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Abstract 

This paper reviews the environmental issues and challenges appropriate to the design of supersonic 

business jets (SSBJs). There has been a renewed, worldwide interest in developing an environmentally 

friendly, economically viable and technologically feasible supersonic transport aircraft. A historical 

overview indicates that the SSBJ will be the pioneer for the next generation of supersonic airliners. As a 

high-end product itself, the SSBJ will likely take a market share in the future. The mission profile 

appropriate to this vehicle is explored considering the rigorous environmental constraints. Mitigation of 

the sonic boom and improvements aerodynamic efficiency in flight are the most challenging features of 

civil supersonic transport. Technical issues and challenges associated with this type of aircraft are 

identified, and methodologies for the SSBJ design are discussed. Due to the tightly coupled issues, a 

multidisciplinary design, analysis and optimization environment is regarded as the essential approach to 

                                                           
Abbreviations: Ae, equivalent area; CAPAS, CAD-based Automatic Panel Analysis System; CFD, Computational 
Fluid Dynamics; CFR, Code of Federal Regulations; C.G., Centre of Gravity; CIAM, Central Institute of Aviation 
Motors; CS, Certification Specifications; CST, Class Shape Transformation; DARPA, Defense Advanced Research 
Projects Agency; E.I., emission indices; GAC, Gulfstream Aerospace Corporation; GIT, Georgia Institute of 
Technology; HISAC, High Speed Aircraft; HSCT, High Speed Civil Transport; HSR, High Speed Research; ICAO, 
International Civil Aviation Organization; JAXA, Japan Aerospace Exploration Agency; L/D, lift to drag ratio; LFC, 
laminar flow control; Ma, Mach number; MDAO, Multidisciplinary Design Analysis and Optimization; MDO, 
Multidisciplinary Design Optimization; mSv, millisievert; NASA, National Aeronautics and Space Administration; 
NLF, natural laminar flow; PAX, passenger; PLdB, perceived loudness level; psf, pounds per square foot; QSP, Quiet 
Supersonic Platform; QSST, Quiet Supersonic Transport; S3TD, Silent Supersonic Technology Demonstrator; SFC, 
specific fuel consumption; SSBJ, Supersonic Business Jet; SST, Supersonic Transport; TRL, technology readiness 
level; TSS, Technical Supersonic Standard; UIUC, University of Illinois at Urbana-Champaign; VCE, variable cycle 
engine; VSP, Vehicle Sketch Pad 
1 Corresponding author.  

E-mail addresses: Yicheng.Sun@cranfield.ac.uk (Y. Sun), Howard.Smith@cranfield.ac.uk (H. Smith) 

mailto:Yicheng.Sun@cranfield.ac.uk
Progress in Aerospace Sciences, Vol. 90, April 2017, pp. 12-38  
DOI:10.1016/j.paerosci.2016.12.003   


Published by Elsevier. This is the Author Accepted Manuscript issued with:
Creative Commons Attribution Non-Commercial No Derivatives License (CC:BY:NC:ND 4.0).  
The final published version (version of record) is available online at DOI:10.1016/j.paerosci.2016.12.003   
Please refer to any applicable publisher terms of use.


mailto:Howard.Smith@cranfield.ac.uk


the creation of a low-boom low-drag supersonic aircraft. Industrial and academic organizations have an 

interest in this type of vehicle are presented. Their investments in SSBJ design will hopefully get civil 

supersonic transport back soon. 
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1. Introduction 

Since the retirement of Concorde’s airline service in 2003, there is no more civil supersonic transport. 

The environmental concerns (sonic boom, noise, emissions, etc.) raised by Concorde have been the major 

barriers for future civil supersonic aircraft. The fundamental problem preventing the return of supersonic 

flight is the sonic boom at ground level. However, the public’s perceived acceptance of the sonic boom 

intensity is still uncertain. Since the weight and size of a supersonic aircraft have first-order effects on the 

intensity of the sonic boom signature, it has been deemed nearly impossible to create a low-boom level 

with a heavier and larger conventional aircraft. 

Though, for a wide range of customers the low price airline is attractive, there still exist customers 

(such as executives or heads of state) who attribute great value to time. Recognition of the value of time 

has led to increased interest in the feasibility of small supersonic business jets (SSBJ). Double the cruise 

speed could result in half the time in the air. Operational flexibility, safety and privacy working 

environment, and adequate ambience for fostering social contacts add value to SSBJs [1]. The unit price 

and direct operation costs should be viable for both manufacturers and customers. 

