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1. INTRODUCTION 
 

Fixed pitch (stall regulated) wind turbines operate with the blades set at a constant pitch setting across the wind speed range, 
and can therefore be strongly affected by aerodynamic stall. Variable pitch (pitch regulated) control is employed on many 
industrial wind turbines such that the effect of aerodynamic stall is limited. For a given blade design, however, the maintenance 
of trailing edge separation, and thereby fully attached flow over the blade, cannot generally be achieved across the entire span 
for all wind speeds, even with variable pitch control. There will always be some range of wind speed where a wind turbine blade 
will, to some extent, be affected by localised boundary layer separation, particularly inboard on the blade. 

While fixed pitch wind turbines are generally cheaper and simpler than their variable pitch counterparts, their power capture 
characteristics will be considerably poorer, especially at the higher wind speed range. Ideally one would like to achieve the 
power capture capability of a pitch regulated wind turbine, but with the mechanical simplicity of a stall regulated version. 

Numerous studies have been undertaken to investigate flow control devices for the suppression of trailing edge separation 
and subsequent aerodynamic stall on aerofoil elements. Figure 1 presents the typical power curve for a 250kW stall regulated 
wind turbine with standard (clean) blades compared with the corresponding power curve expected with the application of an 
effective stall suppression flow control system, which would be able to recover much of the power lost to aerodynamic stall. The 
power curve with flow control would therefore be much closer to that expected of a corresponding pitch regulated wind turbine. 

S air jet exit area (m2) 
U freestream air speed (m/s) 
uj area averaged air jet exit velocity (m/s) 
x� chordwise distance from the leading edge (m) 
D� angle-of-attack (deg) 
G turbine blade pitch angle (deg) 
I air jet pitch angle (deg) 
\ air jet skew angle (deg) 
O turbine blade tip speed to freestream velocity  
               ratio. 
 

Nomenclature 
 
c aerofoil/blade chord (m) 
CA axial force coefficient 
CD drag coefficient 
CL lift coefficient 
CM quarter chord pitching moment coefficient 
CP air jet blowing momentum coefficient ( ) 
CN normal force coefficient 
Cp pressure coefficient 
CP power coefficient 
Cpt trailing edge pressure coefficient 
m mass flow rate through the jet (kg/s) 
q freestream dynamic pressure (Pa) 
Rec Reynolds number based on chord 
 

ABSTRACT 
 
An experimental study was performed to assess the feasibility of passive air jet vortex-generators (AJVGs) to the 
performance enhancement of a domestic scale wind turbine. It has been demonstrated that these simple devices, properly 
designed and implemented, can provide worthwhile performance benefits for domestic wind turbines of the type 
investigated in this study. In particular, this study shows that they can increase the maximum output power coefficient, 
reduce the cut-in wind speed and improve power output at lower wind speeds, while reducing the sensitivity to wind speed 
unsteadiness. A theoretical performance analysis of a 500kW stall regulated wind turbine, based on Blade Element 
Momentum Theory, indicates that passive AJVGs would be capable of recovering some of the power loss due to blade stall, 
thereby allowing attainment of rated power output at slightly lower average wind speeds. 
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In cases where there are significant stall effects at low wind speeds, where the Reynolds number is low, stall suppression devices 
could reduce the cut-in wind speed, allowing the wind turbine to generate some power at lower wind speeds. 

Naturally occurring flow separation caused by surface curvature can be delayed by the inherent mixing in turbulent boundary 
layers. Natural turbulent flow exhibits an effective self-mixing and transport mechanism but generally cannot, on its own, 
transfer enough momentum into the boundary layer to prevent flow separation in adverse pressure gradients. In order to delay 
the departure of the boundary layer from a surface, artificial flow mixing enhancement devices can be used to re-energize the 
boundary layer by increasing the kinetic energy of the low momentum near-wall fluid. 
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Figure 1: The effect of stall suppression flow control on a wind turbine power curve 
 
 
2. VORTEX-GENERATORS FOR WIND TURBINE PERFORMANCE ENHANCEMENT 
 
2.1 Vane Vortex-generators 
 

Various flow control methods which aim to reenergise tired boundary layers and thereby suppress flow separation, have been 
successfully developed. These include techniques such as vane vortex-generators1, steady air jet blowing2-4, pulsed blowing5-9 
and synthetic jets10-15. The technique of intensifying the fluid mixing rates by the artificial formation of boundary layer 
embedded longitudinal vortices has been found to be a particularly powerful method. The vortices act to entrain high-energy 
flow from the undisturbed outer air stream and transport it into the low momentum near-wall region deep inside the boundary 
layer. The first separation suppression devices investigated were classical vane type vortex-generators. These passive, 
mechanical vane vortex-generators, devised by Taylor and Hoadley1 generally consist of thin solid vanes fixed to the surface, 
usually positioned ahead of a separated flow region, at an angle to the on-coming flow. However, it has been demonstrated that 
vane vortex-generators impose a drag increase, arising from the local pressure increase due to the protrusion of the vane itself, 
and by an increase in surface skin friction underneath the resulting streamwise vortex. 

