
Abstract 

In this study, the influence of electric vehicle (EV) range on 

overall performance of an EV fleet is analysed. Various case-

studies are investigated in which the EV fleet is simulated to 

cover a number of target points in a typical delivery problem. 

A trip scheduling algorithm is proposed in order to get all 

target points while considering the EVs range. The critical 

role of EV range in performance improvement of the whole 

fleet is analysed and an optimum EV range is obtained with 

regard to the whole fleet mileage. The results demonstrate 

that 250 km is an optimum range for an EV fleet to work in 

an area of 100×100 km². The number of target points, called 

task density, doesn’t affect the optimum EV range very much 

and it can be determined only based on size of the service 

area. Finally, lithium-sulfur battery is discussed as a 

promising technology to extend EV range. 

Keywords: electric vehicle range, fleet management, trip 

scheduling, battery capacity, lithium-sulfur. 

1 Introduction 

Electrified transportation systems would be inevitable in the 

near future. The existing delivery or taxi fleets are going to be 

replaced by clean and sustainable fleets in the near future. 

The existing fleet management systems need to be modified 

in respect to the features of an electric vehicle (EV) fleet. 

Fleet management software (FMS) is computer software that 

controls a series of specific tasks done by a fleet of vehicles. 

Various versions of FMS have been developed for 

conventional vehicles however; it is a new area for an EV 

fleet. In [1] the concept of using an EV fleet for ancillary 

services is discussed which works based on mobility and 

charging demand forecast. This needs enough data of the EV 

users and the infrastructure.  

There are a number of useful references in the literature 

focusing on vehicle routing problems (VRP) [2]-[4] or trip-to-

vehicle assignment problem developed for a fleet of 

conventional vehicles. The VRP, first defined by Dantzig e 

Ramser in 1959 [5] is a more general form of the traveling 

salesman problem adjusting for customers’ demands and 

vehicles’ capacities [6]. Another group of studies in the 

literature is focused on the applications of global positioning 

system (GPS) or global systems for mobile communication 

(GSM) in monitoring and management of a fleet of vehicles 

[7]-[9]. In this study, it is assumed that these technologies are 

available in EVs and they can find the best route to a target 

point using these devices.  

This study is specifically focused on an EV fleet managed to 

do delivery tasks in a surrounded area. A framework is 

proposed in which each EV moves based on a pre-scheduled 

trip plan every day while guaranteeing enough charge to 

return to a depot at the end. For this purpose, a trip- 

scheduling algorithm has been developed. The EV fleet get 

charged during night at a depot. This has advantages such as 

charging the batteries slowly which provides benefits in terms 

of battery degradation minimization and more efficient 

vehicle-to-grid interactions. On the other hand, the 

disadvantage of such a framework is its high dependency on 

the EV range. To make it clearer, a separate section is 

allocated to investigation of the effect of EV range on fleet’s 

performance. The whole fleet mileage is considered as an 

evaluation criterion of the fleet’s performance. Four case-

studies are designed and simulated by considering different 

task densities. In each case, the range of EV is changed from 

100 km to 400 km and total mileage of the fleet is obtained. 

Main contributions of this study are: (i) a trip- scheduling 

algorithm has been developed while considering the EV range 

constraint, (ii) the effect of EV battery capacity on an EV 

fleet’s performance is analysed.  

2 Electric Vehicle Fleet 

2.1 Problem statement and EV fleet’s structure 

In this study, a delivery task problem is considered in which a 

number of target points should be reached by an EV fleet. The 

fleet consists of a number of electric trucks that go out for 

their daily tasks and should be able to return to a depot every 

day. The EVs are assumed to be charged slowly over night by 

considering battery degradation in the proposed scenario. An 

algorithm is used to set the EVs’ trip plans every day 

regarding the number of target points and their locations. The 

advantages of the proposed scenario are: (i) the trip 

scheduling algorithm considers EV range constraints, (ii) the 

EV fleet is charged slowly during night at the depot which 

provides benefits in terms of battery degradation 

minimization and more efficient vehicle-to-grid interactions, 

(iii) although the simulations are performed off-line, the 

proposed trip scheduling algorithm is fast enough to perform 

on-line as well. The assumptions which are considered here 

are: (i) the target points for each day are determined a day 
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before and this is not a real-time target planning like a taxi 

booking system, (ii) the trip scheduling algorithm is run on a 

server in the depot assuming the availability of GPS and GSM 

communication facilities, and (iii) all the EVs should return to 

a depot after finishing their daily tasks.   