The interest of supersonic civil flight is not only driven by enterprising human spirit or profit seeking 

but also by technology itself. The basic technical capability for the supersonic cruise has existed for 

decades and the technology has improved considerably since Concorde. The variable cycle engine 

concept and acoustic problems caused by the inlet and nozzle require more development to solve. Sonic 

boom mitigation concepts still need further ground and flight testing. 

Therefore, environmentally friendly, economically viable and technologically feasible characteristics 

are required for any future supersonic airliner. 



There have been prominent publications on SSBJ design review. The National Research Council 

analysed the design challenges and critical solutions appropriate to supersonic transport [2]. P. A. Henne 

compiled Gulfstream research on the SSBJ [3]. Wu Li at NASA has been developing design tools for low-

boom supersonic aircraft [4-9]. Stanford University publishes integrated study on SSBJ design [10-13]. 

Cranfield University has engaged in research into the preliminary and detail design of the SSBJ and is 

now developing a multidisciplinary design analysis and optimization methodology appropriate to SSBJ. 

H. Smith highlight the design issues of SSBJ [14]. Despite these efforts, no comprehensive review of 

emerging trends and concepts on SSBJ design has ever been undertaken. The aim of this paper is to 

review relevant publications in order to identify state-of-art concepts and challenges on SSBJ design. 

To develop a successful supersonic transport, it is not enough to concentrate on the vehicle itself. This 

paper investigates the design of SSBJs from a systems point of view. Section 2 provides a brief historical 

background of supersonic airliner development and the derivation of SSBJs. The market potential of the 

SSBJ is analysed in Section 3. In Section 4, industry and academic organizations that are interested in the 

SSBJ design are investigated. Section 5 defines the mission requirements for SSBJs in terms of range, 

Mach number, cruise altitude, seating capacity, environmental issues, and airworthiness. The main 

technological challenges and solutions appropriate to SSBJ design are explained in Section 6. The last 

section gives a perspective review of the future for SSBJ development. 

2. Historical background 

The illustration in Fig. 1 shows the progress of supersonic aircraft. There had been a boom in 

supersonic aircraft since the first flight of the X-1 in 1947; however, they were limited to military 

applications. Three projects gave birth to supersonic civil transportation in the 1960s. The U.S. 



Supersonic Transport (SST) program was cancelled in 1971 as a result of the economic feasibility, sonic 

booms and environmental issues. The Russian Tu-144 (Fig. 2) was first to achieve flight but spanned only 

several years of service because of cabin noise, economic inefficiency, and so on. The British/French 

Concorde (Fig. 3), on the other hand, experienced 27 service years until 2003 [15]. 

Although there has been a supersonic stagnation for decades, research on supersonic transport has 

never stopped. Based on the failures of the previous SST program, NASA was given the responsibility to 

establish the technology base for a viable supersonic cruise aeroplane. As part of the effort, the 

Supersonic Cruise Research (SCR) program was carried out from 1971 to 1981. The Variable Cycle 

Engine (VCE) program, a propulsion offshoot of SCR, was conducted from 1976 to 1981 to study the 

promising VCE concepts. Feasibility studies for the next-generation SST were initiated in the late 1980s. 

The High Speed Research (HSR) program began by NASA in 1989, including in-depth studies from 1995 

with Tu-144 test flights. The High Speed Civil Transport (HSCT) program, the focus of HSR program, 

aimed at developing a 300-passenger, Mach 2.4 supersonic airliner. The program terminated in 1999 on 

account of environmental challenges and budget problems. The Quiet Supersonic Platform (QSP) 

conducted by DARPA from 2000 to 2006, aimed at developing a low-boom (0.3 psf) supersonic aircraft 

both for military and civil applications. 

In Europe, the next-generation supersonic research program was initiated in 1994 but was stopped in 

the same period as the HSR program because Europe turned to a large aeroplane. HIgh Speed AirCraft 

(HISAC), also called ‘environmentally friendly HIgh Speed AirCraft’, was conducted from 2005 to 2009 

to research the technology base of a small-size environmentally friendly supersonic transport. 