Vane vortex-generators were first installed on the NASA/DOE Mod-2, 2.5MW two-bladed, partial-span, tip controlled, pitch 
regulated wind turbine by Boeing16. Sullivan17 investigated vane vortex-generators on this 91.44m diameter rotor blade, to 
improve power conversion performance as well as to improve drive train stability. The vortex-generators were arranged in a 
counter-rotating system. Applying vane vortex-generators from 20% span to the tip resulted in projected increases in annual 
energy capture of 20% and reduced the wind speed to achieve rated power by nearly 3m/s. Applying vortex-generators only on 
the inboard section resulted in performance improvements of only half of this. 

Corrigan and Savino18 applied vane vortex-generators to the NASA Mod-0, 100kW, 39m diameter wind turbine to 
investigate their potential to improve aerodynamic performance. Vortex-generators, in a counter-rotating vortex system, were 
fitted to the turbine blade tip section (outer 7.31m) and tested in full-scale wind tunnel tests. Analysis of the wind tunnel results 
indicated that the net force in the plane of rotation could be increased by up to 30% upon installation of vane vortex-generators 
at full-scale. Once tested in the field, it was shown that a maximum of 30% increased power output could be achieved for wind 
speeds above 6m/s. 

Gyatt19 undertook field tests on the 77m diameter Carter 25, two-bladed wind turbine employing a counter-rotating array of 
vane vortex-generators for performance improvement. In this case performance improvement amounted to only a 6% increase in 
energy production at mean wind speed of 23.5m/s. Importantly, it was shown that the blades were very susceptible to bugs and 
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dirt on the leading edge. The vortex-generators were found to reduce significantly the sensitivity of blades to accumulation of 
this kind of leading edge roughness. 

Subsequent analysis combining wind tunnel testing of blade sections and blade element momentum theory calculations by 
Garrard20 indicated that, for a Howden and Co. HWP 330 turbine, even where quite large improvement in local CLmax could be 
achieved with vortex-generators, only very small increases in energy yield of around 1% could be achieved. Garrard suggested 
that the very high levels of performance improvements seen in the early field tests could be attributed to a high sensitivity to dirt 
on the blade surfaces which probably resulted in local separations that were easily cleaned up by vortex-generators. The NACA 
230xx profile of the Mod-2 was certainly found to be highly susceptible to dirt, and was later replaced by the GAW(1) profile. In 
support of this hypothesis, the computational model of the Mod-2 turbine of Afjeh et al21, which provided excellent prediction of 
the turbine performance with vortex-generators, over-predicted the power generated by the clean blades. 

Nyland22 employed the Mod-2 turbine and undertook experimental surface pressure measurements at a 33% span location. 
As expected, the vortex-generators were shown to change the shape of the pressure coefficient curves by increasing the peak 
values and delaying separation. Øye23 and Antoniou et al24 undertook field tests of the effect of vortex-generators on the 
performance of the Elkraft 1000kW wind turbine. The basic version of this turbine was found to underperform, compared with 
design calculations, and even with a 0.5o increase in blade pitch angle, the power capture was still some 6% below the design 
goal for a mean wind speed of 7m/s. This was traced to flow separation on the very thick inboard sections of the blade, which 
was suppressed using an array of counter-rotating vane vortex-generators, resulting in recovery to design power output. 

The results from these field tests of vane vortex-generators on full-scale wind turbines showed that their principle benefits 
are: 1) the suppression of flow separation from inboard thick sections, allowing the design of even thicker blade roots and much 
larger blades leading to machines of higher rated power, 2) the desensitisation of the flow to dirt accumulation, and 3) a 
reduction in the effects of dynamic stall related unsteady loading. 

 
2.2 Air Jet Vortex-generators 

 
An alternative to vane vortex-generators is an active fluid vortex-generating device, which was proposed by Wallace25. The 

idea was to use fluid injection via inclined and skewed (relative to the freestream flow) wall-bounded jets, to induce longitudinal 
vortices for flow control. Air jet vortex-generators (AJVGs) usually consist of an array of small orifices, embedded on a surface 
and supplied by a pressurized fluid source, wherein longitudinal vortices are induced by the interaction between the jets issuing 
from each orifice and the fluid flowing along the surface. Fluid mixing is promoted by the action of the vortices, and 
energisation of the boundary layer is also achieved through momentum injection into the lower layers of the boundary layer, 
much akin to the action of slot blowing and synthetic jets. The orifices are pitched with respect to the surface tangent and skewed 
with respect to the local fluid vector. AJVGs, unlike vane type vortex-generators, do not induce a large increase in drag at low D, 
and can be actively operated and controlled, depending on the flow characteristics over a surface. 

Oliver26-28 conducted low speed wind tunnel experiments on a 17% thick NACA 632217 aerofoil model of 0.5m chord. 
Experiments were performed at U=35m/s and Rec = 1.1×106 with a co-rotating array of AJVGs oriented at 30o pitch and 60o 
skew angle (which has been demonstrated to provide optimum vorticity generation in the boundary layer, and thereby mixing 
effect2), located on the upper surface at 10% chord. Each AJVG orifice was spaced at 0.1c interval. Oliver showed that, while 
high mass flow rates produce the best performance, aerofoil stall could be effectively delayed (by up to 6o angle-of-attack) with 
low blowing rates (Cμ < 0.01), thereby increasing the maximum lift force by up to 50%. These findings were confirmed by 
Vronsky29 with an AJVG array of similar design, applied to a 21% thick (NACA 63-421) aerofoil section model. 

