -5.5% 2.4% 9.2% 9.7% 

15% 15% 0% 0% 13.8% 14.5% 
20% 6.2% -2.7% 18.4% 19.4% 

5% -15.8% 7.q% 4.6% 4.8% 

20% 
10% 11.1% 4.9% 9.2% 9.7% 
15% -5.9% 2.6% 13.8% 14.5% 
20% 0% 0% 18.4% 19.4% 

5% -21.0% 9.3% 4.6% 4.8% 
10% -16.7% 7.4% 9.2% 9.7% 

25% 15% -11.8% 5.2% 13.8% 14.5% 
20% -6.2% 2.7% 18.4% 19.4% 

Table 15.1 

AIR & RAIL DEMANDS VARIATIONS 

corresponding to 

~YPOTHETICAL REDUCTIONS IN AIR & RAIL FARES 
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CONCLUSION 

Model building is a hazardous process in transportation 
industry, and in recent years, has become more complex. 
The high level of investment characterising the Civil 
Aviation industry, and the high susceptibility of this 
industry to political, economic, and other trends, 
renders the forecasting process a useful and indispens­
able tool in planning for the future to face the chang­
ing circumstances. 

Model building is an amalgam" of Science and ArtJ and as 
such, it involves Social Sciences, Econmic Theories, 
Mathematical techniques, experiences, and educated guess 
of the modelers in choosing variables, methodologies, a 
and specific reJations. 

The stage by which the study of the demand for travel 
has progressed from its state, some twenty years ago, to 
the rather more satisfactory state are complex. The 
first and more crucial change was the recognition that 
travel decision emerge out of the individual's optimiz­
ing behavior. So as individuals are assumed to be util­
ity maximers, the demand for travel ought to be positive 
ly related to Disposable Incomes and negatively to 
prices of travel. 

The second important element was that a new and more 
fruitful theory of Consumer Behavior could be devised 
by assuming that travel services can be entirely charac­
terised by their attributes; and that the consumer 
desires to maximize a utility function which has com­
modities attributes as its arguments rather than quanti­
ties of the various commodities consumed. 

Despite their apparent diversity, Econometric Models 
are little more than variants of the oldest formulations 
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based essentially on price and income elasticities. 

Besides particular disadvantages of each type of m~dals, 
they suffer from a common problem : by considering only 
one aspect of the market, the demand for travel, they 
ignore the effects of supply upon the demand, which 
creates the Simultaneous Equations Bias. 

The models developed in this thesis overcome this draw­
back by introducing the supply equations and applying 
2SLS and 3S15 to derive unbiased, more consistent, and 
more efficient coefficients. They are formulated as 
Multi-equation supply/demand Modal Competition Models, 
expressing the demand by each mode as function of the 
level of service of the mode, the fare - absolute or 
relative - and GDP variables. 

The results obtained are consistent with the supply and 
demand Microeconomic Theory. The most powerful explana­
tory variables in terms of statistical significance, in 
both Air and Rail demand functions, bear the correct 
sign and show reasonable magnitude. These variables 
are the frequency of services in Air demand equation, 
and the Rail fare and GDP in Rail demand equation. 

The Air frequency of services coefficients are interest­
ing and worthy of discussion. First, their values low­
er than I, as it is expected, outlines the diminishing 
returm characteristics of the demand for travel. Second, 
its high significance, even at 99% level of confidence, 
and the very low or rather non existent significance of 
the relative fares and GDP variables underline the busi. 
ness and/or the higher income groups orientation of Air 
travel market. 

The high significanee of Rail fare and GDP variablQs~99%) 
and the very low if not inexistent significance of Rail 
frequency of services illustrate the orientation of 
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Rail travel market involving, mainly, low income groups 
and/or personal tFavelers. 

The Aggregation by length of haul is found appropriate 
and shows a strong fare competition over the Londonian 
routes to and from Birmingham, Manchester, Leeds and 
Liverpool. In longer routes, Glasgow, Edinburgh, 
Newcastle, Air and Rail modes do not appear close subs­
titutes for each other. 

The statistical significance of most coefficients, in 
Air and Rail supply equations, as well as the goodness 
of fit of these equations justify the Multi-equation 
structure of these models. They also confirm the inter­
relations between the supply of and the demand for 
travel through the frequency of services variabl~, as 
well as the endogenous nature of Rail fare with respect 
to both Air and Rail modes. 

The poten~ial existence of the Simultaneous Equations 
Bias, due to the two-way dependency supply/demand, 
has necessitated the calibration of the coefficients 
by means of Multi-equation techniques. While there is 
no general agreement between modelers regarding t-he 
best technique to apply, 3SL5 has shown remarkable 
superiority over 25LS, in our models. This superiority 
being based upon both coefficients characteristics and 
forecasting accuracy criteria. 

The high significance of the Air frequency of services 
illustrates its importance as a decisive factor influ­
encing the demand. This provides the Airlines manage­
ment the capability of improving the demand by acting 
upon this controlable factor. This is of great import~ 
ande in the fl.eet scheduling process, where the schedul­
er is faced with the critical task of supplying the op­
timum number of flights that best take into account 
the conflicting objectives, such as public requirements, 
economic efficiency, and operational feasibility. 
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with the high significance of Rail fare, these models 
also provide the Railways management with useful measures 
of the effect upon demand of different ranges of fares. 
This may be of interest for an efficient pricing policy, 
since the Railways, contrarily to the Airlines, have mo 
more freedom to set up their tariffs. 