Japan Aerospace Exploration Agency (JAXA) initiated a scaled supersonic experimental aeroplane 



project named NEXST (National Experimental Supersonic Transport) project [16] in 1996 so as to 

establish advanced design technologies for the next-generation SST. The program ended in 2007. The 

Silent Supersonic Technology Demonstration (S3TD) program [17] started in 2006 to validate MDO 

design tools and demonstrate the silent supersonic aircraft concept. The Drop test for Simplified 

Evaluation of Non-symmetrically Distributed sonic boom (D-SEND) project [18, 19] started in 2007 to 

drop models from balloons to validate the sonic boom mitigation technology. 

Through several decades’ of studies, it is apparent that a small-size supersonic transport could be the 

first step into a new supersonic era. The increasingly stringent noise requirements have created the need 

for the supersonic jet to the quiet supersonic jet (QSJ) program [20]. 

 

Fig. 1. Supersonic aircraft progress (Source: [3]) 



 

Fig. 2. Tu-144 (Source: [21]) 

 

Fig. 3. Concorde (Source: [22]) 

3. Market analysis 

The potential consumers for SSBJs include corporate flight departments, government agencies, private 

individuals, charter companies and fractional companies. 

The passengers’ willingness to pay and the service quality they demand is qualitatively presented in 

Fig. 4. The figure potentially indicates a small size supersonic aircraft market gap in the overall market. It 

indicates that the SSBJ may appeal to frequent business travelers (the ‘Road Warriors’) and a portion of  



business jet users, which together take up about a 10% market share [23]. 

 

Fig. 4. Potential size of the supersonic passenger market (Source: [23]) 

In 1999, Meridian International Research carried out a comprehensive study [24] into the potential 

market for a future SSBJ. The result indicates that for a small US$50-100m SSBJ, a market of 250-400 

units exists over the next 10-20 years. 

In 2003, Gulfstream studied the potential demand for small QSJs with two different methods. The 

bottom-up approach predicted at least 180 units market demand, while, the analytical projection method 

indicated a possible 350 aircraft, as shown in Fig. 5, over the period of 2013-2022 [3]. 



 

Fig. 5. Gulfstream analytical projection method for QSJ market forecast (Source: [3]) 

A report  released by Aerion Corporation in 2005 showed a market for between 220 and 260 Aerion 

SSBJs over a 10-year period, about 20% of which comes from the fractional companies. Aerion also 

noted that production over a 20-year program life could exceed 500 units [25]. 

Teal Group believes that if business jet deliveries keep ramping up above $30 billion annually, there 

would be an ironclad case to develop a long-awaited SSBJ [26]. In a study in 2007, Teal Group predicts a 

market of 400 SSBJs over 20 years [27]. 

A recent study [1] summarizes that the market demand for SSBJ is around 20 units per year. However, 

sufficient demand is neither certain nor verifiable. It is also noted that there are various operational modes 

for SSBJ class aircraft, but a one-dimensional market will not suffice to realize a growth. Ideally, small 

supersonic aircraft could make use of the trends introduced by transonic business jets to allow for 

fractional companies, cargo services, or military and government organizations. 

4. Interested companies and organizations 

A review has studied the SSBJ research from 1963 to 1995 [28]. During the three decades, there have 



been a total of 22 activities (six university studies, eight industry studies and eight NASA studies) on the 

subject of SSBJ. A chronological list of these studies is presented in Table 1.  

Table 1. Chronological listing of SSBJ studies from 1963 to 1995 (Source: [28]) 

Year Study Mach 
No. 

Range 
(nm) 

TOGW 
(t) 

PAX+
Crew 

Wing 
Planform 

Engine 
No. 

Fuselage 
Length 
(m) 

Cabin 
Height 
(m) 

Cruise 
∆P0 
(psf) 

1963 U-1 3.0 3500 3.8 4+2 Trapazoidal 2 12.2 1.22 - 
1965 I-1 2.0 3000 20.0 12+2 Delta-ogive 2 25.5 1.55 - 
1967 U-2 2.2 3000 31.8 

31.3 
10+2 Delta 

unswept 
trapaz 

4/2 27.3 
25.9 

1.83 1.5 

1967 U-3 2.0 3300 28.6 9+2 Variable 
sweep 

4 25.9 1.46 - 

1971 I-2 - 2580 46.9 10+2 Delta - - - - 
1977 N-1 2.2 3200 33.6 

36.3 
8+2 Arrow 2 32.6 1.74 1.0 

1977 N-2 2.4 3250 25.4 0+2 Arrow 2 28.5 1.37 - 
1980 N-3 2.7 3200 42.5 8/10+2 Arrow 2/3/4 29.3 1.65 - 
1981 N-4 2.7 3200 - 8+2 - - - 1.65 0.5 
1981 
1985 

