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SUMMARY

The main purpose of this research is to develop a set
of econometric Air-Rail competition models which are
sufficiently sensitive to measure the effects upon
demand of policy decisions, with regard to such vari-
ables as frequency of services and fares.

Existing Modal Competition Models have, rather uncritic-
ally, applied Multiple Regression analysis in consider-
ing only one aspect of the market, namely the demand

for travel, ignoring therefore the effects of the supply
upon the demand. The emergence of the so called "Simul-
taneous Equations Bias", due to the two-way dependency
between the demand and the level of service factor ex-
pressing the supply, renders the application of the OLS
(Ordinary Least Squares) inappropriate, and hence,
yields biased, inconsistent, and inefficient OLS coef-
ficients.

The models, developed in this study, depart from all
existing Modal Competition Models, and overcome some of
their drawbacks. They are formulated as Multi-equation
Supply/Demand Modal Competition Models. They introduce
the frequency of services variable not only in the
demand, but also in the supply equation expressing the
level of supply in response to changes in other vari-
ables. In order to derive unbiased, more consistent,
and more efficient coefficients, sophisticated statis-
tical techniques, such as 2SLS and 3SLS (Two-Stage
Least Squares and Three-Stage Least Squares) , are ap-
plied as a means of calibration.

The elasticities obtained are consistent with the Supply
and demand Microeconomic Theory. The frequency of ser-
Vices appears as the most powerful explanatory variable
in Air demand; whereas fare and income are the most
powerful variables in Rail demand equation. This leads



to the conclusion that Air mode is mainly higher income
groups and/or business oriented market; and Rail mode
lower income groups and/or personal oriented market.
Furthermore, Air and Rail are competing on a fare basis
in short routes; while they do not show close substitu-
tes for each other in longer ones.

The high significance of the frequency of services, in

Air demand, outlines its importance as a factor influ-

encing the demand; and therefore, provides the Airlines
management with the capability of improving the demand

by acting upon the endogenous factor. This is gf great
interest in the scheduling fleet process.

Similarly, the significance of Rail fare variable offers
the Railways management the possibility of acting upon
the demand through this controllable variable, for an
efficient pricing policy. Rail journey time elastici-
ties, derived from these models, are very close to the

elasticities assumed by British Railways Board, in
their Passenger Traffic Model, 1980,

The statistical results indicate that the elasticities
derived are useful for both analysis and forecasting
purposes.
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I know of scarcely anything so apt
to impress the imagination as the
wonderful form of cosmic order ex=-
pressed by the "Law of Frequency of
Error". The law would have been
personified by the Greeks and
deified, if they had known it.

Sir Prancis Galton

Public agencies are very keen on
amassing statistics - they collect
them, raise them to the nth power,
take the cube root and prepare
wonderful diagrams. But what you
must never forget is that every one
of those figures comes in the first
instance from the village watchman,
who just puts down what he damn
Pleases.

Sir Josiah Stamp



INTRODUCT ION

Forecasting travel demand is a central task for all
sections of the transportation industry, and has in
recent years become an extremely complex operation.
This is particularly true in Civil Aviation, where
demand fluctuations are a prime source of instability;
for inaccurate demand forecasting leads to capacity
problems, and consequently, to revenue difficulties.

Industry analysts have recognized the sensitivity of

the productivity of the Airlines and Aircraft manufac-
turers to their planning process which is based upon
travel demand forecasts. Traditional methodologies

such as trend extrapolation, were found inadequate as

a result of the impact upon travel demand of recent
drastic changes within the economic and operating envir-

environment : high inflation rates, fuel and labor costs
increases. More elaborate models, based upon advanced
econometric techniques, have generally been limited

either by insufficient understanding of the whole trans-
portation system or by lack of relevant data.

Need in forecasting

Both the planner and the policy maker need to know the
consequences of their plans, recommendations or deciss
jons. 1In the context of a new transportation facility,
they need to know who will be affected by the new
facility, both ben&ficially and adversely; and the ex-
tent of the gains and losses. Furthermore, in justify-
ing a new facility, they should have quantitative estim-
ates of its effects in order to transform them into
terms that can be used to compare alternative projects.

Time horizon

The length of time ahead for which the forecasts have
to be made is one of the problems of the transport in-
dustry, particularly in Aviation where the lead time is



a very important element. For fleet planning purpose,
Airlines have to consider the time elapsing between the
commitment to a firm order of an Aircraft and its deliv-
ery. Aircraft manufacturers need to consider the time
it takes to develop a prototype, and then, the produc-
tion run period of pay-off for the investment in the

project. In the case of Airports, Roskill's forecasts
for the third London Airport extend 15 years into the

future, although the total construction time was estim-
ated a¥% 7 years.

Model validity

The validity of the model may be judged on several

criteria s its predictive power, the consistency and
realism of its assumptions, the extent of the informas

tion it provides, its generality, i.e, the range of
cases to which it applies, and its simplicity. There

is no general agreement regarding which of the above
attributes is more important.

The views of the analysts range from the position that
the predictive performance is the most important

criteria of the model validity to the position that
realism of assumptions and power of the model in explain-
ing the behavior of the economic agents, producers and
consumers, is the most important attribute of the model.
Most economists take the position that what is the most
relevant attribute of the model depends on its purpose,
the use for which the model is built.

When the model is designed for a pure forecasting ap-
plication, the predictive performance is more important.
Realism of assumptions and explanatory power are, in
turn, more important if the model purpose is the explans.
ation of why a system behaves as it does. The avail-
ability of relevant data is, of course, a key element

in the modeling process; and models can only be as
good as the data.



Purpose of the Thesis

The purpose of this research effort is to develop a set
of econometric Air-Rail competition models that are suf-
ficiently sensitive to measure the effects upon demand
of policy decisions with respect to such variables as
frequency of services and fares.

Besides particular weaknesses inherent to each type of
existing models, they all suffer from a common problems;
by considering only one aspect of the market, the demand
for travel, they therefore ignore the effects of the
supply upon the demand. This may yield biased and in-
consistent estimates of the parameters.

The models developed in this Thesis depart, in many ways,
from all existing models, and overcome some/ their draw-
backs. They are formulated as Multi-equation supply/de~
mand models, and are therefore related to both aspects
of the market, the supply of and the demand for travel.

They introduce the frequency of services variable not
only in the demand equation, as an important level of
service factor explaining the demand, but also in the
supply equation, expressing the level of supply in res-
ponse to changes in other variables. By including the
frequency of services as an important factor influencing
the demand, these models provide the policy maker the
capability of acting upon the demand through this con-
trolable factor.

They estimate the absolute value of Air and Rail traffic
demand instead of the share by each mode, as most of the
modal competition models do.

Finally, the equations are simultaneously estimated
rather than being independently or recursively calibrat-

ed. This calibration involves highly sophisticated tech-
niques, such as Two-Stage Least Squares and Three-Stage

Least Squares, which provide unbiased, more consistent
and more efficient estimates coefficients.



As a background for this Multi-equation models building,
a literature review is presented in Part I. Instead of
discussing the existing models one by one, the modeling
process in this review is analysed through some import-
ant characteristics for the models, such as the type of
data, the underlying theory of the models, their struc-
tural formulation, and their methods of analysis.

As an illustration of this literature review, Part II
provides a detailZed analysis of an econometric model,
developed at MIT by the Flight Transportation Laboratory
in 1976. This analysis highlights the statistical probe
lems commonly encountered in Time Series, Cross-section-
al, and Pooled models. It outlines, through this model,
the main weakness of Aggregate models, namely the impli-
cit assumption of the homogeneity of the market. Finale
ly, it illustrates the major handicap of many travel

models, due to the two-way dependency between the demand
and the level of service variables.

In order to overcome this statistical difficulty, a new
specification of this model is attempted, by including
a second equation in which the level of service variable
is expressed as the dependent variable.

However, as the Surface Modes competition is completely
ignored in MIT Model, a set of Modal Competition models,
the aim of this research, are developed in Part III.
They involve the UK Domestic Air and Rail travel markets.

It was originally intended to estimate the coefficients

of these models from pure Time Series data, by conducte
ing Region-pairs models. However, as a result of the

low degrees of freedom consequent to the small sample
data, and to the Multi-equation nature of these models,

it became necessary to combine Cross-sectional and
Time Series data, so as to derive meaningful elasticities.

Nevertheless, pure Time Series models are attempted by
applying a revised Abstract Mode approach to ? indivi-
dual



London' . routes. This approach has the advantage of
increasing the degrees of freedom by doubling the num-
ber of observations.

Finally, pure Air travel business demand models and

pure Region-pairs models applied to 3 trunk routes are
developed and discussed.



PART I

LITERATURE REVIEW



INTRODUCT ION

The literature on travel demand models is quite exten-
8ive, and it would be a difficult task to provide an
exhaustive review. Models are so numerous that one may

get the impression that there are as many models as
modelers.

Many classifications by types of models were attempted
(e.g, Andreff & Bourgogne [1] , Tane ja [2] ); and their
multitude is only a proof of their imperfection. The
following, for instance, is a partial 1list of typical
models names : Time Series, Cross-sectional, Gravity,
Abstract Modes, Non-Linear. A detailed analysis shows
that the names do not represent unique models, but
rather the characteristics that the author felt were
more relevant. A model, for instance, may well be

Time Series, or Cross-sectional, Aggregate or Disag-
gregate, Linear or Non-Linear, and Abstract at the same

time. The name by which the model is called being its
most important characteristic, whether it is the type

of data (Aggregate vs Disaggregate, Time Series vs
Cross-sectional, Pooled), its underlying theory(Consumer
Behavior Theory, Abstract Mode, etc..), its structural
formulation (Linear vs Non-Linear, Single Equation vs
Multi-equation), or its method of analysis (Regression
analysis, Discriminant analysis...).

For the present review, rather than discussing the
models one by one which would be a great task, we dis-
cuss the modeling process through the characteristics
referred to aboves

1 - Types of data

2 - Underlying Theory

3 - Structural formulation &
Methods of analysis

At this stage, we are not concerned with the evaluation
of the models as such, but rather by the analysis of

the above characteristics.
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Although Logit, Probit, and Discriminant analysis are
not of great relevance to the models to be developed in

this study, they are presented there-in-after for
completeness.

To close the literature review, an analysis of the
factors explaining Air travel demand as well as those
explaining the Choice Mode decision is provided.

As an illustration of this review, an Econometric Model

conducted at MIT by the Flight Transportation Laboratory
in 1976 is discussed in details in Part II of this study.
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CHAPTER 1

TYPE OF DATA

1.1 AGGREGATE VS DISAGGREGATE MODELS

The use of "Aggregate" and "Disaggregate" as applied to
the travel demand modeling is not always totally consis-
tent and a certain amount of unjustified mystique has
been created around them,

A totally Aggregate model is a model estimated with a
dependent variable which represents a group of observa-
tions, whereas a totally Disaggregate model is a model:
estimated with a dependent variable which represents an
observation of a single occurence.

In totally Aggregate models demand is normally treated
in a macroeconomic context. Usually, the dependent vari-
able is the RPM (Revenue Passengers Miles), or the number
of passengers on a large scale such as the total world
traffic or the total US traffic, as usually forecasted
by the ICAO, IATA, the big airlines and the air manufac-
turers.

In totally Disaggregate models, demand is treated in a
microeconomic context. Ideally, the totally Disaggregate
model would be the one specifying the consumption prob-
lem for each consumer in the population i.e the number

of trips that each consumer would take to a particular
destination at a given time period.

The main disadvantage of totally Aggregate models is the
loss of information experienced in averaging the values
of the variables affecting travel demand over the group
of individuals in a traffic region whose demand is being
modeled. This loss occurs because no explicit account
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is taken of the variability of the explanatory variables
with the traffic region in estimating the coefficients.

The main disadvantage of a totally Disaggregate model is
the amount of data necessary for such a modeling.
Because of these great difficulties, researchers have
been forced to combine somehow the data in order to
develop models that fall between totally Aggregate and
totally Disaggregate models.

The desirable degree of aggregation depends, of course,
on the purpose of the model as well as on the data. On
the planning of new equipment, manufacturers develop
forecasts of future world aviation activity in terms of
RPM. Similarly, both the ICAO in their concern in the
total amount of world traffic and the airlines for their
fleet planning purpose develop total aggregate models.

However, when the purpose is to measure the effect upon
demand of particular variables such as fare, income, and
quality of service the models should be somehow dis-
aggregated. The degree of such a disaggregation is
closely related to the available data.

In the following are some examples of these types of
models.

- Douglas Aircraft Company Model: this total Aggregate
model is designed to forecast the short and long term
Us domestic traffic to 1983, using a Time Series data
over the period 1946 - 1974. [3] .

The dependent variable is the RPM and the behavioral
equation is expressed as follows:

RPM = ) + B (RCE) + B, (VEL) + (B3(RIND) + f},, (2¥1D)

+ (35(P‘I'L) + €6DUMMY
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where the variables in logarithm have the following
definitions:

PCE : permanent income measure of personal consumption
expenditure.
VEL : velocity of money.

RINT : ratio between the long and the short term rates

of interest.

TYLD : US scheduled domestic yield in current g.

PTL : US average on-line passenger trip/length.

DUMMY : dummy variable aimed to correct for the definition-

al change of domestic traffic to a 50 states basis.

The aggregative nature of this model is characterised by
the measurement of the dependent variable RPM and the
extent of the geographical traffic over the whole US
domestic market. Notice also the PTL variable which is
an average on-line passenger trip/length.

After this illustration of total Aggregate models, it

would have been also interesting to provide an empirical
example of a total Disaggregate model. Unfortunately, in
our knowledge, such empirical models do not exist, How-
ever, most of the models fall between total Aggregate

and total Disaggregate. As an illustration of such
models, we refer to Taneja [2] who provided a quite
interesting review. We do not discuss these models at
this stage, since the review will refer to in different
sections. But, it is interesting to define here their
types of aggregation. |

Aggregation by destination:
R Gronau 19 , Columbia University [u] .
Aggregation by incomess
T Blummer 1976, MIT(Massachusett Institute of Technology).
Aggregation by modes of destinations [5]
P Verleger 1971,MIT [6] .
Aggregation by incomes, modes and destination:
P Marfisi 1976, Brown University [7] )
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- Aggregation by incomes, modes and destination:
S E Eriksen 1977, MIT [8}

In conclusion, the choice of degree of aggregation is
related to the purpose of the model as well as to the
type and amount of data available.

The main disadvantage of totally Aggregate models is the
implicit assumption that travel demand is a homogenous
unit such as RPM, and that the value of passenger traffic
is related to the same parameters in all markets (for
instance, London - Palma and London - New York are
assumed to be characterised by the same parameters).

They also ignore the segmentation by trip purpose modes,

class of service, which leads to a loss in forecasting
accuracy.

The non totally Aggregate models, on the other hand, are

(depending on the degree Qp aggregation) more accurate.
They, however, require more data, time and effort.

1.2 PURE TIME SERIES VS PURE CROSS-SECTIONAL MODELS
1.2.1 Time Series

They are models using a sample of data over a period of
time with fixed time intervals. The main purpose of

these models is the analysis of past data in order to
establish a relationship between the dependent variable
and a set of explanatory variables. Once this mathematic-
al relationship, over the considered period, is establish-
ed, future values of dependent variable are derived

either by assuming the stability of this relationship

onto the future {as most models do) or by allowing this
relationship to vary over time. The main outcome of

these models is the elasticities of the demand with
regard to the considered variables throughout a period
of time,



- 12 -

Pure Time Series are usually related to total Aggregate
models since neither city pairs nor any travelers’
characteristics are explicitly expressed. The Douglas
model, refered to earlier, is a typical example of a
pure Time Series model.

One major problem encountered in Time Series is the high
degree of collinearity that often exists between different
independent variables. The main reason for this col-
linearity is a tendency of economic variables to move
together over time. For example, in period of booms or
rapid eeconomic growth, the basic economic magnitudes
grow, although some tend to lag behind others. Thus,
income, consumption, savings, investments, prices, employ-
ment tend to rise in periods of economic expansion and
decrease in periods of recession.

When a strong collinearity exists, the condition for the
application of OLS (ordinary least squares), namely the
independence between variables, breaks down and the
estimated parameters, according to Koutsoyiannis [9J R
might be seriously imprecise and unstable.

This statistical deficiency 1s present in the Douglas
model [3] , mainly due to the large secular trends of
the personal consumption expenditures variable, trip
length and yield which might be one of the reasons for the
high value of R%(=.9988).

Multicollinearity is a characteristic of the data rather
than an indication of incorrect specification of the
model. If the purpose of the model is a measure of
variables elasticities (such as price and income) multi-
collinearity is a serious problem because it is rather
difficult to disentangle the effect of each variable.
However, when forecasting is the main purpose .of the
model (as in Douglas model), the deficiency is not so
serious; for if multicollinearity remains the same over
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the projected period, the coefficients' estimates have
the merit of giving good forecasts. If multicollinearity
is not maintained, the problem remains.

There are different techniques, described in many econo-
metric books, of how to identify and to overcome multi-
collinearity:

- 'The first common method is to take the first differences
to eliminate the time trend. An appropriate illustration
of this method is given by the CAB (Civil Aeronautics
Board) model [lq] developed by Brown and Watkins. This
model focusses on the determination of price elasticity
and uses data over 1946 - 1966, incorporating three
independent variables: average fares per mile, income

per capita and clock time. The dependent variable is

the RPM.

Multiple regression is conducted in two ways: Time Series
and Cross-sectional analysis. In the Time Series aﬁiysis.
the introduction of first differences is aimed to combat
multicollinearity. Both fare and income variables coef-
ficients are statistically.significant (-1.307 and 1.119).

- The second method to overcome multicollinearity is
conditional regression. When the explanatory variables
are highly correlated, the influence of some of them
could be considered as external data known from other
sources with an assigned a priori elasticity. Such
method is applied by Strasheim [1{] .

- A third method, is constrained regression technique
introduced in the North East Corriilor Project to combat
multicollinearity due to the large number of variables
(11 variables):
- employment in cities i and j.
- cost trip by each mode (Air, Rail, Bus, Car).
- trip time by each mode.
- per capita income in city i.
- attractiveness of city j.
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The method consists of assuming linear constraints on
the range of values which the estimates could take up
on a priori knowledge. Each elasticity is constrained
to have the correct sign: a mode’'s own price elasticity
is constrained to be negative, cross-elasticity is cons-
trained to be positive and a maximum value is specified
for each elasticity.

- A fourth technique to overcome multicollinearity con-
sists of using detrended variables. Taneja[}z] »in his
attempt to measure the impact of high inflation rates

on the demand for air transportation, uses both the first
and the fourth techniques. The explanatory variables
selected in his model are: measure of consumer income,
yield and inflation rates; and RPM is the dependent vari-
able. The method requires three steps:

To begin with, he detrends all the variables,except the
measures of inflation, by performing a regression of a
trend against each variable(one by one), the residual
representing the corresponding detrended variable.

Then, he runs the following regression:

Log(RPM#*) = Log(YIELD*) + Log(INC*) + Log(INFL)

where each of the different measures of incomes and in-
flation is tested, so as to select the best measure for
each factor.

Finally, after obtaining the best measures, he runs the
regression using the following equation:

Log(RPM) = Log(YIELD*) + Log(INC#) + Log(INFL) + TREND

where Log(RPM) is designed to retain the secular trend
for forecasting, and the Log as well as the detrended
forms to remove trend and to eliminate the multicol-
linearity problems.

The "#" jindicates the detrended variables.
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Another statistical problem,often encountered in Time
Series model, is Autocorrelation. It occurs when the
error term is correlated with its past value(s). Most
of the standard econometric textbooks deal with the
gimple case of autocorrelation namely the first order
autoregressive relationship:

Up = P Ug1 * Vs

The sources of autocorrelation are numerous, the most
important ones being: the omission of explanatory vari-
ables, misspecificationof the true random term. Auto-
correlation may be positive or negative in theory. 1In
practice, however, it is in most cases positive.

Some rough idea of the existence and the pattern of auto-
correlation may be gained by plotting the regression
residuals, either against their own lagged value(s) or
against time. However, there are more accurate tests

for incidence of autocorrelation such as Von Newman
ratio and Durbin Watson test explained in many textbooks.

As a general rule, the presence of serial correlation
does not affect the unbiasedness* or consistency¥ of
the coefficients, but does affect their efficiency*.

In the case of positive serial correlation(i.e the most
common case), the SE(standard errors) of the OLS (ordin-
ary least squares) coefficients are smaller than the
true SE; i.e the coefficients appear more significant
than they actually are. When serial correlation is due
to misspecification of the error term U, the appropriate
solution is to obtain an estimate of - In many cases,
researchers assume P=1, and proceed in the estimation
of the relationship expressed in the first differences
of the variables.

# These terms will be defined later on.
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1.2.2 Cross-sectional models

Contrarily to Time Series models, Cross-sectional models
use observations in a particular point of time across
different routes*., The main purpose is to identify the
relationship between the total demand and some explana-
tory variables across the markets considered. Therefore,
the elasticities derived are instantaneous elasticities,
i.e related to the base year considered.

The CAB have most often determined elasticities by cross-
sectional analysis. One of their best known model is

the model developed by Brown and Watkins [10] in 1970,
over the 300 most heavily travelled city pairs in the
United States.

The dependent variable is the number of passengers and
the independent variables are: fare per mile, time per
mile, number of stops, distance, phone messages, inter-
national passengers, income éqg competition index.

The regression in Log linear formulation is performed
first,for the year 1960 and 1964 separately and then,

for both years combined. The results show a fairly high
degree of explanation of the dependent variable (Rzexceed-
ing .80). All the coefficients are significant and bear
the right signs.

However, Cross-sectional models do have some drawbacks.
We recall here the potentidl existence of heteroscedasti-
city. In a city pairs model, the error of specification
for one market may be quite different from the error for
another market, since different factors may explain the
underlying process in the two markets. One market may

# Other types of Cross-sections are,of course,possible
guch as across of ranges of incomes for instance.
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be more pleasure oriented while the second may be more
business oriented. A Las Vegas - San Francisco, or, a
Los Angeles - San Francisco, for instance, could hardly
be combined with Washington - New York, or, Chicago -
Boston markets.

Heteroscedasticity arises when the variance of the random
term is not constant. This can easily be understood if
we take account of the factors whose influences are
absorbed by the disturbance term. Notice that this term
expresses the influence, on the dependent variable, of
errors in its measurement and of omitted variables.

When this deficiency occurs, the OLS estimates do not
have the minimum variance property in the class of un-
biased estimators, i.e, they are inefficient (although
still unbiased).

Some tests are proposed to identify the existence of
heteroscedasticity, among them Goldfeld and Quandt tests.
Solutions for these difficulties are described in many
textbooks (e.g Pindyck [15] , Koutsoyiannis [9] Yo It
should be remembered, however, that heteroscédasticity
is less common than multicollinearity and less serious.

Another disadvantage in pure Cross-sectional models is
that data taken from a specific time period may not be
considered a typical base year from which to develop
Cross-sectional models.

The problem of data, encountered in both pure Time Series
and pure Cross-sectional models, and the statistical
difficulties explained above, raise the question of
whether a combination of both methods would constitute a
better technique in improving the number of observations
and possibly reducing the problems of multicollinearity,
autocorrelation, and heteroscedasticity.

1.3 POOLED DATA MODELS

Most of travel demand models utilise combined data
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across city pairs and over different time periods. An
example of such model is the MIT's model Pﬁ] developed
by Eriksen, Scaled and Taneja in 1976. This model
attempts to relate the level of air transpertation
activity in a number of specific markets to a set of
socioeconomic and scheduling variables. Data are-pooled
from 58 region pairs over the period (1959 - 1974). 1Its
formulation is as follows:

tor b =fbg + {31 Log (FARE) +{32 Log (BPI) +@3 Log (L0S)

where:
D = demand between region pairs.
FARE = fare charged in region pairs.
BPI = buying power index characterising each region pair,.
10S = level of service.

I

ﬁ ; = coefficients to be calibrated.

As this model will be discussed,later on, in greater
details we only note at this stage the existence of

heteroscedasticity and autocorrelation which are the
combination of both disadvantages of Time Series and
Cross-sectional models.

In this type of pooling data technique, all cross-section-
al and Time Series data are combined and multiple
regression is performed on the entire data set. How-
ever, another pooling process exists. It consists of
estimating one (or more) coefficients from the Cross-
sectional data, insert them in the original function,
substract from the dependent variables the terms involv-
ing the estimated parameters, and then, regress the
residual value of the dependent variable on the remain-
ing explanatory variables, obtaining estimates of fhe
remaining coefficients from the Time Series sample.

This procedure offers many advantages. According to
Koutsoyiannis [9] , the use of Cross-sectional data in
combination with Time Series in the estimation of demand



- 19 -

functions may @dvoid to a certain extent the problem of
multicollinearity, identification#*, simultaneous
equation bias#*. However, there are various snags which
must be carefully watched, if the values of the coef-
ficients are to be properly estimated:

- First,the Cross-section estimates are long run elasti-
cities whereas the Time Series estimates are short run
elasticities. This difference in the meaning of the
estimates is due to the implicit assumption underlying
the two types of estimates: is it a long run demand
function or a short run relationship that is estimated
from the pooling technique?

- Second, it is clear that from a Cross-section sample
we obtain estimates in a particular point of time; the
vrocedure implies that the Cross-section coefficients
remain constant over the whole period of the Time Series
sample, an assumption which may well be expected to be
unrealistic.

Such considerations have induced various analysts to

argue that functions estimated from pooling techniques
are not efficient for prediction {9] .

1.4 CONCLUSION

what to conclude from this "type of data" review?

- First, the aggregation/disaggregation dilemma is
primarly a question of purpose of the model. If the
main reason of the model is to draw a general picture of
the evolution of the traffic over the total world demand
or a given domestic market, the total aggregation

(#*) 1Identification and simultaneous equation bias will
be discussed later on.
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approach is reascnable. ©On the other hand, if the
purpose is the evaluation of the demand in a particular
segment of the market, such as a region pairk or a
segment of the population, the corresponding aggregation
is more appropriate.

- Second, the Time Series, Cross-sectional and Pooled
data procedures are methods of estimating elasticities
They consist of finding the mean of evaluating these
elasticities (usually income and price), with regard to
the potential statistical and theor@tical problems in-
herent to each procedure:

- multicollinearity and autocorrelation, particularly
common in pure Time Series.

- heteroscedasticity, usually characterising Cross-
sectional models.

- finally, the combination of these problems in addition
to the ambiguity lon€run/short run elasticities in
pooled techniques.

Once again,the availability ofreliable data are the most
determinative element in the selection of these procedures.
Empirical travel demand mdels have invariably applied
these methods with more or less success depending on the
available data. However, the wide differences in the
forecast values experienced particularly by the total
aggregate models, raises the question of reliability of
these models.

The Fig ¢ 1.1,1.2,1.3 illustrate very well such dif-
ferences. In particular, the 1968 forecast in

Mc Donnell Douglas model(Fig 1l.2)exceeds the 1965 fore-
cast by more than 133% for the year 1975.
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CHAPTER 2

UNDERLYING THEORY

One of the criteria by which models are usually judged
is the consistency of their theorttical foundation. 1In
this chapter, we attempt to explain how some theorftical
concepts derived from economics and psychology have been
applied to travel demand models.

For the clarity of the presentation, we first discuss
the theory underlying the Deterministic models,i.e, the
models that attempt to determine the absolute value of
traffic.demand, and then the theory of probabilistic
models which evaluate the probability for a consumer to
choose a particular alternative.

2.1 DETERMINISTIC MODELS THEORY

The stages by which the theory of travel demand has pro-
gressed from its state, some 25 years ago, to the rather
more satisfactory state are complex.

The first and more important change was the recognition

that travelers’/decisions emerge out of the individual's

optimizing behavidr.

Another improvement was introduced by Y Young [15J in
his PhD dissertation in the University of Washington in
1966. He suggested that the fact, that travelers were
willing to pay a higher price for a faster mode of
transport, revealed their consciousness of the value of
time and a time constraifit in their activity. He
argued that neoclassical consumer choice theory was
deficient and misleading in air travel market analysis,
in that it ignored the time constraint and the value of
time of the consumer. He, therefore, proposed a trade
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off between time and money, and modified the neoclassic-
al theory by introducing a time constraint analogous to
the budget constraint. He then, formulated an empiric-
al model in which both time and fares were included as
explanatory variables; and obtained estimation para-
meters of business and non business air travel demand
functions separately. Both Time Series and Cross-
sectional data were used in estimating these parameters.

The second very important element was introduced by

K Lancaster [ié] : a new and more fruitful theory of
consumer behavidk could be devised by assuming that
travel services can be entirely characterised by their
attributes, and that the consumer desires to maximige
a utility function which has commodity attributes as
its arguments rather than quantity of the various com-
modities consumed.

If Z is a vector of quantities of various attributes,
X a vector of quantities of various commodities,
P the vector of corresponding prices and
Y the level of income,
then the consumer desires to maximize the utility
function U(2) subject to:
Z = G(X)
PX LY
X,220
where G(X) describes the production of attributes by

commodities.

One attempt,using some of these ideas,was made by
Quandt and Baumol[i?] . In their original "Abstract”
mode model%*, designed to estimate the passengers irmwvdl
volume in the North East Corridor, they used a single
-equation to represent the modal choices for all modes.

(#) They now prefer to call it "Attribute Mode".
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The originality of the approach was that demand for
travel by a mode was not dependent on the name of the
mode, but on the characteristics describing the level
of service offered by each mode. Every mode was charac-
terised by several variables specifying its supply at-
tributes. These variables were defined relatively to
the level of that variable attained by the best mode.
The model form was hypothesised as an adaptation of the
gravity model form and different from the SARC-¥Kraft
model [15] , the first study to estimate demand
relationship for all modes. Contrarily to SARC-Kraft's
model in which separate demand functions were estimated
for each mode (one equation for each mode), Quandt and
Baumol's model evaluated parameters by pooling data
across modes. Both models, as well as their further
developments, assumed constant elasticities and cross-

elasticities.

The dependency on the best mode in Quandt and Baumol's
model is one of the main weaknesses of this model. The
empirical application of the Abstract mode has not been
successful. The model was initially using observations
for 16 city pairs in California across 3 modes. The
estimated parameters showed higher variances when data
were pooled across the modes than when models were
specified for each mode.

Although widely applied, the validity of this pure
Abstract mode can be questioned. It can bhe debgted
whether the resulting elasticitdies, since they pertain
to an average of the travel market, are sufficiently
representative of any individual mode.

Other disadvantage of the Abstract mode was that it
could not account for certain non quantifiable but
very real characteristics of each mode. Some travel-
lers, for instance, simply do not like train while
others are fearful of the air travel.
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In order to surmount these weaxnesses, Quandt and Young
[lﬁ]incorporated dummy variables for different modes
and routes which made these models less abstract.

In general, current applications of these models have
not been conspicuously successful. The use of SARC-
Fraft's and Quandt and Baumol's models in the North East

Corridor Project yielded forecasts that were considered
to be implausible.

One major theorftical problem encountered by these models
resulted from the fact that none of these models took
into account the idea that travel was a derived demand.
They all were based on the application of demand theory
to travel. Thus, given an improvement in the quality of
services offered by all modes, total travel demand would
be expected to rise substantially without any reference

to what that demand would be servicing.

Finally, the recent improvement, in the theory underly-
ing the deterministic models, was carried out by Gronau
[u] in his PhD dissertation at Columbia University
later published as a book in 1970. Gronau developed

Lancaster's theory by defining the utility function
over an "activity" space. As an example of activity is
the "visit” which constitutes a combination of trans-
portation, accommodation, meals, travel time, Like

- Young E15] » he considered the time as a constraint
analogous to the income constraint which not included
in Lancaster's theory. Therefore, the consumer's
optimizatiom problem for travel activities was written
as follos:

MaXU:U(Zl, zz-.ollloonzn)

subject to: ZE;W Py X3 = Y
1=
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125
o0

prices of product Xi

consumer's monetary travel budget
T. : time investment for X,

consumer's travel time limit

4

+3
(@)

The specification of Gronau's model was as follows:

L B o,

1] J
where:
Xij : number of trips to destination j by family

in income group 1
1 .. generalised trip cost = P. + k., T

i ) J i)
Yi : average income for income in group i
Uij ¢ disturbance term

However, these models suffer from a common problem.
They treat only one aspect of the market, namely the
demand for travel, generally ignoring the supply. This
omission has two short comings:

- One is theorttical, the omission of the supply
restricts the scope of the analysis, since demand for
and supply of goods and services are generally inter-
related in real world.