In such a scenario, the number of EVs, needed to be 

dispatched for getting all the target points, depends on the 

number of the points, target points’ locations and range of the 

EVs. As an example, a random distribution of 100 target 

points in a squared city with dimension of 100 km is 

illustrated in Figure 1. In Cartesian coordinate, the origin 

(0,0) is located in the left bottom corner and for simplicity, 

the depot is located in the centre of the city (x=50, y=50) as 

shown in Figure 1. 

 
Figure 1: a random distribution of 100 points in a squared city 

2.2 Fleet management algorithm 

A ‘trip ordering plan’ (trip scheduling plan) is needed in order 

to get all the target points in an optimum way. Different 

objective functions can be considered in such an optimization 

problem. Investigation and comparison of different 

optimization techniques is out of the framework of this study 

since it is specifically focused on the effect of EV battery 

capacity (EV range) in an EV fleet management system. 

Determination of the sequence of target points and number of 

EVs in a semi-optimum way while considering EV’s 

constraints is a challenging task which is done here by 

proposing a trip planning algorithm. For this purpose, a 

simple and efficient algorithm is proposed as follows: 

(i) the proposed trip ordering algorithms allocate a sequence 

of target points to each EV in a specified order, 

(ii) the plan for each EV is set in such a way that guarantees 

enough charge to cover all the target points and return to 

depot at the end without the need of fast charging during the 

journey, 

(iii) the fleet is charged slowly during night and all the EVs 

are fully charged every day before their journeys, 

(iv) the proposed algorithm works based on a concept 

presented in Figure 2.  

A disadvantage of this algorithm is its high dependency on 

the initial condition i.e. the starting point. Starting from 

different points can lead to significantly different results in 

this algorithm. To overcome this limitation, all possible initial 

conditions can be considered since the number of points is 

limited. This means that the algorithm is run as many times as 

the number of points (using different initial conditions) and 

the best initial point is determined based on an objective 

function ( f ). 

( ) min( ( )) , 1...best init if X f X for i n              (1) 

where 
best initX  is the best point to start with, 

iX  is a target 

point, n is the number of all target points and f is an objective 

function that should be minimized. Here, the objective is to 

minimize the whole fleet mileage defined as follows:  

1

( ) , 1...
dispatchN

i j

j

f X D for i n


                   (2) 

where 
jD  is the total distance (mileage) that the jth EV has 

moved to catch all the corresponding target points and return 

to the depot and 
dispatchN  is the number of EVs dispatched 

until all the target points are caught.  

It should be noted that the proposed algorithm gives a fast 

solution but not the optimum one. Obtaining the optimum 

solution of such a trip scheduling problem needs much more 

time and computational effort especially when the number of 

the target points goes up especially in an on-line application.  

 

 

Figure 2: flowchart of the proposed fleet management 

algorithm 

2.3 EV fleet movement simulation 

Performance of the proposed fleet management algorithm is 

evaluated by simulating different scenarios like the one 

presented in Figure 1. Referring to that figure, the trip 

ordering algorithm should be able to cover all the target 



points by dispatching EVs as much as needed. In Figure 3, a 

solution of the trip ordering problem is presented for the 

distribution shown in Figure 1. As demonstrated in Figure 3, 

all the target points are covered by the algorithm using 8 EVs. 

Mileage of the EVs are different but none of them is more 

than 200 km which is defined here as a constraint. As 

mentioned before, it is important to select the first point 

properly. To consider the effect of the initial condition, the 

algorithm is run at all the possible initial points and the best 

point is then selected. Indeed, simplicity and speed of the 

proposed algorithm allows us to try all the points as a 

candidate to start with. In Figure 3, the best initial condition 

has been used and the total fleet mileage is 1338 km in this 

case. The results of all possible initial conditions are 

demonstrated in Figure 4 in which the total fleet mileage 

changes between  

 
Figure 3: dispatching EVs to cover 100 target points 

 
Figure 4: the effect of initial condition on total fleet mileage 

3 Effect of battery capacity on EV fleet’s 

performance 

In this section, the effect of EV range on the performance of 

the whole fleet is investigated. It is expected that the range of 

the EVs plays an important role in such a scenario however, a 

quantitative relationship between the EV range and the total 

fleet mileage has not been addressed in the literature. In other 

words, we are trying to find an answer for questions like: how 

much percent does the total fleet mileage reduce by 10% 

increase in EV range? 

For this purpose, various case-studies are considered. In each 

case, the effect of EV range on the overall fleet mileage is 

assessed using the simulation technique explained in previous 

section. In order to produce different scenarios, either of the 

city dimension or the number of target points can change. 

