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Abstract— 3D object recognition is proven superior 

compared to its 2D counterpart with numerous 

implementations, making it a current research topic. Local 

based proposals specifically, although being quite accurate, 

they limit their performance on the stability of their local 

reference frame or axis (LRF/A) on which the descriptors are 

defined. Additionally, extra processing time is demanded to 

estimate the LRF for each local patch. 

We propose a 3D descriptor which overrides the necessity of 

a LRF/A reducing dramatically processing time needed. In 

addition robustness to high levels of noise and non-uniform 

subsampling is achieved. Our approach, namely Histogram of 

Distances is based on multiple L2-norm metrics of local patches 

providing a simple and fast to compute descriptor suitable for 

time-critical applications. Evaluation on both high and low 

quality popular point clouds showed its promising 

performance. 
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I. 0BINTRODUCTION 

Object recognition in 3D is an active research area as it is 

capable to maintain high performance while being less prone 

to external conditions such as illumination variation and 

pose changes [1], [2]. Such properties combined with the 

commercial low cost 3D information acquiring devices like 

the “Kinect” have boosted research interest in developing 

algorithms for object recognition in the 3D domain. 

Theoretical and practical implementations of such 3D 

proposals can be found in numerous fields and applications 

such as robotics, object recognition, surveillance and 

navigation [3]–[5].  

Although several proposals are yet available [4]–[9] all of 

them demand an accurate and robust Local Reference Frame 

or Axis (LRF/A) estimation on which the descriptor is 

calculated. Accuracy and robustness of the LRF/A highly 

depend on the complexity of the LRF/A algorithm which in 

turn has a direct impact on the entire processing time. The 

only exception to that trend is the Heat Kernel Signature [9] 

with a major disadvantage, i.e. its demand of a great number 

of RAM memory. 

Based on those facts in this paper we propose a solution 

that overrides the need of a LRF/A reducing dramatically 

processing time to a much lower level. In parallel the 
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descriptor achieves high performance even under the 

combination of noise and non-uniform subsampling of the 

point cloud. 

The rest of the paper is organised in the following 

sections. Section 2 presents a short literature review of the 

existing 3D pattern recognition algorithms. Section 3 refers 

to our proposed approach. Section 4 compares and contrasts 

our approach with the state-of-the-art existing local feature 

based algorithms. Finally section 5 concludes this paper. 

II. 1BRELATED WORK 

3D object recognition techniques can broadly be divided 

into global and local feature based. 

Global feature based techniques process and describe the 

object as one entity and have merely been used in 3D shape 

retrieval and classification [10]. Although their main 

advantage is computational efficiency [11], they demand a 

priori segmentation of the target from the scene and are not 

robust against clutter and occlusion  [12]. Examples of 

Global based techniques are the Shape Distributions [13], 

VFH [14], CVFH [15], OUR-CVFH [16], ESF [11] and the 

Projection Density Energy based solution [3]. 

Local feature based techniques describe local patches 

around a point of interest providing a valuable solution to 

partially visible objects in occluded scenes, in object 

registration, pose estimation and object recognition. Hence, 

a great number of local feature based pattern recognition 
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Fig. 1.  Example of matching local descriptors in 3D object recognition 
scenarios. Top scene from the Bologna dataset which is non-uniformly 

subsampled to 1/8 its original resolution and Gaussian noise (σ=30%mr) is 

added. Bottom scene is from the SpaceTime dataset. Green lines represent 
correct matches while red wrong correspondences. Red and blue crosses 

represent the randomly selected keypoints and their correspondences in 

respect. 
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attempts have been made with the trend being an extension 

of the already mature 2D pattern recognition algorithms to 

entirely new 3D approaches or solutions based on depth 

images. 

Representatives in the 2D to 3D extension are THRIFT 

[17], 3D SURF [18], 3D Harris [19] and 3D V-FAST [20]. 

Their main drawback is that a 3D sensor provides non-

volumetric data. Hence a pre-processing step is required to 

transform the data into voxels which increases the total 

computational time.  