- The other is statistical, the ignorance of the supply
influence on the demand might yielQASfefﬁgcients due
the two way causality. ase

2.2 PROBABILISTIC MODELS THEORY

Probabilistic choice models constitute a relatively new
area of research. They find their development in the
field of urban transportation planning. According to
Stopher [Zd] , their theor®tical approach is founded
in two disciplines dealing with behavidr: +the economics

of consumer behavior and the psychology of choice
behavidr.
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The psychologist view is that humain decisions are
nrobabilistic in nature, but are based upon evaluation

of utilities. These utilities provide a basis for
estimating the orobabilities of choice for each
alternative. The individual is assumed to have an exact
"measurable” utility. In this approach formulized
through the application of Luce's axiom* of the independ-
ence of irrelevant alternatives, any alternative a has a
utility Usia comprising attributes of the alternative X,
modified by the attributes of the individual S; such as:

Ui, = U(Si,xa) (1)
Cn the other hand, the economics’ view is thatwindividual
is being deterministic maximizer. In the economic
theory, formulated in Mc Fadden's paper, each individual
is assumed to have a utility function as follows [Zi] :

Uj, = V(S;.Xg) + E(si,xA) (2)

where:

V(Si,xa) :+ the common utility of alternative a for
individual i

i(si,xé) : the individual utility of alternative a
for individual i with socioeconomic
characteristics Sy

This model is termed random utility model because of the
existence of;fandom term in contrast with the strict
utility model. “hile in the first approach (equation 1),
the individual is assumed to assess his utilities of

each alternative, in the second one (equation 2 ) he is
presumed to choose the alternative k which maximizes the

utility Uik'

(#*) The axiom states that the relative odds of choosing
one alternative over another is unaffected by the
presence or absgence of any additional alternative
in the set.
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In the psychological approach, direct correlation
between prodbability of choice and utility is hypothesised
(Luce's axiom):

~1 o

Ia U(Di,x(a) (3)
T )

P, U(S; %)

Assuming an exponential form U(Si,Xa) = exp V(Si.Xa)
where V(Si,xa) is linear in X, and M available
alternatives, the standard multilogit model is derived

from (3):
5 exn [V(s;.15)] )

In the economics approach, however, the probability that
an individual drawn randomly from the population with
attributes S will choose the alternatives k is:

Pl o= mr v(si.:{k)+£(si,x};)>V(si,xj)+E,(si,;;j) (5)
Vi

From this equation, Mc Fadden [?1] derived the multilogit
model form analagous to the form (4).

Therefore, as Stopher [?0] points out, it may be
asserted that multilogit model is an intuitively and
theoretically acceptable model structure for a choice
model, regardless of whether the choice model is
derived from a strict utility approach or a random
utility approach.

According to Horwitz [22] , however, the assumption,
contained in the equation (2), that the random
components of utilities are independently and identical-
ly distributed implying that individuals with identical
observable characteristics have identical tastes, cons-
titute a potentially severe restriction of the types of
behavidr that can be treated by the logit model.
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A more general model can be obtained by assuming that
the random comnonents of utilities are multivariate
normally distributed, producing the multinomial probit
model. The probit model permits tests to vary among
individuals with identical observable characteristics
and allows effects of unobserved variables to be cor-
related across alternatives.

Hence, the multinomial probit model allows treatment of
a considerable broader range of behavior than the multi-
logit model does. However, despite its generality,
multinomial probit received little use in travel demand
analysis, because of its computational intractability.

On the contrary, because of its relative simplicity the
multilogit model has been applied successfully in a
wide variety of forecasting contexts (Kanafani [2{].
Benakiva & Richards [éu] , Horwitz [25] ).

As previously stated, "disaggregate behavioral demand
models", as they came to be called, were generally
applied in mode choice context though there exist other
choice contexts. In a paper written in 1975 Kanafani
[23] presented a multinomial choice model where the
alternatives were the choice of fares types on the
North Atlantic market. Again, in another short haul
transportation demand, kanafani l?é] developed a model
where travelers faced a choice between various routes
in the California Corridor.

2.3 CONCLUSION

The theory of travel demand has progressed by several
different stages in the two last decades. The first
important change was the assumption that the travel
choice emerges out of the individual's optimizing
behavidr: so, as individuals were presumed to be
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utility maximizers, the demand for travel ought to be
rositively related to incomes and negatively to prices
of transportation services. The second considerabile
ifbvation was brought up by Lancaster's theory of
consumer behavior. The general concept in an economic
sense of the consumer choice independence from product
names or labels led to the development of "Abstract modes”
models mainly applied to the North Zast Corridor project.

These deterministic models derived their structure from
the gravity models formulation, used aggregate data
across city pairs and were generally calibrated by means
of regression technique.

Probabilistic models, - on the other hand, were founded in
two disciplines dealing with behaviow, the economics of
consumer behaviow and the psychology of choice behaviowr.
They made use of disaggregate individual data, and were
czlibrated by maximum likelihood. Contrarily to the

above models, they did not assume the constancy of demand
elasticities, but supposed a constant total traffic by
all modes. Therefore, the improvement of attributes

of one mode was presumed to capture traffic from all
other modes.
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CHAPTER 3

STRUCTURAL FORMULATIONS & METHODS OF ANALYSIS

3.1 STRUCTURAL FORMULATIONS

One of the most critical steps, in the demand modeling

process, is the establishment of the functional form of
the model. Three important types of structure are re-

corded in the literature:

- Linearity vs non Linearity formulation
- Gravity formulation

- Single equation vs Multi-equation formulation

3.1.1 Linearity vs non Linearity formulation

A model is said to be linear when the dependent vari-
able is a linear combination of the explanatory vari-
ables; e.gs

Y =§o +Bxg 4»\52x2 + e "'ann (1)

Some models, however, are not linear in the variabdles,
but can be linearized by applying appropriate trans-
formations. Such models are termed, intrinsically,
linear models. The most common forms of these models
are the multiplicative or logarithm linear form, the
exponential or semi logarithm form:

- Multiplicative form:
Br
This model can be transformed to:

Log Y = Logﬁo +(31Log Xy +[32Log X + ...
+?nLog X, + Log€
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- Exponential form:

Y = exp@q + fy%y + .. +BXp)E (3)

This model can be transformed to:

Log Y =f, +f1x; + ... + B Xp + Log€

The choice of the general form of the demand model de-
pends, primarily, upon such factors as historical traf- .
fic trends, data consideration, time period of forecast;
and certain desired properties of the demand function,
such as constant or variable elasticity of demand.

The linear additive form is more suitable if the pre-~ -
dictor variables are expected to be independent. con-
versely, a multiplicative form may be justified if a
strong collinearity among these variables exists.
Similarly, a choice between the multiplicative and the
exponential form may be determined from an analysis of
the desired properties of the elasticity demand. And,
while in the multiplicative form the coefficients re-
present partial elasticities, in the exponential form
the elasticities are function of the variables them-
selves.

In running his first differences models, over 17 UK
domestic routes for the period 1954 - 1966, Ellison[}?}
recorded highly instable results, many perverse signs,
and bad fits. He attributed the failure of these

models to the exponential growth formulation, in being
an inaccurate assumption to make, concerning the behav-
ior of the trend on domestic routes. He then, calibrat-
ed the models on a logarithm form, over the UK trunk
routes, and obtained more consistent results. The fit

was significant and the coefficients bormethe right
signs.
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In the case of intrinsically non linear model(i.e, non
linearizable), the use of the least squares procedure
may be difficult. Under certain assumptions, non

linear models can be handled using maximum likelihood
technique [3] .

3.1.2 gravity formulation

Developed by analogy with Newton's gravity equation,
Gravity models constitute the striking example of the
models characterised by their structural formulation.
Having both a long history and continuing usefulness in
forecasting trip generation and zonal interchanges,
these models were the starting point for the develop-
ment of intercity passenger models. The original
formulation is based upon the assumption that travel
demand, between two city pairs, is proportional to
their populations, and inversely proportional to the
distance between them:

| o)
T4 = K°(° (P Py) (4)
2
ij

From this simple formulation different and more comp-
licated forms have emerged. Probably, the most ela-
borate Gravity model, yet used for an analysis of
intercity passengers demand, was the Kraft-SARC's
Model [18] .

In his PhD dissertation, Verleger'[é] took an original
step in defining the mass variable. Instead of the
product of city pairs populations, this variable had
the following structure:

oy
My ‘le{ e $b) (5)

Where: x§ + group of individuals in city i
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Y? t+ average income for the group i (affect-
ing the propensity to travel in an ex-
ponential manner by giving greater
weight to higher income levels within
the population).

t+ propensity to travel for individuals i

Finally, starting from a Gravity model formulation,
Blummer | 5| developed his so called “"Mode Sensitive
Model"s

b, b, b
Tij = Po ¢ Eilﬁi I S
ij

(6)

Where:
Tij ¢+ Air traffic between i and j

My s effective buying income in city i
Mj t effective buying income in city j
Dij ¢+ distance between 1 and }j

fij t+ share of Air travel

Iij s+ total transportation inpedance
The total transportation impedance is defined as follows;

1 =_1 +_1 +_1
2 2 2 2
I1y Tisa  Tigu  Tigr

Where Iiju ’ Iijr are the impedance for Auto and Rail

respectively, and I3 3a the Air impedance, defined as
follows:s

Iija = block time + waiting time + fare x Vv

Wwhere V = hours/dollars = 1/value of time



..37_

This approach was quite original and departed from the
concept regularly used in the split models; and which
consisted of estimating the total traffic, and then,the
fraction of the traffic captured by a particular mode.
Instead, a hybrid single equation, formulated in (6),

was used in which the component f:3 stood for the Air
share and the remaining components stood for the total
traffic. Besides, the total transportation impedance
Iij had several desirable properties: its structure
combined the impedances of all modes into a single fig-
ure; which helped to ovoid the multicollinearity,common
to the models entering each mode separately (Kraft,
Young), and to prevent the consideration of the "best"
mode (Abstract Mode).

3.1.3 Single equation vs Multi-equation formulation

Almost all models referred to , were constructed on a
single equation formulation. There are, however,
multi-equation model structures, such as the FAA(Federal
Aviation Authority) macroeconomic forecasting model con-
sisting of three equations [28] . Two of these equa-
tions were calibrated by means of ordinary least squares
technique. The third equation was an identity. The
three endogenous variables were:

- RPM :.revenue passenger miles
- ENP 1 revenue passenger enplanements
- OPS : Air carrier itinerant operations

Other multi-equation structures were attempted, such
as Eriksen Model [8], but were calibrated in a re-
cursive manner, instead of a simultaneous one.

The models, we develop in this study, are truly simul-
taneous, and the multi-equation structure is their
mainoutcome. We do not introduce, here, the simulta-
neity concept which will be widely discussed later.
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Note only, that depending on the nature of the relation-
ship, between the dependent variable and the explanatory
variables, single equation formulation may not be an ap-
propriate structure. The introduction of one or more
equations may appear necessary when a two-way depend-

ency, between the demand and any other independent vari-
able, exists.

3.2 METHODS OF ANALYSIS

The fourth characteristic, that may distinguish between
types of models, is the method of analysis applied to
their calibration. These methods are:

- Ordinary least squares regression analysis (0LS)
- Simultaneous equations techniques analysis

- Discriminant analysis

- Logit and Probit analysis

Since they are explained in many textbooks, and since
Logit and Probit models have already been referred to,
in Chapter 2, we will briefly present the first three
methods.

3.2.1 Ordinary least squares regression analysis

This method attempts to relate the variation in traffic
to the variation of some logically relevant variables,
such as economic variables, demographic variables,
transport factors. The calibration involves the
empirical mangpulation of various functional relation-
ships. The aim is to find the relationship that
produces the least deviation between the computed
demand and the actual observed demand. This methgd

is the most commonly employed; and multiple regression
packages are available almost everywhere. As will be
explained next, other estimation procedures are more

appropriate when the assumptions of QLS are violated.
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3.2.2 Multi-equation techniques analysis

In the general linear model:

Y =( + @lxl+...+@x + € o

one major assumption of the validity of the OLS is

that COV(X,,L) = 0 Vi . This means that the explana-
tory variable xi must be uncorrelated with the error
term. If this assumption is violated, it follows the
unsatisfactory consequences:

- the estimates [5; are biased, inconsistent, and
inefficient

- the estimate of the variance of £ 1is biased

= the usual t and P tests are not appropriate

A necessary condition for COV(xi.S) =0 Vi is that
the variables X; should be truly exogenous. When this

is not verified, it yields what is often called "Simul-
taneous Equations Bias®, and several problems arises

- the problem of identification of the parameters
of individual relationships
- the problem of estimation

One, therefore, should choose a Multi-equation struc-
ture for the model, and an estimation other than the
0LS technique. There are several methods for this
purpose; the most common are:

- The reduced form method or Indirect Least Squares
- TMwo-Stage Least Squares (2SLS)

« Limited Information Maximum Likelihood
Three-Stage Least Squares (3SLS)

Full Information Maximum Likelihood (FIML)

The first four methods are named single eguation
methods, because they are applied to one equation of
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the system at a time. The 3SLS and FIML are called
system methods, because they are applied to all the
equations of the system simultaneously.

Since the models developed in this study involves 2SLS
and 3SLS, a general presentation of these techniques

is provided in Part III. The selection between alterna-
tive multi-equation estimation techniques is not
straightforward. The choice may depend, in part, upon
the purpose for which the estimated system of equations
is to be used. Simultaneous equations packages are not
widely available and their computer costs are generally
high.

3.2.3 Discriminant analysis

This technique is one of the earliest to be considered
in the choice models calibration. It was originally
developed in the field of biology [20] . It is based
upon the assumption that there exists,in a population
two or more distinct subgroups that can be distinguished
by means of a discriminating function.

Leeds study [29] adopted this technique, as a method of
analysis, in order to isolate the factors influencing
the choice of travel mode, between Air and Rail. It
consists in establishing a mathematical function, in
terms of travel and travelers variables, which best
separates the two types of passengers.

In addition to considering each route separately, lLeeds
study attempted to obtain two discriminant functions,
for work and non work travels covering the 5 routes
considered. The examination,of the discriminant func-
tions obtained, suggests that the model choice decision
process varies from route to route; and indicates the

absfence of a general law, governing a traveler's
choice of mode.



- 41 -

3.3 CONCLUSION

The choice of the general form of a model depends,
primarily, upon such factors as historical traffic trends,
data consideration,and certain desired properties of the
demand function. Most of travel demand models were of
logarithmelinear form. This form is attractive becauseit is
easy to conduct, and because its estimated coefficients
represent elasticities.

Gravity models formulation was the starting point of the

interci%y passengers demand models which found their
application in the North East Corridor Project. Many
sophisticated forms have been developed since, from the
simple original one.

Most of the travel demand models were constructed on a
single equation form. Only a few were structured as
Multi-equation models. Instead of being simultaneously
calibrated, these models were recursively estimated.

Ordinary Least Squares are the most commonly used tech-
niques of calibration in travel demand models. However,
when a twe-way causality between the dependent variable
and any explanatory variable exists, the application of
0LS is no longer valid. Then, the introduction of ad-
ditigpal equation(s) may appear more appropriate. For
such/ Multi-equation structure, many calibration techni-
ques are open to the modeler such as Indirect Least
Squares, Instrumental variable , 2SLS, 3SLS, Limited or
Full Information Maximum Likelihood. The selection
between these techniques may depend upon the modeler's
purpose and the nature of the data available.

Discriminant Analysis, Logit and Probit Analysis are the
methods applied in Choice madels. Théy were originally
developed in the field of Biology. Empirical tests of
Discriminant Analysis seem to confirm that this techni-
may be inferior to Logit and Probit Analysis.
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CHAPTER &4

FACTORS EXPLAINING TRAVEL DEMAND

k.1 AIR TRAVEL DEMAND FACTOQRS

These factors are of two types : exogenous variables
which are determined independently to the transport
system and upon which the Airline management has no
control; endogenous variables defined within the system
and which are under his control.

For the following presentation these factors will be
categorized into:

- non transport factors
- transports factors

Note, however, that transport factors are not necessari-

ly endogenous : e.g, the fare is a transport factor,
but can be endogenous.

4.1.1 Non transport factors

Apart from traditional simple models such as Judgement-
al and Extrapolation models (based upom clock time fac-
tor only), most of the Air travel demand models are
seeking to identify the causality of the demand. The
original idea,underlying the development of what came
to be called Econmetric models, was that socio-economic
factors were the elements that generated the need for
travelling. Businessmen travel by reason of developing
theirown business, and because of economic expansion at
home and abroad. Personal travelers make a trip either
for leisure or shopping, or for VFR(visiting friends
and relatives), or for satisfying intellectual curiosity
needs. Therefore, modelers retained socio-economic
factors as variables likely to explain the demand.
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Income

Income has been recognized as the main element deter-
mining the consumption of a good or a service. Several
economic factors measuring the level of income, such as
GNP(Gross National Product), GDP(Gross Domestic Product),
Personal Income, National Income, Personal Disposible

Income, Corporate Profits before tax, Total Personal
Consumption Expenditure, etc.., are generally investi-

gated in the modelling process. Some might be more
meaningful than others with regard to the purpose of
the model.

- Business travel demand, for instance, is thought
to be better interpreted by factors such as GNP, Export,
Import, the level of investment abroad, and the balance

of paymentss and is considered to increase in recession
situations. However, the economic factor that is
generally selected is the one that provides the best fit.

- Personal travel demand is generally thought to be
relat%%/mhe persomal income, since personal travelers
unlike most businessmen have to bear the cost of their
travel expenses. Some models incorporate the income
distribution variable; the idea being that Air travel
is a superior good, and hence, Air travelers are likely
to belong to the highest income brackets. As recalled
earlier, Verleger [6] disaggregated the travelling
population by income, and gave greater weight to high-
er income groups within the population by assuming
their propensity to travel as an expential factor of
their income.

Many studies were carried out, providing interesting
informationy on travel demand by tranche of incomes.
The Roskill Commission [30] figures, for non business
travelers, are an interesting source from which income
elasticities could be derived. There is a general
belief that income elasticities are not constant,
neither from a range of income population to another
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in a given point of time, nor from one period to the
other in a given range of income population. The French
and UK Study [};], for instance, revealed that the high-
er the income, the higher the income elasticity.

Inflation

Inflation is generally considered as a factor influenc-
ing the demand. In the specification of the model struc-
ture, some questions invariably arise concerning the ex-
planatory variables. Should permanent income rather

than current income, or price expectation rather than
market price, or fixed rather than current prices be
used? All these questions are, in fact, related to
whether to take into account the inflation or not.

According to Thompson [32] "raw data are always better
than deflated data. When data are deflated there is
always some loss of detail that may significantly mask
the identification of underlying trends". However,
most studies have taken account of the inflation. This
was generally achieved by use of various deflators for

price and income.

Probably the only model, that attempted to treat infla-
tion as a separate variable, was the model developed at
MIT in 1975 by Viteck and Taneja [i?]. Its main purpose
was to determine whether or not high inflation rates
were significant factors in estimating the demand. The
answer was positive and according to the authors, in-
flation should be included, explicitly, as a separate

factor.

Occupation and social structures

Many surveys argued that the travelers' characteristics
were important elements in the travel decision, and
should, therefore, be retained in the modelling process.
These characteristics being : occupation, education, age,
life cycle, family structure. The Survey (source: The
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Registrar General's Statistical Review 1972) showed that
the propensity to fly was greater in the 1

- 35-45 age group, for business travelers
- 50-55 age group, for holiday travelers
- 35-55 age group, for VFR travelers

It also revealed that 70% of leisure passengers, travel-
ling from London by Air in 1972, had no children under
the age of 15 in their household.

Probably the most successful model thattook into account
these relevant factors was the Port of New York Authori-
ty Model [?3] , known as the Cells Model. The main
purpose of this model was to determine whether a person
was a "flier",and if so, how many trips were taken each
year. The market was divided into a large number of
travel "cells", for personal and business travel.
Personal travelers cells were classified by age, occupa-
tion, education, and income; and business cells by indus-
~try, occupation, and income. A total of 134 individual
cells were defined.

city characteristics

Among the factors infldaing the demand, the characteris-
tics of the cities were also retained. Recreational
cities are likely to attract more leisure travelers than
business ones. According to Quandt [}4] "cities with
high concentration of financial intermediaries, educa-
tional and governmental institutions and other service
industries give rise to more travel per capita than
cities with predominantly manufacturing industries".

Real but not so clear is the influence of a factor that
came to be called “"community of interest" between cities.
An original step was taken by Brown and Watkins [35] in
adopting the number of long distance telephone messages

- and the number of international passengers between city-
peirs as prexies for community of interest.
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b,1.2 Transport factors

Many studies have recognized the importance of trip

cost, trip time, comfort, safety, reliability, and con-
venience as relevant factors affecting Air travel demand.
While some of these elements, such as trip cost and trip
time, are relatively easy to measure; others, more
qualitative than quantitative, are rather hard to
evaluate.

Fare

Obviously, one of the key elements in travel demand is
the price factor that responds to the simple law, making
the consumer buying more at lower prices and less at
higher prices. The consideration of fare variable
always mises the question of which fare to choose.
Should first class fare, coach fare, or discount fare

be used?

Most models selected the average fare actually paid by
the traveler. This average was obtained, first, by ag-
gregating the various fares applicable to a given route;
- then, by taking a second average calculated on the basis

of the various routes grouped together (Total Aggregate
Models). According to Lippke and Stewart [56] the elas-

ticity, calculated on the basis of an average fare, is
biased and the exact value of the average price elasti-
city is lower than the estimated one.

Fare elasticity, particularly in Total Aggregate Models,
could hardly be interpreted; since it reflects the
behavior of an imaginary individual(part businessman,
part tourist, etc..)paying just an imaginary fare, and
therefore bears little relationship to the personal
behavior.

In their Report at MIT in 1976 [}4] the authors tested
three types of fares for comparative purpose: standard
fare, estimated fare, and actual average fare,
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Their results showed no significant differences between
the three types.

Since one of the main purpose in travel demand models

is the estimation of fare elasticities, many studies
attempted to analyse the factors influencing these elas-
ticities.

- A well known factor is the characteristics of the
traveler. It has always been stated, for instance, that
business travelers are less fare elastic than personal
travelers. This assumption has most often been support-
ed by empirical investigations. Probably, one of the
earliest studies, segmenting the travel market by trip
purpose (business/personal), was conducted by Young in
his PhD dissertation at the University of Washington

in 1966. The results, in both Time Series and Cross-
sectional analysis, corroborated the above assumption.

- Another factor, suspected to influence fare elas-
ticity, is the trip length. It is sometimes argued that
Air travel has better substitutes for short trips than
for longer ones; henceforth, the sensitivity to fares
should decline as the length of the journey increases.
In a Paper, given at the American Statistical Associa-
tion Annual Meeting at Fort Collins (Colorado) in 1971,
Brown and Watkins [?j] attempted to test this assumption
by an empirical investigation. A Regression analysis
was carried out in which the fare coefficient was made
function of five dummy variables standing for the dis-
tance group of the city-pair, as follows:

rarg (o + XDy + %D, + °(3D3 oy, +gDg)

Where Dl' D2. D3, Du, D5 were dummy variables correspon-
ding to the range of distances.

The Regression used Cross-sectional data of 438 domestic
city-pairs for the year 1969; and the results showed no

tendency for fare elasticities to decrease numerically
with the trip length. However, although the use of

dummy variables seems quite reasonable, the approach is
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questionable. It would have been more appropriate to

apply this approach to the only personal travelers
market, since business travelers are less sensitive to
the fare factor.

Other studies related the fare elasticities to the dens-
ity of the market. In his Model Verleger [6] concluded

that fare elasticities had a tendency to be more unifor-
mely significant in high density markets, while in the

low density markets few were significant. He suggested
that elasticities decreased as traffic increased.

Quality of service factor

Because of the regulated nature of Air transportation
services, which takes prices out of the Airline control,

the market share belonging to each competing carrier is
mainly determined by the quality of service provided.

In his theory for Domestic Airlines Economics R Simpson[?j]

defined the quality of trip by a vector quantity in four
" major categories:

Q) ¢ trip time Q, ¢+ trip reliability
03 : trip comfort Qy ¢ trip convenience
- Trip time : Probably the most important variable

determining the level of service is the trip time. Many

models considered the whole components of this variable
(access time, waiting time, flying time, egress time).
R Simpson defined the trip time as follows:

' t
_ 2 (1)
T = to + tld + -

where: ty ¢+ constant
tl $ % where v=speed
t2 ¢+ constant to express average waiting time

n 1 frequency of services

As the speed is g technical performance,

USually beyond
the Airlines control, the only way to imp

rove the
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quality of service is to reduce the waiting time, access
and egress times through an efficient scheduling process
and better facilities at the terminals.

The inequal importance, given to the travel time factor
by the travlers, has raised the question of whether and
to what extent this importance is related to the charac-
teristics of the travelers. As stated earlier, the first
model to analyse the concept of time on a theoretical
ground was Young's Model [15] . Gronau [¢],1ater on,
estimated a monetary value of time for various income
groups

From the Simpson equation (1), the frequency of services
n becomes a quality of service variable. In this model,
since the inverse of the frequency has the dimension of
time, the frequency of services n was included in the
trip time variable. 1In fact, n constitutes the effec-
tive quality of service variable under the Airlines
~control; since neither the £lying time nor the access

or egress times are truly under such a control, while
the waiting time is a function of the frequency.

Contrarily to Simpson's Model, others explicitly intro-
duced the frequency of services as a separate variable.
In the MIT Report lﬁh] » the authors tested the frequen-
cy as a factor determining the level of service. They
defined this variable as the product of the number of
flights offered in each direction. However, as this
variable did not take account of the time departure and
the number of stops in a given trip, they developed an
index called LOS (Level Of Service), scaled from zero

to one. This index represented the ratio of non stop
Jet flight time to the average total passenger trip time.

The comparison of the model containing the frequency of
services variable and the one using LOS variable reveal-
ed the superiority of the second model over the first
one. But with LOS Model, rather restrictive assumptions
were implicitly presumed :+ the uniformity of the Air
travel demand throughout the day and the infinite seat
capacity. |
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- Trip reliability s is measured in terms of probabi-
lity. |

t probability of space available,which is a
function of LF(Load Factor) and the spread
of the distribution of requests for the
flight. Thus, considering LF linked to
the quality of service throughthis measure
Simpson defined an upper bound for LF to
maintain a desired availability and named
it LFyax*

SN

Q

Qg t probability of time departure and arrival.

Qg : probability of cancellation .
Qg : probability of injury/death (or damage/loss)

- Trip comfort : including all on board serwvices
such as meals, stewardesses, etc..

- Trip convenience : covering items such.as time and

cost to get reservations, to get tickets, and to pay for
the trip.

These variables are kept at prastically the same high
level by the Airlines and, therefore, could hardly be
considered as important factors in the Airlines competi-
tion. Besides, they are very difficult to measure.

k.2  MODAL COMPETITION FACTORS

The last sectdion reviewed the factors explaining the
travel demand, in a unimode context (Air mode) without
reference to any mode competition. The present section
discusses the common factors traditionally considered
by the Choice Mode Models. These models seek to inter-
pret the choice decision in terms of mode's attributes
and user's characteristics. The mode's attributes in-
volve variables such as time and trip costs; and the
user's characteristics refer to the socio-economic
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features of the traveler. The earliest of these models
were developed in the United Kingdom by Stopher l}S] ,
Quaramby [39] , and Leake [40] ; and in the United States
by Lisco E&q , and Warner [’-&2}

4.2.1 Modes' characteristics

Time variable

The consideration of time variable in Modal Choice
Models usually raises two questions:

- Which part of the journey time, the time variable
refers to?

- What is the best relationship between the time by
each mode(ratio or difference)?

With regard‘to the first question, Watson {@5] observed
"It seems reasonable to treat time spent on different
activities as different, for time spent in a car seems
different from time spemt waiting in a line or waiting
between vehicles".

Stopher and Lisco took a different view and selected
total journey time; while Quaramby consideredabore ap=-
propriate to separate in-vehicle time from time‘spent
walking and waiting.

The second question concerns the expression of the
relative journey time variable. Basically, it is possi-
ble to express this variable as diffegence or ratio of
time by different modes. According/Wa%son, since the
model is an attempt to represent actual behavior, it
seems better to use differences; for the traveler is
more likely to perceive relative times in terms of dif-
ferences rather than in terms of ratios. A difference
formulation is,therefore, based upon a subjective judge-
ment about the way in which people think. However,
Warner and Leake used time ratio whereas Quaramby and
Lisco preferesd time difference.
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Cost variable

The cost variable raises the same questions as the time
variable, referred to above. And, as in the case of
time variable, it is impossible to provide a sound ob-
jective justification for the selection of any formula-
tion of this variable. Again, Stopher adopted the cost
difference whereas Quaramby took the cost ratio. In his
Discriminant analysis, Leake found that the cost ratio
gave more significant results than the cost difference.

k.2.2 Travelers' characteristics

Previous studies incorporated a number of variables re-

flecting the characteristics of the traveler. The most
important are :

Income

It is generally agreed that the level of a subject's
income affects his choice of travel modes. Modelers
handled income variables in at least two ways

- By stratification : Many analysts believe that
each income group has a decision process that should be
modeled separately, and the operational results of this
point of view is that the sample is divided into income
groups that are analysed as distinct samples Y Leeds
Study [?9] , for instance, found that the journeys for
work by Air were undertaken by the highest household
income levels; while non work journeys by Rail were
travelled by the lowest income level groups. Medium
household income levels vary from route to route. The
disadvantage of this method is that a large sample is
required to make such stratification possible.

- In combination with other variables i The attempt,
to explain the complexities of the process by which
income affects modal choice, has led some analysts to
conclude that income operates through or in conjuncture
with other variables, such as cost, time and comfort.

In some cases, it is argued, the cost difference is
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important only in relation to income, so that a given
cost difference will produce a different reaction in
higher-income-group traveler than in a lower one[yj] .

A suggested solution is to combine the income and the
cost variables to produce a new variable, say, the ratio
of cost difference to income. 1In other cases, it is
argued, it is the time difference that is perceived dif-
ferently by different income groups. High-income-group
travelers are more sensitive to this difference,because
they value their time more highly (assuming that the
value of time rises with income).

Age[sex

The age and sex of the traveler have been included in a
number of models. But,there is no easy way of predict-

ing their effect; and it is difficult to relate their
cofficients to any specific real world interpretation.
Accordingly, their inclusion is only judged on the basis

of fitting consideration. The proportions of travelers,
less than 25 years and above 64 years of age, were found by

Leeds Study lower on Air than on Rail for both work and
non work journeys. 60% of non work journeys were being

made by men.

Other factors such as household size, car availability,
party size, were also investigated as explanatory
factors in the Choice Mode process.

k.3 CONCLUSION

The factors explaining Air travel demand are numerous.
Different economic factors aimed to measure the level

of income were investigated such as GNP, GDP, Personal
Income,Personal Disposable Income, Personal Consumption

Expenditure, etc.. The selection among these factors
was generally founded on the basis of statistical fit.

Many surveys outlined the imbortance of the traveler's
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characteristics as factors explaining the decision to
travel. The well known "Cells Model" of Port of NewYork
Authority introduced all these relevant characteristics

(business and personal characteristics, age, occupation,
education, income).

The city characteristics, as well as the so called
"community of interest" were also considered in Air
travel demand models.

Among the transport factors, fare was recognized as one
of the most important. Many empirical studies supported
the assumption that business travelers were less fare
elastic than non business ones. Finally, other factors
more qualitative than quantitative such as comfort,
reliability, convenience found little application.

The Choice Mode process is dictated by such factors as
Mode's attributes and travelers' characteristics. Time

- and cost variables were invariably investigated in Choice
Mode Models. The same questions have often #®ised such

as : which part of the Jjourney time or the journey cost
these variables referred to; and which relative value,

- ratio or difference, to consider. Modelers took differ-
ent views, though it is quite difficult to provide a
sound objective justification for the selection of any
formulation.

Travelers' characteristics such as income level group,
age, sex, party size, and car availability were inves-
tigated, in mapy models, as factors influencing the
choice mode decision.



PART 1I1

US DOMESTIC MARKET ANALYSIS
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INTRODUCTION

As an illustration of the literature review, discussed
in Part I, we provide, in this Part, an analysis of an
econometric model, developed at MIT by the Flight Trans-
portation Laboratory in 1976. This analysis concentra-
tes, essentially, on three points.

FPirst, different statistical tests highlight the statis-
tical deficiencies from which this model is suffering,
illustrating, therefore, the common problems encounter-
ed in Time Series, Cross-Sectional, and Pooled models

such as Multicollinearity, Heteroscedasticity, and
Serial Correlation.

Second, this analysis outlines, through this model, the
main weakness of Aggregate models, namely the implicit
- assumption of homogeneity of the market. Indeed,series
of CHOW tests, applied to different markets, reveal the
significant differences between the Aggregate models of
these markets and the Region-pairs models, correspond-
ing to their individual routes.

Third, the particular specification of the model, as a
single demand equation, illustrates the major handicap
of most of the models discussed, so far, in the litera-~
ture review. By considering only one aspect of the
market, the demand for travel, they ignore the effect

of the supply onto the demand. This may lead to bias-
ed, inconsistent, and inefficient coefficients estimates.