I-3 2.0-
2.2 

4000+ 45.4 
60.8 
 

8+3 
14+2 

Arrow; 
Cranked 
arrow 

2/3/4 30.5 
39.0 
 

1.83 1.3 

1981 N-5 2.7 3200 29.0 8+2 Arrow 2 31.4 1.77 0.9 
1983 N-6 2.3 3350 23.1 8+1 Arrow 2 31.4 1.46 0.9 
1984 N-7 2.0 3500 29.3 8+2 Variable 

sweep 
2 32.6 1.62 1.0 

1986 N-8 2.0 3622 27.9 8+2 Arrow 2 31.4 1.74 0.9 
1987 I-4 2.0 4000+ - - - - 31.4 1.74 - 
1988 I-5 1.5 3500+ 45.3 8+2 Delta ogive 4 38.1 1.83 0.6 
1988 
1990 

I-6 1.5 
2.0 

4000+ 36.3 10+2 
12+2 

Cranked 
delta arrow 

3 
4 

30.5 - - 

1990 U-4 2.2-
2.5 

4980 
4750 

47.4 
58.2 

8+2 
9+2 

Arrow; 
Variable 
sweep 

3/4 33.5 
41.1 

- - 

1992 U-5 - - - - - - - - - 
1993 I-7 2.0 4600 48.1 10+2 Cranked 

arrow 
2 34.7 - - 

1993 U-6 2.2 5000 48.5 7+2 Delta 2 32.6 1.89 - 
1995 I-8 1.8 3350 29.9 8/10+2 Cranked 

arrow 
4 27.7 1.83 0.4 

4.1 Aerion Corporation 

The Aerion Corporation [29] of Reno, Nevada, was formed in 2002 to introduce a practical and 

efficient SSBJ. Its idea is to develop a twin-engine SSBJ configuration named AS1 [30], shown in Fig. 



11 
 

6(a). The concept utilises the already certified P&W JT8D engine to minimize the design risk. The Aerion 

SSBJ’s key technology, supersonic natural laminar flow, has been verified in flights by NASA and in 

transonic wind tunnels. However, Aerion decided to make the jet bigger and reduce emissions from the 

engines. The concept was changed to the triple-engine SSBJ configuration named AS2, as illustrated in 

Fig. 6(b). 

In 2012, Aerion acquired Desktop Aeronautics (renaming it Aerion Technology) to develop its 

specialized codes for analysing supersonic airflows and optimizing airframes. In November 2015, Aerion 

received an order from fractional jet supplier Flexjet for 20 Aerion AS2 supersonic jets worth $2.4 bn. 

Aerion is now cooperating with INAIRVATION to develop innovative cabin interiors and working with 

Airbus to manufacture these jets. The AS2 jet is expected in to make its first flight in 2021 [31]. 

 

(a). Aerion Corporation AS1 
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(b). Aerion Corporation AS2 

Fig. 6. Aerion Corporation SSBJ concepts (Source: [29]) 

4.2 Supersonic Aerospace International 

Supersonic Aerospace International (SAI) [32], based in Las Vegas, was founded in 2000 to create a 

Quiet Supersonic Transport (QSST) for the 21st century. The central feature is the ‘quiet supersonic’ 

technology that will ensure a low boom signature to make flights over land. The QSST-X (Fig. 7) features 

an advanced double delta wing design, which is similar to Concorde’s ogee-delta wing, but what is unique 

is the inverted V-tail. Lockheed Martin found that the inverted V-tail is beneficial and conducive to 

achieving the ‘virtually boomless’ design as it restricts the sonic signature coming off of the back of the 

aircraft. The broad distribution of lift-generating surfaces is another key to constraining sonic boom. 