In addition to wind tunnel test results of AJVGs, Oliver27,28 reported results of a full-scale field test of fan powered AJVGs 
applied to an Ecotecnia 20/150 150kW wind turbine. This was done in order to increase the energy yield by reducing energy 
losses in the region of the power curve ‘knee’. It was shown that the air jets were able to increase average power output from 
85kW to 95kW at 12m/s, and from 135kW to 150kW at 16m/s, effectively straightening the power curve prior to the 
achievement of rated wind speed. Taking into account the energy required to run the fans, the estimated energy yield increase 
was from 1% at 7m/s to 2% at 10m/s average wind speed. 

 
2.3. The Passive Air Jet Vortex-generator 

 
A further development of the AJVG is the passive version reported by Prince et. al.30,31 and Krzysiak32. Here the relatively 

high pressure air from the attachment line region on the underside of the leading edge of a blade is induced, via carefully 
designed contoured intakes, to the air jet orifice on the upper surface by the suction that exists there, as shown in figure 2. The 
passive AJVG embodies all of the benefits of the powered version but has the added benefit of requiring no additional energy 
input, operating purely by the action of the natural pressure difference between the attachment line and upper surface. 
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Figure 2: The passive AJVG concept for wind turbine blades 

 

This paper presents results of an initial wind tunnel test of the passive AJVG on two representative aerofoils of the type used 
for the wind turbine blade root region, and for the outboard region near the tips, as a means to demonstrate their effect. Results 
are also presented from a wind tunnel test investigating their effect on a 6-bladed, 0.87m diameter domestic wind turbine. 

 

3. TURBINE BLADE SECTION EXPERIMENTS 
 

3.1. The models and experimental arrangements 
 
An initial experimental investigation was undertaken to assess the performance enhancements that might be gained by 

applying passive AJVGs to a NACA 23012C aerofoil blade section model, similar to the type used for the outboard section of a 
wind turbine blade, and also on a similar model with a NACA 632217 profile more typical of an inboard blade section. The first 
model employed the NACA 23012C section - a modification of the standard NACA 23012 having increased camber and a 
modified trailing edge to promote separation (Green33). The model, of 0.481m chord and 0.74m span, was fitted with a spanwise 
array of 15 passive air jets of 4.8mm diameter circular orifices, located at 12% chord and spaced 45mm apart. Smoothly curved 
4.8mm diameter steel tubes connected the orifices to contoured intakes (3mm corner rounding) at 4% chord on the lower surface. 
The model was fitted with large end plates to enforce quasi-2D flow and with leading edge sand roughness transition strips. The 
air jet orifices were designed with 30o pitch angle and 60o skew angle to the local aerofoil surface and local flow direction 
respectively, as identified for maximum vorticity generation by Freestone2. 

The second model used a NACA 632-217 section, and was constructed with an array of ten passive AJVGs. The model was 
of span 0.975m and 0.8m chord, and the AJVGs orifices (10mm diameter) were located at 12% chord with 84mm spanwise 
separation. Both models employed the same jet local pitch and skew angles. 

Both models were instrumented with three parallel, chordwise arrays of 82 static pressure holes each, for the measurement of 
the surface pressure along chordwise planes passing through i) the centre of the orifice located on the centreline of the model, ii) 
the plane halfway in between this orifice and its adjacent orifice and iii) a plane half way in between these. The pressure holes 
were constructed from 0.5mm (inner-diameter) brass tube embedded flush with the model surface. One of the pressure holes in 
each array was located at the trailing. 

The momentum deficit through the wake was measured using a wake rake positioned one chord length downstream of the 
trailing edge. The rake consisted of 40 pitot probes and 5 static probes. The pitot pressure probes were spaced with 7mm 
intervals in the centre portion and 15mm intervals at the edge, having a total span of 350mm. The static pressure probes were 
used to capture static pressure gradients across the wake. These wake measurements, averaged between those taken on the span 
centreline as well as on a plane 20mm off centre, were then used for the calculation of the form drag coefficient using the 
method of B.M.Jones34. 

The pressures were acquired using a piezosensitive pressure measurement system. The accuracy of these pressure 
measurements is estimated to be 'Cp=±0.02 at a freestream speed of 35m/s, and ±0.05 at 25m/s. Spanwise time-averaged 
surface pressure distributions, obtained at rate of 320Hz over 30 seconds, were then integrated (trapezium rule) over the aerofoil 
surface to calculate the force and moment coefficients. From previous tests employing a similar density and distribution of 
surface pressure holes, the integrated normal force and pitching moments were found to be within 5% of the six-component 
strain gauge balance measurements at zero degrees angle-of-attack, reducing to about 1% at higher angles-of-attack. 