Finally, attempts to overcome the two-way dependency
supply/demand problem are achieved by the introduction
of a second equation to the original model, and the ap-
plication of 2SLS (Two-Stage Least Squares) as a means
of calibration.
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For this purpose, the analysis is conducted as follows:

Chapter 5
5.1
5.2
5.3
Chapter 6
Chapter 7
7.1
7.2
7.3

ANALYSIS OF THE STUDY

Presentation of the study

Statistical evaluation of the
study

Conclusion

AGGREGATION MARKET ANALYSIS

NEW MARKET DEFINITION AND
SPECIFICATIONS

Aggregation Business/leisure

Variables analysis by
individual routes

Simultaneous Equations
Specification
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CHAPTER 5

ANALYSIS OF THE STUDY

In this chapter, we analyse the study: "A methodology
for determining the relationship between Air transporta-
tion demand and the level of service", conducted at MIT
by Eriksen, Scalea, and Taneja.

5.1 PRESENTATION OF THE STUDY

The objective of the MIT Study is to relate the level of
Alr transportation activity, measured by the number of
origin to destination passengers carried in a number of
specified markets, to a set of economic, demographic,

. and scheduling variables.

-Market selection

Since an Airport generally attracts demands from a
larger area than its respective city, the authors chose
to define the markets as Region-pairs rather than the
more traditional City-pairs. For this aim, they used a
study conducted by the Bureau of Economic Analysis in
1972, in which the United States was divided into 173
regions (organised, primarly, along county lines). Of
15,000 possible Region-pairs, a 3 x 2 x 3 cross-classi-
fication sample was chosen from a matrix of market
density, extent of competition (between Airlines), and
length of haul.

-Market density

This factor was defined by the average number of passen-

gers carried each way each day. Data was obtained from
the 1970 CAB Origin/Destination Survey. Three classifi-

cations were retained:
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Low Density : less than 50 passengers per day
Medium Density ¢ 50 to 200 passengers per day
High  Density:: more than 200 passengers per day

- Competition factor

The markets were defined as monopolistic and competitive.
A monopolistic market is a market in which the second
most active Airline carried less than 10% of the number
of passengers carried by the most active Airline (using
1970 as the base year).

- Length of haul factor
Five classifications were defined:

Ultra-short haul : routes with distances 260 km

Short haul : routes with distances 260-560 km
Medium haul :+ routes with distances 560-880 km
Long haul : routes with distances 880-2410km

Ultra-long haul : routes with distances 2410 km

The final sample contained data from 58 Region-pairs
over a 16 year period span, 1959 - 1974.

- Variables
The variables selected are the following:

10S 1 the level of service index is a dimensionless
number scaled from zero to one, representing
the ratio of non-stop jet flight time to the
average total passenger trip time.

E
les)

is the average of the standard coach fare de-
flated by the consumer price index.

{o:]
*d
=4

the buying power index is an aggregation of
three important socio-economic characteris-

tics of a given area selected to reflect the
level of economic activity in the specified
region.

BPI = .5I; + .3R; + -2P;
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Where:
I; = percentage of national income in area i
R; = percentage of national retail in area i
P; = percentage of national population in area i

- Model specification

The general form of the model is:

DMD = [31 FAREEZ BJPI(33 LOSB'*E

which is an intrinsically linear function that can be
put into standard linear additive form by the appropria-
te logarithmetransformation of the data. This form of

the equation can, then, be estimated using Ordinary
Least Squares:

Log DMD = Log‘3l +‘;2Log FARE + BBLog BPI

+ ﬁuLog oS + Log£
The equation estimated with the 58 Region-pairs was:

Log DMD = 12.2758 -.4941Log FARE +.3226Log BPI
(.1461) (.0746)

+1.2672Log LOS
(.1707)

The results corresponding to the different aggregation
schemes are shown in Table 5.1 .

This is the point at which the MIT Study ends. The fol-
lowing section begins with the next step:s testing the
validity of the model. The most critical part of any
research modeling effort is not fitting the model, but
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rather testing whether the correct specification had
originally been selected.

5.2 STATISTICAL EVALUATION OF THE STUDY

Although choosing to use a linear model ia a typical ap-
proach to demand analysis, Linear Regression imposes
strict assumptions which must be met in order that the
estimation procedure can be valid.

For the purpose of this test analysis, we concentrate
on the following assumptions of OLS:

- The residuals (e = Y -'?) must be random variables
with a mean of zero (Normality)

- The variance of the error term (e) must be constant;
.i.e, the dispersion of e around its mean zero must
not increase or decrease systematically over time
or with changes in the levels of the independent
variables (Homoscedasticity)

- The error terms, must be independent over time.
Knowledge of the residual in time t, must tell no-
thing about its size in time t+1 (No_Serial Correla-
tion)

- Finally, the independent variables must not be high-
ly correlated with each other (No Collinearity)

Normality of the errors distribution

One test for the normality of the error term distribu-:
tion is the CHI-SQUARE goodness of fit test. This test
determines how closely the observed frequency distribu-
tion of the error term fits the normal probability dis-

tribution, by comparing the observed to the expected
frequencies.

For this purpose, a Regression analysis, over 50 Region-
pairs, is run with the specification (1); and its resi-

duals are standardized. Recall that standardizing a
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regidual consists of dividing its value by the standard

error of the estimate (i.e, standardized residual = E; ).
SE

Table 5.2 displays, in column 2, the observed frequen-
cies of the standardized residuals corresponding to dif-
ferent ranges of magnitudes. The expectéfrequencies
from the normal distribution are given in the third
column. The remainder of the table is used to compute
the value of the CHI-SQUARE. The further the expected
value is from the observed values (the larger value of
XQ), the poorer is the fit of the hypothesized dis-
tribution.

In the present case, X?- = 19.33. This value is greater
than the critical Xz values )S‘% 95,4) = 9.‘49. There~
fore, we may conclude that the efroé terms of the model
are not normally distributed. However, it is difficult
~ to determine whether the violation of this assumption is
serious, because non normality is a difficult condition
to interpret. This non normality is often the results
of other departures from the model; so, even though
‘the sample size is large, it is difficult to decide
whether the normality is real, or is a function of inap-
propriate regression formulation, or is a non constant
variance.

Constant variance

A common way to check for Heteroscedasticity is to plot
the residuals against the estimated‘§'8. and then, exami-
ne the shape. Constant variance would make the residua-
1ls appear as a solid horizontal band.

- Figsg,1 and Fig 5,2 are plot of residuals against the
estimated values, for a monopolistic market and a com-

petitive one. While Fig 5.1 corresponding to the mono-
polistic market does not show any serious divergence
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from constant variance; Fig 5.2 , however, clearly in-
dicates the existence of specification error. 1Indeed,
Fig 5.2 exhibits two groups of plots strikingly dis-
tinct. The first group, corresponding to the lowest .
values of the demand in the competitive market, reveals
systematic negative residuals; that is to say, these
observations are overestimated. On the contrary, the
second group, corresponding to medium values of the
demand, shows positive residuals; which means that their
respective observations are underestimated.

Time dependency of errors terms

The lack of indepecdency of the error terms over time,
Autocorrelation, can lead to the loss of the efficiency
properties of the estimators. This makes the coeffis
cients appear more significant than they really are.

It does not, however, affect their unbiasedness or con=
 sistency.

The usual test, for Autocorrelation, is the Durbin -
Watson test which compares the size of the difference
between adjacent (in time) residuals to the absolute
value of the residual itself. 1In order for the test to
be valid, the observations must be in some meaningful
order by time. This is impossible with Aggregate
models, because there is more than one observation per
time period: one for each individual market. As a
result, the DW test on the Aggregate (50 Region-pairs)
model, though very low (=.329), may not be of great
signification. However, an investigation of the data,
disaggregated onto individual markets, shows the exis-
tence of Serial Correlation in most routes, where the
corresponding DW values are very low (see Table5.3;5.4;5.5
and Table 5.6 ),

Multicollinearity
- The problem of Multicollinearity is not so much in
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detecting its existence, but rather in determining its
severity. The seriousness of Multicollinearity can,
usually, be examined in the correlation coefficients of
the explanatory variables. How high can the correla-
tion coefficient reach before it is declared intoler-
able? This is a difficult question to answer, since it
varies from case to case, and among different analysts.

To identify which individual variables are most affect-
ed by Collinearity, an F - distributed statistic, pro-
posed by Farrar and Glauber [}ﬂ] y» tests the null hypo-
thesis ( H : variable Xj is not affected against the
alternative, H, t variable Xj is affected).

This test is defined as follows:

Flnep,p-1) = (r*9 - 1) (P=_P)
p~-1

Where. r*J denotes the jth diagonal element of the in-
verse matrix of simple correlation coefficients, The
null hypothesis H, 1is re jected if the calculated

P - distributed statistic exceeds the critical
F({,n-p,p-1), where n is the number of independent
variables including the constant.

In the present case, the correlation matrix correspond-
ing to the Aggregate model (50 Region-pairs) computed
is:

LOS FARE BPI1

10sS 1.000 .326 .600
FARE . 326 | 1.000 <334
BPI .600 334 1.000
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The inverse matrix of the matrix above is:

1.606 -.227 -.888
-.227 1.157 -.250
-.888 -.250 1.616

where:
r¥(LOS) = 1.606
r" (FARE) = 1.157
r¥(BPI) = 1.616

Applying the test above,one gets:

800 - 4
800 - 4
F(page) = (1-157 - 1) (=) = w7
Fpr) = (1.616 - 1 )30 =%y - 163.4
-1

All the calculated F statistics exeed the critical
F(.05,800-4,4-1) = 8.53. Thus, the null hypothesis
can be rejected, and the alternative that all variables
are significantly affected by Multicollinearity can be
accepted.

5.3 CONCLUSION

The analysis of the MIT Model reveals many violations of
the assumptions of OLS, namely Non Normality of the
error terms distribution, Heteroscedasticity (though not
too serious), Serial Correlation, and Multicollinearity.
These violations have some Undesirable effects on the
estimators’/characteristics, such as biasedness, and in-
efficiency. Many reasons could be suggested for these
defects, in particular, the wrong specification of the

model and the omission of important factors in the speci-
fication. |
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In fact, as will be explained in the next Chapter, one
unique aggregate equation is clearly inappropriate for
describing the nature of demand and predicting new -
demands in any individual market.
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MARKETS cst L0S FARE BPI R?
12.133  1.264  -.hbk 165 .65
12.042 1.340 -.379 332 7

COMPETITIVE (.099)  (.066)  (.038)
6.748 .689 .935 .382 .79

ULTRA-SHORT (.098)  (.279)  (.04kO)
15.159 1.446 -1.208 .105 .76

SHORT (.073)  (.334)  (.034)
12.909 1.183 -.667 272 .76

MEDIUM (.069)  (.368)  (.063)
13.440  1.258  -.705 433 .86

LONG (.086) (.203) (.033)
15.209  .927 -1.338 .633 .82

ULTRA-LONG (.078)  (.183)  (.040)

Table 5.1

MIT MODEL RESULTS
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CHI-SQUARE COMPUTATION

RANGE OF

0. E.

STANDARDIZED | oBSERVED exsomep | 03 = Ep)?

residuals | FREQUENCIES | FREQUENCIES E

- -l 118 126.96 632

-1 -.5 91 119.84 6.920

-.5 179 153.20 4.380

0 .5 183 153.20 5.840

51 107 119. 84 1.370

1 122 126.96 194

TOTAL 800 800. 00 19.33

Table 5.2
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RP Idx Cst LoS FARE BPI R SE DwW
3.32 .131 -.667 -.821 34 . 087 1.01
1 (.101)  (.526)  (.614)
. 5.88 -.001 -1.393  3.416 [.28 .3 .57
2 (9.990) (1.07%  (1.699)
6.91 .331  -2.110  3.955 (.96 .043  2.48
3 (.164)  (.577)  (.649)
L 8.10 .511 -2.468 1.339 .99 .033 1.10
(.153) (.682) (.370)
| 1.04  .868 -h.040  4.789 |.85 .11 .75
5 (.180)  (.872) (2.236)
2.35 . 502 -,080 L.,218 .97 .059 .60
6 (.265)  (.288) (1.158)
8.92 . 893 -.082 =4,201 .81 .111 .77_
7 (.251) (1.155) (2.730)
8 2.31 611 1.398 .709 L4 L0064 1.01
(.195) (.600) (4.989)
| 1.61 .093  1.993  4.366 [.47 .111 .61
9 (.095) (1.735) (2.223)
10 L.11 L26 -1.175 3.683 .97 .063 .70
| (.137)  (.527)  (.860)
1 6.59 478 -.998 2.427 .95 .049 53
(.134) (.674) (.596)
5.99 1.070 -.807 458 .91 .063 .45
12 (.100) (.934) (1.885)
2.41 .730  -1.619 -1.995 [.78 .116 1.36
13 (.285)  (.756) (1.999)
L 8.05% .965 -1.872 1.789 {.91 .075 .50
1 (.180) (1.169) (.829)
7.11 657  =1.596 1.152 <95 ,048 .76
15 (.113)  (.578)  (.375)

Table 5.3

REGION-PAIRS MODELS
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DW

RP Idx | Cst LOS FARE BPI R® SE
8.45 342 -2.569 1.380 |.94% .076 .37
16 (1.459)  (1.005) (1.124)
. .44 07 -.965 =3.501 (.30 .115 .81
(.484) (1.120) (1.847)
L8 6.15  .832  -2.652 -.148 |.38 2.471 .95
(.340) (1.717) (.779)
2.92  .7L6 -.820 -3.618 [.81 .088 2.20
19 (.213)  (.597) (2.040)
20 4.88  .208 -.538  3.276 |.99 .027 1.33
(.087) (.509) (.271)
. ?.14  .OM4  -2.101 2.378 |.9% .o0u6 .67
(.123) (.938) (.374)
" 8.42 .013  -1.210 3.770 |.95 .048 .57
" (.543) (.799) (1.118)
2 7.4 684 -.301 -2.890 |[.84% .051 2.53
(.153) (.299) (.438)
" 11.82 .521 -1.897 -1.998 |.88 .052 1.51
| (.128) (.624)  (.497)
2 15.08 401 -6.453 2.362 {.91 .077 .76
(.184) (.784) (1.383)
11.02  .472  -2.702 -1.516 |.85 .066 1.50
26 (.128)  (.846) (1.274)
27 8.18  .758  -2.431 -.335 |.88 .060 1.61
(.183) (.696) (1.247)
Table 5.4

REGION-PAIRS MODELS
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RP Idx Cst LOS FARE BPI R SE DW
28 8.39 .381 -1.483 -8.515 .88 .097 1.93

106)  (1.456) (2.313)
2 12.50 .027 =L 666 .101 .97 074 2.11

J .188) (1.046)  (.283)
o 1.55 L1147 1.436 ~-2.899 .93 .0L47 1.71

3 .133)  (.738)  (.653)
b2 -.008  -.437  -2.663 |.96 .oz 1.44

3N (.089)  (.242)  (.327)
5.62 .492  -1.315 -2.638 |.96 .033 1.35%

32 ©(.083)  (.756)  (.402)
| 5.59 .351  -1.387 1.753 |.46 .081 1.05

33 217)  (.Lb7)  (1.470)
‘-&.35 .219 -.241 2.047 .60 L0684 1.60

3h .080)  (.795)  (.886)
’4.91 .307 -.079 .300 .92 .065 1.14

7 a5y (177)  (.838)
p 5.70  .505 =-1.640 .006 .95 .78 1.0l

2 .078)  (.598) (.060)
7.79  1.270 -1.756 .893 .66 .289 1.31

37 .080)  (.660)  (.400)
5.00 759 -.384 1.954 .98 .039 2.79

38 086)  (.348)  (.521)
14.58  .170 -5.915 -.916 |.89 .087 .97

39 .238)  (.978) (1.062)

Table 5.5

REGION-PAIRS MODELS
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RP Idx | Cst L0S FARE BPI R® SE DW
L 6.52 .038 ~-1.176 1.804 .92 .059 1.15

0 (.179)  (.328)  (.437)
10.17 614 -3.350 4.970 .92 .067 1.01

b1 .088)  (.580) (1.420)
11:20 .971 -4.040  1.975 |.90 .096 .75

b2 .229)  (1.423) (3.260
L 5.63 .755 -1.146 -1.708 .88 .079 2.28

3 .187)  (1.343) (1.054)
5.93 .605 -.761 -1.867 .90 042 1.70

s A34)  (487)  (1.020)
»u 5.43 .05” -.249 -3.003 .58 .132 .84

5 .568)  (1.443) (1.677)
, 9.32 .623 -2.739 -.090 .79 112 1.49

46 .132)  (.880)  (.120)
L 8.26 Lu7 -2 .544 1.558 .96 .063 1.25

? .189)  (.530)  (.428)
o L .06 343 -.002 1.454 .96 .042 1,10

k8 111)  (5.609)  (.242)
4.09 1.176 -1.608  2.852 |.7%  .083 1.30

b9 .393)  (.640) (1.550)
13.01 -.093 -4.750  1.574% .96 .066 2.09

50 .167)  (.696)  (.906)

REGION-PAIRS MODELS
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CHAPTER 6

AGGREGATION MARKETS ANALYSIS

This chapter outlines the main weakness of Aggregate
models, namely the assumption of homogeneity of the
market. Indeed, these models considere the travel
demand as a homogeneous unit related to the same para-
meters in all markets. For instance, the model, analys-
ed so far, assumes constant elasticities throughout the
50 Region-pairs, regardless of the peculiarities of

each individual one.

In an attempt to aggregate the domestic US market into
different homogeneous sets, the authors suggested three
classifications:

- Low density markets
DENSITY - Medium density markets
- High density markets

- Monopolistic markets

COMPETITION - Competitive markets
- Ultra-short haul markets
LENGTH - Short haul markets
of - Medium haul markets
HAUL - Long haul markets

- Ultra-long haul markets

The authors, then, conducted series of Regression ana-
lysis for these markets, recorded in Table 5.1 .

In this chapter, we go one step further; we analyse

the subclassifications within each of the above classi-
fications, and test whether the former constitute homo-
geneous markets. For this purpose, sets of markets,
randomly drawn from each subclassification, as well as
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the individual routes, composing these markets, were

analysed. Tables 6.1 (a,b) provide the 1ist of the
Region-pairs corresponding to each set.

Regression analysis, using equation (1), were run for the
selected markets above, and their individual routes.

Their results are displayed in Table 6.2

To show whether the equation, corresponding to a given
market, is truly representive of the equations of the
individual routes composing this market, a CHOW test

was computed for each market and its respective routes.
In other words, this test examines whether the individu-
al routes observations and the corresponding aggregate

market ones belong to the same regression line.

The CHOW test formula is as follows:

k
(SSR-Z SSR; )/p(k-1)
— v
Fp(k-1), (n-pk) = ZSSR ./ (n-pk)
Where:
SSR = sum of squares of residuals of pooled market

]
n
o

e
}

= sum of squares of residuals corresponding to
each route

P = numbér of estimated parameters (including
constant)

n = total number of observations

k = number of sub samples (i.e, number of routes)

The above ratio is an F-distributed statistic, with

p(k-1) degrees of freedom at the numerator, and (n-pk)
degrees of freedom at the denominator.

The results of these computations displayed in Tables:
6.3; 6.4y 6.5, show the following values ofy

F(p(x-1), (n-pK))
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Low density F = 23.18
Medium density F = 23.32

High density F =37.71
Monopolistic market F =11.43
Competitive market F = 38.34
Ultra-short market F = 26.41
Short market F = 9.17

Medium market F = 65.29

Long market F = 16.58
Ultra-long market F = 53.49

Therefore, since the computed F values are all higher
than the critical ones, we conclude that Region-pairs
models equations are significantly different from their
corresponding Aggregate models equations. This may
~wWell be due to the fact that these subclassifications
do not take account of the particular characteristics
of the Region-pairs, and the different segmentations

of the markets. A current assumption in Air demand is
‘that travelers with dissimilar ecomomic, social, and
demographic characteristics have different reactions
towards traveling. While leisure travelers are general-
ly more sensitive to the trip cost and the availability
of complementary activities at the destination point;
business travelers are more sensitive to the level of
service: time of day schedule, number of flights avail-
able, comfort, reliability, and service on board.

Since the purpose of the authors is the determination
of the relationship between the demand and the level of
gservice, the classification adopted ignores an import-
ant factor in this relationship, namely the segmenta-
tion business/leisure. 1In fact, the "competition"
factor classification considers Region-pairs,such as
Washington-Houston, and New Orleans-Houston, as belong-~
ing to the same competitive market; and Detroit-Atlanta
or Miami-Los Angeles , as belonging to the same
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monopolistic market. However, although considered as
"competitive", a market such as Washington-Houston is
certainly not segmented in the same way as New Orleans-
Houston. While the former is most likely mainly busi-
ness oriented, the latter is rather more leisure orient-
ed. Equally, Detroit-Atlanta is mainly a business
oriented market, while Miami-Los Angeles is essentially
a leisure oriented one. This argumentation is also
true for the density and length of haul classifications
where business and leisure oriented markets are, some-
times, aggregated altogether. Inh the next chapter, we
attempt to aggregate markets across this segmentation
business/leisure.
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NEDIUN DENSITY MARKET

HIGH DENSITY MARKET

REGION-PAIRS Idx REGION-PAIRS

Idx REGION-PAIRS Idx -
1 BINGHAMPTON-ALBANY 3 CINCINNATI-NASHVILLE 8 DETROIT-CLEVELAND
9 ERIE-DETROIT 1?7 MILWAUKEE-CHICAGO 23 NEW YORK-CHICAGO
13 LINCOLN-OMAHA 12 LUBBOCK-DALILAS 21  NEWORLEANS-HOUSTON
18 MINOT-BISMARK 19 MINNEAPOLIS~-FARGO L4t ST LOUIS-KANSAS
33 RICHMOND-NORFOLK ' 28 NORFOLK-PHILADELPHIA 49  WASHINGTON-NEW YORK
34 RICHMOND-RALEIGH 31 PEPTESBURG-CINCINNATI 4O SAN FRANCISCO-LAS VEGAS
36 SACRAMENTO-RENO 32 PETTESBURG-DAYTON L  DALLAS-ATLANTA
MONOPOLISTIC MARKET COMPETITIVE MARKET
Idx REGION-PAIRS Idx REGION-PAIRS
2 NEWORLEANS-LAS VEGAS 8 DETROIT-CLEVELAND
3 CINCINNATI-ATLANTA 10 HOUSTON-DETROIT
5 DENVER-CLEVELAND 13 LINCOLN-OMAHA
6 DETROIT-ATLANTA 14 MENPHIS-KNOXVILLE
9 ERIE-DETROIT 18 MINOT-BISMARK
26 NEW YORK-KANSAS 20 NEWORLEANS-HOUSTON
27 OMAHA-CHICAGO 31  PETTESBURG-CINCINNATI

MARKETS and corresponding REGION-PAIRS Table 6.1a

'8&"



ULARA-SHORT RAUL MARKET SHORT HAUL MARKET MEDIUM HAUL MARKET
Idx RE REGION-PAIRS Idx REGION-PAIRS Idx REGION-PAIRS
8 DETROIT-CLEVELAND 2 CINCINNATI-NASHVILLE 3  CINCINNATI-ATLANTA
9 ERIE-DETROIT 12 LUBBOCK-DALLAS 11 DALLAS -JACKSON
13 LINCOLN-OMAHA 19 MINNEAPOLIS-FARGO 14 MENPHIS-KNOXVILLE
17 MILKWAUKEE-CHICAGO 21 NEWORLEANS~-HOUSTON 20 NEWORLEANS -ATLANTA
18 MINOT-BISMARK 31 PETTESBURG-CINCINNATI 27  OMAHA-CHICAGO
23 NEW YORK~-ALBANY 32  PETTESBURG-DAYTON 30 PETTESBURG-ALBANY
33 RICHMOND-NORFOLK 44 ST LOUIS-KANSAS 35 ROCHEST-CHICAGO
34  RICHMOND-RALEIGH 45 ST LOUIS-OKLAHOMA 4O SAN FRANCISCO-LAS VEGAS
LONG HAUL MARKET ULTRA-LONG HAUL MARKET

Idx REGION-PAIRS Idx REGION-PAIRS

4 DALLAS-ATLANTA 16 MIAMI-LOS ANGELES

5 DENVER-CLEVELAND 22 NEWORLEANS-LAS VEGAS

6 DETROIT-ATLANTA 25 NEW YORK-DENVER

15 MIAMI-CINCINNATI 29 PORTLAND-DALLAS

26 NEW YORK-KANSAS 41 SAN FRANCISCO-OMAHA

37 SAN DIEGO-DENVER 42 SAN FRANCISCO-ST LOUIS

47 WASHINGTON-HOUSTOR 46 TUSCON-CHICAGO

48 WASHINGTON-MIANI 50 WASHINGTON-PORTLAND

MARKETS and correggondigg REGION-PAIRS

Table 6.1b

-6 =
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MARKETS AGGREGATION RESULTS

MARKETS Cst LOS FARE BPI R SE DW
5.5 1,185 -.621 .382 |[.82 .168 1.31
3.97 1.575  .s47  .080 |.83 .253 .48
COMPETITIVE (.162) (.075) (.059)
3.50 .382 .012  .377 |.72 .243 .38
LOW DENSITY (.079) (.089) (.047)
- L .45 .996 -.065 -.216 |.55 .183 1.32
MED DENSITY (.094)  (.076) (.07)
4L.8% 1.055 =-.131 .o48 |.48 .170 .45
HIGH DENSITY (.113) (.058) (.057)
8.768 .781 -2.440 .703 |.90 .177 1.57
ULTRA-LONG (.071) (.201) (.035)
, 6.927 1.107 -1.408 .417 |.61 .253 1.05
LONG (.119) (.238) (.062)
5.380 1.212 -.502 .067 |.67 .218 .64
MEDIUM (.082) (.385) (.064)
5.559 1.398 -.560 .008 |.86 .140 .51
SHORT (.051) (.150) (.037)
1} 2.863 .668 .920 .450 |.88 .253 .89
ULTRA-SHORT (.100) (.228) (.037)
| TOTAL MARKET (4.963 1.035 -.370 .433 |.7% .317 .33
' (50RP) (.obk) (.037) (.021)
Table 6.2




LOW DENSITY MARKET MED DBENSITY MARKET HIGH DENSITY MARKET

SSR=6.380 SSR=3.620 SSR=3.120
n=112 p=4 k=7 n=112 =4 k=7 n=112 p=4 k=7
Idx SSRi Idx SSRi Idx SSRi
1 .001 3 . 022 8 .0k9
9 148 17 .159 23 .031
13 161 12 .0L48 21 .025
18 .238 19 .093 Ly  .021
33 .077 28  .113 L9  .084
34 .09 31 . 007 Lo .0L2
36 .073 32 .013 L .013
F=23.18 F=23.32 F=37.71

e —— ]

(SSR- ) SSR;)/p (k-1)
EERi/ (n-pk)

CHOW TEST FORMULA F=

CHOW TEST COMPUTATIONS

SSR = sum of squares of residuals of the total market
SSR; = sum of squares of residuals of the Region-pair i
P = number of estimated parameters(including constant)
n = total number of observations

k = number of subsamples (i.e, Reglon-pairs)

Idx = index of the Region-pair

Table 6.3
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MONOPOLISTIC MARKET COMPETITIVE MARKET
SSR=3.050 SSR=6.910
n=112 p=4 k=7 n=112 p=h k=7
Idx SSRi Idx SSRi
2 245 8 .0l9g
3 .022 10 .048
5 .156 13 .161
6 .0oL2 14 . 067
9 .148 18 .238
26 .052 20 .008
27 .050 31 .007
E SSRi=.715 E SSRi=.578

F=11.43 F=38.34
L — f )

CHOW TEST COMPUTATIONS

Table 6.4



ULTRA-SHORT HAUL  SHORT HAUL MEDIUM HAUL LONG HAUL ULTRA-LONG HAUL

MARKET MARKET MARKET MARKET MARKET
SSR=7.937 SSR=2.470 SSR=5.890 SSR=7.937 SSR=3.885

=128 p=lt k=8 n=128 p=4 k=8 n=128 p=4 k=8 n=128 p=4 k=8 n=128 p=4 k=8

Iax  SSR; Idx  SSR, Idx  SSRy Idx  SSR, Idx  SSR,
8 .09 2 .245 3 .022 b .013 16 .069

9  .148 12 .o48 11 .029 5 .156 22 .028
13 .161 19 .093 o .067 6 .o42 25 .071
17 .159 21 .025 20 .008 15 .028 29 .066
18 .238 31 .007 27 .050 26 .052 41 .08k
23 .07 32 .013 30 .026 37 1.000 42 .110
33 .077 by 021 35  .050 47 .o48 46  .150
3% .o4g 45 .209 4o .ok2 48  .021 50  .052
’;E:?Sﬁi='912 :E:§sni=.9.17 §z§331=.294 ‘EZ§SR1=1.36O ZZESR1=.234
F=26.41 F=9.17 F=65.29 F=16.58 F=53.49
e ——— T e eat—— e ——— P

CHOW TEST COMPUTATIONS Table 6.5

-CQ_
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CHAPTER 7

NEW MARKET DEFINITION & SPECIFICATION

7.1  BUSINESS/LEISURE AGGREGATION

By their socioeconomic, geographic, and touristic
characteristics, cities have different degrees of at-
tractiveness for travelers. While cities, like Las
Vegas, Miami, New Orleans are likely to be more attrac-
tive for tourists; on the contrary, cities like Houston,
Seatle, Boston are probably moreattractive for business
travelers.

In order to outline these different characteristics,
cities were grouped into three broad categoriess Indus-
trial, trade centers, and recreational. Whereas for

- many cities, it is not easy to decide which category
they belong to, others are easy to classify under these
three headings:

Industrial Trade Centers Recreational
Detroit San Prancisco
Cleveland New York Denver
St Louis Chicago New Orleans
Boston Dallas Miami
Seattle Washington Las Vegas
Kansas City’ Atlanta -
Houston

Given this classification, it is not unreasonable to
assume that routes between the two first groups and the
third one are mostly leisure, while routes between the
two first groups are mainly business travelled.

In order to test this assumption, two sets of 10 routes
each were selected. The first, called BSNS, involves

routes between or within the/{irst groups; and the
wO
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second, named LESR includes routes between the third
and the two first groups. The Regression analysis, ap-
plied to these sets, provides the following results:

Ct LOS FARE BPI R SE

BSNS | 5.02 1.377 -.379  .673 .88 .205
(.089)  (.065) (.038)

LESR .65 .689 -1.329 . 554 77 .229
(.104) (.084) (.051)

These results are interesting:

1 -~ A1l the variables bear the correct sign, and are,
according to their t ratio values, significant at
more than 99% level of confidence.

2 - The LOS and FARE variables are significantly dif-
ferent from one model to the other.

3 - In BSNS model, not only has FARE variable coeffi-
‘ cient the smallest magnitude compared to L0S and
BPI variables coefficients; but it has also the
lowest t value,i.e, the lowest significance.
Since the demand appears FARE inelastic (-.379),
and highly LOS elastic (1.377), we should admit
that this market is most likely business oriented.

b - On the other hand, LESR model shows the opposite
pattern, since FARE variable coefficient has the
highest magnitude in absolute value (1.329), and
the highest t ratio value, compared to LOS and BPI
variables coefficients. Besides, LOS elasticity is
less than 1. Therefore, this market shows a leisure
characteristic, which confirms our previous assump-
tion.

Having established this new classification business/lei-
sure, we may need to test the homogeneity of each market
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within this classification, by verifying whether each
market is truly representative of its corresponding in-

dividual Region-pairs. ps previously, a CHOW test was used.

Once again, the results in Table 7.1 show that the two
Aggregate markets are different from their correspond-
ing Region-pairs.

What these CHOW tests, as well as those conducted earlier,
indicate more than anything else, is the fact that one
Aggregate equation is clearly inappropriate for explain-
ing the variation of demand in any individual market.
These differences are outlined in the following section.

7.2  ANALYSIS OF VARIABLES BY INDIVIDUAL ROUTES

In order to get a more accurate picture of the differen-
ces that exist between behavidral equations of different
routes, it is worth examining the individual Regression
results of Tabless5.33 5.43 5.5; 5.6 , summarized in
Table 7.2 and Table 7.3 ...

The strikingly heterogeneous nature of the markets ap-
pears clearly in these results. Four markets show no
significant Regression relation at all; while others ex-
press a relationship based only on one variable (19 mar:
kets), or only on two variables (20 markets). Finally,
only 7 markets have equations in which all the three
variables are significant.

L0OS appears as the most frequently significant variable,
since it is significant 36 times out of 50 (i.e, 72%);
while FARE and BPI variables are only significant 24
times and 20 times respectively (i.e, 48% and 40%),

and bear the counterintuitive sign 3 times and 19 times
reSpectiﬁely (i.e, 6% and 38%).