Here, a combination of the both factors is used in a new 

variable called ‘task density’ which is defined as the number 

of target point per km². Four case-studies are analysed in 

which the task density changes from 0.01 to 0.1 as follows: 

Case-study 1: 100 target points randomly distributed in a 

10000 km² squared city. Task density is obtained 0.01 point 

per km². 

Case-study 2: 200 target points randomly distributed in a 

10000 km² squared city. Task density is obtained 0.02 point 

per km². 

Case-study 3: 500 target points randomly distributed in a 

10000 km² squared city. Task density is obtained 0.05 point 

per km². 

Case-study 4: 1000 target points randomly distributed in a 

10000 km² squared city. Task density is obtained 0.1 point 

per km². 

Random distributions of target points in the four case-studies 

are depicted in Figure 5. The goal is to cover all the target 

points by dispatching EVs using the proposed algorithm. The 

main contribution of this study, which is investigation of the 

influence of EV range on the overall fleet mileage, is also 

analysed by changing the EV range from 100 km to 400 km. 

In order to make the results more usable for future studies, a 

more general factor called “range to area ratio” (RAR) is also 

used as follows:  

(1 )
EV Range

RAR km
City Area

                      (3) 

Fleet simulation results in the four case-studies are presented 

in Table 1. Six EV range values are considered in each case-

study: 100 km, 150 km, 200 km, 250 km, 300 km and 400 

km. As expected, there is a direct relationship between the EV 

range and the number of needed EVs or the total mileage of 

the fleet. However, an interesting outcome is the highly 

nonlinear shape of this relationship. For example in case-

study 1, a 100% increase in the EV range from 100 km to 200 

km leads to 75% decrease in total fleet mileage whereas a 

100% increase in the EV range from 200 km to 400 km leads 

to 24.5% decrease in total fleet mileage. 

Doing the same analysis for case-study 4, gives a bit different 

numbers. A 100% increase in the EV range from 100 km to 

200 km leads to 88% decrease in total fleet mileage whereas a 

100% increase in the EV range from 200 km to 400 km leads 



to 24.1% decrease in total fleet mileage. This result 

demonstrates the effect of EV range at various levels of task 

density. The whole picture is more clearly presented in Figure 

6 where the effect of EV range on the overall fleet mileage 

reduction is illustrated in four case-studies. The fleet mileage 

reduction (%) is calculated in comparison to the case of 100 

km range of EV. These numbers are valid for a city in a same 

size (around 10000 km²). Two significant outcomes of Figure 

6 are: (i) doing such an analysis gives us an optimum range of 

EV regarding the overall fleet performance. This optimum 

range depends on dimensions of the service area. In this case, 

100×100 km² area, an EV range around 250 km would be a 

good choice. The results demonstrate that an EV range less 

than 200 km leads to a poor performance of the fleet whereas 

a range more than 300 km in this case doesn’t improve fleet’s 

performance anymore. (ii) the task density doesn’t affect the 

results very much since we can consider same optimum EV 

range in all case-studies. 

In order to scale the optimum EV range up or down, both the 

EV range and the city dimensions need to be multiplied by a 

same factor. For example, an EV range around 500 km would 

be a good choice for a 200×200 km² area. 

 

Table 1: fleet simulation results in four case-studies 

Case-

study 

Task 

density 
(point 

per km²) 

EV 

range 

(km) 

EV 

range/ 

area ratio  

(1/km) 

Number 

of EVs 

Total 

fleet 

mileage 

(km) 

1 0.01 100 0.010 54 5332 

1 0.01 150 0.015 17 1841 

1 0.01 200 0.020 8 1338 

1 0.01 250 0.025 7 1106 

1 0.01 300 0.030 5 1143 

1 0.01 400 0.040 3 1010 

2 0.02 100 0.010 99 9648 

2 0.02 150 0.015 21 2425 

2 0.02 200 0.020 12 1677 

2 0.02 250 0.025 8 1501 

2 0.02 300 0.030 6 1391 

2 0.02 400 0.040 5 1349 

3 0.05 100 0.010 193 19118 

3 0.05 150 0.015 32 4213 

3 0.05 200 0.020 18 2906 

3 0.05 250 0.025 12 2559 

3 0.05 300 0.030 10 2470 

3 0.05 400 0.040 7 2315 

4 0.1 100 0.010 343 35755 

4 0.1 150 0.015 49 6142 

4 0.1 200 0.020 26 4331 

4 0.1 250 0.025 18 3821 

4 0.1 300 0.030 14 3414 

4 0.1 400 0.040 10 3288 

 