The NACA 23012C experiments were performed in the City University T2 low-speed wind tunnel across the wind speed 
range 15 – 35m/s (0.7×106 < Rec < 1.1×106), while the NACA 632-217 measurements were obtained in the City University T7 
wind tunnel across the wind speed range 5 – 25m/s (0.27×106 < Rec < 1.3×106). The models were pitched continuously in angle-
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of-attack while the freestream dynamic pressure was maintained constant. Solid blockage was estimated at a maximum of 14% 
for the highest angle-of-attack of D=30o. Accuracy of the geometric angle-of-attack measurements has been estimated at ±0.5o. 

 
3.2. Results from the NACA23012C blade section tests 

 
 A sample of the measured aerodynamic characteristics for the NACA23012C blade section are plotted in figure 3 for 
U=35m/s, Rec=1.1x106. Air jet exit conditions were measured using a small pitot probe traverse such that maximum CP was 
estimated at 0.0025 for D�= 18o corresponding to a jet-to-freestream velocity ratio of 1.25. Figures 3a) –c) present a selection of 
the measured surface pressure distributions, comparing the results from the clean (sealed air jets) model and those with passive 
air jets operating, where the data from the array of pressure tappings in line with the jet orifice centre, and from that midway in 
between jet centres, are both plotted. For the three cases shown, the air jet effect is seen to be a suppression of trailing edge 
separation (indicated by negative Cp at the trailing edge, and large plateau in upper surface Cp) and higher and more extensive 
leading edge suction. The lift curves for the clean aerofoil, and the passive air jet case, are compared in figure 3d). It can be seen 
that the passive air jets increased the maximum CL by about 14%. Analysis of the trailing edge pressure coefficient showed that 
the air jets delayed the onset of trailing edge separation by 'D�~ 2o. The occurrence of lift stall, identified by maximum CL , and 
pitching moment stall were also delayed by 'D�~ 2o by the passive air jets. In the angle-of-attack range 14 - 22o the passive air 
jets were found to have increased CL significantly which is indicative of the strength of leading edge suction. In addition there is 
seen, in figure 3e), to be a corresponding reduction in nose up pitching moment coefficient.  These effects are identical to those 
that would be expected of active air jets, blown at the same average CP, but are achieved by a passive process with no active 
energy input. The comparison of the variation of drag coefficient, CD, with angle-of-attack, is presented in figure 3f).  Here the 
dashed line at D = 20o indicates the limit of acceptable accuracy in the magnitude of drag coefficient, due to the wake at higher 
angles-of-attack being so extensive that the wake rake was no longer able to traverse its full extent. The authors had expected 
that a significant drag increase, at low D� would occur with the introduction of the passive air jets, arising from a boundary layer 
displacement effect. The experimental evidence, however, did not support this hypothesis. The experimentally inferred drag 
coefficient at low angles-of-attack was not found to be significantly different with or without the passive air jets. 
 

 

              
                a) Cp versus x/c, D = 16o                             b) Cp versus x/c, D�= 18o                             c) Cp versus x/c,�D�= 22o     
 
 

               
 

                          d) CL versus D                                                 e) CM versus a                                            f) CD versus D 
 

Figure 3: Variation with incidence of the aerodynamic characteristics for NACA 23012C model at U=35m/s, Rec =1.1x106. 
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3.3. Results from the NACA 632217 blade section tests 
 

A selection of the measured surface pressure data for the NACA 632217 section model is presented in figure 4a) – c), where 
the Cp distributions for the clean aerofoil case and that with open passive air jets are compared for angles-of-attack of 16, 18 and 
22o for U = 25m/s (Rec=1.3x106). The data for the passive air jet blowing case is the averaged pressure between that measured in 
line with the jet orifice centre, and at the same x/c location, midway in between jet centres. In this case the air jets are also seen 
to suppress trailing edge separation, as indicated by the level of Cp at the trailing edge and the extent of the rear pressure plateau. 
Comparison of the variation of the integrated pressure forces and moments for the NACA 632217 model is presented in figure 
4d) - f) for the 25m/s wind speed case, and reveals that passive air jets have a similar enhancement effect on the aerodynamic 
characteristics on this thicker aerofoil section model. In this case the passive air jets have increased maximum CL by 
approximately 8%, delaying stall by 'D�~3o. Pitching moment divergence was delayed by 'D ~2-3o. Figure 4f) shows that, 
within the accuracy of the experimental instrumentation and numerical integration routine, there did not seem to be any 
appreciable effect of passive air jet blowing on drag coefficient at low angles-of-attack. Only small drag reductions, in the range 
18-21o angle-of-attack, were found.  

These results, on statically pitched, unswept aerofoil models have confirmed that a spanwise array of passive AJVGs can 
delay effectively trailing edge separation, and the subsequent stall, to higher angles-of-attack, resulting in increased achievable 
CL while also delaying drag and pitching moment divergence. The passive AJVG, making use of a purely natural process, can 
achieve worthwhile aerodynamic performance improvements in such cases, but it remains to be demonstrated that these 
performance improvements can yield benefits with the unsteady and fully three-dimensional flows encountered by wind turbine 
blades. The next section presents the results of an experimental test of the passive AJVG applied to a domestic wind turbine. 

 

             
                  a) Cp versus x/c, D = 16o                             b) Cp versus x/c, D�= 18o                             c) Cp versus x/c,�D�= 22o     
 

           
 

                          d) CL versus D                                          e) CM versus a                                            f) CD versus D 
 

Figure 4: Variation with incidence of the aerodynamic characteristics for NACA 632217 model at U=25m/s, Rec=1.3x106.  