In general, the intra-market variances are more than
14 times smaller than the variance generated by the
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Aggregate equation. 1Indeed, the variance corresponding
to the total Aggregate equation is: (.317) = .100 (see
Table 6.2 ). The weighted variance corresponding to
the intra-market is:

$=50 ,

> sz

i=1 = .007
50 .

Where SEi is the standard error of the Regression i.

This decrease in variance (.007 vs .100) indicates the
advantage in terms of minimizing error that can be gain-
ed from a Disaggregation®*. However, the results obtain-
ed by this Disaggregation are still not satisfactory, as
manifested by the low frequency of the significance of
the variables.

- The conclusion to be drawn,from these results:as well as
from the statistical deficiencies recalled earlier:
Multicollinearity, Heteroscedasticity, Serial correla-
tion, is that an important factor is still missing.
‘This may be due either to omitted variables or to a
wrong specification in the MIT Model.

Next section discusses the specification of this model,
and suggests a new structure : a Simultaneous Equations
model formulation.

Such a Disaggregation, however, is not always possible;
particularly, when the observations by individual
routes are not large enough to conduct meaningful

Regressions, because of the low degree of freedom. This

is the case of the Multi-equation.models to be develop-~
ed in Part III with the UK Domestic Market.
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BUSINESS MARKET LEISURE MARKET
SSR=6. 556 SSR=8.180
n=160 p=4 k=10 n=160 p=4 k=10
Idx SSRi Idx SSRi
L 156 5 .156
6 .042 15 .028
7 .148 16 .069
8 .o49 20 .008
10  .048 21 .025
24 .032 22 .028
26  .052 39 .091
by 021 4O .02
47 048 41 .05L
L9  .o8u4 b2  .110
SSR;=.680 > SSR;=.611
F=28.80 ' F=l1.24

CHOW TEST COMPUTATIONS

Table 7.1
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REGION-PAIR NUMBER OF
INDEX L0S  FARE  BPI | 51GNTRICANT VARIABLES
1 * 0
2 X 1
3 X X X 3
by p'e X p'q 3
5 X X X 3
6 X X 2
7 X * 1
8 X 1
9 x 1
10 X X X 3
11 X X 2
12 ) 4 1
13 X p 4 2
14 X X 2
15 X x X 3
16 X 1
17 * 0
18 X * 1
19 X * 1
20 X X 2
21 X b ¢ 2
22 X 1l
23 X L 1l
24 X X » 2
25 X X 2
Table 7.2

SIGNIFICANCE OF VARIABIES BY INDIVIDUAL ROUTES

% variable with a wrong sign
X significant variable at 90% level of confidence
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REGION-PAIR NUMBER OF
INDEX L0S  FARE  BPI | S1GNIFICANT VARIABLES
26 X X * 2
27 X X * 2
28 X * 1
29 X 1l
30 * » 0
31 * 0
32 X X * 2
33 X 1
34 X X 2
35 X 1
36 - X 2
37 X 1
38 X X 2
39 X * 1
Lo p'e p'e 2
L1 X x x 3
L2 x X 2
L3 X » 1
Ly X * 1
b5 x » 1
Lé X X * 2
L7 X X X 3
L8 X X 2
Lo x X 2
50 X X 2
Table 7.3

SIGNIFICANCE OF VARIABLES BY INDIVIDUAL ROUTES

* variable with a wrong sign
X significant variable at 90% level of confidence
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7.3 SIMULTANEOUS EQUATIONS MODEL

As stated earlier, one major assumption for the validity
of O0LS (Ordinary Least Squares) is that the independent
variables must be uncorrelated with the error tern.

This means that all independent variables must be truly
exogenous. Otherwise, the coefficients obtained by the
OLS are biased and inconsistent.

The FARE and BPI variables are not dependent upon Air
travel demandy since the first one is fixed by the CAB
(Civil Aeronautics Board), and the second one is a
socioeconomic characteristic of the Region-pair. The
level of service LOS is, however, dependent upon Air
travel demand, since carriers would increase the number
of flights and the level of service, if the demand in

a given market were to increase. Hence, a two-way
causality exists, and LOS is no longer a truly exogenous
variable. In such case, the application of the Ordinary
Least Squares is not appropriate.

- In order to get around this difficulty, a second equa-
tion, in which Los is the dependent variable is added
to the model. The new formulation is as follows:

D =f,+B, Los +B2 FARE +(33 BPI + ¢

10s =X, +X; D X, DIST + &,

Where the variables in logarithm have the same meaning
as previously; and where DIST is the inter-distance
between two regions in a Region-pair.

To solve this Simultaneous Equations Model, a technique
called 2SLS (Two-Stage Least Squares) has been applied. .
Since this technique as well as other Multi-equation

calibration techniques are fully discgssed later on,
we provide, there-in-after, only a brief presentation

of 2SILsS.



This technique works in two stages as follows:

- The first stage, consists in determining the reduced
form of the model, the form in which the endogenous
variables (demand and L0S) are expressed only in
terms of exogenous variables,FARE, BPI, DISTANCE .
Then, this reduced form is solved, using Ordinary
Least Squares. For each observation, the values of
gxogenous variables are substituted to obtain "obser-
ved" values of D and LOS in the following equations:

D =‘610 +\611 FARE +‘612 BPI +\513 DIST

10S =¥ ,, +¥,, FARE +%,, BPI +¥ 5 DIsT

- The second stage, consists in performing the Ordinary
Least Squares on the modified structural form, in
which D and LOS variables are replaced by their
values fitted in the first stage.

Statistical Results

e S ———

- Twelve models,corresponding to the following markets,
have been calibrated in the new specification:

Ultra-short

Short Low Density
Medium - Medium Density
Long High Density
Ultra-long

Competitive BSNS
Monopolistic LESR

The results of these models are displayed in Table 7.4 .

As a general observation LOS elasticity, assumed purged
of any correlation with the error term, has systemgtic-
- ally increased in the new formulation.
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Apart from the variation in the magnitude of the coef-
ficients, the general conclusions are almost similar to
those obtained by the authors in the single equation
formulation. However, the following remarks should be
retained:

- LOS elasticity increases from ultra-short to long
haul, and decreases in ultra-long haul market; while
it starts decreasing in long haul market in the ori-
ginal specification.

- In Leisure Market, FARE elasticity is lower than LOS
elasticity.

- Finally, the DW test reveals the existence of posi-
tive Serial Correlation in all the runs, except in
Monopolistic, Medium density, Ultra-long haul and
Long haul markets models. This means that important
factors are still missing.

In fact, one very important factor, the surface modes
competition, is completely ignored in these models.
‘Indeed, Air mode is treated as a totally independent
mode, and no other substitute is assumed. However, while
there are long distances transportation situations, where
the multi-modal context becomes irrelevant, and where

- the Aircraft becomes the only feasible mode of transport;
there are in turn, situations where surface modes are
strongly competitive with Air mode. The ignorance of
this factor may well be one of the reasons for the fail-
ure of these models, particularly, in ultra-short, short,
medium haul markets.

7.4  CONCLUSION

The analysis of the MIT Model has been conducted under
different angles:
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1. Validity of the statistical assumptions

The original model manifests some departures from the
necessary conditions for the application of the Ordin-
ary Least Squares, such as the non Normality of the
residuals distribution, their non constant Variance,

their Serial Correlation, and the Collinearity of the
variables.

2. Homogeneity of the markets

A serie: of CHOW tests reveals that not only does the
total Aggregate Market (50 RP) not constitute a homogen-
eous market, but also the classifications,by market dens-
ity, competition, length of haul, business/leisure, do
not yield separate homogeneous markets. Moreover,. the
variances of the error terms are lower than those of the
total Aggregate (50 RP).

Besides, the analysis of the individual Region-pairs
discloses the high variations of the elasticities from
one region to another.

What these findings, essentially, indicate is the fact
that one Aggregate equation is clearly inappropriate for
explaining the variation of the demand in any individual
market.

3. Model specification

The behavioral equation of the original model suffers
from a two-way causality effect, due to the dependency
of LOS variable upon the demand, which engenders biased,
inefficient and inconsistent coefficients. To overcome
this difficulty, a second equation with the level of

- service as the dependent variable. has been added to the
model with the 2SLS technique as a means of calibration.
The results, however, still show positive Serial Cor- .
relation, particularly, in medium, short, and ultra-

short haul markets models. This implies that some other



explanatory factor is still missing.

Indeed, one major omission is the surface modes competi-
tion which is very strong in short distances, particular-
ly, the Air/Car competition.

The main purpose of Part III is, precisely, the calibra-
tion of competition models formulated as Multi-equation
models. The market involved in this modeling process

is the Domestic UK Air and Rail Markets.
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MARKETS Cst LOS FARE BPI | R® SE DW
6.05 1.495 -.791 .341 |.81 .171 1.86

MONOPOLISTIC (.187) (.142) (.048)
=-3.31 2.887 .503 -,288 .71 .323 A2

COMPETITIVE (.1410) (.097) (.124)
5.64 1.615 -.554  .289 |.72 b9 .5k
5.62  3.034 .078 -.627 |.69 .437 1.61

MED DENSITY (1.420) (.208) (.305)
-5.61 -15.330 1.164 -,.585 .73 2.490 .31

HIGH DENSITY (64.400) (5.160)(2.630)
| 7.7  1.637 -1.627 .u84 [.79 .255 2.35

ULTRA LONG (.155) (.309) (.059)
7.76 2.570 -1.288 261 .73 .372 1.61

LONG (.282) (.349) (.094)
5.32 1.917 -.083 -.120 |.b9 .143 .65

MEDIUM (.130) (.480) (.083)
5.67 1.619 -.511 =-.029 |[.84% .185 .45

SHORT (.058) (.158) (.041)
4.32 1.619 -.511 -.029 |.84 ,185 .76

| ULTRA-SHORT (.058) (.158) (.Ok1)
u.52 2,231 .385 .921 .80 .401 .77

|- BUSINESS (.159) (.652) (.098)
6.98 3.315 -.632 -.159 |.79 .509 .65

LEISURE (.529) (.225) (.172)

TWO-STAGE LEAST SQUARES ESTIMATES s+ DEMAND EQUATIONS

Table 7.4




LENGTH OF HAUL

' DENSITY { COMPETITION TRIP PURPOSE

Idx REGION-PAIRS L M H|MONO COMP | U-Sh Sh Md Lg U-Lg | BSNS LESR
1  BINGHAMPTON-ALBANY x x x

2  CINCINNATI-NASHVILLE X X x

3  CINCINNATI-ATLANTA x X X

L DALLAS-ATLANTA X X X X

5  DENVER-CLEVELAND x x x x

6 DETROIT-ATLANTA X X x X

7  DETROIT-BOSTON X X X x

8 DETROIT-CLEVELAND p'e X X X

9  ERIE-DETROIT x X X
10  HOUSTON-DETROIT X X X x

11  DALLAS~JACKSON X x x

12  LUBBOCK-DALLAS X X x

13 LINCOLN-OMAHA X X X

14  MENPHIS-KNOXVILLE x e P

15 MIAMI-CINCINNATI X X X X
16  MIAMI-LOS ANGEILES x| x X X
17  MILWAUKEE~-CHICAGO X x x

Table 7.5

REGION-PAIRS and corresponding CHARACTERISTICS

-&6-



. DENSITY | COMPETITION LENGTH OF HAUL TRIP PURPOSE

Idx REGION-PAIRS L M H | MONO COMP | U-Sh Sh Md Lg U-Lg BSNS LESR
18 MINOT-BISMARK X X X
19 MINNEAPOLIS-FARGO p'e X X
20 NEWORLEANS-ATLANTA X X X X
21  NEWORLEANS-HOUSTON X x p'e X
22  NEWORLEANS-LAS VEGAS x _ p'e p'e
23  NEW YORK-ALBANY X X X
2 NEW YORK-~-CHICAGO X X X X
25 NEW YORK-DENVER X x
26 NEW YORK-KANSAS X X x X
27  OMAHA-CHICAGO X X X
28 NORFOLK-PHILADELPHIA X X X
28  PORTLAND-DALLAS X X
30 PETTESBURG-ALBANY X X x
31 PETTESBURG-CINCINNATI X x X
32  PETTESBURG-DAYTON x X X
33 RICHMOND-NORFOLK x x X
34  RICHMOND-RALEIGH p'e x

REGION-PAIRS and corresponding CHARACTERISTICS Table 7.6
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DENSITY

COMPETITION LENGTH OF HAUL TRIP PURPOSE

Idx REGION-PAIRS L M H{ MONO COMP { U-Sh Sh Md Lg U-Lg BSNS 1ESR
55  ROCHEST-CHICAGO x X pe
36 SAGREMENTO-RENO x X X
37 SAN DIEGO-DENVER X X X
38 SEATLE-DENVER X e X
39 SEATLE-SAN DIEGO X x x X
4O  SAN FRANCISCO-LAS VEG X X X X
41  SAN FRANCISCO-OMAHA X X x X
42  SAN FRANCISCO-ST LOVIS X X X x
43 ST LOUIS-DAYTON X X X
Ll ST LOUIS-KANSAS x x X e
L5 ST LOUIS-OKLAHOMA X X X
L6  TUCSON-CHICAGO X X X
4?7  WASHINGTON-HOUSTON X x X x
48  WASHINGTON-MIAMI X X X
49  WASHINGTON-NEW YORK X X x X
50  WASHINGTON-PORTLAND X X x

REGION-PAIRS and corresponding CHARACTERISTICS Table 7.7

-66-



PART II1I

UK DOMESTIC.MARKET ANALYSIS
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INTRODUGCT ION

Part II provides an analysis of the MIT Model, and sug-
gests a Multi-equation specification structure for the
original model. However, the ignorance of the Surface
Modes Competition renders the short haul market results
questionable. This part is aimed to bridge the gap by
constructing several Modal Competition Models that es-

timate Air and Rail demands traffic over 7 Londoner
routes.

The purpose of this modeling process is threefold :

- To establish a behavicdral relationship evaluating
the traffic demand by each mode.

- To relate this demand to some supply factors un-
der the control of the carrier, so as to emable
him to act upon the demand through these control-
able factors.

- To derive unbiased, more consistent, and more ef-
ficient structural estimates coefficients, res=
presenting level of service, fares, and income
elasticities.

Consequently, in order to meet the above objectives, =
the present models have the following characteristics

- They are Modal Competition Models.

- The demand, by each mode, is partly expressed as
function of the frequency of services variable
which is under the carrier control.

- In order to combat the Simultaneous Equations
Bias due to the two-way dependency supply/demand,
the supply endogenous factors are expressed, in
the supply equations, as dependent variables.
281S and 3SLS are applied as a means of calibra-
tion, so as to provide unbiased, more consistent,



- 101 =
and more efficient estimates coefficients.

The restriction of the competition to the Air and Rail
modes only is essentially dictated by data consideration
problems. It was originally intended to conducted this
model building in a pure Time Series analysis. However,
due to the low degrees of freedom, consequent to the
small sample data, and ta the Multi-equation structure
nature of the models, it was necessary to combine Cross-
sectional and Time Series data, so as to derive meaning-
ful elasticities. 1In order to achieve a reasonable

data combination, an aggregation by length of haul is
undertaken.

Nevertheless, pure Time Series models are also estimat-
ed for the 7 individual routes under study. This has
been made possible by use of the Abstract Mode approach
which has the advantage of increasing substantially the
degrees of freedom by aggregating data across modes for
each route.

- Finally, pure Air travel demand models of two types are
constructed :

- Pure Air business travel demand over the UK DomesS-
tic market.

~ Pure Air Time Series for 3 individual trunk routes.

This model building process is set up throughout 9 chap-
ters summarized in the following '

- The first, Chapter 8, begins with the definition

of the catchments areas of the Airports and the
Rail stations, considered in this study. It re-

views the sources of data, explains the methods
of construction of the different variables and
their underlying assumptions.

- Chapter 9 draws a brief transportation economic
analysis outlining the peculiarities of the
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transport product and of the transportation ser-
vices industry. It lays out a theoretical demand
and supply model in which the frequency of ser-
vices is included, not only in the demand equation
as an important level of service factor explaining
the demand, but also in the supply equation as a
dependent variable expressing the level of supply.
Furthermore, Rail fare, recognized as an endogen-
ous variable for both Air and Rail demands, is
introduced in a fifth equation as function of
these demands.

- Chapter 10 explains the step by step procedure
adopted in the course of modeling, selects a set
of variables choosen among many candidates ones,
and discusses the Multi-equation calibration
techniques to be applied in the subsequent models.

- Chapter 11 constitutes the most important part of
this research. Six Aggregate Multi-equation
Modal Competition Models are run over the period
1968 - 1978 on the 7 following routes.

London~Glasgow London- Manchester

London-Edinburgh London-Birmingham

London-Newcastle London-~Leeds
London-Liverpool

Three structural formulations, among the six above,
are selected on both theoretical consideration

and statistical significance, and applied to the
length of haul aggregation retained. This comes
up with Long Haul and Short Haul markets models,
and a detailled discussion of their results.

- Chapter 12 selects the best formulation among
the remaining three, and provides a statistical
evaluation of the selected model by testing the
validity of the assumptions underlying the 2SLS
and 3SLS. Finally, in order to measure the ac-
curacy of the forecast, an Ex post Forecast is
simulated and its "estimates” compared to the
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actual Air and kail demands observations for the

years 1976, 1977, 1978.

- Chapter 13 runs 7 pure Time Series models in an
Abstract Mode approach.

- Chapter 14 conducts respectively a pure Air busiw
ness demand model over the UK Domestic market, and
three pure Air Time Series models over the period
1961 - 1978, on the following trunk routes:

London-Glasgow London-Edinburgh  London-Belfast

- Chapter 15 illustrates the application of these
models.

It should be emphasized at this point, that although
these models are formulated as supply/demand models,
our primary purpose remains the identification of the
Air and Rail travel demand functions. The introduction
of the supply and Rail fare equations is essentially
aimed to reduce as much as possible the Simultaneous
Equations Bias, due to the dependency of the level of
service and Rail fare variables on both Air and Rail
demands.

The Multi-equation structure adopted as well as the
2S1S and 3SLS techniques, by reducing to a certain
extent this bias, yield less biased, more consistent,
and more efficient parameters than the ones that would
have been obtained by OLS.

Since these structural parameters are the ones expres-
sing the behavidral relationships between the demands
on one hand and the level of service, fares, and
incomes on the other, we focuss our analysis on the
Structural Forms of the models rather than on their

Reduced Forms.
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CHAPTER 8

DATA CONSTRUCTION

8.1 CATCHMENT AREAS

Recent moves, in Origin/Destination air passengers flows
models, have come to consider the "Region Pairs" concept
rather than the "City Pairs", because Airports are
thought to attract demands from larger areas than their
own cities [}h] . The modeling process on a region
basis, however, is highly dependent upon the quality and
accuracy of the delineation of the regions themselves.

The problem is even more complicated when one comes to
model the competition between Air and Rail, since the
passengers flows are assumed to originate in the same
region and to end in the same other one for both modes.

Although the problem is relatively simpler when the Rail
stations are near to the Airports, in which case they
belong to the catchment areas of their nearest Airports;
there are situations where Rail stations are, somehow,
equally distant from two Airports. This is, for instance,
the case for Motherwell and Perth Rail stations in
Scotland. 1In this case[Zl) on table 8.1?]. we have
assumed that half rail traffic originating ( or ending)

at these stations belongs to Glasgow Airport catchment
area and half to Edinburgh Airport catchment area.

On the other hand, Airports that are near to each other
are considered as a unique Airport. Heathrow and
Gatwick,for instance, are regarded as a unique Londonian
Airport. This is also the case of Leeds and Bradford
Airports.

In the course of delineation of the catchment areas, we
tried as much as possible to take account of existing
administrative boundaries, such as standard planning
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1977/78 1973/ 74
ATRPORTS RATL 1974/75 1971/72
STATIONS METROPOLITAN CONNURBATIONS
1 COUNTIES
Central London
Guildford
Brighton
London Ashford
Airport Canterbury Greater Greater
(Heath + | Chatham London London
Gatw) Croydon
Woking
Slowgh
Southend
. Birmingham West West
Birmingham Wolverhampton Midlands Midlamds
] Liverpool
Liverpool | o, uthport Merseyside Merseyside
Leeds
Leeds Bradford West West
(Leeds/ Huddersfield Yorkshire Yorkshire
Bradf) Wakefield
P. Manchester
Manchester | Oxrd. Manch Greater
'17' vic. Manch Manchester *
Newcastle | Newcastle Tyne & Wear Tineside
Glasgow
6l (1) Motherwell Central Central
asgow (1) Perth Clydeside Clydeside
Port William
Edinburgh
(1) Motherwell
: Kircaldy
?;\fAberdeen Aberdeen Grampian .
# 3 Non available Table 8.1
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regions, counties and connurbations. The advantage is
that many socio-economic data are available at these
levels (Inland Revenue Personal Income Surveys, Family
Expenditures, Regional Statics, Registrar General's
Annual Census of Population...).

Note in passing, that regional boundaries changed over
the period considered in this study which complicated
the derivation of the desired data. Finally, the catch-
ment areas for Airports and Rail stations have been de-
fined as displayed in table 8.1 ..

The two last columns of table 8.1 , indicate the catch-
ment areas represented by metropolitan counties in the
1974-1978 period,and by the condurbations in the 1971~
1974 period. The two first columns indicate the Air-
ports and the Rail stations corresponding to these catch-
ment areas. For instance, any passenger originating (or
ending) at either Heathrow or Gatwick Airports, or at
any Rail station in the first row is considered to be
originating (or ending) in Greater London area. For
simplicity, Airports and Rail stations in the same
catchment area will have the same name, usually, the
name of the Airport like Glasgow or Edinburgh; or the
'name of the main Airport like Leeds (instead of Leeds/
Bradford); or the group name like London Airports (or
simply London). for Heathrow and Gatwick. Therefore, in
this study these Airports represent the catchment area
they belong to (unless the opposite is stated).

8.2  AIR DATA

These data have been obtained from disparate sources. .

- Traffic passengers

The main sources of these data’have been the CAA Annual
Statistics [}é] and Surveys [§6] . The first has
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provided annual domestic traffic passengers between the
Airports considered for the period(1968-1978). Prior
to this period, data for trunk routes (London-Glasgow,
London-Edinburgh, London-Manchester, London-Belfast)
have been taken from Edward Reports [pi].

The ratios of business traffic figures have been derived
from different CAA Surveys (1970, 1971/72, 1975/76) and
from British Airways Inflights Surveys (1974, 1977, 1978).
These ratios, applied to the total domestic traffic have
yielded the business traffic for the corresponding
periods on the following routes: _
London-Glasgow : 1971, 1974, 1975, 1976, 1977, 1978.
London-Edinburgh ¢ 1971, 1974, 1975, 1976, 1977, 1978.

London-Belfast : 1974, 1975, 1976, 1977, 1978.
London-Manchester ¢ 1971, 1975.

London-Aberdeen 1975.

London-~-Leeds : 1971, 1976.
London-Liverpool : 1971, 1976.
London-Newcastle 1976.
Belfast-Leeds : 1976.
Belfast-Liverpool . 1976.
Belfast-Manchester: 1976.
Glasgow-Manchester: 1971, 1976.

The dependent variables corresponds to the two-way
passengers traffic.

- Air fares

Air fare correspond%“to the normal economy single fare
taken from ABC Guide For the period (1961-1978) for
each route. 1In order to take account of the seasonal
fare variations, the two months figures (April and
October) of each year have been considered. These

values have been deflated by the Consumer's Price Index
(taken from National Income and Expenditures [49]), in

order to eliminate the inflation effect. The base year
corresponds to 1975.
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- Frequency of services

The frequency of services, used in this study, corres-
ponds to the product of the number of flights offered

in each direction between two Airports. It has been
shown I}UJ that the product form was more appropriate
than the sum, as the former more accurately measures

the effect of substantial imbalance in the number of
flights offered in the two directions. It seems logical
that a route with 3 daily flights in each direction, for
instance, is better served than with 1 flight in one
direction and 5 in the other. The use of the sum of
flights, as proxy for the level of service, would not
measure this imbalance whereas the product does (the sum
being equal for the two cases, but the products are 9
for the first and 5 for the second).

Furthermore, as the number of flights a day in each

direction shows some variations from one day to another,
the product considered has been the product of the week-
ly number of flights by direction derived from ABC Guide.

- Time variable

" Trip time figures for the period (1961-1978) have also

been taken from ABC Guide. They correspond to the trip
time in each route. As time variable is to be analysed
in a competing'context, it appeared more appropriate to
consider not only the flying time but also the waiting,
access and egress times for each mode.

For the purpose of this study, total trip time variable
has been constructed by adding to the flying time the
hypothetical following figures taken from Guwilliam [3@]

city centre - Airport time = 54 minutes for London

, ' = 30 minutes for other Airports
Loading time = 30 minutes

Unloading time 15 minutes
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i.e, 120 minutes for London routes and 105 minutes for
other routes.

- Load factor

This variable has been constructed by taking the ratio
of seat/km available and seat/km used in the "scheduled
services by UK Airlines" 1965-1975 and 1967-1977 I}l].
The figures prior to 1965 have been taken from Edward
Report.

8.3 RAIL DATA

All Rail data, except the "electrification" variable,
have been provided by British Railways:

- Traffic passengers between different Rail stations
have been aggregated by catchment areas as explained
earlier (two ways traffic). ‘

- The Rail frequency of service has also been expressed
by the product of the weekly numbers of trains in each
direction.

- Trip time variable includes the waiting time, but does
not take account of any access or egress time; the as-
sumption being that Rail stations are usually in the
city centre (or town centres).

- Fare variable corresponds to the published single
economy fare in each route. Again these values have
been deflated by the consumer price index.

-"Electrification" variable designed to measure the
effect of the electrification is the ratio of the
number of kilometres of electrified routes and the
distance between them. These figures have been taken
from CSO Annual Abstract of Statistics 1979. [sz] .

All the above data are available for the following
routes for the period (1968-1978):
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London-Glsgow London-Edinburgh
London-Manchester London-Birmingham
London-lLeeds London-Liverpool
London-Newcastle
8.4  INCOME VARIABLES
(53]

Derived from Regional Statistics (1973 and 1979)/,these
variables have been rather difficult to construct be-
cause of the changes in the administrative boundaries
of different regions.

- Personal incomes before tax and after tax

These variables have been set up for the Airports in
table 8,2 . In the first column is included the 1list

of the Airports concerned (except Aberdeen and Edinburgh).
In columns 2 and 3 are comprised the corresponding catch-
ment areas. The income variables, for these catchment
areas, are published in Regional Statistics for the two
periods 1977/78-1974/75 and 1973/74-1971/72 (except for

Manchester).
1977/78-1974/75 | 1973/74-1971/72 1970/71
 AIRPORTS METROPOLITAN CONNURBATIONS -
COUNTIES 1967/68
Newcastle Tyne & Wear Tyneside ]
Leeds W Yorkshire W Yorkshire ™
- London Greater London | Greater London | G London
} Birminghanm west Midlands West Midlands »
1 manchester G Manchester 1 .
1 Liverpool Nerseyside Merseyside *
iff Glasgow Centr Clydeside | Centr Clydeside

" °# 4 Non available

Table 8.2
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For the third period 1967/68-1970/71, the figures do not
exist at Counties or Conpfurbations levels (apart from
Greater London), but still exist at regional levels.
Therefore, the figures desired have been derived by
comparing the figures for both Conpurbations and Regions
for the period 1971/72-1973/74 and applying the ratio of
these figures to the period 1970/71-1967/68. For
Manchester, the figures for the second and third periods
have been derived from ratios computed in the first
reriod. The planning regions considered for deriving

these figures are shown, below, with their corresponding
Airports;:

AIRPORTS PLANNING REGIONS
Newcastle North
Leeds Yorkshire & Humberside
Birmingham , West Midlands
Manchester North west
Liverpool North West
Glasgow Scotland

For Bdinburgh -and Aberdeen, the population figures,
taken from Census Population 1971, have been compared
to Glasgow population figures. Assuming that incomes
are equally proportional to the populations in these
three areas, income variables have been computed for
Edinburgh and Aberdeen.

- ; and er capita

GDP figures published in Regional Statistics (1973 and
1979) are only on a region level. ‘The figures corres-
ponding to the c‘l'fment areas considered earlier, have
been derived by comparing the income before tax
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variables on a region level with those obtained on a

county level, and extending the proportionality to the
published GDP variable.

For Edinburgh and Aberdeen, however, the Scotland GDP
by head has been multiplied by their corresponding
population. The assumption being that these two areas
have the same GDP per capita as Scotland has.

Finally, the GDP per head has been forthwith taken from
the published data by assuming that the Counties(or
Confiurbations) have the same GDP per head as the stand-
ard Regions they belong to.

All incomes variables, considered so far( before tax,
after tax, GDP, GDP per head),have been deflated by the
Index number of GDP (income based) £1975 = 100, taken
from National Income and Expenditures (1979).

- 1 g8 (before by r es of comes

The process of construcfing these variables has taken

two steps:

First, from several personal incomes by ranges of incomes
figures for standard regions displayed in Regional Statis-
tics, the number of tax units corresponding to four

ranges of incomes has been calculated:s

people with incomes < £1,000 per year
people with incomes £1,000 - £2,000 per year
people with incomes ~ £2,000 - £5,000 per year
people with incomes > £5,000 per year

Then, by taking the ratio of the population in the
standard regions and the corresponding catchment areas,
and assuming that the distribution of incomes in a catch-
‘ment area is the same as the distribution of incomes in
the standard regions it belongs to, the desired variabdble
has been obtained.
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Finally, once all the income variables, described

earlier (before tax, after tax, GDP, GDP head, ranges

of incomes), have been consiructed for each catchment area,
the income variables for each route are obtained by

taking the product of the variables corresponding to

the Origin/Destination catchment areas.

These routes are as follows:

London-Glasgow Belfast-Birmingham
London-Edinburgh Belfast-Glasgow
London-Manchester Belfast-Leeds
London-Birmingham Belfast-Liverpool
London-Leeds Belfast-Manchester
London-Liverpool

London-Newcastle Birmingham-Edinburgh
London-Belfast Birmingham-Glasgow
London-Aberdeen Glasgow-Manchester

While Air data are available for all these 17 routes,
Rail data are available for the first 7 London@r routes
only. Plots of the relevant variables are displayed in
the figures numbered from 8.1 +to 8.18 .,
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CHAPTER 9

TRANSPORTATION ECONOMICS ANALYSIS

In order to better understand the process of demand
modeling in commercial transportation, it is important
to draw a brief analysis of the economics of this
industry.

In general, the classical theories of Microeconomics are
applicable to transportation economics. The law of
supply and demand, and the concept of elasticity still
hold. However, due to the transportation product at-
tributes and the peculiarities of this industry, the
supply and demand of transport, as will be seen in this
chapter, show some differences with the classical theory.

9.1 RANSPORTATI EMAND IS A DERIVED DE

The demand for travel is not an end in itself. Travel-
ers are not buying any physical object which becomes
their property. The product they purchase is the
service of their transportation from one point to an-
other. This service is derived from what they can
achieve in being at the point of destination, either
for business purpose or personal reasons. Therefore,
unlike demand for traditional goods which is related to
the good itself,travel demand is very sensitive to the
demand for the product at the point of destination.

9.2 TRANSPORTATION PRODUCT IS PERISHABLE

The product of transportation is perishable, and in this
respect is similar to a newspaper or a christmas tree.
Unlike traditional goods, a seat mile available in a

particular departure cannot be stocked to the next
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departure, if it has not been sold. It remains, however,
that its cost is essentially the same for the carrier as
if it has been purchased.

Industries with storable goods do not encounter this
problem, and can generally gear production to a steady
output, relying on a store to act as a reservoir. As
transportation services do not enjoy the freedom of
being able to store surplus products, they must come to
some decision about the level of supply to offer on the
market.

9.3 TRANSPORTATION SERVICES ARE REGULATED

In an ideal world of economists' perfect competition,
there might be no need for government intervention in
transportation policy. A perfectly functioning market
could be left to determine the quality, the quantity
and the price of transportation services, according to
consumer preferences and subject to resources cons-
traints. Such an ideal does not exist, and the control
of the government takes different aspects though vary-
ing from time to time, from mode to mode, and from
country to country.

9.3.1 \Air trénsportation pricing regulation

Airline industry is subject to a great deal of regula-
tion, and various reasons have been advanced for the
degree of regulation that exists, namely the mainten-
ance of safety standards and the maintenance of public
service requirements by ovoiding disruptive competition

[54] -

Within the United States, Air fafes are fixed by the
CAB (Civil Aeronautics Board) which prescribes a piece-

wise linear concave function of intercity distance for
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the standard coach fare. First class and discount fares
are computed soclely on the basis of the percentage of
the standards fares*. Thus, Air fares at a given point
of time are function only of distance and independent

of absolute consumer demand in the market and fluctua-
tions in this demand. That is why Air fare variable has
always been considered by the modelers as an exogenous
variable in Air demand models.