 

 

Figure 5: distribution of target points in the case-studies 

 

Figure 6: the effect of EV range on overall fleet mileage at 

various levels of task density 

4 Lithium-Sulfur battery 

It was demonstrated in the previous section that how the EV 

range can significantly affect the overall performance of an 

EV fleet. This would in turn require a larger battery. Taking 

the best of today’s Lithium-ion technology with a specific 

energy of around 250 Wh/kg, a 212 kWh battery with a range 

of 200 km would require 848 kg of cells [10]. This could 

severely limit the payload of the EV, therefore new, lighter 

energy storage technologies should be considered. Among the 

new battery technologies developed for more capacity, lower 

cost and greater safety, lithium-sulfur (Li-S) is a promising 

technology, with a suggested specific energy up to 650 

Wh/kg. This number is roughly two to three times more than 

the specific energy of the existing Li-ion batteries in the 

market at the same price [11]. This offers the potential for the 



EVs to have a higher payload without compromising range 

due to a lighter battery. Referring to the results of this study, 

Li-S technology can be considered as a practical solution to 

improve an EV fleet’s performance. 

Although there are similarities between a Li-ion cell and a Li-

S cell, different electrochemical reactions taking place inside 

each of them make their performance different. Various 

reactions may take place inside a Li-S cell at different charge 

levels, cause that Li-S cell’s behaviour highly depends on 

state-of-charge (SOC). A number of useful sources of study 

on Li-S battery are reviewed in [12] and [13]. Figure 7 shows 

a Li-S cell and its schematic consisting of layers: 1) A 

Lithium metal anode; 2) A Sulfur-based cathode, which 

includes carbon or a polymer binder; and 3) A non-flammable 

electrolyte rendering the cell inherently safe [11].  

Li-S technology has developed dramatically, though it has not 

yet been deployed in a full-scale EV to date. In addition to the 

high complexity of the electrochemical reactions taking place 

inside a Li-S cell [14],[15], this type of battery has unique 

challenges from the control engineering point of view as well. 

For example, the state-of-charge (SOC) estimation methods, 

used successfully for other battery types, are not easily 

applicable for a Li-S battery due to the large flat region in 

open-circuit-voltage curve of this type of battery as shown in 

Figure 8. Sufficient power output and lifetime are currently 

two limiting factors for the application of Li-S battery in 

automotive industry. Assuming that mature Li-S technologies 

in near future will also provide required power and cycling 

life in an EV, Li-S advantages make it very attractive in his 

area. More research on development of Li-S batteries is going 

on. 

 

Figure 7: OXIS Lithium-Sulfur cell and schematic of its 

components [11] 

 

Figure 8: Li-S cell terminal voltage during slow discharge at 

C/30 

5 Conclusions 

A framework was developed for an EV fleet used for delivery 

tasks in a surrounded area. The proposed framework has 

advantages such as charging the batteries slowly during night 

at the depot which provides benefits in terms of battery 

degradation minimization and more efficient vehicle-to-grid 

interactions. On the other hand, the disadvantage of such a 

framework is its high dependency on the EV range. For this 

reason, the EV fleet’s performance was studied with focus on 

the effect of EV range. Four case-studies were considered and 

simulated with different task densities. In each case, the effect 

of EV range on fleet’s overall mileage was investigated by 

changing the EV range from 100 km to 400 km.  

The simulation results demonstrate a significant reduction in 

fleet’s overall mileage by increasing the EV range. A 100% 

increase in the EV range can lead to 24% to 88% reduction in 

fleet’s overall mileage. However, this is not a linear 

relationship and an optimum EV range can be determined 

based on the fleet’s service area. The results were presented 

for a 100×100 km² area. In this case, an optimum EV range 

around 250 km was obtained. It was also concluded that the 

task density doesn’t affect the results very much whereas the 

service area can significantly affect the results. So the 

optimum EV range needs to be scaled up/down with regard to 

the service area as discussed in section 3.  

An assumption in the simulations was a same EV range for 

the whole fleet. However, different factors can lead to a 

change in EV range such as load weight, road’s grade, battery 

degradation, etc. which are not considered here. Considering 

different EV ranges in a fleet is also possible in the proposed 

trip scheduling algorithm by applying minor modifications. 

Finally, Li-S battery technology was presented as a practical 

solution for increasing EV range by having around three 

times higher energy density in comparison to the existing Li-

ion batteries in the market at the same price.  
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