 
 

 

4. DOMESTIC WIND TURBINE TESTS 
 
4.1. The test turbine and experimental arrangements 

 
The Aero4Gen-F 120W, 6-bladed, domestic wind turbine, manufactured by LVM Ltd. was used for this series of tests. The 

rotor has a swept diameter of 0.87m, with blade planform shown in figure 5. The blade employs one aerofoil section with a twist 
of 15o at the tip relative to the root. One set of six baseline blades was tested, and another separate set of six blades were 
modified to incorporate a spanwise array of 21 passive air jets. The 2mm diameter jet orifice was set at the standard 30o pitch 
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and 60o skew angle (where the jets were oriented outboard towards the tip), and were located in an array 10mm from the leading 
edge chord line on the upper surface with the contoured inlets at about 5% chord on the lower surface. 

The turbine employed the 12V LVM412F generator rated at 120W for a wind speed of about 20m/s which incorporates 3-
phase brushless alternators using a Neodymium-Iron-Boron permanent magnet rotor. The generator casing was modified to 
allow air blown cooling around the generator coils in order to eliminate any temperature variation effects. 

 

      
 

Figure 5: Aerogen Aero4Gen-F turbine and its blade geometry (upper surface planform view) 
 
 

The turbine was mounted centrally in the working section of the City University T7 Wind Tunnel from a 2.5cm diameter 
steel pole from which the turbine was fixed rigidly to face the wind stream. The voltage output from the generator was passed to 
a LabVIEW data acquisition system (DAQ) together with the tunnel dynamic pressure output from a FCO318 pressure 
transmitter. Two Ohmite wire-wound, vitreous enamel tube-type resistors, each rated at 2W and 300W, were placed in series 
with the generator to act as the load. The specific choice of load resistance R=4: was made with the intention to restrain the 
rotational rate of the turbine at high wind speeds to protect against structural vibration.  

The speed of rotation of the turbine during the experiments was determined by employing four steel screws that were used to 
fix the turbine to the generator’s shaft as inputs to an IMO-M12-PNP 3-wire inductive proximity switch that was mounted on the 
generator’s outer shell. With rotation of the turbine, the passing of the mounting screws by the location of the proximity switch 
caused it to produce a series of pulses, the rising edges of which were counted using the in-built capabilities of the DAQ system 
to determine the frequency of rotation. Power for the proximity switch was supplied by an EZ-GP4303D DC variable power 
supply set to provide 10V. The pulses generated by the proximity switch were passed to the DAQ through the same means as for 
the FCO318 pressure transmitter and generator voltage outputs. Synchronous measurements of output power, rotor speed and 
tunnel wind speed could therefore be obtained. 

The power output was calculated in the DAQ software by processing the instantaneous reading of generator output voltage, 
sampled at a rate of 250Hz over a period of 1 second, to give a root-mean-squared voltage, which was then combined with the 
total resistance of the load to give the root-mean-square power output. In the calculation of power coefficient, CP , the blade 
swept area was used as the reference area.  

During each test the T7 tunnel was switched on at its minimum operating velocity and the wind speed was then increased in 
steps of 'U of 0.25m/s until autorotation of the turbine was initiated. The turbine was then allowed to idle at this cut-in wind 
speed for a period of 10 minutes, so as to allow the generator’s output to stabilise. Such an approach was based on a series of 
preliminary tests with the generator that indicated its voltage output varied slightly with time due to increasing temperature, but 
that this effect was limited by air cooling the generator coil. 

At the end of the initial stabilising period, the tunnel speed was then increased in steps of approximately 0.5m/s until the 
maximum wind speed of no more than 14m/s was achieved. At each new wind speed the turbine was allowed to stabilise for a 
period of 60s before measurements were recorded for a period of 30s. Throughout each of these 30s data logging periods 
continuous readings of the voltage output and tunnel speed were sampled at a rate of 250Hz. A buffer size of 1s was used in 
measuring turbine performance, so that readings of the rotational frequency were effectively made only once every second. The 
root-mean-square voltage, and hence the output power, were also assessed at 1 second intervals. Once the maximum wind speed 
was reached the tunnel speed was then reduced in steps of 1.0m/s until the point at which the turbine stopped auto-rotating was 
reached, ie: at the cut-off wind speed. Experiments were performed for the turbine with blade sets with and without passive air 
jets, and for different blade pitch settings, G , where the default blade pitch setting was regarded as G = 0o. This corresponded 
with a root aerofoil geometric pitch setting of -25o from the vertical rotor plane and the tip set to -10o. Each experiment was 
repeated three times for consistency.  