Within the United Kingdom (Domestic routes including
routes to the Channels Islands), the former ATLB (Air
Transport Licensing Board) which has been replaced since
by the CAA, consequently to the Civil Aviation Act 1971,
used to determine, after a public hearing, the tariffs to
be charged.

The Civil Aviation Act 1971 .declares that it should be
the main objective of the CAA to secure that British
Airlines provide services which satisfy public demand

at the lowest charges consistent with a high standard of
safety and an economic rpturh on investment. The Ssub-
sequent policy guidance, further required the CAA to
secure tariffs that are rational, simple and enforceable

[55]
9.3.2 Rail pricing policy

Railways in Britain, as in many other countries, have
been subject to rigorous controls, both for their fare
levels and the quantity, quality and nature of services
provided.

(*) According to Richard A Ippolito, in 1982 Air fares
will no longer be regulated.

( Journal of Transport Economics & Policy)
January 1981
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During the fifties and the early sixties (1953-1961),
Railways were under the authority of the Transport
Tribunal which had power to set maximum fares. Under

the 1962 Act, this was removed and Railways were allowed
to charge fares which could cover their financial targets.
The only remaining controls were over London fares.

In theory, this left the Railways free to pursue the
policy of vigorous price discrimination for its services:
discrimination between routes by times and by class of
travel as they thought best. This evolution in Rail
fares policy is of crucial importance in the analysis
and the modeling of Air-Rail competition [?j]. It
means that since 1962, statistical estimation procedures
would have to recognize that to evaluate Air demand
function, with included Rail price Crosselasticities,
might mean considering an unconstrained operator (Rail)
and a constrained one (Air). There is, therefore, a
possibility of obtaining "perverse" cross-price elastici-
ties#, since Railways have been, theoretically, able to
react promptly within the year to any price change
introduced by Air.

In practice, as Gwilliam [5Q] pointed out, "it has taken
a number of years for the steps away from a per mile
fare structure to be taken". We will turn to this point
when considering the Air/Rail competition.

9.4 DEMAND FUNCTION

As explained earlier, the classical demand approach
ignores the characteristics or quality attributes of
commodities and instead, treats them as uni-dimensional.

{#) fhis will be explained invsection 8.6.3 of this
: chapter.
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The most important modification, introduced by Lancaster
in his Consumer Behavior Theory lé] , upon which are
based our models, is that the consumer is regarded as
deriving utility from characteristics or attributes.

A8 will be seen in the Methodology approach chapter, a
set of different Air and Rail demand equations are tested
in order to identify the best relationship between the
demand and the most relevant factors. The structural
demand equation by each mode has been of the following
type:

D = f(NFL, FARES, INCOME)

where:
NFL ¢+ is the level of service of the mode in-
variably represented by the frequency of
services variable.

FARES s+ is the price of the trip represented
either by the absolute fare of the mode or
by a relative fare( i.e, ratio of 2 fares).

INCOME 3 is a measure of an income variable charac-
terising the region pair.

Further discussion of these variables and the structur-
al relationship above will be provided later.

9.5 SUPPLY FUNCTION

Unlike classical economic models for goods markets, the
units used to measure the quantity of demand (passengers)
are different from those designed to measure the quanti-
ty of supply. 1Indeed, since the transport product is
only sold in batch, the unit of output for g scheduling
process 1s a set of vehicle departure, called a flight

(or simply departure fort%ail mode ).
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It is generally assumed that suppliers in transportation
services are seeking to maximize their profit, although
this is not necessarily true in the real world. British
Railways aim, for instance, "is to meet the financial
obligations imposed by PSO* (Public Service Obligation)
and cash limits, and broadly within that objJective to
maximize passenger miles. They direct their pricing
policy towards achieving this objective which is some-
what different from a purely commercial maximization of
revenue"” [}6] .

Offering the maximum level of service.is not necessarily
an optimum decision for a supplier. Thus, for a given
demand function, there is an optimal number of flights
(or departure for rail) that an operator can offer.
Therefore, the supply function for any mode may have the
following form:

NFL = £( D, VARIABLES)

Where: 4
NFL ¢ is the level of service variable
described earlier.
VARIABLES : are other variables to be explalned
later on.

9.6  APPLICATION TO THE STUDY

We have drawn so far a brief analysis of the transporta-
tion services economics. We have first examined the
attributes of the transportation product that distin-
guishes it from other common goods, and then analysed

* a PSO is defined as an activity which a transport
© undertaking would not assume to the same extent or
under the same conditions if it were considering

only its own commercial interests Eﬁﬂ )
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the demand and supply of transport and the difference
they show with the traditional economic theory.

Yet, for the application to our empirical models, we
have to define some restrictive assumptions, mainly
dictated by the unavailability of the data.

Air mode supply function

In order to select the best variables for the equation,

a step by step procedure has been conducted. This
procedure is largely explained in the methodology chapter.
Note at present, that it uses the stepwise regression
analysis as a means of selection of the best variables
among a set of canditates ones.

Earlier canditates variables to include with the demand
variables in the supply equation NFL = f(D,VARIABLES)
weres LF(Load factor) and capacity variables:

oL = Fonp 1 LFF 2 cn.«cnrﬁ 3

However, the inclusion of LF variable poses an identifi-
cation problem: indeed, for a given demand and aircraft
capacity the LF is closely related to the frequency of
service which means that there is a two-way dependency
(i.e, LF is also an endogenous variable). Therefore, a
third equation with LF as the dependent variable would
have been necessary to introduce. This equation,that
might have been called "operational equation®, would
have had, for instance, the following form:

wr =¥, 5‘1 m*f&Z cAPACTTYS?

In order to keep the problem manageable and to ovoid any
two-way dependency in the supply equation NPL = f(D,VAR),
it has been decided to include the past year load factor
LF (1) instead of the actual year load factor. In this
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way, this variable is truly exogenous and no fear of bias
exists. It even sounds theorftically better: it is
reasonable for an operator to supply flights for a given
period, according to the load factor experienced during
the last period.

On the other hand, Aircraft Capacity variable, as seen
from the data, shows no real variation. Therefore, it
is considered constant and the definitive air supply
equation is as follows:

NFL =Po' DFl Lng

where LF is the load factor of the past year (since there
is no confusion, we write LF instead of LF(-l))

Rail mode supply function

Here again, the step by step procedure for selecting the
variables has been applied. Unfortunately, since Rail
data do not contain any LF or Capacity variables, other
variables have been investigated. This necessarily leads
to handle differently Rail and Air modes supply equations.
This is not, however, of serious concern. All along this
study many differences are being outlined between these
modes, not only on their regulations such as their pric-
ing policy but also on their operational nature.

Finally, by this step by step procedure the supply equa-
tion retained in the selection process is of the follow-

ing type:
¥, % ¥
NFL ='60D1TIuE2Em:c 3

Where:
D s+ is the Rail demand
Time : is the Rail trip time
ELEC : the electrification variable explained in the
data section.
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Both TIME and ELEC variables are expressions of the
quality of service, since the more you improve the trip
time the more you improve the quality of service; and
equally the more you improve the electrification of the
routes the more you improve the quality of service.

Incidently, the idea of including such variables has been
derived from a study conducted at MIT by Mathaisel &
Tane ja in 1977[3{]. The authors have developed an Air
Quality of Service index through Principal Component
Analysis, by considering the combination of 5 quality

of service variables. However, their objective,contrar-
11y to ours, is not to construct a supply equation for
use in a simultaneous equation model, but rather to
design gne factor which can be used as a proxy for the
quality of service in a single equation model. Principal
Component Analysis takes the 5 variables and makes a
linear combination of them in such a manner that it
captures as much of the total variation as possible.

This combination, or principal component, serves as a
proxy for their level of service variable.

In conclusion, Air and Rail modes supply equations res
tained are as follows:

-2
NFL, -Fo pal 1 Lp
| ¥
NFL, =¥, m;61 TIME % ELEC 2
where:

NFL, and NFL, s are respectively the Air and Rail
' level of service variables.

DA and DR ¢+ respectively the Air and Rail
demands.

LF ¢+ Air load factor (past period)

TIME ¢+ Rail trip time.

ELEC s electrification variable.
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Both TIME and ELEC variables are expressions of the
quality of service, since the more you improve the trip
time the more you improve the quality of service, and
equally the more you improve the electrification of the
routes the more you improve the quality of service.

Therefore the air and rail modes supplg equations retained
are as follows :

NFL, = ﬁ,DAﬁ1 LIJ52
L £

NFL, = \ﬁoDRK] TIME > ELEC

where

NFL; and NFL, : are respectively the air and rail
level of service variables,

DA and DR : respectively the air and rail
demands.,

LF : air load factor (past period)

TIME : rail trip time,

ELEC : electrification variable.
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Rail fare equation

Up till now, we have defined the demand and supply
equations for both Air and Rail modes. Before introduc-
ing the fifth and last equation, let us return to the
problem of "perverse" elasticity briefly mentioned when
we have discussed the Railways fare policy.

We have stated that after the 1962 act, Railways have
been theoretically able to react promptly within the year
to any price changes introduced by Airlines.

Assume a decrease in Air fare which induces an increase
in Air demand and consequently a decrease in Rail demand.
Although Air and Rail are not necessarily supplying at
the same price, the effect would be to force Rail down
its supply curve and perhaps to lower its price in turn.
The observations in the regression would show an increase
in Air demand and a decrease in Rail fare, leading there-

fore to a negative Rail cross fare elasticity:

Air fare\N Air demand,/ﬂ Rail deman,d.\N Rail fare\M

Thus:

Rail fare = f ( DA,DR )
This means that while Air fare is still an exogenous
variable for the constrained operator (Air), Rail fare

appears as an endogenous variable for both Air and Rail

modes. This endogenous nature will be established later
on.

9.7  EQUILIBRIUNM

We have, so far, defined Air and Rail demand equations,
Alr and Rail supply equations and Rail fare equation.
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The equilibrium is, -therefore, defined by the following
simultaneous equations models:

1. DA = f(NFL,, FARES, INCOME)
2, DR = f(NFL,, FARES, INCOME)
3. NFL, = f(DA,LF)
b, NFL, = f(DR,TIME,, ELEC)
5. FARE, = f(DA,DR)

FAREl = Exogenous

In the literature review, we have analysed the Modal
Competition models and discussed the different structures
proposed by the modelers.

Besides particular disadvantages characterising each
type of models, they all suffer from a common problem

as earlier stated: they consider only one aspect of the
market, namely the demand for travel, generally ignoring
the supply side.

This omission has two negative consequences;:

- The first is a theoretical aspect. The omission of
the supply in the analysis of the market constitutes an
important restriction to the analysis. Since demand
and supply of goods and services are generally inter-
related in the real world, such a restriction may throw
some doubts on the consistency of the analysis.

- The second is a statistical problem. The ignorance

of the supply influence on the demand might yield biased
~coefficients due to the two-way dependency between the
demand and the variable expressing the supply.
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9.8 ORIGINALITY OF THE STUDY

Our model-departs from all other models discussed so far,
overcomes some of their drawbacks and has the following
advantagess

- It is not restricted to the demand aspect only, but is
also related to the supply side. This is achieved by
the introduction of the frequency of services variable,
not only in the demand equation as an important factor
explaining the demand, but also in the service equation
expréssing the level of supply in response to changes in
other variables.

- By including the frequency of services factor as an
expression of the level of service as well as of supply,
the policy maker is given the capability of acting upon
the demand through this controlable factor.

- It estimates the absolute value of traffic by each mode
instead of only the share by mode and does not assume the
constancy of total traffic, since it also allows the
growth of traffic's modes independently to each other.

- Instead of being independently (or recursively) estimat-
ed, the equations of this model are simultaneously
calibrated. This simultaneity permits the feedback
demand-supply, by allowing the variables to interact with
each other across the equations. It also overcome the so
called "Simultaneous Equations Bias", since the calibra-
tion is achieved by means of multi-equation techniques

(2 stage least squares and 3 stage least squares) instead
of the ordinary least squares.

- Finally, the coefficients obtained by such sophisticated
techniques are less biased, more consistent and more ef-
ficient and therefore, more reliable than those obtainable
by OLS regression.
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CHAPTER 10

MODAL COMPETITION MODELS STRUCTURE

10.1 METHODOLOGY

A critical step in developing models is the choice of
the most suitable set of independent variables to in-
clude in the model. To keep the problem manageable,
only a few variables should be included. First, because
a large number of variables are expensive to maintain,
update and store. Second, because a small number is
easier to understand, to analyse and to forecast while
a large number increases the probability of multicol-
linearity between them.

Thus, the problem is not one of finding a set of explan-
atory variables that provides the utmost control for
policy analysis, nor one of finding the set which best
predicts the behavior of the dependent variable, but
~rather one of reducing the number of these variables to
a minimum. |

For this purpose, a step by step procedure has been
applied. It consists in adopting at an early stage,
Stepwise Regression Analysis as a means of investigation.
First, because of its low computer cost. Second, be-
cause it has the advantage of entering the variables

one by one into the regression. At each step,the added
variable is the one which makes the greatest reduction
in the error sum of squares. Also, at each step , it
shows the improvement induced by the new variable on

the overall fit of the equation. It allows the detection
of any multicollinearity between the added variable and
the already included ones, by comparing their standard
errors; and therefore, permits the choice between the
candidates variables.



- 127 -

Alternative model specifications have been evaluated in
terms of magnitude of the estimated coefficients and
their signs. Finally, after discarding options by this
investigation procedure, the simultaneous estimations
have been applied to the remaining specifications. The
following section provides a good illustration of the
first stage of this step by step approach.

10.1.1 Variables selection
- Income variable

The candidate income variables collected in the data
investigation process, GDP (Gross Domestic Product),
GDPHEAD ( GDP per head), BFTAX ( Personal Income Before
Tax), AFTAX ( Personal Income After Tax), cannot be , of
course, included all together in the equation and a
choice should be made in this preselection stage.

It could be argued, since business demand is more sensi-
tive to the economic activity, that GDP might be a
better explanatory variable wham modeling the business
travel demand. Similarly, Personal Income: (before or
after Tax) might/aemore relevant variable in a personal
travel model, for the propensity to travel, for personal
reasons, is generally related to the household incomes.

Since data collected are not disaggregated by trip pur-
pose, there is no a priori reason why selecting one
rarticular variable instead of another. Therefore, the
selection choice has been based upon the statistical
significance of each variable in the regression and its
improvement on the overall fit of the equation.

For the purpose of this selection, the following Air
demand equation has been regressed on the 17 Regions-
Pairs, one by one over the period (1968-1978).
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For each run, one particular income variable has been
used:

o e o ['¢
5 =X o NFL 1 FARE°<2 FARE O (time)rncoms # Income O(time) & (9,

where:
Dij : demand between i and }J
NFL :+ frequency of services variable

FARE s+ Alir fare

INCOME : income variable representing, at each run,
one of the 4 income variables: GDP, GDPHEAD,
BFTAX, AFTAX

Ozs(time) ¢ Log time
3 where time is the clock time

0(5(time) :o<5 Log time starting at the year zero:

The reason for the explicit inclusion of the clock time
into the equation will be discussed later on.

The analysis of the results of the 68 runs (17 x 4) is
summarized in Table 10.1 . Por each regression and

each type of income correspond three values: the Multiple
Regression Coefficient R, the F test and the index of

the variables selected in the regressiont.

From Table 10.1 , it appears that GDP is a better ex-
Planatory variable than the other income variables.
This, with regard to the R coefficient and P test that
are almost higher with GDP than any other variable,
except in London-Liverpool where GDPHEAD Model has a

(*) We retain the variables contained in the step after
"which one or more variables are not significant.
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COMPARISON BETWEEN INCOME VARIABLES

ROUTES BFTAX GDPHEAD GDP AFTAX
R F N R F NV R F NV R F NV
LDN-GLS |.7% 13 1| .7 1 1} .77 16 1| .83 11 2
LDN-EDB |.96 125 1 | .99 20 2| .99 234 2 | .96 123 1
LDN-MCH |.70 11 1| .70 11 1| .70 11 1} .70 11 1
LDN-BEF |.80 20 1| .80 20 1| .88 11 2 | .8 14 2
IDN-BRM |.90 40 1| .90 40 1| .93 27 1| .90 40 1
LDN-ABR |.99 367 1 | .99 352 1| .99 339 1 | .98 201 1
LDN-IDS |.80 19 1| .93 18 3| .90 21 2| .86 32 1
LDN-LVP (.65 8 1| .85 8 2| .81 6 2| .65 8 1
LDN-NWC |.95 50 2| .92 60 1| .93 67 1| .96 57 2
BLF-BRM |.51 3 1/1.5 3 1 (.51 3 1[.64 3 2
BLF-GLS |.93 59 1 | .93 29 4 | .93 59 1| .93 5 1
BLF-LDS .34 o .72 2 o) .72 4 3}.23 1 0
| BLF-LVP |.60 5 4 | .70 2 | .87 4| .59 5 1
BIF-MCH |.92 14 3 | .88 31 1 .93 4 | .93 31 2
BRM-EDB [.91 12 3| .97 19 5| .97 18 5 | .97 17 5
BRM-GLS |.87 7 31.93 6 5| .9% 7 51| .96 7 3
GLS-MCH [.80 15 2 | .86 27 1| .8 27 1| .90 18 2
|ronv | 2 7 3 6 L 5 9 8 71 7 5 5

Table 10.1

BFTAX : income before tax AFTAX : income after tax
GDP : gross domestic product‘ GDPHEAD : GDP per head

NV : number of significant variables retained

T.0.H.V : times occurences of highest values
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greater R but where NFL variable has a very low t test,
and in London-Newcastle where BFTAX and AFTAX Models
have a greater R but a wrong sign in their NFL variable.

Table 10.1 also shows that in GDP Model the number of
significant variables, retained in the regression, is
higher than elswhere, particularly in the Belfast-
Liverpool, Belfast-Manchester, Birmingham-Edinburgh; and
Birmingham-Glasgow Models where almost all the variables
are included and are very significant.

The main conclusion is that while statistical tests (R
and F) are very high in almost all the routes and the
variables bear nearly always the right signs, the speci-
fied variables are not all together included in the
equation.

For the 9 first routes(i.e, Londonian routes) the only
explanatory variables selected are either NFL (number

of flights),or Income variable, or both; but there is

no Fare variable in these models. On the contrary, for
the remaining 8 routes, except Glasgow-Manchester, Fare
variable is systematically included either alone or with
NFL and Income variables.

Finally and curiously enough, the only selected variable
in London-Aberdeen route is the INCO!IE(Log time) variable
with a high level of significanceand the highest R(=.99).
This means that income elasticity is a logarithmical
function of time. The selection of this unique variable
may explain the drastic. : growth of Air traffic, mainly

due to the important economical expansion activity in
Aberdeen (North Sea oil) during this decade.

The reason for the explicit inclusion of the clock time
into the equation (1) is whether or not Fare and Income
elasticities vary with the time, To make it clearer,
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take the logarithm of the demand so as to linearize the
model;:

Log D =°(0 +°<1Log NFL +(><2Log FARE +°<3Log time Log FARE
+o¢ yLog INCOME 4P<5Log time Log INCOME

where the fare and income elasticities are respectively
the following:

°<2 + 3Log time and °<;+ +°(5L°8 time

It could be argued that this functionalform of the elas-
ticity is quite arbitrary, and there is no way, indeed,
of refuting this argument on a theoretical ground. How-
ever, since it is commonly admitted, in the literature,
that the variation of this elasticity is very slow the
logarithm form has been retained.

Note also, that the separate inclusion in the equation
of the two parts of the elasticities - constant parts

°(2 and°(u. and variable partse(zLog time and°<5Log time -
allows the determination of the significance of each part
onto the regression, such that each part might well be
significant while the other might not(Both, of course,
might or might not be simultaneously significant).

It is at this investigation stage that the stepwise re-
gression technique is of interest, since it introduces
the variables one by one and permits the analysis at
each step.

- Competition factors

The competition between modes could take different forms;
- fares, frequency of services, trip time, comfort,etec.

- For the purpose of this study, the variables thought to
be of importance in Air-Rail modes competition are,
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apart from the own fares and frequencies of the modes,
the following relative values:

FARE, ~ NFL, TIME,

14
FARE,  NFL,  TIME,

where index 1 indicates Air mode, and index 2 Rail mode.

Once again, stepwise regression technique has been used
to identify the best variables to be selected; and the
results correspond to the following model, run for all
London routes combined (except London-Belfast and
London-Aberdeen, for which there exist no Rail data).

DA =o<o-mvfi1 FARE 2 FARETB(time) Fm";“

o g
(FAREL)S(TIME% /NP1, 4 (INCOIE 8 (2)

FARE, / \TIME,/ \NFL,
o
(mcom:) 9(time) L&,

The results are as foliowss

NFL, s is always very highly significant

FAREl s+ is always significant and always more
FARE2 significant than FAREl and FAREZ

FAREl
and ¢+ are either rejected from the equation
PaRe, 3 (¥3M€)  or not significant at all if included

FARE, : when included is significant

The conclusions to be drawn from these results are:

1 - The high significance of NFL variable is very import-
ant. MNost of Air models have neglected this supply

factor as an important factor explaining and deter-
mining travel demand.
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2 = The ratio FAREl is a better explanatory variable
FARE ,
than FARE, and FARE,. This explains the importance
of Air - Rail competition. It may also suggest that
this relative fare is better perceived (from a
traveler point of view) than the absolute fare dif-
ference.

3 - PARE, (i.e, Rail cross fare) appears to be a better
explanatory variable than FAREl. s8ince FAREl has been
re jected while FARE, has been included. This cor-
robores the idea that Air mode may not be an jn-
dependent mode, but also a mode that is explained
by the cost of other substitutes (e.g, Rail).

However, one should, at this stage, investigate whether
or not Rail fare is fixed independently to Air fare, for
if it is not, it can no longer be considered as an
exogenous variable in the Air demand equation.

For the purpose of this investigation, FARE, has been
regressed upon Air and Rail demands in the following
model:

Log FARE, =™, +X Log DA +X;Log DR + &
The results afe as follows:
Log FARE, = -1.046 + .258 Log DA ~-.231 Log DR

(.0145) (.0128)

2

R® = .83 SE = .06 F = 225.4

The coefficients DA and DR are highly significant with
t values respectively equal tos 17.75 and 18.10; R and
F test are high.

Therefore, one should admit that FARE, is a function of
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Air demand,and consequently, is an endogenous variable
with regard not only to Rail demand but also to Air
demand.

This constitutes a very important result, and its conse-
quence is that the introduction of FARE, in Air demand
equation might induce the so called "Simultaneous
Equations Bias" due to the two-way dependency between
Air demand and FARE,.

Thus, a multi-equation structure is necessary; and the
application of 0LS ( ordinary least squares) as a means
of calibration is no longer valid.

- Fare and income elasticities analysis

It appears, from the results of equation (2), that income
variabless AFTAX, GDP, GDPHEAD, show an acceptable signi-
ficance but an independency to the clock time; while
BFTAX variable shows a high significance and a dependency
upon time. Its elasticity is as follows:

ELASTICITY = .527 =~.05 Log (time)

The coefficient of time is so small that it will take a
long time before this elasticity decreases significantly.
For instance, it will take more than 128 years in order
that this elasticity decreases by 20%.

On the other hand, PARE elasticity shows no dependency
with time. Therefore, we will not take account of any
dependency on time of income or fare variables.

In conclusion, the preselected variables in demand func-
tion at this stage of investigation are:

NFL].’ NFLZ, FAREI. FAREZO EA__RE—;- » GDP
FARE,
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Since the potential explanatory variables have been
selected and the necessity of a multi-equation struc-
ture has been recognized, we move to the next step: the
multi-equation models. However, before doing so, we
will first discuss the statistical problems brought up
by such a structure.

10.2  SIMULTANEQUS EQUATIONS BIAS

It has been recorded, in chapter 4, that one major assump-
tion of the validity of OLS is that COV(X;,£)= 0 ¥i,
which means that the explanatory variables X; must be
uncorrelated with the error term. A necessary condition,
for COV(X;,£)=0 Vi, is that the variables X; should be
truly exogenous. When this condition is not satisfied,

it arises what is called "Simultaneous Equation Bias";
that is to say, that the equation belongs to a wider
syatem of equations. Such system describes the relation-
ship among all the relevant variables.

In our model the variables NFL, , NFL,, FARE,, included
in the demand equation, are endogenous. Therefore, one
should estimate the coefficients by a means of multi-
equation calibration techniques. For the purpose of
this study, we have selected two of these techniques,
namely 2SLS and 3SLS, that are briefly presented in the
following section.

10.3 STATISTICAL CALIBRATION TECHNIQUES

The presentation of 2SLS and 3SLS below is taken from
Koutsoyiannis [9] .

Iwo stages least squares

This method has been developed by Theil and independent-

ly by Basemann and aims, like other simultaneous tech-
niques, at the elimination, as far as possible, of the
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Simultaneous Equations Bias. It boils down to the ap-
plication of 0LS in two stages.

- In the first stage, OLS is applied to the reduced form
equations to obtain an estimate of the exact and the
random components of the endogenous variables.

- In the second stage, OLS is applied to the structural
equations in which the endogenous variables in the right
hand of the equations are replaced by their computed
values found in the first stage.

Assumptions of 2SLS

They may be outlined as follows:

1l - The error term u of the original structural equations
must satisfy the usual stochastic assumptions of gzero
mean, constant variance and zero covariance.

2 - The error term v of the reduced form equations must
satisfy the same above assumptions and must be in-
dependent of the exogenous variables of the whole
structural model.

3 - The explanatory variables are not perfectly multi-
collinear.

b - The specification of the model is assumed to be
correct so far as the exogenous variables are con-
cerned (it is not necessary to know the mathematical
formulation of the whole system in all its details,
but the exogenous variables of the system must be
all known correctly).

5 - The sample is assumed to be large.

Provided that the above assumptions are satisfied, the
2S1S are unbiased, consistent and efficient when the
- samples get large.
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Three stage least squares

Developed by Zellner and Theil, 3S1S is a system method,
that is, it is applied to all the equations of the model
at the game time and gives estimates of all the para-
meters simultaneously (contrarily to the 2SLS).

It utilizes more information than the single equation
techniques (such as 2SLS), that is, it takes into ac-
count the entire structure of the model with all the res-
trictions that this structure imposes on the values of
the parameters.

In simultaneous equations models, it is almost certain
that the random variable of any equation will be cor-
related with the random variable of other equations.

This fact is jgnored by single equation methods (such as
2S1s).

Of course, the computatiohs of 3SLS are much more comp-
licated and the data requirements are enormous. While
in 2S1S we may use a small sample, since for each equa-
tion we use the same sample anew; in the 3SLS all the
parameters are estimated at the same time, so that the
sample must contain more observations than the total
number of parameters of the entire system.

3SLS is a logical extension of Theil's 2SLS and involves
the application of least squares in three stages:

- The first two stages are the same as 25IS, except that
we deal with the reduced form of all the equations of

the systemn.

- The third stage involves the application of least
squares to a set of tranaformed equations, in whch the
transformation required is obtained from the reduced-form
residuals of the previous stage.

Assumptions of 3SLS
1 - The complete specification of the entire system is
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correctly known (not only should we know the vari=-
ables which appear in each equation, but also its
mathematical form).

2 - The random of each equation is serialy independent
(no autocorrelation).

3 - The random variables of the various relations of the
system are contemporaneously dependent (if they are
independent, the3SLS reduces to the 2SLS). However,
as stated by Koutsoyiannis, taking account of the
nature of economic phenomena and the simplifications

which we adopt in specifying the econometric models,
we may expect the u's to be contemporaneously cor-
related. That is, E(uy uj»# 0), where i refers to
the ith equation and J to the jth equation.

As will be seen in our study, for various reasons,
we include explicitly in the relationship only the
most important explanatory variables leaving the
influence of the other, less important, variables
to be absorbed by the random variables of the rela-
tion. Therefore, it is inevitable that the u's of
these relations are correlated and hence, the ap-
plication of 3SLS is appropriate. The application
of the 2SLS under these circumstances would ignore
one part of the information included in the entire
system,and the estimates of the parameters would be
less efficient.

L - The system is overidentified.

Inferences about structural-equation slopes

Considerg the following structural equation having two
or more jointly dependent variables:

DM AT »

where the Y's are jointly dépendent. the Z's predeter-
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mined, u is disturbance and thef-"s and"s are un-
known parameters. The parameters 62. equal to VAR(u)
is also unknown. '

According to Christ [58] the following statistics (an-
alogous to the "t" ratios in single equation) have
approximately (not exactly) the normal distributions

~ A~
(2) Fi'-i ;. Yy - B i=2,H
XY ’é &K) K=1,J
A ~
whereﬁ iand%K are the estimators of equatiop (1) A
calibrated with a multi-equation technique. Fi amixK
are only approximately normal (not exactly). The’&'s
are estimators of the roximate (not the exact) stan-
dard deviations of p's and z's and the%i presumably
have the 7‘2 distribution, only approximately at best.

According to Christ, the appropriate degree of freedom
for the approximate distribution (2) is not clear. Most
pratigtioners use the sample size diminished by the
number of unknown parameters in the equation (i.e,

T «-H+1l-J) in analogy to the correct number for
least squares estimation of a reduced form equation.

goodness of fit of structural equations

Considerfd the calculated residuals and values of Y, in
equation (1) as followss

A ~ ”~ -~
Up = Yyg - Yy = Yy -Z ) ﬁi Y44 - 1‘61{ Zgy (3)

According to Christ, a statistic can be defined that
estimates the variance of the structural disturbance by

taking the pean squares of the residuals 'ﬁt form (3):

T A2
G2 =est.§%=__1 E oy
P-H+l-J —1
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One might think of a statistical analogous to the R2
T

and defined as: A2
2, %
' 1

l—__ﬁ

T < 42
Zl (Y14 = Y1)

However, whereas R2 must lie between 0 and 1 inclusive,

Basmann has pointed out that the statistic discussed
here can be negativef because ui can exceed (Ylt;Yl)z
and that can happen even when a correct model is being

used.

According to Christ, a statistic called Trace correlation,
has been proposed by Hooper,which measures the propor-
tion of the total variance of the jointly dependent
variables as a group that is explained by the predeter-
mined variables as a group in a structural model.

# This can be seen later, on some of our empirical
‘models. |
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CHAPTER 11

MULTI-EQUATION MODELS BUILDING

As stated earlier on, it was originally intended to
conduct this study in a pure Time Series data. Such an
analysis, by region pairs market, would indeed take ac-
count of the peculiarities of different routes. We
already have outlined in Part II the disadvantages of
the aggregation process, and shown that an aggregate
equation was clearly inappropriate for describing the
variation of demand in routes with different charace
teristics.

However, due to the small sample data and the multi-
equation structure nature of our models,which lowers
even more the degree of freedom*, it became necessary
to combine Cross-sectional and Time Series data,in
order to derive meaningful elasticities.

Indeed, when the degree of freedom is too low, the coef-
ficients are not reliable, particularly with 2SLS and
3SLS, which require a large number of observations.
According to Pindyck [ij] , the knowledge about the
properties of multi-equation estimators relates to

large samples; but little is known about the small
samples properties of these estimators.

In order to achieve a reasonable compromise between the
usefulness of a disaggregation by region pairs, which

would take account of the peculiarities of the indivi-
dual routes and the imperative necessity of ensuring a

# The degree of freedom,in a multi-equation calibration
technique, is not only dependent on the number of pre-

determined variables but also on the number of
equations.
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reasonable degree of freedom, pooling up data, by length
of haul, has been retained. Various other types of ag-
gregations have been shown in the US market (Part II);
but the lack of data and the low number of routes have
not allowed other aggregations.

In fact, besides its traditional use in Air travel
demand analysis, the length of haul aggregation does
sound reasonable in Air/Surface Modes Competition.

It is commonly admitted by the analysts that such
competition is stronger in short distances than in very
long ones where the aircraft may become almost the only
feasible means of transport.

Defining short, medium and long distances does always
bear some arbitrariness. But, since the purpose of this
delimitation is the analysis of the Air-Rail competition,
such delimitation should be the one which best reflects
the modal split.

[so]

According to a study/konducted by Southampton's Univer-
sity, the major modes of transport are Road up to

175 km, Rail between 175 km and 375 km, and Air above
375 km. Incidently, our restriction of Air/Surface
Modes Competition to the Bimodes Air/Rail one,seems to
derive an interesting empirical support from the
Southampton's findings, since the routes considered in
this analysis are all longer than 175 km. Accordingly,
. the main modes to consider for these routes are Air or
Rail.