Pure 3D approaches can directly be applied to the point 

cloud of the target or to its mesh. If mesh information is 

required, some extra time is needed to calculate the mesh 

itself, since 3D sensors provide only the relative distance to 

the target. Among the most well-known mesh based 

algorithms are RoPS [4], Spin Images [7], HKS [9], TriSI 

[21] and Tensor [22]. Direct point cloud based solutions are 

SHOT [5], 3DSC [6], FPFH [8], ISS [23] and the USC [24]. 

Except for HKS, all the aforementioned solutions demand an 

accurate Local Reference Frame or Axis (LRF/A) as 

descriptors are very sensitive to the degree of misalignment 

between LRF/A’s of the corresponding points. It is very 

challenging though to define a repeatable LRF/A under 

noise and/or point cloud density variation [25]. This demand 

adds to those approaches an extra calculation burden which 

increases the overall processing time. HKS is an exception 

because it ignores a LRF/A but it demands a great number of 

RAM memory in the order of 6GB for a point cloud of 

30,000 vertices [26]. 

Depth image pattern recognition is based on 2D 

projections of a 3D object on a defined reference frame. This 

hybrid 2D-3D version either exploits 2D methods based on 

SURF [27] and SIFT [12] or extends to dedicated 

approaches like BRAND [28] and NARF [29].  

The computer vision community has made many positive 

attempts in 3D pattern recognition achieving high 

performance while the target is under occlusion and clutter. 

It is still challenging though to design a descriptor achieving 

high performance and fast execution time without being 

prone to high noise levels and point cloud decimation.  

Our approach lies on the pure Local feature based 3D 

approaches and is grounded on three pylons. First, it avoids 

the LRF/A construction which increases the total processing 

time and even a minor misalignment affects to a large extent 

the overall performance. Second, it relies on the simplicity 

of the descriptor as long as spatial information is maintained. 

Third, it applies directly the algorithm to the point cloud 

such as to avoid any additional computational cost.  

Inspired by the Shape Distributions [13], the D1 function 

was modified and applied many times on a Local basis. 

Specifically, based on a point of interest i.e. keypoint, a 

spherical volume of radius r  was extracted and one point 

from the border of the local area was randomly selected as a 

local reference point. From that reference point the L2-norm 

distances to the vertices belonging to the local area were 

calculated. The advantage of dealing with distances and not 

with angles, as in the majority of the approaches [4], [7], [8], 

[21], [23], [24], [30], was the fact that the time consuming 

and sensitive to perturbations LRF/A was not necessary. In 

addition the relative L2-norm distances of the vertices to the 

reference point were fully robust to 3D rotations and 

translations. Our descriptor, named Histogram of Distances 

(HoD), transformed the distance signature of the local area 

into a Histogram by compressing information into properly 

sized and normalised bins. We adopted a normalised 

Histogram based concept to gain noise invariance and point 

cloud decimation. Finally, although the reference point was 

chosen randomly, it had to remain the same throughout the 

trial. 

Even though in the global based approaches the D2 

function was proven superior compared to the D1 [11], [13], 

the calculation of the L2-norm of all point pairs on multiple 

local spherical volumes increased the total processing time 

influencing its real-time performance. The proposed HoD 

descriptor is visualised in Fig. 2 and it showed high 

descriptive power being robust under heavy noise, point 

cloud decimation and to their combination. 

III. 2BHOD FEATURE DESCRIPTOR 

Given a point cloud 3P , each point of the cloud can 

be represented as  KizyxP T
iiii ,0,),,(   where K is the 

total number of points. For a given set of keypoints, a 

spherical volume with support radius r  centred on each 

keypoint was extracted. Keypoints could either be randomly 

selected or by applying the existing 3D keypoint detectors 

[26]. For each local area, one border point was randomly 

chosen as a reference point Pr which remained unchanged 

throughout all trials.  