 
 

 
4.2. Results from the wind turbine study 

 
The measured variation of power output with wind speed, for the turbine with baseline blades set a zero blade pitch, is plotted in 
figure 6 for four separate tests. The data shows that the power curves are completely repeatable, within the experimental 
measurement accuracy. Interestingly an effect of viscous hysteresis was identified, with the sudden spin-up of the turbine 
occurring at around U = 10m/s, as the wind speed is increased, while the corresponding spin-down occurs at the lower U = 9m/s 
as the wind speed is reduced. This can be explained as the result of the flow over the blades being stalled along part of their span 
at low rotation rates, and that as the flow speed builds up, along with the local Reynolds number, the boundary layer suddenly 
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attaches, the blade un-stalls and the blades spin up. The reverse process happens during the speed down of the wind tunnel, but 
the stall occurs at a lower wind speed because of the inherent energy in the boundary layers due to the higher circumferential 
velocity. If the passive air jet technology can be designed to allow the blades to un-stall earlier during tunnel speed acceleration, 
and/or stall later during the tunnel deceleration phase of the experiment, then real performance benefits could be achievable with 
the technology, as higher power yield might be possible at lower wind speeds, and the turbine might perform more effectively in 
gusty wind conditions. 
 
 

   
                  
                                   a) Power plotted against wind speed                    b) log of power plotted against wind speed 

 
Figure 6: Repeatability of turbine power output for standard blade pitch (G = 0o) 

 
 

Figure 7 presents the results of a series of tests to assess the sensitivity of the turbine to blade pitch angle, G. Tests were 
conducted with all six blades set at +5o and -5o blade pitch, and revealed considerable performance sensitivity to blade pitch. 
Figure 7 shows that increasing G  to +5o moves the cut-in wind speed from the baseline ~4.2m/s, to about 5.5m/s, with the result 
that, at a given wind speed above cut-in, the power yield is considerably less than that generated with zero blade pitch. In 
addition, the spin-up wind speed was found to be delayed until ~11.5m/s, compared with around 10m/s with zero blade pitch. 
The un-stalled blades set at G�= +5o, were found to generate marginally more power for a given wind speed above spin-up. 
During wind speed deceleration the blade stalling event was found consistently to occur at ~9.5m/s, which is about 1m/s earlier 
than with zero blade pitch. The result is a much larger effect of aerodynamic hysteresis. Reducing the blade pitch angle to�G�= -5o 
resulted in a 0.2m/s reduction in the cut-in wind speed, and significantly higher power levels prior to the spin-up event. The un-
stalled blades set at G�= -5o, however, were found to generate significantly less power for a given wind speed, and there was no 
significant aerodynamic hysteresis effect seen in the data. 

 
 

    
 

              a) Power plotted against wind speed                 b) log of power plotted against wind speed 
 

Figure 7: The effect of blade pitch setting for the clean bladed wind turbine 
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Once the performance of the turbine with clean blades was established, the experiment was repeated with the six modified 
blades with air jets. Figures 8, 9 and 10 present the comparison of the turbine performance with, and without passive air jets, for 
blade pitch settings of zero, -5o and +5o respectively. For the zero pitch case, presented in figure 8, the air jets were seen to 
reduce the cut-in wind speed by about 0.3-0.4m/s and deliver a small increase in power output prior to the spin-up event. The un-
stalled blades then provide marginally greater (about 3 – 5W extra) power yield over the baseline levels for a given wind speed. 
During wind speed deceleration, the air jets were found to maintain attached flow performance to a wind speed of 8.2m/s, 0.8m/s 
lower than seen with the clean blades, resulting in a much wider power hysteresis loop. These results were found to be 
repeatable, and suggest that the passive air jets did, successfully, reduce cut-in wind speed and improve the performance of the 
stalled blades at lower wind speeds. However, only a marginal improvement in maximum power output was observed. In 
addition, the reduced wind speed at which the blades stalled, during wind speed deceleration, suggests that the air jets would also 
reduce turbine sensitivity to gusty wind conditions, allowing for higher average power output.  

 
 

     
 

                a) U versus output power                                    b) U versus CP                                          c) U versus log10(CP) 
 

Figure 8: Comparison of wind speed versus power output for the clean bladed and passive air jet controlled turbines for zero 
blade pitch setting. 

 
 

Similar results, presented in figure 9, were found for the G = -5o pitch setting. The passive air jets introduced aerodynamic 
hysteresis effects into the power curves, where none existed for the clean blade case. The spin-up occurred at ~0.5m/s lower 
wind speed than seen with clean blades, while the corresponding stall event during wind speed deceleration occurred at a speed 
1m/s lower. A much extended range of wind speed giving high power output was therefore found possible with passive air jets, 
which would result in less sensitivity to gusts in atmospheric operation. However, a small reduction in maximum power 
coefficient, of less than 0.01, was seen with the application of air jets at this blade setting. 
 

     
 

                a) U versus output power                                    b) U versus CP                                          c) U versus log10(CP) 
 

Figure 9: Comparison of wind speed versus power output for the clean bladed and passive air jet controlled turbines for -5o 
blade pitch setting. 

 
 

For the G = +5o pitch setting, the results for which are plotted in figure 10, the air jets are seen to delay the spin-up event to 
a wind speed 0.2m/s higher than that seen with the clean bladed turbine. This is a detrimental effect, and might be indicative of 
the air jets exacerbating an already chaotic separated flow field. The cut-in wind speed is not seen to be affected by the air jets, 
nor the power levels prior to the spin-up event. The only beneficial effects were found to be a slightly higher maximum power 
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coefficient – an increase by 0.015, at the highest wind speeds, and a 0.5m/s delay in the stalling wind speed during wind speed 
deceleration. This is consistent with the findings of previous studies of air jet vortex-generators, which have shown that they are 
much less able to reattach a flow that is significantly stalled, than one with only moderate levels of flow separation.  
 