Rail journey time elasticities appear very close to the 
values assumed by British Railways Board in their 
passengers Traffic Model(1980). These elasticities as 
well as those of the electrification variable provide 
measures of the impact upon the demand of the time and 
the electrification improvement ; the effect of the 
time factor being either the result of technQlogical 
developments, such a.s further routes electrification or 
speeder trains introduction; or the results of efficient 
schedules reducing the waiting time at the connections. 

The simUlation forecasts,tested by the Root-mean-square 
error, the Root-mean-square per cent error, the Mean 
error, the Mean per cent error measures, illustrate the 
forecast accuracy of these models. 

The estimation of pure Time Series models has necessita­
ted the use of a revised Abstract Mode approach. The 
revision of this approach has consisted in introducing 
"supply" equations designed to eliminate the potential 
existence of the Simultaneous Equations Bias. 

The results of this approach confirm the usefulness of 
distinguishing between long and short routes. In the 
short routes, the relative fare is the most powerful 
variable, and its high elasticity, in absolute value, 
illustrates the existence of a strong Air-Rail competi­
tion in these markets. In longer routes, the relative 
frequency of services variable appears as the most 
powerful explanatory factor. Its low elasticity values, 
however, except in London-Newcastle, shows the low com­
petition in these routes. 



- 225 -

'rhe pure Air business demand models, and the pure Air 
~egion-pairs models confirm the previous results, that 
is to say, the high explanatory power of the Air 
frequency of services variable and the predominance of 
business travelers and/or higher income groups in the 
UK Domestic Air travel market. 

As stated earlier, the models developed in this study 
depart in many ways from the existence Modal Competi­
tion models. 'rhey constitute the first attempt of an 
integrated supply/demand model in the field of the 
travel competition modeling. However, their complex 
structures and the sophisticated nature of their calib­
ration techniques may raise the question of whether 
such models are worth conducting, since their computa­
tional cost may be high enough to outweigh the efficien­
cy gain. A clear answer, in favour of such modeling, 
may be found in a further improvements of these models 
by investigating more relevant data and increasing the 
sample size. 

Indeed, the supply equations need more elaborate formu­
lations. In fact, they are more "services equations" 
than truly supply ones. This made us,in the introduc­
tion of Part Ill, put an emphasis on the identification 
of the demand functions as our primary purpose, the 
supply equations being essentially designed to combat 
the Simultaneous Equa~ions Bias. 

The introduction of operating costs variables. parti­
cularly in Air supply equation. would be of great use­
fulness. The Aggregation by trip purpose. business/lei­
sure.for both modes. would likely provide meaningful 
insights. since the trip purpose along with the length 
of haul factor are very important elements in the 
Choice Mode Decision. 
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In conclusion, model building is a very complex process 
that involves numerous aspects with various alternativesl 
data investigation, variables and structural forms 
selection, Theories application, choice of techniques 
calibration. It is very much an Art, and part of this 
Art is learning to trade off alternative aspects in 
different ways. 
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APPENDIX 

STATISTICAL PROPERTIES OP BSTIIl~ORS. 

The goal in a Linear Regression model is to ~it an esti­
mated regression line ~.: 0( +~X which is in soae sens 
close to the true regression line. To test how the es­
timated line di~fer8 from the true regression line, soae 
useful statistical properties are desirable tor any set 
of estimated parameters. 

Unbiasedness 
/' 

An estimator ~ is unbiased when the mean or expected 
value of fo is equal to the true value i?> f that is I 

E[~J = ~. The bias is defined as followsl 

Bias = E (f) - ~ 

Figure 1 illustrates the dif~erence between a bia.ed and 

an unbiased est1aator. While lack of bias in an esti­
mator is a desirable property, it iaplies, however, 
nothing about the dispersion of the e.ttaator about the 
true paraaeter. In general, one would like the -•• ti ... 
tor to be unbiased and also to have a very .mall disper­
sion about the Kean. One, therefore, should define a 
second criteria that allows to choose among alternative 
unbiased estimators. -Probability p "" Probability ~ 

lime 1 

BIASED ESfIIl!OR UNBIASED ESTW'l'OR 

• The material in this appendix has been extracted from 
pindyck ~3] . 
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Efficiency 
/::'0 

~ is an etticient unbiased estimator when the variance 
~ of ~ is smaller than the variance ot any other unbias-

ed estimator. In practice, it is sometimes difficult 
to tell whether an estimator is efficient, so that it is 
natural to describe estimators in terms of their relati­
ve efficiency. One estimator is more efficient than 
another if it has smaller variance. This is graphical­
ly shown in Figure 2 below, 

"" A 

Probability ~ Probability f 

Figure 2 

~ 
INEFFICIENT ESTI~TOR 

'" 
'-----~--~ r 
EFPICIElft ESTIIIA'fOR 

OonsistencY 
",. 

~ is a consistent estimator of ~ if the probability I 
limit of ~ is ~ , i.e, if the probability that I ~-~ 
will be less than any arbitrary small positive number 
will approach 1 when the sample size gets infinity. In 
other words, an estimator is oonsistent if the probabi­
lity distribution of the estimator collapses to a single 
point, the true parameter, as the sample sise gets 
large. This is illustrated in Figure :3 below. 
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Figure :3 
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