Main difference between our implementation compared to 

Osada’s D1 shape distribution [13] was the extension to a 

Local basis and the substitution of the reference point by the 

centroid of the involved points to the border. The latter 

modification increased the robustness of the HoD descriptor 

by extending its L2-norm variability. Based on that reference 

point, the L2-norm was calculated for all vertices in each 

local area which was properly normalised and discretised to 

a pre-defined number of bins. 

Hence the L2-norm id between the reference point rP  and 

each point  , 0, ,iP i L L K   of the local area was given 

by: 

 r 2|| P ||i id P   (1) 

Noise invariance was achieved via the normalisation of 

the id distances and by obtaining the round-floor values 'id :  

 '
max( )

i
i

i

d
d B

d

 
  
 

 (2) 

Thereafter, the normalised distances 'id were encoded into a 

histogram namely the Histogram of Distances (HoD). To 

increase the descriptiveness of HoD, we concatenated the 

Kechagias-Stamatis O, Aouf N (2016) Histogram of distances for local surface description
2016 IEEE International Conference on Robotics and Automation (ICRA)

Stockholm, 16-21/05/2016.
DOI: 10.1109/ICRA.2016.7487402



  

 

coarse and fine normalised distances 'id by selecting 

properly sized bins B . Point cloud resolution invariance was 

accomplished by normalising the HoD descriptor to sum up 

to 1 [5].  

Existing approaches define the support radius of the local 

area as a multiple of the average model mesh resolution

 mr . We extended the mesh resolution invariance by 

substituting the support radius metric with a multiple of each 

scene’s mesh resolution  mr . Although mr was equal to 

the average resolution of all scenes, each individual mr  had 

a minor fluctuation from scene to scene. This methodology 

assisted much during the varying mesh resolution trials as 

each model’s local area support radius was adapted to each 

scene. A minor drawback was the slight extension of the 

processing burden as mr had to be real-time calculated.  

IV. 3BEXPERIMENTAL RESULTS 

Evaluation of the HoD feature descriptor was performed 

on the Bologna and SpaceTime dataset [5] and was 

compared with state-of-the-art feature descriptors. 

A. 6BExperimental Setup on the Bologna dataset 

1) The Bologna dataset was exploited comprising of 6 

models and 45 scenes. Models were taken from the Stanford 

3D Scanning Repository [31] and were randomly rotated and 

translated to create clutter and pose variations. In contrast to 

[32] we exploited the entire dataset and not a subset. 

2) The criterion to assess the descriptor was the popular 1-

precision vs. recall curve (PR) as in most recent papers [17], 

[21], [28], [30], [32]–[34]. The PR curve was based on a set 

of model features
M

if , a ground truth transformation and the 

corresponding scene features
S

if . A scene feature was 

matched with all model features based on their Euclidean 

distance and the Nearest Neighbour Distance Ratio criterion. 

If the ratio of the nearest model feature 
M

if with the second 

nearest '

M

if  were less than a threshold , then the scene 

feature 
S

if and the model feature 
M

if  were considered as a 

match. Furthermore, if the Euclidean distance of the physical 

location of the matched keypoints was less than half the 

HoD’s descriptor support radius, then the match was 

considered a True Positive (TP) and otherwise as a False 

Positive (FP). For fairness reasons we used the HoD’s 

support radius for all descriptors regardless of their 

individual values. Correspondences were established in the 

same manner. Recall and 1-precision were defined as [34]: 

 
#

#

TP
recall

correspondences
  (3) 

 
#

1
#

FP
precision

matches
   (4) 

By altering the NNDR threshold values (τ) in the range 

[0,1] we obtained the PR curve which ideally would be at 

the upper left corner. 

3) We compared the HoD descriptor with the state-of-the-

art descriptors SHOT [5], RoPS [4], and FPFH [8]. Each 

descriptor’s support radius was independently tuned on 

training scenes similar to the Bologna dataset. These scenes 

were non-uniformly subsampled to ½ their mesh resolution 

and Gaussian noise was added with a standard deviation of 

10% the average mesh resolution mr  [5], [35]. In contrast 

to [30], [32], [36] we chose the non-uniform sampling as in 

reality laser beam distortions can influence both the total 

number of points the cloud consists of as well as their spatial 

location.  