     
 

                a) U versus output power                                    b) U versus CP                                          c) U versus log10(CP) 
 

Figure 10: Comparison of wind speed versus power output for the clean bladed and passive air jet controlled turbines for +5o 
blade pitch setting. 

 
 

Figure 11 plots the variation of output power coefficient with averaged (rms) blade tip-speed to wind-speed ratio, Orms , for 
the turbine with blade pitch set at zero, with and without passive AJVGs. Above Orms of about 1, the passive air jet effect is seen 
to provide higher levels of power coefficient for a given tip-speed ratio, particularly at the higher tip-speed ratios. Maximum CP 
is seen to increase from a figure of 0.27 with clean blades, to 0.285 with blades with the passive AJVGs. 

The hub and blade assembly with, and without the air jets, were both weighed on electronic scales in order to assess the 
level of mass reduction due to the drilled out material missing from the modified blades. This removal of material in 
implementing the air jets resulted in only 0.05% reduction in blade mass. The inertial effects, and the effect of any friction force 
changes in the generator due to the change in weight of the blade/hub assembly are not expected to have made any significant 
effect on the turbine performance, and it is suggested that the measured performance changes are genuinely aerodynamic in 
nature. 

In summary, this experimental study applied to a small domestic wind turbine has demonstrated that simple passive air jet 
vortex-generators, properly designed and implemented, can provide worthwhile performance benefits for this class of turbine. 
The question remains as to whether such a flow control device could improve the performance, and similarly reduce the 
sensitivity of power output in gusty conditions, for an industrial scale stall regulated wind turbine. The next section aims to 
address the first part of this question by applying theoretical analysis to the performance prediction of a 500kW wind turbine. 

 

 
 
Figure 11: Comparison of tip speed ratio versus power coefficient for the clean bladed and passive air jet controlled turbines at 

zero blade pitch setting. 
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5. THEORETICAL ASSESSMENT OF PASSIVE AIR JET VORTEX-GENERATORS ON AN INDUSTRIAL SCALE 
HORIZONTAL AXIS WIND TURBINE 
 
 A computer code implementing blade element momentum theory (BEMT) was written in order to estimate the effect of 
passive air jet vortex-generators applied to an industrial scale wind turbine. The code incorporated the tip loss model of Prandtl, 
described by Glauert35 and the Glauert correction for high levels of axial induction35,36, but the 3D effects associated with 
viscosity, such as the Himmelskamp effects37, and dynamic stall, were not deemed to be of importance to this simple analysis, 
which assumed steady wind with no cross-flow component. The blades were also assumed to be rigid. This analysis, while only 
using simple momentum principles and 2D flow assumption is, nevertheless, expected to resolve the overall effect of the flow 
control devices, and provide a reasonably accurate assessment as to the level of performance benefit achieved by their use.  
 The Nordtank NTK 500/41, 500 kW rated, wind turbine at Risø National Laboratory in Denmark, was chosen as the test case 
for this study since there is a significant amount of published performance data. The details of the design and operation of this 
turbine, and the experimental performance data obtained from it since 1995 is presented in references38-40. In summary, the 
turbine is a stall regulated, fixed pitch design, with 3 blades (LM 19.1) of 41m swept diameter. Its hub height is 35m above the 
ground. The turbine is operated at a fixed rotational speed of 27.1rpm. with a cut-in wind speed of 4m/s and a cut-out wind speed 
of 25m/s. The blades, whose planform and profiles are detailed in references 24 - 26, have FFA-W3-xxx series aerofoil sections 
(30% thickness at 8m span to 24% at 10m span) inboard, and NACA 63-4xx sections (18% thickness at 12.5m span to 16.5% at 
16.5m span) outboard, with chord length reducing from 1.63m at 4.5m span, to 0.265m at the tip. Blade twist angle (relative to 
the blade tip) was 20 degrees at the 4.5m span station.  