Based on a preliminary study and business case model, the QSST-X would be viable at US$130-140 

million in the recent report [33]. To date, SAI and Lockheed Martin have invested over US$70 million in 

research and development on the QSST-X program [34]. 
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Fig. 7. Supersonic Aerospace International QSST-X (Source: [32]) 

4.3 Spike Aerospace 

Spike Aerospace [35] is a Boston-based company launched in 2013. The company is developing the 

high-level conceptual design of supersonic aircraft for pleasure and business. In the first design phase, the 

company proposed an SSBJ concept as shown in Fig. 8(a). During the second phase, the Spike S-512 

supersonic jet was updated to offer quiet supersonic flight. The wing was noticeably changed to a 

modified delta wing, featuring a highly swept inboard wing with a slender outboard wing section as 

shown in Fig. 8(b). At its full cruise speed of Mach 1.6, the sonic boom is expected to be less than 70 

PLdB. With a luxurious multiplex digital cabin, as presented in Fig. 9, the noise level in the cabin will 

reduce by 20dB. 

In January 2016, Spike Aerospace announced its partnership with Aernnova in developing and 

validating the major structural systems. Recently, Spike Aerospace started evaluating several engine 

options to seek low to medium by-pass ratio engines with approximately 20,000 lbs (88.9 kN) sea-level 

thrust. The S-512 is estimated to cost US$ 100 million and expected to be delivered in 2023 [36]. 
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(a). First design of S-512 

 

(b). Second design of S-512 

Fig. 8. Spike Aerospace S-512 supersonic jet (Source: [35]) 

 

Fig. 9. Multiplex Digital Cabin of Spike S-512 supersonic jet (Source: [35]) 

4.4 HyperMach Aerospace 

HyperMach Aerospace [37], based in Los Angeles, formally came into being in 2008. It develops the 

concept of SonicStar (Fig. 10), which is said to be able to fly at Mach 4.0 with the sonic boom intensity as 

low as 0.25lb/ft2. The company developed a hybrid engine technology to reduce emissions and noise. 

The hybrid electric turbine engines for SonicStar are being developed by HyperMach’s sister company 
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SonicBlue. Aeronautical Testing Services, Inc., Design By Analysis, Inc. and Eagle Harbor Technologies 

all have signed agreements with HyperMach to develop the SonicStar supersonic transport. HyperMach is 

currently seeking investment and preparing for the first flight in 2021 [31].  

 

Fig. 10. HyperMach Aerospace SonicStar (Source: [31]) 

4.5 Gulfstream Aerospace 

Gulfstream Aerospace has long been interested in the feasibility of developing a multi-use supersonic 

aircraft appropriate to both civil and military roles. Gulfstream has sponsored a group of technical 

resources on the supersonic transport study. The Quiet Supersonic Jet (QSJ) is the result of these studies, 

as shown in Fig. 11(a) and (b). Its most notable features include a nose spike device for sonic boom 

reduction and a swing-wing configuration to balance supersonic cruise and low-speed performance. 

Gulfstream Aerospace has worked with NASA to take flight trials on the F-15 to validate the feasibility 

of the ‘Quiet Spike’. The near-field shock signatures were investigated within the flight envelope of Mach 

1.8 and 45,000 feet. The ‘Quiet Spike’ can mitigate sonic boom intensity whilst maintaining a suitable 

aircraft shape. 

 



16 
 

(a). Variable sweep concept (Source: [3]) 

 

(b). Quiet spike concept (Source: [38]) 

Fig. 11. Gulfstream Aerospace QSJ concepts 

4.6 Sukhoi 

The Sukhoi Design Bureau of Moscow and Gulfstream Aerospace started their cooperation in 

developing a small SSBJ in the early 1990s. The new configuration named S-21 is shown in Fig. 12. The 

S-21 is able to cruise at Mach 2+ propelled by three Aviadvigatel D-21A1 turbofans. Nevertheless, this 

partnership was ended by Gulfstream as a result of the uncertain market demand. 

Sukhoi continued the design and research work on S-21. There is still an ongoing ‘supersonic business 

jet’ project on its website [39]. Sukhoi displayed a concept for a quiet SSBJ at the MAKS Air Show in 

2013. The model features a double delta wing with significant dihedral for sonic boom mitigation, as 

presented in Fig. 13. 