Time critical applications were our main implementation 

interest, therefore we randomly selected 100 keypoints from 

each model and extracted their corresponding ones in the 

scene based on their a priori known ground truth 

transformation. Random keypoint selection was preferred 

against exploiting a keypoint detector as errors of the 

 

 
 (a) (b) (c) 

Fig. 2.  Histogram of Distances (HoD) concept. (a) A spherical area of radius r (red) centred on a keypoint is extracted. (b) One random border point from 

the local area is selected as reference point (yellow) and the reference point to vertices L2-norms distances are calculated (in red as example). (c) The coarse 

and fine normalised distances were encoded into a Histogram of Distances  

fine coarse 
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detector did not affect the descriptor. Approaches listed in 

table 1 were used to extract the local features of all 

keypoints both for the model and their corresponding ones in 

the scenes. Performance evaluation was based on their PR 

curve. 

All trials and benchmarks were performed in MATLAB 

2015a and C++. Implementations in C++ where obtained 

from the Point Cloud Library (PCL) Version 1.7.2 [37] and 

RoPS from MATLAB File Exchange [38]. Beyond the 

support radius which was equal to the HoD’s, the rest of the 

parameters were fixed either to the ones originally proposed 

by their authors or to their PCL implementation [39]. 

Although FPFH had the smallest support radius compared to 

the rest of the descriptors, its performance peaked at a value 

of 20 mr . We confirm the evaluation in [39] which states 

that FPFH performance peaks for a certain support radius 

value and beyond that its performance drops as well as [40] 

regarding the direct relationship of SHOT with its support 

radius. 

The distance match metric for the HoD feature descriptor 

was the Euclidean while the rest feature descriptors used the 

original metric proposed by their authors. All approaches 

benefit from the kd-tree indexing in order to speed-up the 

matching stage. 

B. 7BRobustness to noise  

We evaluated and compared the robustness of our HoD 

descriptor against the descriptors of table 1 under various 

heavy noise levels. Trials included the addition of Gaussian 

noise with 200%,300% mr  to the 45 scenes of the 

Bologna dataset and was independently added to the x, y and 

z axes of each scene point [33]. For each noise level the PR 

curve generated is presented in Fig. 3. 

HoD and RoPS achieved best performance compared to 

SHOT and FPFH. For 200%mr  case, RoPS achieved a 

slightly higher recall compared to HoD. In the case of severe 

noise level though with 300%mr  , HoD outperformed 

RoPS. In both noise scenarios SHOT achieved moderate 

performance while FPFH was very sensitive to such a high 

noise level confirming [32]. 

In any case the computational cost of HoD was much 

lower compared to RoPS with a detailed processing time 

analysis following in Section IV-E.  

HoD achieved robustness to noise due to at least three 

factors. First, by ignoring the sensitive to noise LRF 

estimation on which the rest of the descriptors rely. Second, 

by using a border point as a local reference point. Instead of 

the fixed centroid, as proposed by Osada [13], our reference 

point was equally affected by noise like all the vertices in the 

local area, so distance perturbation due to noise had a minor 

impact. Third, the descriptor bin B  was partially large sized 

so that distance fluctuations due to noise still fall into the 

original noise-free bins. 

 

 

C. 8BRobustness to Varying Mesh Resolutions 

We evaluated and compared the robustness of our HoD 

descriptor against the descriptors of table 1 under various 

subsampled resolutions. In contrast to [30], [32], [36] we 

non-uniformly subsampled the noise-free scenes to 

 1 4,1 8  of their original mesh resolution. For each noise 

level the PR curve generated is presented in Fig. 4. 

HoD outperformed all competitors in both subsampling 

cases followed closely by RoPS. In both sub-sampling 

scenarios HoD gained both highest recall and precision. 