Two dimensional aerodynamic data tables for CL and CD, over the incidence range -90o < D < +90o, were constructed for both 
the FFA W3 sections and the NACA 63-4xx section, with the aid of data presented in references 40 and 41. The BEMT code 
used 2D data for four aerofoils according to an input file providing details of twist, chord and aerofoil geometry at the centre of a 
set number of spanwise elements. Baseline (no flow control effects) calculations were performed for the case of 16, 24 and 32 
spanwise elements along the blade. The resulting output power and blade loading predictions with 24 elements were within 5% 
of the figures obtained using just 16 elements, but showed no significant difference with the figures given with 32 elements 
along the blade. The analysis was therefore undertaken using 32 elements to define the blade geometry and associated 
aerodynamic loading. 
 Figure 12 presents the comparison between the experimentally measured, and BEMT predicted variation of output power and 
the associated power coefficient, with steady wind speed (inverse tip speed ratio for CP) for the baseline Nordtank NTK 500/41 
turbine. The time averaged power output is plotted, along with the curves indicating the maximum and minimum instantaneous 
power measured at the given average wind speed. The agreement between the BEMT predictions and the measured data appears 
to be very good up to an average wind speed of 15m/s, beyond which the average experimental power output rises about 5% 
above the values predicted by simple BEMT, before agreement is, again, within 1% at wind speeds of 19-20m/s. This 
underprediction of BEMT could be associated with the effects described by Himmelskamp37 where the radial outflow along the 
blade induces a Coriolis force in the chordwise direction, which imposes a favourable pressure gradient that will tend to delay 
boundary layer separation and subsequent stall. Despite this, it is suggested that the BEMT model predicted the power output to 
sufficient accuracy over most of the wind speed range that it is good enough to be able to predict the overall effect of the 
application of passive air jet vortex-generators to sufficient accuracy for this assessment. 
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Figure 12: Comparison between experimentally measured and theoretical prediction (blade element 
momentum theory) for the baseline Nordtank NTK 500/41 wind turbine. 
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 It is expected that on a rotating blade in real unsteady airflow conditions with spanwise flow, the actual performance 
improvement achievable will be somewhat less than achievable in quasi-2D flow as demonstrated in section 3. It was therefore 
decided, for the purposes of this analysis, to assume an increase in CLmax of only 5%, coupled with a 2o delay in the angle-of-
attack at which drag force divergence occurs. The CL and CD aerodynamic data tables were modified accordingly, whereby the 
linear portion of the CL versus D curve was extended to achieve a 5% increase in CLmax while the pre-stall trend in CD versus D 
was extended by an extra 2o angle-of-attack. The post-stall CL and CD values were kept at the same magnitude as the baseline 
data. The BEMT calculations were repeated using the modified aerodynamic data tables to obtain turbine performance 
predictions incorporating the estimated effects of the passive air jets. Three spanwise configurations of air jets were modelled, 
the first with the air jet effect imposed across the entire span of the blade, the second with the air jet effect imposed only along 
the inboard 50% span, and the third with the air jet effect imposed only along the outboard 50% of the span. The resulting power 
output comparisons are presented in figure 13.  
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                    a) Power output versus wind speed         b) Power coefficient versus inverse tip speed ratio 
 
Figure 13: Estimated effect, on turbine performance, of passive air jets applied to the Nordtank NTK 
500/41 wind turbine for three spanwise air jet configurations. 
 

Close scrutiny of the data shows that the predicted turbine output power is not affected at all be introducing the passive air jet 
effect up until an average wind speed of 10m/s. Similarly there is no improvement in the level of CP for the lower tip-speed 
ratios. This is to be expected if there is no boundary layer separation at all, anywhere along the span of the blade. For the cases 
of the air jet effect applied across the full span, and of the air jets modelled on the outboard 50% of the span of the blade, the 
power output curves are practically the same for U  > 11m/s. In both cases predicted power output is improved over the wind 
speed range 11 > U > 14m/s. The loss in power output, from the expected attached flow trend, is predicted to be completely 
recovered up to a wind speed of U = 13m/s. For wind speeds higher than 14m/s predicted power output levels remain 
unchanged. For the case of the air jet effect modelled along the inboard 50% of blade span, almost no improvement in power 
output level was predicted over the wind speed range 11 > U  > 14m/s. 

The results of this simple study, based on a BEMT model of the Nordtank NTK 500/41 wind turbine, suggests that passive 
air jets would be able to recover some of the performance degradations that occur due to blade stall at intermediate wind speeds, 
prior to when rated power is achieved. Their effect would therefore be very similar to that of traditional vane vortex-generators, 
but with the added benefit of a much reduced excrescence drag penalty. In other words, passive air jet vortex-generators could 
effectively allow baseline stall regulated wind turbines to achieve rated power output at reduced wind speeds. It is also suggested 
that they could also help reduce turbine sensitivity to gusty wind conditions, much in the same way as it was found in domestic 
wind turbine study presented in section 4. 

 
 

 
6. CONCLUSIONS 
 
The conclusions derived from this study are as follows: 
 

x The passive air jet vortex-generator has been shown to be able to suppress the onset of trailing edge separation from 
single element aerofoils tested in wind tunnel experiments. They are known to act in the same manner as actively blown 
air jets, by enhancing boundary layer mixing and thereby re-energizing the boundary layer. A 14% increase in CLmax 
and a corresponding delay in drag rise of 2o angle-of-attack was observed with a NACA23012C aerofoil model at 
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35m/s, while a 9% increase in CLmax and a 3o angle-of-attack delay in drag rise was seen with a NACA 632217 aerofoil 
model at 25m/s. 

 
x Tests of these devices on a 0.87m swept diameter, 6 bladed, domestic wind turbine revealed that they can slightly 

increase the maximum output power coefficient, reduce the cut-in wind speed, thereby improving power output at the 
lower wind speeds, while reducing the sensitivity of power output in gusty conditions by allowing the blades to remain 
un-stalled for longer during wind speed deceleration. 

 
x A theoretical performance analysis of a 500kW stall regulated wind turbine, based on simple Blade Element 

Momentum Theory, indicates that passive air jet vortex-generators would be capable of recovering some of the power 
loss resulting stall, thereby allowing attainment of rated power output at slightly lower average wind speeds. 
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