Finally, taking the range of 375 km as a reasonable
limitation between shorter and longer routes, the 7
routes are aggregated as followss

" London-Glasgow 548 xm
LONG ROUTES London-Edinburgh 540 xm
(- 375 km ) London-Newcastle U440 km
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London-Birmingham 180 km
SHORT ROUTES London-Manchester 260 km
( 3?5 km ) London-Liverpool 280 km
London-Leeds 290 km

11.1 POQOLED MODELS

The starting point in the multi-equation modeling
process has been the following model:

DA =ol +o(l NFL, + o, PARE; +°(3 FARE, +X, GDP + El

DR =(30 + By NFL, +(?>2 FARE, +($3 PARE, *(34 eop +&,

NPL, =8, + ¥, Do +b, LP +& 5
NFL, = Po +Py DR+, TIME + (3 ELEC +&,
FARE, = (g + (% DA+ (), DR +25,

Where the variables in Logarithm are as previously
defined. This model corresponds to the total pooled
model, aggregated across the 7 routes over the period
1968 - 1978 (i.e, 11 years - 77 observations).

The initial results (not displayed ) showed perverse
cross-elasticities, most likely due to the collinearity
‘between fares variables illustrated in the correlation
matrix below by their mutual correlation factor. In-
deed, the value (.894) of this factor is higher than
the partial correlation values of both fares with both
demands which may indicate the existence of a strong
collinearity. When multi-collinearity is serious, it
is difficult if not impossible to disentangle the
separate influences of each variable. It is then im-
possible to estimate the separate effects of each vari-
able.
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Therefore, it appears reasonable to ovoid the inclusion
of the two variables in the same equation; and the
following modifications were introduced in the demand
equations (ignoring the intercept and the random term
in each equation, for simplicity).

DA 1 NFL1 + 2 FARE, + 3 GDP
MODEL 1
R = 4 NFL, + , FARE, + 3 GDP

= | NFL; + , FARE; + 5 GDP
MODEL 2

FARE,
FARE,

NFL2 + 2 + 3 GDP

FARE,
FARE,

+ 3 GDP

MODEL 3

DR = , NFL, + , FARE, + , GDP
PARE,
FARE,

DA = 1 NFLl + 5

+ 3 GDP

MODEL 4

(-
=

FARE,
FARE,

DR = , NFL, + , + 5 GDP

FARE,
FARE,

MODEL 5 E
TI
1

TIME,

DR = NFLZ + 5 + 3 GDP

DA = , NFL, + e B 3 GDP
TIME,

TINE,
TIME,

MODEL 6

DR = 1 NFL, + + 3 GDP
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All the other equations remained unchanged, except in

Models 4 and 5 where FARE, equation is formulated as
follows:

FARE, -
FARE, (‘l oA +(~)2 o

(ignoring the intercept and the random term)

Finally, in Model 6,FARE2 equation is not included at
all, since this variable has been removed from demand
equations. The results are displayed on the tables
numbered from 11.1 to 11.6.

~gorrelation Matrix

DA DR NFL, NFL, FARE, FARE, GDP
1.000 425 .961 .230 475 -.275 L1k
1.000 <347 845 ~.498 646 .903
1.000  .121 491 .340 .356
1.000 =-.504 -.619 .316
1.000 =804  -.lk9
1.000 -.525
1.000

11.2 PQOLED MODELS: RESULTS AND DISCUSSIONS

The six pooled models have been estimated by a means of

two-stage least squares (2S1LS), and three-stage least
squares (3SLS).

At this preselection stage of the most acceptable form,
we first analyse the results in rather general terms;
the main purpose being the identification of the

common characteristics of these models, their overall
fit, and the elimination of the less satisfactory
models. Then, the remaining ones are analysed in
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Se= stand.

2SLS 381S
Coef Se t Coef Se t
EQ. DA
NFL, .692 .035 19.770 .688 .023 29.913
FARE, -.262 184 -1.420 -.095 .051 -1.863
GDP .011 .063 1.746 -.026 .020 =1.300
Cst -.109 .167
R%=.92  SE=.132 R®=.91 _ SE=.139
EQ. DR
NFL, -.176 .171 -,029 -.498 .153 -3.255
FARE, -.951 .284 .38 | -1.479 .259 -5.714
GDP 1.366 .218  6.266 1.647 .,199  8.291
Cst -2.315 -2.701
2 ) 2
R=.76 SE=.26 R“=.58 SE=.270
£Q. NFL, SE=.265 5 vi
DA 1.414  ,054 26.180 1.473  .o4k  33.477
LF -1.660 .903  1.840 -.323 .280 =-1.153
Cst 2.822 .306
2 2
R%=.93 SE=.1 =.92 =,201
BQ. NPL, SE=.193 R%=.9 SE
| DR 762  .,081  9.407 .707 .080 8.837
TIME, -1.011 .222 -4.554 | -1.041 ,220 4,732
ELEC 3.078 .612  5.029 3.643 .s564  6.459
Cst 4.328 k.909
' 2-.82  SE=.276 R%=.82  SE=.285
EQ. FARE, -
DA 264,016 16.500 .259 016 16.187
DR -.254  ,013 -19.540 -.259 .013 19.923
Cst -.999 ‘ -.972
R°=.81  SE=.063 R?=.81  SE=.068
Table 11.1
POOLED MODEL 1
error of Coef. SE= stand. error of Equa.
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POOLED MODEL 2

2SLS 3SLS
Coef Se t Coef Se £
EQ. DA

NFL, .725 035 20.714 734 .024  30.583
FARE, -.394 .185 -2.130 | -.200 .060 =3.333

GDP -.035 .06k -.547 | -.Obk .021 -2.095

cst ~.164 .003

R%=.02  SE=.137 R®=.01  SE=.142

EQ. DR
NFL, 348 .088  3.954 .383 .080 4.787
FARE, -.854 .317 -2.694 | -.881 .291 =3.027

FRRE,
GDP .802 .132  6.076 741 119 6.227

cst -1.003 -.916

R%=.86  SE=.206 R%=.93  SE=.208

EQ. NFL,

DA 1.366 .051 26.784 | 1.392 .o49 28.408

LF -2.106 .885 -2.380 | -.604 .879 -.687

Cst 3.722 .982

R%=.93 _ SE=.1 R®=.93 _ SE=.196
| EQ. NFL,

DR .787 .076 10.355 .815 ,068 11.985
TIME, 2,961 .216 -b.4ho | -.896 .195 -b.595
ELEC 3.09% .612 5.055 | 1.871 .590 3.171

Cst b.250 3.237

R%=.82  SE=.276 R%=.81  SE=.283
EQ. FARE, —

DA .282 .015 18.800 .285 .010 28.500

DR -.246 .013 -18.923 | -.248 .009 27.555

cst -1.060 3.237

R%=.81  SE=.063 R®=.81  SE=.063
Table 11.2
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2SLS 3SLS
Coef Se t Coef Se t
EQ. DA
NFL, .583 .018 32.889 .613 .016 138.312
FARE, -.555 .172 -3.227 | -.195 .090 =-2.167
FARE, :
GDP -.107 .047 =2.276 -.021 .024 -.875
cst 1.022 .531
R%=.96 _ SE=.086 | R%=.9% _ SE=.095
EQ. DB
NFL, .~ .107 .028 3.821 .030 .023 1.304
FAREZ -.847 .070 -12.100 | -1.037 .060 -17.283
GDP .287 .037 7.757 .292 .036 8.111
Cst .604 662
R%=.93  SE=.062 R®=.90  SE=.071
EQ. NFL, _
DA 1.365 .061 22.377 1.491 .054 27.611
1F -.600 .800 -.750 -.175 420 -.417
Cst .562 -.257
2 2
R%=.94 SE=.164 RE=.94 SE=.164
DR -1.069 .503 -~2.125 -.843 470 -1.794
TIME, -3.103 .575 =5.397 | -2.901 .543 5,342
ELEC . 2.005 .57%  3.509 1.908 .53% 3.558
Cst 10.080 9.230
R%=.77 SE=.210 R%=.77 SE=.210
EQ. FARE,
DA JA74 029  6.000 159 ,028 5.678
DR -.441 049 -9.000 -.461 .048 -9.604
Cst -.221 -.128
R%=,90 _SE=.054 335439 SE=.055
Table 11.3

POOLED MODEL 3
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2518 3SLS
Cgef Se t Coef Se t
EQ. DA
NFL; 619 .032  19.344 642,025 25.680
FARE, -.807 .600 -1.345 | -.657 .422 -1.557
FARE,
GDP .101 .035 2.886 031 .017 1.823
Cst .238 .365
R%=.96 _ SE=.113 R%=.97  SE=.119
EQ. DR
NFL, -.400 .378 -1.058 | -.868 .247 -3.514
FARE, 4.563 2.430 1.878 | 9.053 1.480 6.117
FARE,
GDP 1.868 .549 3.402 2.432 .388 6.268
cst -3.379 -4.816
2 2
R®=.15 _ SE=,505 R<* SE=. 852
EQ. NFL,
DA 1.b22 .055 25.854 | 1.486 .048 30.958
LF -1.581 .906 =1.745 -. 064 .618 -.103
Cst 2.661 .186
2 2
R°=.93 SE=.193 =,92 SE=.1
DR S .752 .082 9.171 715 .081 8.827
TIME, -1.033 .224 -4.612 | -1.024 .220 -L.654
ELEC 3.070 .612 5.016 | 3.000 .567 5.291
Cst .36k 41410
2 2
R*=.82 SE=.276 R°=.82 SE=.2
Q. FARE, E=.27 E=.277
FARE, |
DA -.065 ,014 -4.,6L43 -.059 .013 -4.538
DR .025 .012 2.083 .028 ,011 2.545
Cst L343 .323
BE?.ZS §§§.05§ R§=.22 SE=,060 |
Table 11.4

POOLED MODEL 4

* negative coef.
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2SLS 3SLS
Coef Se t Coef Se t
EQ. DA
NFL, .603  .024 25,125 627 ,020 31.350
FARE, 117 482 .243 232 .27 847
FARE,
GDP 187  .073 -2.562 -.061 .035 =-1.743
Cst .060 .195
R?=.94%  SE=.090 R%=.93  SE=.095
EQ. DR
NFL, -.187 .064 -2.922 -.148 .04k -3.364
T IME
1 1.570 .176 8.920 1.438 .,125 11.504
THE,
GDP .197 .052 3.788 241 046  5.239
Cst 3.128 3.560
2 2
R<=.8 SE=,080 =,86 SE=, 085
EQ. NFL, 7 SE B=.8 =2

DA 1.581 .483 3.273 1.602 ,053 30.245

LF -.480 .798 -.601 .058 485 119

Cst .316 .285

B2=.94 _ SE=.160 R%=.93  SE=.164
EQ. NFL, —

DR -1.400 .542 -2.583 | -1.248 477 -2.616
TIME, -3.472 .619 -5.609 | -3.282 .553 =5.935
ELEC 1.850 .608 3.043 2.863 .459 6.237

cst 11.140 11.760

2 2
R<=.74 SE=,220 RC=.73  SE=.226
EQ. FARE,
FARE,

DA .034  ,031 1.097 .016 .030 .533

DR .230 .053 4.340 194 o048  L.ou2

Cst -.509 -.540

R%=,26 SE=,060 R%=.26 SE=, 065
Table 11.5

POOLED MODEL 5
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2SLS 3SLS
Coef Se t Coef Se 1
EQ. DA
NFL, .511 .073  7.001 .552 041 13.463
TIME, -.728 .365 1.99% | -.548 .206 2.660
TINE,
GDP .373 .148 2,520 240 .080 3.000
Cst -.665 -.319
R%=.94 _ SE=.121 R®=.93 _ SE=.123
EQ. DR
NFL, -1.026 446 -2.300 | -1.,560 ,302 -5.165%
TIME, 2.143 .789 2.716 | 3.192 .570 5.600
'I‘IME2 ,
GDP 2.128 463 L4.596 2,435 348 6.997
cst .531 | b72
R%=.,27 _ SE=.469 RZ» SE=.6
EQ. NFL,
DA 1.424 ,055 25,891 1.473 .049 30.061
LF -1.561 .906 -1.723 -.753 .547 -1.376
cst 2.620 1.040
2 2
R%=.93 SE=.1 R°=.93 SE=.194
EQ. NFL, 2
DR . .682 ,081 8.419 .638 .079 8.076
TIME, -1.175 .222  5.293 | -1.195 .217 =5.507
ELEC 3.024  .615 4.917 2.514 483 5.205%
Cst 4,600 k.355
R®=.82  SE=.277 R%=.81 _ SE=.279
Table 11.6

POOLED MODEL 6

* negative coeefficient
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greater details, and finally, applied to the length of
haul market aggregation.

The most striking result is that Air frequency of
services elasticity is highly significant, bears the
correct sign, and has a rather stable and reasonable
value in all the following models:

MODEL'S
INDEX 1 2 3 L 5 6
2SLS .692 .725 | .583 .619 | .603 .511
3SLs .688 | .734 | .613 | .642 | .627 | .552

This result is very important, since it is in accord-
ance with the economic theory reviewed earlier. In
particular, the fact that these values are <1 is
interesting and shows that the demand vs frequency
curve is of the following expected form:

D
A

—> NFL

This means that an increase in NFL induces an increase
less than proportional in traffic. In other wor ds,
there is a diminishing return of demand.
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It is also interesting to note that fare variable, .
either absolute or relative, has the right sign in all
Air demand equations; and is generally significant,
except in Model 5 where it has neither significance nor

correct sign. This result too, is consistent with
the economic theory, since demand appears to be a de-
creasing function of fares.

In Model 6 the variable LiMEy which replaces fare vari-

TIME
able, has also the expected gign and is significant.
Its negative sign means that demand increases when the
relative time decreases. However, income elasticity
appears very low, or rather not significant at all, in
Air demand equations.

In Rail demand equations, NFL, bears a wrong sign in
most modes, which contradicts the economic theory,
whereas fare variable, absolute or relative, as well as
income variable seem to behave correctly.

Finally, the supply equations appear to be reasqnable;
and this confirms the endogenous nature of NFL, and
NFL2 as well as FARE,.

Now that we have commented these results in general
terms, we should remove the models that show either bad
overall fit or are in contradition with the economic
.theory.

The first two models to be removed are Model 4 and
Model 6, because of their bad fit in Rail demand equa-
tions. Their R2 coefficients are, respectively, .15
and .27 when using 2SLS; and are surprisingly negative#
when using 3SLS. They also show systematic negative

# The possibility of negative‘multiple regression coef-
ficient’ in multi-equation systems, has been discussed

in Chap. 10.
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NFL, coefficient in Rail demand equations which is in
contradiction with the economic theory.

The third model to be removed is the Modle 5, because
it combines two defect§ : : it shows, like Model 4, a
low fit in the fifth equation where R% = .26 for botnh
2SLS and 3SLS estimations; and a wrong sign for NFL2
in Rail demand equations.

The remaining models are s (1), (2), and (3) . Although
some of their coefficients still bear incorrect sign,
they all provide good overall fits with 2SLS and 3SLS
estimations.

Therefore, the analysis will focus on these models
which will be applied to the length of haul markets
segmentation. However, before doing so, let us return
to the results of these models,on the tables above, and
compare Air and Rail medes throughout these results.

The results show that Air and Rail modes are following
different, if not opposite, patterns. As stated earli-
er, income elasticity appears very low, or rather not:
significant at all, in Air demand equations, while it
is high and highly significant in all Rail demand equa-
tions. This elas ticity varies as follows;

MODEL 1 | MODEL 2 | MODEL 3

2S1S | 1.366 .802 .287

3sLs | 1.647 741 .292
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On the contrary, while the frequency of services vari-
able elasticity , in Rail equations, shows a low signifi-
‘cance, and even a wrong sign in Model 1; it shows a high
significance and rather stable values in Air demands,

as indicated below:

MODEL 1 | MODEL 2 | MODEL 3

25LS .692 . 725 .583

3s1LsS .688 734 .613

Combining these results with the fact that fare elas-
ticity, absolute or relative, is systematically lower
than the Air frequency elasticity, and higher than the
Rail frequency elasticity, we may conclude that Air
travel is a business and/or a high incomes users
oriented market, while Rail travel is a personal and/or
a low incomes users oriented market.

This conclusion emerges from the utility maximization
concept assuﬁption. Travelers are assumed to choose
the mode, the attributes of which maximize their

- utility functions. Since business travelers do not,
generally have to bear the cost of their travel, they
choose the mode that provides the highest level of
service, caring a little about its fares. On the
contrary, personal travelers attribute greater import-
ance to the trip cost than to the level of service.
Similarly, high incomes travelers, comparatively to
the low incomes ones, do generally accord higher
importance to the level of service and lower one to
the trip cost. |
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Since the frequency of services, which is a measure of
the level of service, is the most significant variable
in the Air demand; and since fare and income are the
most significant variables in Rail demand, the logical
conclusion is that the Air mode is mainly selected by
businessmen and/or high income users, whereas Rail mode
by personal and/or low incomes travelers.

11.3 LONG_AND SHORT HAUL MODELS

It is of great importance to the planner and the poliey
maker to appreciate the orientation of the travel mar-
ket, according to the routes serviced by both Air and
Rail modes, so as to achieve an efficient "fleet"
scheduling, able to match the demand and ensure a profit-
able price differentiation.

The revenue, that a supplier is able to extract from
travelers, depends upon its ability, in practice, to
disoriminate between them. The better he is able to
discriminate, the more nearly will he be able to relate
its actual revenue to what the market will bear.

Later, we will discuss the application of these models

to planning purposes. Before doing so, let us analyse
the coefficients, derived from the length of haul ag-
gregation, and interpret their signification. The
results, for long haul markets (Glasgow, Edingurgh,
Newcastle), are displayed on the tables: 11.7, 11.8, and
11.9; and for short haul markets (Birmingham, Manchester,
Liverpool, Leeds), on the tabless 11.10, 11.11, 11.12.

11.3.1 Air demand equation

Frequency of services variable

In all three models, the frequency of services is the
most powerful variable, in terms of statistical
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significance, and bears the correct sign. It displays
higher elasticity in short than in long haul markets,
as shown belows

25LS 3SLs

MODEL
INDEX 1 2 3 1 2 3

SHORT 766 .789 | .646 | .766 | .788 .639
LONG A92 | 484 | 492 | .502 | 492 | .489

The fact that this elasticity is, systematically, great-
er in short than in long haul markets, may well be due
to the high ratio of business Air travelers, in short
haul, who place the level of service at a high rank in
their preferences scale.

Fare variable

Trip cost has been represented by the absolute Air fare,
in Model 1 and Model 2; and by the relative Air fare/
Rail fare ratio, in Model 3.

In the three models, the fare variable coefficient bears
the correct sign; and is significant in short haul, but
not in long haul markets (see below). Its significance,
. in short hauls, accounts for the travelers who may "
shift from one mode to the other, according to their
relative fares; while its non significance, in long
hauls, may suggest that little substitute to Air mode
exists. This is of importance from an Airline point

of view. It means that a decrease in the relative fare,
in short hauls, induces an increase in demand; but an
increase of it, in long hauls, may not cause a subs-
tantial decrease in the demand.
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Note, however, that such an increase in Air demand.does
not necessarily mean, of course, an increase in the
profit. One should balance the yield, induced by the
additional demand against the loss experienced by lower-
ing the fare.

251S 3SLS

MODEL
INDEX

SHORT |-.685 |-.763 [-.971 |-.205 |-.606 {=.4L43
LONG |-.032 |-.006 |-.098 |-.010 |-.005 (=011

1 2 3 1 2 3

11.3.2 Rail demand equation

Fregquency of services variable

Rail demand shows a quite opposite pattern to Air demand
with respect to the frequency of services and fare
variables.

The Rail frequency of services coefficients are found
highly significant in the three long haul models, and
not significant at all (with even a wrong sign) in
short haul models. However, as Model 2 does not show

a high goodness-of fit in the Rail demand equation;
'1ts results are less credible, and thus, the discussion
will focuss on the other two models.

The non significance of the frequency variable, in short
hauls, outlines its low rank in the travelers'prefer-
ences scale within this market. Its magnitude , al-
though significant in long hauls, remains low compara-
tively to Air frequency of services in the following
markets.



- 159 =

MODEL 1 | MODEL 3 | MODEL 1 | MODEL 3
RAIL .166 .168 .153 .163
AIR 492 492 .502 489
2SLS 3SLS

Fare variable

Rail fare variable turns out to be the most determina-
tive factor in Rail demand, in both short and long

haul markets. Its elasticity, the highest in Rail

demand equations,has the following values:

MODEL 1 | MODEL 3 | MODEL 1 | MODEL 3
LONG -.959 -.927 | -1.046 -.970
SHORT | -.952 -.730 | -1.0u46 -.921
2S1S 3SLS

This elasticity seems to show almost the same magnitude
in short and long haul markets. However, despite this
similarity, the interpretation of these elasticities
are quite different from one market to another.

In fact, as explained earlier, the striking superiority
of Air mode over surface modes is, significantly, re-
duced in short distances, because of the high propor-
tion of the time spent on the take off, landing and
operations ground in these routes. The shift, of the
travelers, from one mode to the other is highly related
to the relative fares, since FARE s in Air demand

F
equation, shows an elasticity of 2 -.971 and

¢ in 2SLS and 3SLS respectively).

-3
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FARE,  js not significantly dif-

FARE2
ferent from zero in Air equation, and since Rail fare
is highly significant, one should admit that Rail
demand is not very sensitive to Air fare, in long haul
markets.

On the contrary, since

Income variable GDP

As explained earlier, the income variable GDP (Gross
Domestic Product) shows different, if not opposite,
patterns in the two demand equations. 1In Rail equation,
this variable is highly significant, in both long and
short routes, and bears the correct sign; whereas in ik
Air equation, this variable shows neither significance
nor a correct sign.

MODEL 1

AIR RAIL AIR RAIL
SHORT -.293 .685 -.162 . 505
LONG .002 .298 .001 <314

2SLS 3SLs
ROBEL 2 AIR RAIL AIR RAIL
SHORT | -.048 453 . 068 .300
LONG -.003 <294 -.003 .551

251S 3SLs

In conclusion, the analysis of these demand equations
Shows that:

- The frequenéy of services variable NFL, is, in

terms of significance, the most important ex-
planatory variable in Air demand, while fare

and income variables are the most important ones,
in Rail demand.
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- Air travel demand is highly business and/or high
incomes users oriented market, while Rail travel
demand is highly personal and/or low incomes
oriented one.

- Air and Rail modes compete on a fare basis, in
short routes; but do not constitute a close sub-
stitute to each other in longer ones.

- In short haul markets, a reduction in Air fare
induces a rise in Air traffic; whereas, in long
haul markets, an Air fare increase does not seem
to cause a substantial loss in traffic.

- An improvement of the level of service, in terms
of frequencies, generates relatively more Air
traffic but conversely less Rail traffic, in
short than in long haul.

11.3.3 Supply equations

Air and Rail demand coefficients DA, DR

The significance of Air and Rail demand coefficients,
in the supply equations NFL, and NFL, , outlines their
impact on the Air and Rail supply and the existence of
the two-way dependency between the demands and the
frequency of services NFL, and NFL, .

However, whereas the Air demand coefficient DA is high
and highly significant in all models, the Rail demand
coefficient DR is significant only in short haul
models, as shown next.
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2SLS
DA DR DA DR DA DR
SHORT 1.635 1.900 1.582 1.901 1.073 1.915
LONG 2.008 -.9U46%| 2,016 -.953%| 2,000 |-1.078#
MODEL 1 MODEL 2 MODEL 3
3818 v
DA DR DA DR DA DR
SHORT 1.568 2.037 1.550 2.298 1.180 2,117
LONG 1.990 | -.803%| 2.024 [-1.118%| 2,040 | -.998%
MODEL 1 MODEL 2 MODEL 3

# coefficient not significantly different from zero

The value of DA coefficient,around 2, in long haul
markets means that for a percentage increase in DA
corresponds twice this percentage in the Air frequency
increase. This figure is, however, lower in short
haul (around 1.6).

Once again, Rail mode seems to behave inversely to
Air mode. Rail frequency of services is more sensi-
tive to the Rail demand variation, in short than in
long haul markets.

Load factor

The results show  no significance to the load factor
variable except in Pooled Model 2. This is, probably,due
to the inappropriate measurement of the LF variable,
which is an average value of the LF recorded thrpugh-
out all domestic routes. That is, probably, why it

proves to be significant only in a pooled model.
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Trip time and electrification variables

In the Rail supply equation, the LF variable has not
been included because the corresponding data are not

available. 1Instead, trip time and electrification vari-
ables are introduced to allow the frequency of services
variable to pick up their effect. Indeed, it seems
reasonable to expect an increase in the frequency of
services in anticipation of the demand induced by the
trip time and electrification improvements.

- Trip time coefficient: appears quite stable, highly
significant and bears the right sign throughout the
three models. It shows higher values in long than in
short haul markets; which means that the variation in
the frequency of services is relatively more sensitive
in long routes than in short ones.

2SLS 3SLS

MODEL
INDEX 1 2 3 12 3

SHORT | -.912 -.921 -.899 | -.780 -.639 -.725
LONG |-4.734% -4.740 -4.850 |-4.537 -4.750 =4.770

It is interésting to note that the simultaneous equations
nature of these models permits the evaluation of Rail
demand elasticity with respect to the trip time vari-
able . This can be achieved by considering the Rail
demand and supply equations belows

DR =(30 + (lez + f}zPAREZ + (S3GDP + £y
NFL, =(’o + (>1DR + €2'1‘IME2 + (’BELEC + 24

where: _ _
F’l 1 is the elasticity of DR with respect to NFL,

(2‘3 is the elasticity of NFL, with respect to TIME,
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Therefore, the elasticity of Rail demand DR with regard
to 'I'IME2 variable is given by the product @71(’2 .

The following are the derived values of TIME, elasticity
corresponding to the long haul markets.

MODEL 1 MODEL 2 MODEL 3
2SLS .786 -1.095 -.815
3SLS .694 -1.211 - 777

It is also interesting to note the consistency of the
above elasticities with the trip time elasticities
values, assumed by British Railways Board in their
Traffic Passenger Model [?Q] . These hypothetical
values are the following

Upper
-1.0

Lower
-070

Standard
V "085

- Electrification variable coefficient: the values of

this coefficient are consistent with the previous as-
sumption that the frequency of services may be in-
creased in anticipation of the rise in the demand in-
duced by the electrification improvements of the routes.
The coefficient of ELEC variable is, as expected, posi~-
tive and highly significant in short routes. It shows,
however, a slightly high magnitude (as displayed below)
and a very low, if not inexistent, significance in long
routes.

MODEL 1 | MODEL 2 | MODEL 3
2SLS | 3.45Y4 3.459 3.461
3SLS | 3.503 2.946 3.445

Short haul markets
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11.3.4 Rail fare variable equation FAREZ ='.€(DA,DR)

In the fifth equation, Air and Rail demands coefficients
are significant in almost all models. This confirms

the endogenous nature of Rail fare with regard to Rail
demand and the two-way dependency between Rail fare and
Air demand.

However, surprisingly enough, Rail fare seems to be in-
dependent of Rail demand in long haul models.

In his attempt to test whether Air and Rail fares were
simultaneous‘ly determined, Ellison [2'}1 posed the
following reduced forms equationss

PA = KA + By,DA + B, DR + B13Y (1)
PR = KR + By DR + ByoDA + ByqY (2)
where

P = price, D = number of passengers, Y = income;
A and R designating Air and Rail variables.

He ran equation (1) and (2) on the London-Newcastle and
London-Glasgow routes, for the period 1963 ~ 1965. The
data was divided up into quarters and seasonal dummies(d)
were included. The results for Newcastle were as
follows:

Log PA = .59 + .007Log DA - -O4 Log DR - .05Log Y

(.028) (.20) (.33)
+ .06Log 4, + .08Log d, +  .03Log d3
(.002) (.006) (.007)

R™ = .82 DW = 1.7 (3)
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Log PR = 3.07 + .0lLog DA - .65Log Y - .OMLog DR
(.01) (.22) (.13)

+ .06Log d, + .03Log d, + .0lkog 4
(.01) (.ol4) (.05)

R? = .87 DW = 1.69 ()

From the above results, Ellison concluded that the
simultaneity between Rail and Air fare was not shown to
be significant, and therefore, Air and Rail fares could
be used as exogenous variables, in the UK domestic
routes, without fear of any bias. He then ran different
models on 17 domestic routes using Air and Rail fares

in the Air demand equation.

This methodology calls for the following comments:

- First, the formulation of the reduced form with the
endogenous variables, Air and Rail demands, on the
right side of the equation does not seem to be clear.

1

- Second, given the significant correlation that most
likely exists between the demands and income variables,
equation (3) and (4) could hardly provide unbiased coef-
ficients owing to the multicollinearity between these
variables. Therefore, the significance of these coef-
ficients are questionable.

- Finally, the third and most crucial remark is that
even if the test,conducted for London-Newcastle and
London-Glasgow routes, were conclusive (i.e, that the
simultaneity between Air and Rail fares exists), it
would not necessarily mean that it should be alike for
the other routes. 1In fact, London-Newcastle and
London-Glasgow are both long routes; and the conclusions
drawn from their results could hardly be extended to

the short haul routes without appropriate tests.
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The results obtained by Ellison, for the 7 models on
the 17 domestic routes, were highly unstable and many
perverse signs were recorded. Besides, the multiple
regression coefficients R2 are drastically low. Out of
106 coefficients R? s 67 are lower than .20, 20 are
betweem .20 and .30 and 10 are between .30 and .40;
while the highest R? among the remaining coefficients
is .68.

Ellison attributed the failure of these models to the
exponential growth being an inaccurate assumption to
make concerning the behavior of the trend on domestic
routes. Then, he cut back the number of the routes to
the most important ones: '

London-Glasgow London-Manchester
London-Newcastle London-Edinburgh

There is, however, no reason to believe that the failure
of these models was due to the Simultaneous Equations
Bias. Such bias, which might have been induced by the
simultaneity between Air and Rail fares, could not have,
in fact, existed because most evidence showed that the
Railways had not taken advantage of the pricing freedom,
at least before 1968 which is beyond the forecast period
considered by Ellison.

With regard to these pricing policies, Gwilliam stated
in "Economic and Transport Policy" 1973:

*In the sixties, the Railways management was guilty of
a failure to take advantage of the pricing freedom
conferred by the 1962 act. Not until after 1968

PIB Report did market pricing for passenger journeys
begin. Now, the Railways have taken advantage of the
freedom to price flows of traffic according to their
demand elasticity".