Although in the 1 4 subsampling case SHOT and FPFH had 

similar performance, in the 1 8  non-uniform subsampling 

case SHOT performed slightly better. 

D. 9BRobustness to combined Gaussian Noise and Varying 

Mesh Resolutions 

Our HoD descriptor was evaluated and compared against 

the descriptors of table 1 under various combinations of non-

uniform subsampling and Gaussian noise. Specifically, trials 

included 1 2  subsampling with 10% mr   and 1 8  with

30% mr  . For each subsampling - noise level 

combination the PR curve generated is presented in Fig. 5.  

For the first case, with non-uniform subsampling to 1 2  

the original resolution and with Gaussian noise with

10% mr  , HoD outperformed all approaches showing a 

robust performance under combined noise and point cloud 

subsampling.  

Regarding the 1 8  subsampling with 0.3 mr   noise 

case, HoD and RoPS achieved equally the highest 

performance. SHOT and FPFH achieved similar recall with 

SHOT though having greater precision. 

It is worth mentioning that in any noise level - 

subsampling case HoD was much more processing efficient 

compared to RoPS. 

E. 10BProcessing time 

For a fair comparison we compared the HoD descriptor 

only with RoPS as both were implemented in MATLAB. 

Comparison with SHOT and FPFH which were 

implemented in C++ is not valid as by definition C++ is 

faster. But even in that case, HoD in MATLAB was faster 

than FPFH in C++ due to the size of the support radius of 

the local area.  

Even though HoD included fully real-time point

Table I: Parameter values for the descriptors 

 Support radius  Descriptor Length Implementation 

RoPS 
40 mr  

135 MATLAB 

SHOT 
40 mr  

352 C++ (PCL) 

FPFH 
20 mr  

33 C++ (PCL) 

HoD 40 mr  240 MATLAB 
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4B

 
resolution estimation, neglecting the LRF calculation we 

reduced dramatically the processing time. Specifically HoD 

was 7.8 times faster than RoPS and 7 times faster than 

FPFH. HoD demanded 16ms/correspondence making our 

solution applicable to real-time applications even when it 

was implemented in MATLAB.  

F. 11BExperimental Setup on the SpaceTime stereo dataset 

We further evaluated the HoD descriptor on the 

SpaceTime dataset [30] which consisted of 6 models and 11 

scenes. Compared with the previously tested Bologna 

dataset, the SpaceTime was harder as it included models and 

scenes with fewer details. Trials considered the noise-free 

case using the same local area support radius while texture 

information was not taken into account. Due to the lower 

quality data, all descriptors performed poorer than 

previously.  

Higher recall and precision was achieved by HoD, 

followed by SHOT and RoPS  as shown in Fig. 6. In terms 

of processing efficiency under the MATLAB platform, HoD 

was 7.2 times faster than RoPS. 

 

 

V. 5BCONCLUSION 

We presented a simple and fast-to-calculate 3D descriptor, 

named the Histogram of Distances (HoD). By overriding the 

necessity of a Local Reference Frame or Axis estimation, we 

gained an overall processing time speedup while we 

maintained robustness to noise and/or point cloud resolution 

variation under clutter and occlusion. Compared to state-of-

the art approaches on two popular high and low resolution 

datasets, HoD gained a higher performance in total. HoD’s 

low processing time makes it a solution to time-critical 

applications in the field of computer vision based scenarios.  

 

  

 

         (a)              (b)                  (c) 

Fig. 3.  PR curves under various Gaussian noise levels (a) σ=200% mr  (b) σ=300% mr (c) Original and with σ=200% mr Gaussian noise 

(in mesh representation for better visibility) 
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(a) (b) (c) 

Fig. 4.  PR curves under varying mesh resolution (a) 1
4  (b) 1

8  (c) Original model and 1
8  Non-Uniform Subsampling 

(in mesh representation for better visibility) 
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Fig. 6.  PR curves on the SpaceTime dataset 
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