The Central Aerohydrodynamic Institute (TsAGI), in cooperation with Sukhoi and aircraft engine 

manufacturer NPO Saturn, is developing the preliminary design of a quiet SSBJ. A conceptual drawing of 

this configuration is shown in Fig. 14. The aircraft features a long, pointed nose to alleviate the sonic 

boom, four shielded engines to decrease noise, and long thin wings to increase the lift to drag ratio [40]. 
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Fig. 12. Sukhoi-Gulfstream S-21 SSBJ (Source: [41]) 

 

 

Fig. 13. Sukhoi SSBJ model (Source: [41]) 

 

Fig. 14. TsAGI SSBJ concept (Source: [40]) 

4.7 HISAC 

The ‘Environmentally Friendly High Speed Aircraft’ (HISAC) research program is an ambitious 

European ‘integrated project’. 37 partners from 13 countries are involved in the consortium of industry 
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and academia. The HISAC project aims to explore the feasible technical solutions through an MDO 

approach under high environmental constraints in terms of noise, emissions and sonic boom. Under the 

same common requirements, three configuration families are concluded by different teams, as shown in 

Fig. 15. The detailed description of these configurations can be found in Ref. [42].  

 

(a). HISAC-A Low Noise configuration 

 

(b). HISAC-B1 Long Range configuration 

 

(c). HISAC-D Low Boom configuration 

Fig. 15. HISAC SSBJ conceptual design cases (Source: [42]) 
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4.8 NASA 

NASA has conducted research on supersonic civil transport for nearly 60 years. There has been 

research on methodologies, wind tunnel tests, flight trails, etc. Technologies (such as quiet spike, 

supersonic laminar flow, etc.) are being matured under the N+ projects. 

Recently, NASA announced its intention to invest $20 million in Lockheed Martin to develop a quiet 

supersonic X-plane (Fig. 16) for Quiet Supersonic Technology (QueSST) [43]. This delta-wing 

configuration features a long nose to mitigate sonic boom, several lifting surfaces (canard, wing, mini T-

tail and conventional horizontal tail) to separate shock waves [34]. The upward-facing cockpit indicates 

an enhanced forward vision system. The supersonic X-plane team is expected to start building in 2019, 

make its first flight in 2020 and then continue sonic boom flight trails in southern California for several 

years [44]. 

 

Fig. 16. NASA low boom flight demonstration Quiet Supersonic X-plane (Source: [43]) 

4.9 JAXA 

Japan Aerospace Exploration Agency (JAXA) has been working on the next generation SST for a long 

time. The SST research and development roadmap at JAXA is shown in Fig. 17. JAXA performed 

NEXST Project, D-SEND Project as well as S3TD Project to study the feasibility of low-drag low-boom 

supersonic transport. 

JAXA cooperates with the SKY Aerospace Institute on a trial design for SSBJ concept [45], as shown 
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in Fig. 18. Technological achievements in previous projects have been applied in the design. For example, 

the cranked arrow wing uses natural laminar flow technology that was demonstrated in the NEXST 

project. An automatic MDO system CAPAS [46] developed during the S3TD project was used in the 

design of SSBJ-M. The non-symmetrical fuselage comes from the D-SEND project to mitigate sonic 

boom. 

 

Fig. 17. Roadmap of SST R&D at JAXA (Source: [47]) 
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Fig. 18. JAXA SSBJ-M conceptual design (Source: [36]) 

4.10 Cranfield University 

Cranfield University is a graduate university with an international reputation in aerospace research. The 

design of the E-5 Neutrino Supersonic Business Jet (Fig. 19) was carried out by 15 academic staff and 

team of 30 students over a period of seven months. The scope of the study is to provide a complete review 

of the issues relating to the design of supersonic business jets – the E-5 being a focal case study [48]. 

 

Fig. 19. Cranfield University E-5 Neutrino Supersonic Business Jet (Source: [48]) 
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4.11 Summary 

A summary of the SSBJ concepts developed by the above companies and organizations in recent years 

are presented in Table 2. 

Table 2. Summary of recent SSBJ designs 

Year SSBJ designs Range 
(nm) 

Mach 
No. 