This assertion explains why Air demand equations that
include Rail fares could be considered without fear of
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the Simultaneous Equations Bias, when using data prior
to 1968 (as in Ellison models); but would well be af-
fected by this bias after 1968 as shown in the fifth
equation of our models.
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2SLS 3SLS
Coef Se t Coef Se %
EQ. DA
NFL, L92 034 14,470 .502  .017 29.529
FARE, -.032 .200 -.160 -.010 .025 -.040
GDP .002 .0U49 L0l .001 .007 L143
Cst .851 .836
R%=.96 _ SE=.0L5 R%=.96  SE=.046
EQ. DR
NFL, .166 .022 7.545 .153 .022 6.954
FARE, -.959 .156 =6.147 1.046 .154 6.792
GDP .298 ,041  7.268 .314 .040 7.850
Cst .243 .149
2 2
=,8 E=.04 =, 81 SE=, Oll
EQ. NFL, R=.8) SE=.043 -
DA 2,008 .078 25.743 1.990 .065 30.615
LF ~Ln 571 .830 -.102 .,075 1.360
Cst -.896 -1.501
R%=.97  sE=.001 R%=.96  SE=.092
DR _~.946 .538 -1.758 -.803 .513 -1.56%
TIME, -4.734% .586 -8.078 | -4.537 .563 -8.0%59
ELEC 1,073 .587 1.828 .828 .555 1.492
Cst 10.280 9.572
2 2_
R°=.8 SE=.142 R"=.86 SE=,138
EQ. FARE, Z .
DA .203 .,036 5.639 .205 .,036 5.694
DR -,011 .091 =-.121 .004 091 043
Cst <1.484 -1.509
R°=.66  SE=.0 %= .61

E=,0

Table 11.7
MODEL 1 Long Haul
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2S1S 3ISLS
Coef Se t Coef Se t
EQ. DA

NFL, 484,033 14.667 492,015 32.800
FARE, .006 .195  .031 | -.005 .,020 =-.250

GDP .009 .048 .187 .003  .006 .500

Cst .888 .872

R®=.96 _ SE=.045 R%=.06  SE=.045
EQ. DR
NFL, .231 .035 6,600 .255 .,032 7.969
FARE, 357 .234  1.526 .201 .175 1.148
FERE,
GDP .211 054 3,907 .218 .,050 4.360
Cst 1.160 1.086
R%=.65  SE=.061 R%=.6L __ SE=.062
EQ. NFL, —==

DA 2.016 .078 25.846 | 2.024 .062 32.645

LF -.450 .571 -.788 | -.092 .076 -1.210

Cst -.958 -1.616

R%=.96  SE=.001 2-,96 _ SE=.092
EQ. NFL,

DR -.953 .523 -1.822 | -1.118 ,493 -2.268
TIME, -4 .70 ,579 -8.186 | -4.750 .550 -8.636
ELEC 1.071 .587 1.824 | 1.242 .523 2.373

cst 10.310 10.890

2 2
R°=.85  SE=.14 =.84  SE=.150
EQ. FARE, SE=. 14 B= E=.12

DA .203 .091 2.231 .200 .036 5.555

DR -.028 .091 =-.308 .016 .090 .178

Cst -1.430 -1.550

g%=.61  gE=.038 R%=.61 _ SE=.038
Table 11.8

MODEL 2 Long Haul
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2518 ISLS
Coef Se t Coef Se t
EQ. DA

NFL, 492,021 23.428 489 .016 30.562
FARE, -.098 .153 -.640 | -.011 .023 -.478
FARE,

GDP -.003 .048 -, 062 -.003 ,007 -.428

Cst .916 . 899

R%=.96 __ SE=.045 R%=.06  SE=.0u5
EQ. DR

NFL, 168 .022  7.636 163 .022  7.409
FARE, -.927 .157 -6.019 | -.970 .154 -6.299

GDP 204 Lokl 7.171 .300 .040  7.500

Cst .279 234

R®=.83  SE=.043 R°=.82  SE=.0bU

DA 2,001 .079 25.316 | 2.030 .066 30.757

LF -.482 .571 .84k | -.030 .090 -.333

cst -.875 -1.770

R®=.96  SE=.091 R?=.96  SE=.092
EQ. NFL,

DR -1.078 .583 -1.849 | -.998 .560 -1.782
TIME, -4.850 .628 -7.723 | -4.770 .612 -7.79%4
ELEC 1.030 .610 1.688 663 .500 1.124

Cst 10.910° 10.150

R°=.85  SE=.148 R®=.85  SE=.1U6
EQ. FARE,

DA .205 .036  5.694 .206 .036 5.722

DR .009 .090  .100 .010 .090  .111

cst -1.550 ~1.550

R%=.61  SE=.038 R®=.61  SE=.038
Table 11.9

MODEL 3 Long Haul
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2SLS 3SLS
Coef Se t Coef Se t
EQ. DA
NFL, .766 .085  9.011 .698 .058 12.034
FARE, -.685 .336 -2.039 | =-.205 .165 -1.242
GDP -.293 .185 -1.584% | -.162 .076 =-2.131
Cst 373 537
R%=.87  SE=.124 R%=.87  SE=.117
. EQ. DR
NFL, -.141 104 -1.356 | -.138 .080 -1.725
FARE, -.952 .173 -5.503 | -1.064 .13% ~7.940
GDP 685 .212  3.231 .505 .173  2.919
Cst .015 .524
R%=.66___ SE=.068 R%=.59  SE=.07%
EQ. NFL,
DA 1.635 .109 15.165 | 1.568 .087 18.023
LF 763 1.383  .055 | -.309 .526 -.587
Cst -1.985 .072
2 2
R°=.92 _ SE=.1 =,90 _ SE=.1
EQ. NFL, s
DR 1.900 .299 6.354 | 2.037 .294 6.928
TIME, -.912 .293 -3.113 | -.780 ~.290 -2.689
ELEC 3.454 .365 9.463 3.503 .35 9.840
Cst .925 482
R%=.92 _ SE=.101 22,01 SE=.10
EQ. FARE,
DA 184,026 7.077 145,023  6.304
DR -.704 ,070 -10.057 -.78 ,070 -11.200
cst .587 .920
R%=,82  SE=.049 R°=,79  SE=.0

Table 11.10

MODEL 1 Short Haul
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2S1S 3SLS
Coe?f Se t Coef Se t
EQ, DA

NFL, 789 .086 9.174 .788 .057 13.824
FARE, -.763 .32 -2.231 | -.606 .40 -4.328

GDP -.323 .190 =1.700 | -.217 .078 -2.782

Cst .347 .107

R%=.84  SE=.128 R%=.8%  SE=.130

EQ. DR
NFLZ .331 .062 5.339 .338 .055 6.145
FARE, -.117 .242  -.483 142 137 1.036

FARE,
GDP -.153 .158 -.968 [ =-.129 .141 -.915

cst 2.412 2.219

2=.61 _ SE=.073 R®=.50  SE=,07

EQ. NFL,

DA 1.582 .106 14.924% | 1.550 .080 19.375

LF .373 1.369 .272 435 489 .889

Cst -1.178 -1.228

R%=.00  SE=.174 R®=.90  SE=.1
EQ. NFL, —

DR 1.901 .295 6.4k | 2.298 .278  8.266
TIME, -.911 .290 -3.141 | -.639 .277 -2.307
ELEC J.454 .364 9,489 2.946 .338 8.716

Cst .922 -.802

R?=.92  SE=.101 R°=.890  SE=.11l4
EQ. FARE,

DA .206 .025 8.240 220,024  9.167

DR -.670 .069 -9.710 -.608 .067 9.075

Cst 429 .210

R°=,81  SE=.048 R%=.82  SE=.ou8

MODEL 2 Short Haul

Table 11.11
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2SLS 3SLS
Coef Se t Coef Se t
EQ. DA
NFL, 646 036 17.944 639 .033 19.364
FARE} -.971 .349 -2.782 | -.443 .134 -3.306
FARE,
GDP -.048 .127 -.378 .068 .050 1.360
Cst . 746 .182
R%=.01 _ SE=.103 R?=.80  SE=.106
EQ. DR
NFL, -.015 .082 -.183 | -.109 .070 -1.557
FARE, -.730 .135 5.407 | -.921 .115 8.009
GDP 453,169  2.680 .551 .153  3.601
Cst .632 RN
2_ 74  SE=,058 R%=.6 SE=.066
EQ. NPL, R°=.7 SE=.05 67 SE=.066
DA 1.073 .11% 9.412 | 1.180 .090 13.111
LF .305 1.407 217 -.237 .510 465
Cst -1.038 -.081
2 2
R®=.92 SE=.174 R®=.90 SE=.1
EQ. NFL, - Be.170
DR 1.915 .297 6.448 | 2.117 .292 7.250
TIME, .-.899 .291 -3.089 | -.725 .288 -2.517
ELEC 3.461 .365 9.482 | 3.445 .359  9.596
Cst .878 ‘ 166
2 , 2
R°=.92 _ §E=.101 R°=.90  SE=.10
EQ. FARE, SE=.102
DA 193 ,026 7.423 169 .025 6.760
DR -.67% 069 -9.768 | =-.738 .068 -10.853
Ccst 471 .723
R%=.83  SE=.048 R%=.81 _ SE=.050
Table 11.12
MODEL 3 Short Haul
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CHAPTER 12

SELECTION OF THE BEST SPECIFICATION

12.1 MODEL SELECTION

Models 1, 2, 3, displayed on the tables: 11.1;11.2:11.3,
are the models remaining from the step by step modeling
process after different forms and variables investiga-
tions. Although they are generally providing similar
conclusions with regard to the mode competition and

all showing reasonable statistical tests, it is, how-
ever, necessary at this stage to select the definitive
model, for forecasting and analysis purposes.

- Model 1 does not explicitly include any direct com- -
petition factor, via a comparison of cost or service
performance of the two modes, though the competition
may well be indirectly involved through the last equa-
tion FARE, = f(DA,DR).

- Model 2.and Model 3 introduce explicitly a competi-
tion factor FARE1 in their Air demand equation.

FARE2
Model 3, however, systematically shows a better overall
fit than Model 2 in all equations. So, Model 3 is
preferable to Model 1 and Model Z.

The introduction of FARE;  yariable in Model 3 does
FARE,

not, comparatively to the formulation of Model 1, alter

drastically the coefficients -either in the demand or in

the supplyequations. But, it does provide a better

understanding, on a theorftical ground, than Model 1.

It also improves significantly the statistical tests ,

Rz' SE.

The significance of FARE; variable,in Model 3 retained,
FARE,
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confirms the previous results:

The existence of the competition in short haul, and
its almost non existence in long haul.

The fact that TARE] 35 not significant in long
FARE,

haul, neither in Air (Model 3) nor in Rail (Model 2)
while FARE, is highly significant only in Rail,
suggests that,-in long haul, both Air and Rail are
independent of the fare competition. It also
implies that, in long routes, Rail attracts other
than potential Air travelers: either strictly
potential Rail or other surface modeg travelers.

However, before declaring Model 3 as a definitive selec-
ted model, we felt it reasonable to find out whether or
not it could be improved by altering the income vari-
able, since it displays a wrong sign in long haul.

The following section analyses the introduction of a
new variable: the range of incomes variable (RANKOM).

12.2 RANGE OF INCOMES VARIABLE

The income variable GDP, selected up till now, does not
take account of the population of the region pairs and
the income distribution among them. Furthermore, it

has often been argued that the propensity to travel is
closely related to the traveler's range of incomes, and
that Air travelers belong to the highest income brackets.

In order to test the above assumptions, and thereby ,
to improve the selected model, the income variable GDP

was replaced by socioeconomic variables that take into
account the income distribution. These variables, named

RANKOM have the following forms

Yk‘ k
RANKOM (; ) =§ (Xjx Xk )
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Xy = people in range income k within city i (ex-
pressed in millions)

Y, = the weighted average income in range income k

Xn = people in range income ( & 1,000 per year
Xiz = people in range income £ 1,000 - £ 2,000
x13 = people in range income £ 2,000 - £ 5,000
Xy, = people in range income 3 £ 5,000

Note, however, that in order to give greater weight to
higher income travelers within the population, the
power from has been selected instead of the multiplica-
tive one; i.e:

Y
xig rather than xikxk

Notice also that to qvoid excessive values for these

powers, the variable, representing the population num=-
ber in region i within the level of income k, is expres-
sed in millions.

Three models have been estimated with these new construc-
ted variables;

« The first model, introducing separately the variables

Y

EHEFS
into the demand equation, was designed to measure the
individual elasticity of each variable. The results
(not displayed) showed perverse signs, and no signifi-.
cance to the coefficients. One of the reasons of this
failure, might be the inaccuracy of the measurement
of the population within a given range of incomes
throughout the historical period; the incomes being
expressed on current values instead of constant ones.
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- In order to reduce this drawback, a constant average
income Yk was used and expressed on constant £(1975).

Y, =& 750 Y5 = £ 3,000
Y, = £ 1,500 Y, = £ 7,000

Furthermore, to prevent any potential multicollinearity

between the variables Y. Y
k k

( Xyp Xy )

a combination of them into a single variable has been
retained:

e  Yi
RANKOM, 5 = 5 ( Xyp Xgy )

k=1

The results of this model (not displayed) showed no

significance to this variable, neither in Air nor in
Rail demands.

- In a third attempt, we considered only two ranges of
incomes: ’
- above £ 5,000 in Air demand

- below £ 5,000 in Rail demand

This stipulation has the advantage of assigning high
level incomes to Air market only, and of reducing the
inaccuracy of the measurement of the population within
different incomes rangses.

" In the Air demand equatibn. the results of this model,
displayed on Table 12.1 , do not manifest drastic
changes or a significance to RANKOM variable.

In Rail demand equation, it renders the NFL, coefficient
significant, but decreases the significance of PAREZ
without making RANKOM variable more significant than GDP.

In the third equation, the elasticities of NFL, remain
stable; while in the fourth and fifth equations, the
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2SLS 3SLS
Coef Se t Coef Se 1
EQ. DA
NFL, .594  ,019 31.263 .619 .017 36.412
FARE, -.645 ,180 -3.583 | -.149 .077 -=1.935
FARE,
RANKOM, .026 .014% 1.857 .010 ,007 1.428
Cst 613 421
R%=.95  SE=.089 R%=.94 _ SE=.090
EQ. DR
NFL, 176 .040  4.4OO .057 .024 2.375
FARE, -.969 .101 -9.594 [ -1.244 ,069 -18.029
RANKOM,, .011 .018 .061 .055 ,011 5.000
Cst 1.172 1.343
B%=.86 _ SE=.167 R%=.93  SE=.167
EQ. NFL,

DR -1,097 .916 -1.197 -.315 ,811 -.388
TIME, -3.148 1.017 -3.095 | =2.323 ,964 -2.410
ELEC 1.753 .795 2.205 1.710 .731 2.339

cst 10.010 7.218

R®=.78  SE=.203 R%=.80 _ SE=.180
EQ. FARE, .

DA 076 042 1,809 .016 .027 .592

DR -,605 .074 -8.176 -.704 ,051 -13.803

Cst . 500 .938

2 2
R“=.8 SE=, 060 RS=.87 SE=,058
EQ. NFL, 2 SE —SE=.008

DA 1.582 .054 29.296 1.592 .053 30.038

LF -.602 ,800 .752 -.598 .750 797

Cst -.554 -.578

B%=.93  SE=.167 B%=.93  SE=.167
Table 12.1

POOLED MODEL 3

(with RANKOM variable)
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the DR coefficient becomes significant.

However, this new variable does not appear to be as
significant as GDP. Moreover, when comparing the minor
improvements induced by this variable with the loss of
the goodness-of-fit; and the enormous difficulties of
forecasting the income distribution among the popula-
tions, one should admit the superiority of GDP. Accord-
ingly, the definitive selected model remains Model 3,
estimated in the previous section.

12.3 STATISTICAL EVALUATION OF THE MODEL

Now that we have selected Model 3, we move to the next
steps testing its validity.

As in the case of 0LS, various assumptions, concerning
the error terms and the variables, should be met in
order that multi-equation calibration techniques can be
applied. These assumptions concern the normality of
the error terms distribution, the constancy of their
variance, their independency upon time and the non cor-
relation of the exogenous variables. Thereafter, we
provide statistical tests for Model 3.

12.3.1 Normality of the errors distribution

To test the normality of the errors distribution of the
structural form equations, the CHI-SQUARE goodness-of-
fit test has, once again, been applied. The standard-
ized residuals, corresponding to the Air and Rail
structural form equations, have been computed and their
distribution compared to the normal distribution. The
results, displayed on Table 12.2 and Table 12,3, show
that, for each equation, the computed CHI-SQUARE, is

2
less than the critical X (.95,4) = 9:49 . Therefore,
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NORMALITY OF RESIDUALS DISTRIBUTION

CHI-SQUARE COMPUTATION

. RANGE OF 05 B O - 512
TANDARDIZED | OBSERVED EXPECTED i =B
RESIDUALS FREQUENCIES | FREQUENCIES Ey
- -1 14 12.220 .259
5 Y 8 11.535 1.083
-5 0 11 14,745 .951
2SLS 0o .5 19 14, 745 1.231
5001 12 11.535 .019
1 13 12.220 .050
TOTAL 77 77.000 3.693
- -1 12 12.220 .00k
-1 -.5 12 11.535 .019
-5 0 14 14745 .037
3SLS o .5 15 14,745 .00k
.5 1 12 11.535 .019
1 . 12 12.220 .00l
TOTAL 77 77.000 .087
Table 12.2

AIR DEMAND EQUATION
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CHI-SQUARE COMPUTATION

RAIL DEMAND EQUATION

. RANGE OF‘ 04 1 By (0« - E.)2
TANDARDIZED OBSERVED EXPECTED e T
RESIDUALS FREQUENGIES | FREQUENCIES E;
- -1 W 12.220 .259
-1 -.5 10 11.535 .203
-.5 0 16 14.745 .108
2SLS 0 .5 13 14,745 .118
.5 1 12 11.535 .019
1 12 12.220 .00k
TOTAL 77 77.000 711
- -1 ‘13 12.220 .050
-1  -.5 12 11.535 .019
-5 0 15 14,745 .00k
] 3sLs 0 .5 11 4. 745 .949
.5 1 10 11.535 .203
1 16 12.220 1.169
TOTAL 77 77.000 2.39%
Table 12.3
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the hypothesis that the error terms are normally dis-
tributed can be accepted.

COMPUTED CHI-SQUARE

2SLS 3SLsS
AIR DEMAND| 3.693 . 087
RAIL DEMAND| .711 | 2.394

12.3.2 Constant variance

To check up the existence of the heteroscedasticity, the
above residuals are plobed against the estimated values
of the dependent variable in each structural equation,
as illustrated in Fig. 12.1, 12.2, 12.3, and Pig. 12.4 .
These figures show no discernable patterns or concentra-
tions. Thereupon, we may reject the hypothesis of any
serious heteroscedasticity.

12.3.3 Time dependency of the error terms

The low values manifested by the computed DW tests, may
suggest the existence of serial correlation. However,
since the 77 observations are not ranked on a truly
chronological order (aggregation of 7 region pairs),
these DW values may notégf great meaning. Besides,
Serial Correlation, even serious, does not affect the
unbiasedness or consistency of the coefficients.

12.3.4 Multicollinearitx

The correlation matrix, below, corresponding to the five

exogenous variables FARE, ,» LF, TIMEZ. ELEC, GDP, does
FARE,

not show high values to their mutual correlation coef-
ficients. Therefore, we reject the hypothesis of
perfect collinearity between the exogenous variables.
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Correlation Matrix

FARE,  1p TIME, ELEC  GDP

FARE,

1.000 '007 -.284 -0129 -0037
1.000 -.217 .087 -.128

1.000 -ollu -006?
1.000 .199
1.000

12.3.5 Goodness-of-fit: TRACE CORRELATION

As stated earlier in section 10.3, a statistic called
Trace correlation* has been proposed by Hooper, which
measures the proportion of the total variance of the
Jointly dependent variables as a group that is explain-

ed by the exogenous variables as a group in a structur-
al model

A package, providing the Trace Correlation statistic,
has been run with Model 3 and the results are the
following:

MODEL 3
POOLED | LONG SHORT
TRACE CORRELATION 725 <717 772

The above results show that the predetermined variables
as a group explain about 72% of the variance of the

*# 1In section 10.3, we have seen that the statistic
analogous to the Rz. based on the estimate of the
variance of the structural disturbance defined as,

2
1 - ZE:;;// E (Y, - ¥) can be £ 0 .
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dependent variables as a group in pooled and long haul
models. In Short Haul Model, this explanation is even
higher than 77%.

12.3.6 Simulation forecast

Another criteria, for evaluating a Simultaneous Equa-
tions Model, is its ability to provide accurate
“forecast" in a simulation context. It consists in
estimating the model by using only part of the observa-
tions available; then, begifing the forecast at the end
of the estimation period and extending it to the present;
and finally, comparing the results of the simulation
with the actual observations not yet used. This type

of simulation is called Expost ForecaStt and is often
performed to test the forecasting accuracy of a model.

packast gxpost forecasg
T T T

e e
v v

EEstimation-period a Today

An expost forecast has been conducted with Air and Rail
demand equations of the selected model, in order to
examine how closely these demands track their corres-
ponding historical data series. The estimated period
has been restricted to the period 1968 - 1975, the three
years observations 1976, 1977,1978, being retained for
the comparison with the "forecast®. The calibration

of the model, over the 7? routes, has provided the
results displayed in Table 12.4 .

*# Another type of simulation called "Backast Simula-
tion" consists of simulating a model backward in
time begining at the start of the estimation period.
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2518 3SLS
Coef Se t Coef Se %
EQ. DA
NFL, 574,017  32.707 .592  .016 36.599
FARE .
1 -.762 .241 =3.157 -.2hg 114 -2.182
FARE,
GDP -.066 .053 =1.241 -.004 ,026 -.158
Cst .969 . 564
R%=.96 _ SE=.080 R%=.95  SE=.087
EQ. DR
NFL, 126 .032  3.937 LO46 .026 1.728
FARE, -.863 .091 =-9.483 | -1,121 .076 -14.823
GDP 284,041 6.927 245 ,038 6.526
Cst .529 .668
2 2
=, =, =, SE=.068
59, NFL, R°=.94 . SE=.055 R%=.91 E
DA 1.293 .071 18.211 1.550 .058 28.619
LF -.551 .874  -.630 -.131 .hk25 -.308
Cst .297 -.525
R%=.95  SE=.153 R%=.95  SE=.155
EQ. NFL, '

DR -1.034 .621 -1.665 -.771 .558 -1.382
TIMEZ '3.155 .?26 "14'03“’6 "2-911 .662 -40394
ELEC 2.163 .782  2.766 1.188 .661 1.798

Cst 10.126 8.482

R®=.77 _ SE=.218 R%=.77  sE=.214
EQ. FARE,

DA .135 ,029 L4.655 .108 .,027 3.992

DR -.4k58 049 -9.347 -.498 .046 -10.697

Cst -.093 .089

R%=.91 _ SE=.047 B%=.91  SE=.049
Table 12.4
POOLED MODEL 3  (Historical period : 1968 - 1975)
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In order to appreciate how closely Air and Rail demands
fit their corresponding data, four measures have been
computed.

- The Root Mean Square error (RMS) is defined as follows:

2
1) (Yg-7v()
T 3=

where:
Yi s+ the simulated value of Yt

Y% 1+ the actual value
T :+ number of periods in the simulation

RMS is thus a measure of the deviation of the simulated
variable from its actual time path.

(
= a
t=1 Y§

- RMS per cent error = 1 Y5 -
i\

This is also a measure of the deviation of the simula-
ted variable from its actual time path, but in percent-
age terms. '

- Mean Error = % i ( Y: - Y: )

t=1
s
- Mean per..cent error= 1 ( Iy - Y% )
t= Y%

Phe results of these computations are shown in Table 12.5,
and Table 12.6.
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LONDONIAN ROUTES ACTUAL 2SLS 3SLS
TO AND FROM OBSERVATIONS | FORECASTS | FORECASTS

. (*000) (*000) (*000)

1976 887 998 900

GLASGOW 1977 709 1023 760

1978 903 863 903

1976 677 716 597

EDINBURGH 1977 655 906 724

1978 738 643 624

1967 282 286 233

NEWCASTLE 1977 221 310 261

1978 282 287 250

1976 456 371 410

MANCHESTER | 1977 393 391 436

1978 534 481 527

1976 99 112 139

BIRMINGHAM | 1977 104 14k 177

1978 122 220 255

1976 - 123 118 123

LEEDS 1977 129 118 135

1978 148 127 132

1976 . 119 141 146

LIVERPOOL 1977 102 140 146

1978 138 184 180

Table 12.5

EX POST FORECASTS:Comparison with actual observations

AIR DEMAND SIMULATION
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LONDONIAN ROUTES ACTUAL 2SLS 381S
TO AND FROM OBSERVATIONS | FORECASTS | FORECASTS

(*000) (*000) ('000)

1976 503 589 519

GLASGOW 1977 721 613 551

1978 693 606 533

1976 379 L2 Los

EDINBURGH 1977 493 469 481

1978 543 L8l L6k

1976 570 625 549

NEWCASTLE 1977 635 637 583

1978 614 665 596

1976 1335 1237 1065

MANCHESTER | 1977 1459 1292 1139

1978 1616 1363 1142

1976 1695 2550 2468

BIRMINGHAM | 1977 1739 2557 2475,

1978 1718 2654 2556

1976 . 866 1070 1047

LEEDS 1977 975 1138 1128

1978 1029 1082 1057

1976 1030 985 913

LIVERPOOL 1977 1141 1125 1076

1978 1202 1185 982

Pable 12.6

EX POST FORECASTS s+ Comparison with actual observations

RAIL DEMAND SIMULATION




- 194 -

LONDON RMS RMS per cent
TO AND FROM error error
281LS 3SLs 2SLS  3sSLs
'GEASGOW 193.71 30.41 26.7% O4.2%
EDINBURGH | 156.57 89.73 23.6% 11.8%
NEWCASTLE 52.10 40.93 23.4% 15.9%
MANCHESTER 57.84 36.58 12.2% 08.6%
BIRMINGHAM 61.40 90.38 51.8% 74.6%
LEEDS 14.10  9.93 09.9% 06.8%
LIVERPOOL 36.54 38,28 30.6% 33.1%
MEAN MEAN per cent LONDON
error error TO AND FROM
2sLs 3SLS 2SLS  3SLS
128.33  21.30| 17.4% 02.9% GLASGOW
65.00 -41.67| 10.4% -00.6% | EDINBURGH
26.67 13.67| 12.4% -03.5% NEWCASTLE
-L46.67 -3.33[-09.7% -00.1% | MANCHESTER
50.00 81.67| 43.6% 72.7% | BIRMINGHAM
+=12.33 -3.57|-08,9% ~02.2% LEEDS
35.13 37.50| 29.3% 32.0% LIVERPOOL
Table 12.7

EX POST FORECASTS

FORECAST YEARS 3

Period : 1968 - 1975

1976, 1977, 1978

AIR DEMAND SIMULATION
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LONDON RMS RMS per cent
TO AND FROM error error
2SLS 3SLS 2SLS  3SLS
GLASGOW 93.9 135.0 14.9% 19.1%
EDINBURGH 51.3 48.2 11.7% 09.3%
NEWCASTLE 43.3 33.8 07.3% 05.4%
MANCHESTER (184.0 365.1 12.0% 24.1%
BIRMINGHAM |[871.0 783.2 50.7% 45.7%
LEEDS 156.0 138.1 16.9% 15.2%
LIVERPOOL 29.3 148.0 02.7% 12.9%
MEAN MEAN per cent LONDON
error error TO AND FROM
2SLS 3SLS 2SLS  3sLs
-36.3 ~104.7 -07.7% =11.5% GLASGOW
-20.7 -67.1 00.2% -03.5%| EDINBURGH
36.0 =30.1 06.0% -04.9%| NEWCASTLE
-172.7  =354.7 -11.5% -23.8% | MANCHESTER
869.7 782.3 50.6% U45.6%| BIRMINGHAM
140.1  120.7 15.1% 13.1% LEEDS
-26.1 -66.1 -02.4% -11.8%| LIVERPOOL
Table j2.8

EX POST FORECASTS -

FORECAST YEARS t

Period : 1968 - 1975

1976, 1977, 1978

RAIL DEMAND SIMULATION
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Since the results presented in Table 12.7 and Table 12.8
will be fully discussed in sectionl2.4.2, we simply
mention at this stage the low values of RMS per cent
error and Mean per cent error; which indicates a good
accuracy of the forecasts.

12.4 SELECTION OF THE BEST CALIBRATION TECHNIQUE

In comparing different multi-equation calibration tech-
niques, many modelers agree that there is no general
rule for selecting the best one. The answer is dif-
ficult for two reasons. First, the choice of an
estimation procedure may depend,in part, upon the pur-
pose of the model; second, most of the knowledge about
the properties of estimators relates to large samples,
in which case, estimators are known to be consistent,
and (sometimes) asymptotically efficient. However, ac-
cording to Pindyck, little is known about the small
sample properties of these estimators.

In general, it remains to the modeler himself to decide
which technique is best according to his purpose, the
data available, the degree of accuracy desired, and

the amount of time and money to spend.

In our case, since the purpose is both policy and fore-
cast, the criteria for the selection is based upon:

- the characteristics of the coefficients (unbias-
edness, consistency and efficiency), and their
t values.

- the accuracy of the forecast.

12.4.1 cCoefficients analysis

For the coefficients characteristics criteria, the

parameters values obtained by both specifications,
2SIS and 3SLS, as well as their standard errors are
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displayed, for comparison in tables: 12.9 and 12.10. They
correspond to the selected Model 3, applied to the
following maarkets:

Pooled markets (1968 - 1975)
Pooled markets (1968 - 1978)
Long haul markets (1968 - 1978)
Short haul markets (1968 - 1978)

The standard errors of the coefficients, obtained with
3SLS are systematically lower than those estimated with
2SLS. This is not, in fact, particular to these models,
but is rather a characteristic of 3SLS technique, which
provides more efficient coefficients than 2SLS does.

From the t values comparison, the general remark is that
3SLS is much more superior within the length of haul ag-
gregate models than within the pooled ones. One of the
reasons might be the high sensitivity of 3SLS to speci-
fication errors or errors in data. Since the pooling
process reduces the homogeneity of the observations,
this loss in homogeneity is most likely to be more
penalizing with 3SLS than with 2SLS; which leads to the
loss in significance in 3SLS coefficients.

Nevertheless, even in the pooled models, 3SLS seems to
be superior to 2SLS:

- First, the most important explanatory variables
in demand equatiohs, namely the Air frequency of
services in Air demand, and Rail fare in Rail
demand, have higher absolute t values in 3SLS
than in 2S1S:

NFL; = 38.390 and 36.599 against 33.073 and
32.707

FARE, = =17.35 and -14.823 against -12.013 and
-9.435

- Second, the GDP coefficient in Air equation, and
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DR coefficient in NFL, equation, both having
wrong signs, are not significant in 3SLS while
they are in 2S1S.

- Third, the LF coefficient, not significant in both
estimations, has smaller absolute value in 3SLS
than in 2SLS.

- Fourth, if we except the coefficients that have
either a wrong sign or no significance at all,
among the remaining coefficients 5 have higher
t values in 3SLS than in 2SLS, while 4 have high-
er t values in 2S1LS than in 3SIS.

Lastly, in the length of haul aggregate models, 3SLS
appears much more superior than 2SLS. Indeed, in long
haul markets, 6 coefficients have higher t values in
3SLS than in 2SLS, while only 1 has greater value in
2SLS than in 3SLS. Similarly, in short haul markets,

8 coefficients have higher t values in 3SLS than in
25LS, while only 2 have greater t values in 2SLS than
in 3SLS. The coefficients with a wrong sign or no sign-
ificance are not considered.

12.4.2 Accuracy of the forecast

A close examination of Table 12.7 . reveals the superior-
ity of 3SLS over 2SLS in all routes, except in Liverpool
and Birmingham.

In the RMS error figures, only 2 values are higher than
41.0 in 3S1S while 5 out of 7 are higher in 2SLS.

For the RMS per cent error, 5 values are higher than
16% in 2SLS against only 2 in 3SLS; with 3 values even
less than 10% in 3SLS.

For the Mean error, 5 values are less than 40.0 in 3SLS
against only 3 in 2SLS; with 3 even less than 15.0 in
3SLS against only 1 in 2SLS..

Pinally, for the Mean per cent error, all the values
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are higher than 3.5% in 2SLS against only 1 in 3SLS.

Undoubtedly, 3SLS specification appears to be more ac-
curate than 2SLS. In order to measure the relative ac-
curacy of 3SLS over 2SLS, the ratio of all the 3SLS
measures over the 2SLS ones are computed and displayed
below:

RMS RMS 4 MEAN MEAN %
Glasgow .157 .157 .166 .167
Edinburgh .573 . 500 641 .058
Newcastle .786 .679 .512 .282
Manchester .632 .705 .071 .010
Birmingham | 1.472 1.440 1.634 | 1.667
Leeds . 704 .687 .289 247
Liverpool 1.048 1.082 1.067 1.092

The above results clearly show the gain in accuracy
attached to 3SLS estimation. In Glasgow route, for
instance, the values of the measurements with 3SLS are
about the sixth their corresponding values with 2SIS.
This ratio is, however, higher in Edinburgh route where
it slightly exceeds the half for all the measures,
except for the Mean per cent error for which the ratio
is around the sixteenth in favour of 3SLS.

In Rail simulation, however, 3SLS does not show such a
striking superiority over 2SLS (see Table 12.8).

In conclusion, in both estimators characteristics and
forecasting accuracy criteria, 3SLS specification has
shown remarkable superiority over 2SLS. On the other
hand, a close examination of the residuals correlation
matrix in Tablel2.ll, corresponding to the reduced
forms,reveals substantial correlations between residu-
als across equations. This constitutes a violation of
the 2SLS assumptions, and therefore, renders 3SLS more
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appropriate. 1Indeed, one of the assumptions of 3SLS is
that random errors are contemporaneously dependent.

This is, particularly, striking in short haul model cor-
relation matrix, where the correlation between the
residuals across the equations is almost perfect. All
coefficients are > .990. According to Koutsoyiannis
"taking into account the nature of economic phenomena
and the simplifications which we adopt in specifying

the econometric models, we may well expect the u's to
be contemporaneously correlated”.

As we already have pointed out, for various reasons such
as multicollinearity and data availability , we have ex-
plicitly included in the equations only the most impor-
tant variables, leaving the influence of the others,
less important, to be absorbed by the random terms. If
some variables are omitted from various equations, it

is inevitable that the random terms of the equations

are correlated, and hence, 3SLS is appropriate.

To summarize, all the criteria discussed so far as well
as the contemporaneous dependency between random errors,
are in favour of 3SLS calibration technique.

CONCLUSTION

The previous chapter and the present one constitute undoubtedly
the most important part of this research, and it is necessary
at this point to explain their link with the following chapters

Up to now, for data avaibility problems we have not been able
to conduct our analysis on a time series basis and the only
disaggregation scheme considered has been the length of haul

The next chapters (13 and 14) explain how and why the following
disaggregations can also be attempted :

- Disaggregation by routes
- Disaggregation by trip purpose.



POOLED MODEL 1968 - 1978

POOLED MODEL 1968 - 1975

' Std error t Ratio Std error t Ratio
COEFFICIENT 2518 | 3S1S 2518 3SLS 2SLS | 3SLS 2SLS 3818
NFL, .018 | .016 33.073 38.390 .017 | .016 32.707 36.599
FARE, .172 | .090 -3.220 | -2.169 241 | L1 -3.157 | -2.182
FARE,
GDP Lou7 | .o2u -2.302 -.883 .053 | .026 -1.241 -.158
NFL, .028 | .023 3.782 1.312 .032 | .026 3.891 1.728
FARE, .070 | .060 -12.013 | -=17.350 .091 | .076 -9.435 | -14.823
GDP .037 | .034 7.725 8.503 .041 | .038 6.925 6.526
DA .061 | .054 22.378 27.611 .071 | .058 18.162 26.672
LF .800 | .LooO -.750 -.418 .874 | .u25 -.630 -.308
DR .503 | .470 -2.124 -1.792 .621 | .558 -1.664 -1.382
TIMEz 0575 051"'3 -5.393 -5-3‘4‘2 . ?26 .662 -4‘ .3’4’7 -4.3914'
ELEC .573 .534 3.404 3.57% .782 .661 2.765 1.798
DA .029 | .028 5.892 ‘5.6uo .029 | .027 4,656 3.992
DR 049 | .048 -8.905% -9.648 049 | 047 -9.289 | -10.697
STANDARD ERRORS and t VALUES COMPARISON between 2SLS and 3SLS Table 12.9
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LONG HADL MODEL 1968 - 1978 SHORT HAUL MODEL 1968 - 1978
Std error t+ Ratio Std error t+ Ratio
COBFFICIENT

2S1LS 3SLS 2SLS i 3SLS 2S1S 38LS 2S1LS 381S
NFLl . 021 .016 23.081 29.696 .036 .033 17.694 19.106
FARE, .153 | 023 -.642 -.459 349 | .13 -2.778 | -=3.308

FARE2
GDP .o48 . 007 -.057 -.041 .127 .050 -.381 1.373
NFL2 . 022 .022 7.600 7.4473 .082 .072 -.183 -1.516
FARE2 .157 | ..154 -5.907 -6.284 .136 .115 -5.384 -7.981
GDP Lokl . 040 7.165 7.435 .170 154 2.676 3.588
DA .079 | .066 25.475 30.763 .114 | .090 9.412 13.111
LF .571 . 090 -.845 -.337 1.407 .509 .217 - u66
DR .583 . 560 -1.850 -1.783 .297 .292 6 .4L7 7.253
TIMEZ .629 .612 -7.727 -7.792 . 292 .288 -3.082 -2.512
EIEC 611 . 593 1.695 1.117 .365 .359 9.479 9.603
DA .036 .036 5.630 5.648 .026 .025 7.466 6.784
DR . 092 .092 .100 .106 .069 .065 -9.791 -11.398
STANDARD ERRORS and t VALUES COMPARISON between 2S1LS and 3SLS Table 12.10

- 202 =
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RESIDUALS CORRELATION MATRIX

Reduced forms

EQUATION 1 EQUATION 2 EQUATION 3 EQUATION 4 EQUATION 5

1.000
-.772 1.000
.988 -.801 1.000
465 -.246 L34 1.000
.889 -.873 .892 470 1.000
POOLED MODEL
'1.000
-.741 1.000
. 995 -.794 1.000
.613 -.317 - .592 1.000
.927 -.842 : .924 .673 1.000
LONG HAUL MODEL
1.000 .
-.991 1.000
<999 -.991 1.000
-.990 .997 -.990 1.000
’996 '0997 -996 -'996 1.000

SHORT HAUL MODEL

Table 12.11
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CHAPTER 13
ABSTRACT MODES MODELS

The low degree of freedom, consequent to the small num-
ber of observations and the multi-equation structure
nature of our models that reduces further more the degree
of freedom, has not allowed a Pure Time Series analysis,
i.e, Region Pairs models.

In order to overcome this data problem, an abstract mode
approach is conducted for the 7 individual routes. This
approach has the advantage of increasing the degrees of
freedom by aggregating data across modes.:

Here also, the Stepwise Regression analysis is applied,
so as to select the most powerful explanatory variables
and to detect any multicollinearity.

The Regression analysis is, first, applied to the fol-
lowing traditional abstract modes formulation:

= NFL FARE TIME
D -o(o +l>(1 +o(2 +0(3 +°(u NFLg
NFLB FAREB TINEB

+<>(5 FARE +°(6 TIME, +0<7 GDP + Z

Where the variables are in logarithm and index B relates
to the best mode.

This single equation model is run on the two most import-
ant routes: London-Glasgow and London-Manchester.

In the London-Glasgow run, the Stepwise Regression has

selected NFL ‘as the most explanatory variable in the

NFLB

first step, and entered GDP variable in the second. The
variables introduced in further steps are not significant.
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While in this run, no serious collinearity shows between
NLF_ and GDP variables; in London-Manchester results, a

NFLB appears
collinearity/between FARE  (the first variable to enter)
FAREB
and NFL_ . This can be observed in the two following
NFLB

first steps of the regression.

2
R P NFL FARE

NFLy FIFE;

Step 1| .96 | 539 - .205

(.088)
Step 2] .98 | 385 | .278 |-1.556
(.098) | (.179)

London-Manchester Model

This collinearity is illustrated by the drastic vari-
tion of FARE variable coefficient and its standard

| B
error. This coefficient and its SE have respectively
varied from -.205 and .088, in the first step, to
-1.556 and .179, in the second step. ‘

The conclusion to be drawn is that while in London-
Glasgow, NFL_1is, in terms of statistical significance

NFL
B
and increase in R“, the most important variable; in

London-Manchester, FARE variable is the most impor-
FARER

tant one. The variables other than GDP show no signi-
ficance, in both models.

2

This conclusion suggests that long haul markets to
which London-Glasgow belongs, and short haul markets
to which London-Manchester belongs , may well be
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respectively estimated by the following models:

D A +X NFL +K gpp + ¢
0 1 Nprg 2 1
Long Haul
MODEL, 1
NFL =(30+€1D +fome 4+,
NFLo TIME.
B B
D = , +O< FARE +<>( GDP + ¢
! FARE; 1
Short Haul
MODEL 2 . - Z
FARE =(30 +(21 2 +
FIRE; | e

This structural form departs from the traditional abs-
tract modes formulation, since it introduces a second
equation. This is, in fact, dictated by the necessity
of identification. Indeed, the variables NFL and NFLB
in Model 1, and FAREg (i.e, Rail fare) in Model 2 are
endogenous. Hence, any effect on NFLB and FAREB ’
induced by the demand variation, might well be trans-
mitted to NFL_ and FARE . Therefore, the two latter
N,  FARE,
variables are plausibly endogenous, and their inclusion,
in the second equation, is appropriate.

The results, displayed in Table 13.1 , are interesting.
First, the statistical tests R and SE are very good;
the DW test shows no serial correlation. Second, the
magnitude of the demand equations coefficients are
significantly different with regard to the length of
haul; which means that the method of competition is
highly correlated with this factor.

The most powerful explanatory variables, NFL for the
NFL



- 207 =

long haul and FARE for the short haul, are highly
FAREB

significant, even at 99% level of confidence; and bear
the right sign.

1st equation | GLASGOW | EDINBURGH | NEWCASTLE

NFL coef .167 .248 .508
NFLy (.018 (.045) (.024)
Long Haul

1st equation | MANCHESTER | BIRMINGHAM | LEEDS | LIVERPOOL

FARE- coef -2.138 -5.781 -3.087 -3.766

FAREg (.094) (.585) | (.128)] (151)
Short Haul

In long routes, GDP variable is highly significant,
though in Newcastle its significance is only at 90%:
whereas, in short routes, it shows no significance at
all.

In the second equations, the most important coefficients,
namely Air and Rail demands, bear the right sign and

are significant at 99%, except for Glasgow where the
significance is at 80%.

2nd equation | GLASGOW | EDINBURGH | NEWCASTLE

D coef 642 1.290 3.114
(.330) (.520) (1.180)

Long Haul
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2nd equation | MANCHESTER BIRMINGHAM | LEEDS LIVERPOOL

D coef -.520 -.575 -. 284 -.248
(.070) (.177) (.054) (.078)
Short Haul

Finally, in long haul, except in Newcastle, TIME shows

B
a significance at 99% level of confidence; whereas, in

short haul, except in Birmingham, it shows no signifi-
cance.

It could be argued, however, that the "supply" equations,
defined by‘%%L_ and FARE , have no real economic mean-
Ly  FAREg

B
ings; which is quite true. 1In fact, the introduction

of NFL_ and FARE is a pure statistical device designed
FARE

B
to purge these endogenous variables from their correla-

tions with the error terms, in the demand equations,
and thereby, to prevent the Simultaneous Equations Bias.
In this sens, these variables constitute a technical ex-
pression rather than a "supply" one.
Furthermore./o%%n%%imary purpose is the derivation of
the demand elasticities, the inclusion of truly supply
equations ié not of a vital necessity to our analysis,
as long as the coefficients in the demand equations are
being purged from any bias. Therefore, the "supply"”
equations results could well have been ignored and not
displayed at all.




FIRST EQUATION

SECOND EQUATION

LONG HAUL g%%g GDP cst R® SE DW D %%%%E cst R?® SE  DW
.167 .27 -2.23 .83 .038 1.83 642 -2.675 1.85 .98 .054 2.19
LOND-GLAS (.018) (.09%4) (\434)  (.242)
, .248 413 -1.76 .69 .050 2.62 | 1.290 -1.070 3.55 .75 .121 2.61
LOND-EDINB (.045 (.129) (.529) (.282)
.508 174 =3.27 .95 .053 1.66 | 3.114 -3.620 8.32 .90 .152 1.63
LOND~-NEWCAS (.024) (.123) (1.180) (3.740)
FPARE 2 TIME 2
SHORT HAUL FAKE, GDP cst R SE DW D TV Cst R SE DW
" -2.136 .122 -3.50 .95 .060 2.02 | -.520 1.875 -1.64 .96 .029 2.03
LOND-MANCH (.094) (.171) (.070) (2.670)
ND-BIRN -5.781  1.743 3.19 .78 .37 1.8 | -.575 .271 -1.90 .89 .050 1.87
LOND- (.585) (.984) (.117)  (.119)
‘ -3.087 194 -2.56 .98 .084 2.26 -.284 ~-.894 -.89 .97 .030 2.26
LOND-LEEDS | ( 128) (.239) (.054) (1.173)
-3.766 .061 -2.8 .98 .09 1.86 | -.248 -.016 =-.76 .97 .020 1.86
LOND-LIVERP | ( 151) (.266) (.078) .071)

Table 13.1
ABSTRACT MODES

MODELS

- 602 -
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CHAPTER 14

URE AIR DEMAND MODELS

14.1 REGION-PAIRS MODELS

In this section, we attempt to conduct three pure Time
Series models on the following trunk routes:

London-Glasgow London-Edinburgh -London-Belfast

The restriction to these only Region-pairs is dictated
by the reasons below:

- These routes are the only ones for which a large num-
ber of Air observations are available, since the histo-

rical period span has been extendeds 1961 - 1978 instead
of 1968 - 1978 .

- These routes pertain to the long haul markets and are
highly business oriented. Therefore, it is not unrea-
sonable to conduct pure Air demand models on a Region-
rair basis.

DA =, +X, NPL, +O(, PARE, + &,

Where the variables in logarithm are as previously

defined. The reasons for this structure are straight-
forward:

- In the demand equation, only Air fare is considered,
since the available data do not cover the whole period.

= A8 the income variable GDP does not manifest any
significance in the long haul models, conducted so far,
it has been removed from the demand equation above.
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LONDON=-GLASGOW

LONDON-EDINBURGH

LONDON-BELFAST

FAREl

Cst

DA
LF

Cst

672
(.092)

-.006
(.091)

.138

R%=.92 SE=.0LO
DW=1.92

1.511
(.243)

.OLh
(.673)

-.343

R%=.91 SE=.060
DW=1.92

.545
(.110)

.123
(.150)

. 556

R%=.89 SE=.060
DW=1.60

1.456
(.229)

-.665
(.853)

.931

R%-.89 SE=.098
DW=1.60

-397
(.053)

- .00k
(.056)

1.240

R%=.92 SE=.039
DW=1.97

2.585
(.630)

<114
(1.465)

-3.480

R%=.88 SE=.099
DW=1.98

Pure Air Models(196l - 1978)

The results of the three runs above show the very good
overall fit of the demand equation, the absence of serial
correlations, the high significance of the frequency of
services variable, and the non significance ofthe fare.
In the second equation, the demand coefficients are all
significant; but LF coefficients are not.
Pits are very good.

Statistical
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These results are consistent with those obtained so far;
and, once again, the preponderance of the frequency of
services, as the most powerful explanatory variable, is
confirmed. This can be observed in the Stepwise Regres-
sion technique results. The first step of this tech-
nique shows the contribution of NFL, variable on the
explanation of the demand. This contribution is as fol-
lows:

LONDON-GLASGOW LONDON-EDINBURGH LONDON-BELFAST
2

R™ = .92 .88 .89
SE = .olb2 . 066 .0l1
F = 193.1 113.7 131.2
2

The above values of R™ indicate that the frequency of
services variable,alone, explains more than 88% of the
demand variation. The significance of NFLl as an im-
pertant factor explaining the demand, and the non signi-
ficance of FARE confirms, once again, the business
characteristics of these trunk routes.

The above results are obtained by 2SLS and are identical
to the 3SLS estimation results, since the Model is exac-
tly identified. This can be easily verified when con-
sidering the order condition for identification, below:

¢ -1 LK
Where:

G s is the number of endogenous variables ingluded
in the equation '

K : is the number of exogenous variables excluded
from the equation

When the model is identified, and the order condition#

# Note that the order condition is a necessary condi=
tion for identification, but not a sufficient one.
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above, is, for each equation, an equality rather than

an inequality, the model is exactly identified. 1In
such a case, all Multi-equation techniques provide the

same estimators. This is the case of our models.

14.2 PURE AIR BUSINESS TRAVEL DEMAND MODELS

Since all along this study, Air mode has shown some
business oriented characteristics, it appears reasonable
to estimate pure Air bBusiness travel demand models.

Data were collected from various CAA surveys conducted
at different periods, in different Airports. One of

the characteristics of these surveys was the information
concerning the value of business traffic. As explained
in the data chapter, the business travelers’figures have
been derived from the surveys undertaken in 1970, 1971,
1972, and 1975/76, involving the following routes:

London-Glasgow London-Aberdeen
London-Edinburgh London-Leeds
London-Belfast London-Liverpool
London-Manchester Glasgow-Manchester

The two following models have been runi
DA =°(0 +o(l NFL + 0K, FARE +l>(3 GDP + &,
NFL =($0 +(31 DA +(52 DIST + 2,

DA =« +X wFL +o(, 0P + &
NFL=(30+($1 DA +(32DIS'1‘ +&,

Where the variables in logarithm are:

DA = business demand
DIST= distance between Airport pairs

NFL, FARE, GDP : as previously defined.
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AIR BUSINESS MODELS

Equation DA Equation NFL
NFL FARE GDP  Cst DA DIST Cst
.577 =.034 ,228 =.219 | 1.609 .247 .4k9
2SLS 1. ou8) (.315)(.387) (186) (.517)
R%=.9l SE=.107 R%=.9k SE=.107
DW=1.75 DW=1.70
.590 -.109 .130 -.199 | 1.509 .207 -.401
3SLS 1(,032) (.236)(.279) (.186)(.510)
R%=. 94 SE=.106 R%=. 9k SE=.106
DW=1.75 DW=1.70
Equation DA Equation NFL
NFL GDP Cst " DA DIST Cst
2518 .573 .238 -.203 1.561 .363 -.391
and
3SLS | (.046)  (.401) (.226) (.605)
R®=.93 SE=.106 DW=1.66 | R°=.94 SE=1.77 DW=1.65

The above results show very good statistical fits and

reasonable DW test values.

Once again, and as expected,

the frequency of services variable NFL is highly signi-
ficant in both models (even at 99%); while FARE vari-

able is not significant at all.

This confirms the

business characteristics of these markets.

In both models, -GDP and DIST variables are not signi-

ficant.

The non significance of GDP may well be ex-

plained by its inappropriate ability to reflect the
income of the highest group of the population to
which these travelers generally pertain, )
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ly
However, in the second equation, surprising/enough. the

frequency of services elasticity appears to be indepen-

dent of the length of haul. This seems to suggest that
business travelers respond in a similar manner to the

frequency of services, whether in short or long haul .

It is interesting to compare the elasticity of the
frequency of services variable, in these two models,
with its corresponding value recorded in Pooled Model 3,
selected in Chapter 12.

Pooled Business | Pooled Business | Pooled Air/RAIL
MODEL 1 MODEL 2 MODEL 3
2SLS 577 573 . 583
3SLS . 590 .573% .613

NFL _Coefficient

# 2SLS and 3SLS values are identical, the model being

exactly identified.

The comparison above shows that although the samples,
considered for the business models and the competition
model, are completely different, the frequency of ser-

vices elasticity still has the same magnitude, around .60.

This confirms our previous results with regard to the
business characteristics orientation of the Air mode;
and provides additional confidence to their consistency.
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CHAPTER 15

APPLICATION OF THE MODELS

As stated at the begining, the purpose of this research
is to develop models that are sufficiently sensitive, 'so
as to quantify the variation of the traffic demand con-
sequent to any changes in the explanatory variables.
These models are also responsive, in the sens¢ that they
enable the policy maker to estimate the impact of alter-
native policies.

These models can/ggplied in forecasting; Chapter 12 has
provided measures of their forecasting accuracy. 1In
this section, we give examples of how these models could
be applied to the analysis of the demand variation , due
to changes in the frequency of services, trip time and
fares. These changes may well be due to technological
improvements in Air or Rail services, or implementation
of managerial strategies within the existing framework.

15.1 SCHEDULING FLEET PROBLEM

One of the most complex and critical tasks, facing the
management, is the scheduling fleet problem, because it
involves a balancing of conflicting objectives, such as
public requirements, economic efficiency, and operation-
al feasibility.

One of the most important inputs to the development of
the schedule is the level of demand, in a given region-
pair, since the main purpose of any scheduler is to at-
tempt to match the volume of supply to the amount of
the services demanded.

The public requirements provide an essential input to

the scheduling process, which has to be balanced against
the economic considerations on one hand, and the
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operational feasibility on the other. Since the unit
of supply is the flight, it becomes necessary to consi-
der the cost as well as the potential revenue of each
flight.

The scheduler looks at the profitability of a flight,
in terms of aircraft utilization and load factor which
are not independent of one another. One facet of uti-
lization is related to the length of haul. With shert.
hauls, a high utilization is difficult to achieve , be-
cause a higher percentage of the total block to block
time is spent on ground,and in the take off and landing.

In the final analysis, economic efficiency would neces-
sitate some trade-off between utilization, load factor,
and frequency. The weight attached to each of these
factors would vary according to the market.

In general, suppliers are assumed to be seeking to maxi-
mize their profit; that is to say, to maximize the dif-
ference between the revenues and the costs: P=R - C ,
subject to the maximum load factor constraint, and the
availability of the fleet.

In considering our models, we notice that Air demand
equations are characterised by the important role play-
ed by the Air frequency of services as the most deter-
minative factor explaining the demand. Moreover, this
factor is the only one that is truly under the Airline
control, since Air fares are subject to government re-
gulations. Our models enable the planner to assess
different values of the objective function P , corres-
ponding to different values of the frequency; there-

after, it only remains to choose the frequency that
maximizes this function, with regard to the maximum LF
constraint, and the fleet availability.
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15.2  EFFECT OF FARE

One of the common purposes of the econometric models is
the determination of the demand elasticity, with respect
to some traditional variables such as fare and income.
One advantage, particularly appreciated in Log-linear
models formulation, is that the estimated coefficients
represent the elasticities.

Since Air fare is not strictly an endogenous variable,
the capability of the Airlines to improve the demand by
acting upon this variable is rather restricted. How- -
ever, the elasticities derived from these models allow
the planner to estimate different levels of demand, cor-

responding to hypothetical variations in both Air and
Rail fares.

Table 15.1 displays the following hypothetical reductions
in Air fares 5%, 10%, 15%, 20%, 25%. For every reduc-
tion correspond four'hypothetical ones,in Rail fare:

5%, 10%, 154, 20%. The fare elasticities applied are
those of Model 3 (short haul), selected in Chapter 12.

Table 15.1 shows that Air demand may decrease, even if

Air fare decreases, because Air demand does not respond
to the absolute fare reduction, but rather to the rela=-
tive one.

- In particular, when Air fare decreases by 5% and when
Rail fare, respectively, decreases by 10%, 15%, and 20%,
accordingly, Air demand decreases by 2.4%, 5.2%, 8.3%.

- Equally, when Air fare decreases by 10% and when
Rail fare,respectively decreases by 15%, and 20%, Air
demand decreases by 2.6%, and 5.5%.

- Finally, when Air fare decreases by 15% and when Rail
fare decreases by 20%, Air demand decreases by 2.7%.

On the contrary, Rail demand is related to its absolute
fare, which is under the Railways control. From Model 3
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results, the following variations in Rail demand, conse-
quent to different reductions in Rail fare, can be es-

timated.

RAIL DEMAND INCREASE

RAIL FARE
REDUCTION Short Haul Long Haul
5% L.8% L.6%
10% 9.7% 9.2%
15% 14.5% 13.8%
20% 19.4% 18.4%

15.3 TRIP TIME EFFECT

Instead of deriving the Rail trip time elasticity from
the Rail demand equation, these Air-Rail models enable
us, as explained earlier, to derive it indirectly
through the fourth equation. This elasticity is measur-
ed by the product (51()2 ; where:

@11 3 is the elasticity of the Rail demand with
regard to the Rail frequency of services

62 :+ is the elasticity of the Rail frequency of ser-
vices with regard to the trip time

In the following are displayed Rail demand variations,
corresponding to hypothetical decreases in Rail trip

time.
% TIME, 56 10% 156  20%  25% @ 30%
% DR 3.9% 7.8% 11.7% 15.6% 19.5% 23.u4%

Long Haul Markets

The derivation of trip time elasticities is impor-
tant to the Rail management. It permits to assess
the effect upon demand of improvements in journey

time; such improvements being the resultsof techno-
logical developments, and efficient scheduling.
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FARE, | FARE, FARE; | AIRDMD % | RAIL DMB %
FARE,

% % % Short Long | Short
5% 0% 0% L.6%6] 4.8%
10% 5.5% -2.4% 9.2% | 9.7%
5t 156 | 11.84 -5.2% 13.8% | 14. 5%
20% 18.7% -8.3% 18.4% | 19.4%
5% -5.3% 2.3% h.6% | u4.8%
10 10% 0% 0% 9.2%| 9.7%
% 15% 5.9% -2.6% 13.8% | 14.5%
20% 12.5% -5.5% 18.4% | 19.4%
5% |-10.5% 4. 6% L.6%| 4.8%
152 10% -5.5% 2.4% 9.2%| 9.7%
15% 0% 0% 13.8% { 14.5%
20% 6.2% -2.7% 18.44 | 19.4%
5% |-15.8% ?7.0% b.6%| L.8%
208 10% 11.1% 4.9% 9.2%| 9.7%
’ 15% -5.9% 2.6% 13.8% | 14.5%
20% 0% 0% 18.4% | 19.4%
5% |=-21.0% 9.3% h,6%| 4.8%
25 | 104 |-16.7% 7.4% 9.2%| 9.7%
5 15% |-11.8% 5. 2% 13.8% | 14.5%
20% -6.2% 2.7% 18.4% | 19.4%

Table 15.1 |

AIR & RAIL DEMANDS VARIATIONS

corresponding to

HYPOTHETICAL REDUCTIONS IN AIR & RAIL FARES
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CONCLUSION

Model building is a hazardous nrocess in transportation
industry, and in recent years, has become more complex.
The high level of investment characterising the Civil
Aviation industry, and the high susceptibility of this
industry to political, economic, and other trends,
renders the forecasting process a useful and indispens-
able tool in planning for the future to face the chang-
ing circumstances.

Model building is an amalgam  of Science and Art; and as
such, it involves Social Sciences, Econmic Theories,
Mathematical techniques, experiences, and educated guess
of the modelers in choosing variables, methodologies, a
and specific relations. '

The stage by which the study of the demand for travel
has progressed from its state, some twenty yesars ago, to
the rather more satisfactory state are complex. The
first and more crucial change was the recognition that
travel decision emerge out of the individual's optimiz=-
ing behavior. So as individuals are assumed to be util-
ity maximers, the demand for travel ought to be positive
ly related to Disposable Incomes and negatively to
prices of travel.

The second important element was that a new and more
fruitful theory of Consumer Behavior could be devised

by assuming that travel services can be entirely charac-
terised by their attributes; and that the consumer
desires to maximize a utility function which has com-
modities attributes as its arguments rather than quanti-
ties of the various commodities consumed.

Despite their apparent diversity, Econometric Models
are little more than variants of the oldest formulations
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based essentially on price and income elasticities.

Besides particular disadvantages of each type of models,
they suffer from a common problem : by considering only
one aspect of the market, the demand for travel, they
ignore the effects of supply upon the demand, which
creates the Simultaneous Equations Bias. '

The models developed in this thesis overcome this draw-
back by introducing the supply equations and applying
2S5LS and 3SLS to derive unbiased, more consistent, and
more efficient coefficients. They are formulated as
Multi-equation supply/demand Modal Competition Models,
expressing the demand by each mode as function of the
level of service of the mode, the fare -~ absolute or
relative - and GDP variables.

The results obtained are consistent with the supply and
demand Microeconomic Theory. The most powerful explana-
tory variables in terms of statistical significance, in
both Air and Rail demand functions, bear the correct
sign and show reasonable magnitude. These variables

are the frequency of services in Air demand equation,
and the Rail fare and GDP in Rail demand equation.

The Air frequency of services coefficients are interest-
ing and wdrthy of discussion. First, their values low=-
er than 1, as it is expected, outlines the diminishing
return characteristics of the demand for travel. Second,
its high significance, even at 99% level of confidence,
and the very low or rather non existent significance of
the relative fares and GDP variables underline the busi-
ness and/or the higher income groups orientation of Air
travel market.

The high significanee of Rail fare and GDP variables$99%)
and the very low if not inexistent significance of Rail
frequency of services illustrate the orientation of
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Rail travel market involving, mainly, low income groups
and/or personal travelers.

The Aggregation by length of haul is found appropriate
and shows a strong fare competition over the Londonian
routes to and from Birmingham, Manchester, Leeds and
Liverpool. In longer routes, Glasgow, Edinburgh,
Newcastle, Air and Rail modes do not appear close subs-
titutes for each other.

The statistical significance of most coefficients, in
Air and Rail supply equations, as well as the goodness
of fit of these equations justify the Multi-equation
structure of these models. They also confirm the inter-
relations between the supply of and the demand for
travel through the frequency of services variables, as
well as the endogenous nature of Rail fare with respect
to both Air and Rail modes.

The potential existence of the Simultaneous Equations
Bias, due'to the two-way dependency supply/demand,

has necessitated the calibration of the coefficients
by means of Multi-equation techniques. While there is
no general agreement between modelers regarding the
best technique +to apply, 3SLS has shown remarkable
superiority over 2SLS, in our models. This superiority
being based upon both coefficients characteristics and
forecasting accuracy criteria.

The high significance of the Air frequency of services
illustrates its importance as a decisive factor influ-
encing the demand. This provides the Airlines manage-
ment the capability of improving the demand by acting
upon this controlable factor. This is of great import-
ande in the fleet scheduling process, where the schedul-
er is faced with the critical task of supplying the op-
timum number of flights that best take into account

the conflicting objectives, such as public requirements,
economic efficiency, and operational feasibility.
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¥ith the high significance of Rail fare, these models
also provide the Railways management with useful measures
of the effect upon demand of different ranges of fares.
This may be of interest for an efficient pricing policy,
since the Railways, contrarily to the Airlines, have mo
more freedom to set up their tariffs.

Rail journey time elasticities appear very close to the
values assumed by British Railways Board in their
Passengers Traffic Model(1980). These elasticities as
well as those of the electrification variable provide
measures of the impact upon the demand of the time and
the electrification improvement ; the effect of the

time factor being either the result of technelogical
developments, such as further routes electrification or
speeder trains introduction; or the results of efficient
schedules reducing the waiting time at the connections.

The simulation forecasts,tested by the Root-mean-square
error, the Root-mean?square per cent error, the Mean
error, the Mean per cent error measures, illustrate the
forecast accuracy of these models.

The estimation of pure Time Series models has necessita-
ted the use of a revised Abstract Mode approach. The
revision of this approach has consisted in introducing
"supply” equations designed to eliminate the potential
existence of the Simultaneous Equations Bias.

The results of this approach confirm the usefulness of
distinguishing between long and short routes. In the
short routes, the relative fare 1s the most powerful
variable, and its high elasticity, in absolute value,
illustrates the existence of a strong Air-Rail competi-
tion in these markets. In longer routes, the relative
frequency of services variable appears as the mos%t
powerful explanatory factor. Its low elasticity values,
however, except in London-Newcastle, shows the low com-
petition in these routes.
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The pure Air business demand models, and the pure Air
Region-pairs models confirm the previous results, that
is to say, the high explanatory power of the Air
frequency of services variable and the predominance of
business travelers and/or higher income groups in the
UK Domestic Air travel market.

As stated earlier, the models developed in this study
depart in many ways from the existence Modal Competi-
tion models. They constitute the first attempt of an
integrated supply/demand model in the field of the
travel competition modeling. However, their complex
structures and the sophisticated nature of their calib-
ration techniques may raise the question of whether
such models are worth conducting, since their computa-
tional cost may be high enough to outweigh the efficien-
cy gain. A clear answer, in favour of such modeling,
may be found in a further improvements of these models
by investigating more relevant data and increasing the
sample size. | |

Indeed, the supply equations need more elaborate formu-
lations. In fact, they are more "services equations"”
than truly supply ones. This made us,in the introduc-
tion of Part III, put an emphasis on the identification
of the demand functions as our primary purpose, the
supply eduations being essentially designed to combat
the Simultaneous Equations Bias.

The introduction of operating costs wvariables, parti-
cularly in Air supply equation, would be of great use-
fulness. The Aggregation by trip purpose, business/lei-
sure .for both modes, would likely provide meaningful
insights, since the trip purpose along with the length

of haul factor are very important elements in the
Choice Mode Decision.
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In conclusion, model building is a very complex process
that involves numerous aspects with various alternatives;
data investigation, variables and structural forms
selection, Theories application, choice of techniques
calibration. It is very much an Art, and part of this
Art is learning to trade off alternative aspects in
different ways.
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APPENDIX

ISTI PROPERT F_ESTIMATORS®*

The goal in a Linear Regression model is to fit an esti-
mated regression line ¥ = 0<+[5x which is in some sens
close to the true regression line. To test how the es-
timated line differs from the true regression line, some
useful statistical properties are desirable for any set
of estimated parameters.

Unbiasedness

An estimator ﬁ> is unbiased when the mean or expected
value of ,B is equal to the true value 3 ; that is
E[(}] P . The bias is defined as followss

Bias = E(f) -

Pigure 1 illustrates the difference between a biased and
an unblased estimator . While lack of bias in an esti-

mator is a desirable property, it implies, however,

nothing about the dispersion of the estimator about the
true parameter. In general, one would like the estima-

tor to be unbiased and also to have a very small dispere
sion about the Mean. One, therefore, should define a
second ¢riteria that allows to choose among alternative

unbiased estimators . ~

probabnity'f? Probability f
A 4

Pigure 1

AN L

BIASED ESTIMATOR UNBIASED ESTIMATOR

# The material in this appendix has been extracted from
Pindyck [13] .
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Efficiency

gis an efficient unbiased estimator when the variance
of /(; is smaller than the variance of any other unbias-
ed estimator. In practice, it is sometimes difficult

to tell whether an estimator is efficient, so that it is
natural to describe estimators in terms of their relati-
ve efficiency. One estimator is more efficient than
another if it has smaller variance. This is graphical-
ly shown in Figure 2 below:

A o
Probability (5 Probability P
A A
Figure 2
p ! p
INEFFICIENT ESTIMATOR EFFICIENT ESTIMATOR
gonsistency

PR
ﬁ is a cg\nsistent estimator ofﬁ if the probability
limit of f is B ; i.e, if the probability that |p-p|
will be less than any arbitrary small positive number
will approachl when the sample size gets infinity. 1In
other words, an estimator is consistent if the probabi-
lity distribution of the estimator collapses to a single
point, the true parameter, as the sample size gets
large. This is illustrated in Pigure 3 below:

”~
Probability F
4\

Figure

ESTIMATOR CONSISTENCY