PAX. Length 
(m) 

Span 
(m) 

Max. 
thrust 
(kN) 

MTO
W (t) 

Noise Cruise 
∆P0 
(psf) 

1990s S-21 2715 1.4 6-10 37.9 19.9 220.6 51.8 - - 

2003 Gulfstream 4800 1.8 8-14 42.7 - - 45.4 Stage IV-
10dB 

0.15 

2006 Cranfield E-5 5700 1.8 6 43.6 16.0 197.2 45.5 - - 

2009 SAI QSST 4000 1.6 8-12 40.3 19.2 294.0 69.4 Stage IV 0.30 

2009 HISAC-A  4000 1.6 8 36.8 18.5 220.0 51.1 Stage IV-
10dB 

0.94 

2009 HISAC–B1 5000 1.6 8 41.6 24.0 313.5 60.5 Stage III-
5dB 

1.56 

2009 HISAC–C 4000 1.8 8 40.9 19.1 292.6 53.3 Stage IV-
2.5dB 

0.42 

2009 Hawker 
/Raytheon [49] 

5000 1.8 6-8 50.4 21.0 226.0 54.1 Stage IV 0.40 

2010 Aerion AS2 4000 1.5 8-10 51.8 18.6 174.4 54.9 Stage IV - 

2010 Uni. Stanford 4000 1.6 6-8 38.1 20.0 - 43.1 - 0.42 

2011 SonicStar 6800 4.0 10-20 68.8 22.6 486.3 77.9 Stage IV 0.25 

2013 Spike S-512 4000 1.6 12-18 37.0 17.7 177.8 52.2 - 70PLdB 

2013 JAXA SSBJ-M 3500 1.6 10 39.6 16.8 140 36 Stage IV 0.96 

2016 NASA X-plane - 1.42 1 28.7 10.0 60.0 10.2 - 75PLdB 

5. Mission Requirements 

5.1 Range Capability 

Supersonic transport aircraft are preferred to operate over water to minimize the sonic boom impact on 

the ground. Thus, Trans-Atlantic and Trans-Pacific routes can be evaluated to find a minimum and 

maximum range value for the SSBJ. A non-stop trans-Atlantic flight is approximate 3000-3500 nm, 

whereas a non-stop route traversing the Pacific Ocean is 5000-6000 nm (Fig. 20). The lower boundary of 
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an SSBJ’s range capability is to cross the Atlantic Ocean without stops, which also enables the Trans-

Pacific flight with just one stop for refuelling. In an analysis for supersonic flight routing, 250 origin-

destination city pairs regarding total premium ticket revenue in 2012 were studied. For the design range 

between 4000 nm and 5000 nm, 76% of all the flight paths contain no intermediate overland segment 

[50]. 

 

Fig. 20. Great cycle distance between major cities (Source: [51]) 

Fuel fraction is another factor that would restrict the range capability. The derived Breguet-Range 

equation definition is as below: 

 R = (Ma×a)
𝑆𝐹𝐶 × 𝐿

𝐷 × ln (𝑊𝑇𝑂
𝑊𝐿𝐷

) (1) 

 𝑊𝐿𝐷 = 𝑊𝑇𝑂 −𝑊𝐹 (2) 

where a=speed of sound, SFC=specific fuel consumption, 𝑊𝑇𝑂=take-off weight, 𝑊𝐿𝐷=landing weight, 

𝑊𝐹=fuel weight. 

When values of Ma=1.6, a=295 m/s, L/D=7, and SFC=1.0/h are applied, the fuel fraction for a range of 

3500 nm is WF/WTO=42%. As plotted in Fig. 21, the fraction of 42% is well within reach for typical 
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supersonic transport. Improvement of L/D from 7 to 8 would achieve a range improvement of 15% (4000 

nm), or L/D=9, 30% (4500 nm). A range improvement from 3500 nm to 5000 nm is considered feasible 

through an L/D improvement and an airframe weight reduction [51]. 

Current SSBJ designs are considered to have the capability of carrying fuel fraction of about 50% of 

maximum take-off weight. It is obvious through the calculation that a long range is possible with a high 

fuel fraction, high L/D, and good engine performance. Therefore, an SSBJ is likely to have a range target 

in the region of 3500-6000 nm. A compromise would be possible between 4000 nm and 4500 nm [52]. 

 

Fig. 21. Range capability prospect (Source: [51]) 

5.2 Mach number 

In the supersonic regime, the technical challenges will increase as Mach number increases, as indicated 

in Fig. 22. For a civil business vehicle, it is not hard to set an upper boundary of Mach 2.0, considering 

the challenge of thermal protection. Such a limit also contains propulsion installation complexity and 

avoids significant aerodynamic heating in the propulsion system [3]. Besides, common aeronautical 

materials cannot be used largely above Ma 2.0, which is discussed in Section 6.5.2. 
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Fig. 22. Supersonic speed challenges (Source: [3]) 

It is still uncertain whether the SSBJ will be a competitor to current subsonic business jets or help fill in 

the blanks in the business market. Supersonic travel should maintain its time advantage whether for non-

stop Trans-Atlantic routes or for one-stop Trans-Pacific routes. For an SSBJ of 4000 nm, the time saving 

for non-stop Trans-Atlantic routes and for one-hour-stop Trans-Pacific routes can be seen in Fig. 23. 

 

Fig. 23. Time advantage of supersonic travel compared with subsonic travel 

The trans-Atlantic route, such as London to New York is in great demand for business transports. 
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Operating SSBJs on this route would make a one-day return possible, as indicated in Fig. 24. Thus, it 

would provide a clear time advantage compared to the subsonic airline service with an overnight stay 

[51]. 

 

Fig. 24. Comparison of schedules at Trans-Atlantic Route (Source: [51]) 

Jet lag occurs when the time zone does not line up with the body’s internal clock. Suffering from jet lag 

chronically can lead to a suppressed immune system, chronic fatigue and memory issues. For business 

travel shown in Fig. 24, travelers can come back to the original time zone instead of adapting to the new 

one. Supersonic travel may eliminate jet lag as the passengers’ internal clock will not be disturbed too 

much [53]. Passengers on Concorde reported less jet lag than on other transatlantic flights [54].  

The target Mach number is likely to be within Mach 1.4 and 2.0. The final decision should be made 

considering the sensitive relationship between speed, range, routes, and sonic boom. 
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5.3 Flight altitude 

5.3.1 High-altitude emissions 

Supersonic vehicles cruise at a higher altitude than subsonic vehicles, therefore, have a greater potential 

to deplete the ozone layer. UIUC studied the impact of a fleet of SSBJs’ emission on the total column 

ozone [55]. The results indicate that the crossover point for ozone depletion is around 14.5 km, whatever 

the combinations of total fuel burn (Mlbs/day) and emission indices (E.I.). Though there would be an 

ozone depletion effect above 14.5 km, the impact is less than a few hundredths of a percent near the 

crossover point, which is likely imperceptible. Thus for emissions reasons, the flight altitude for SSBJs is 

preferred to be no more than 17 km. 

5.3.2 High-altitude radiation 

Cosmic radiation is a serious concern at high altitude. The Earth’s atmosphere provides an effective 

shielding against cosmic radiation at sea level. However, at 20 km, the shielding level for the primary 

proton flux drops to 50% of the ground value, the alpha particle flux to 15%, and the heavy ion flux to 

about 3% or less [56]. In 1976, at the time Concorde came into service, cosmic radiation was identified as 

a potential risk. However, a study carried out by the British Airways Medical Service in the 1980s showed 

that the maximum exposures are 10.79-17.41 millisievert (mSv) per year for the airline crew members 

and passengers [57]. This figure is well within the International Commission on Radiological Protection 

(ICRP) recommended limits of 20 mSv per year. A recent study concludes that it is quite rare for the 

aircrew and passengers to suffer health damage from cosmic radiation [58]. 
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5.3.3 High-altitude operation safety 

Cabin depressurization at altitudes higher than 50,000 ft will pose a safety risk to passengers and crew, 

especially in the case of a rapid decompression. FAR 25.841 requires commercial aircraft to be designed 

so that occupants will not be exposed to a cabin pressure altitude that exceeds 25,000 ft for more than 2 

min or a pressure altitude of 40,000 ft for any duration. This is a difficult standard to meet for commercial 

supersonic aircraft cruising at altitudes well in excess of 40,000 ft. Even if self-healing technologies 

cannot seal leaks completely, they reduce the leak rate and provide extra time for an emergency descent. 

An automatic emergency descent mode for aircraft flight control systems triggered by unexpected cabin 

pressure loss is necessary to meet safety standards [2]. 

The higher the supersonic vehicle cruise, the less the supersonic drag will be. There would be less 

dynamic pressure on the structure. However, there is a ceiling for the flight to limit the impact of 

emissions, reduce the cosmic radiation on the crew and passengers, and operation safety, especially when 

a fleet of supersonic vehicles operate in the stratosphere. Here, the cruise ceiling for an SSBJ is suggested 

to be 17 km. 

5.4 Seating capacity 

According to the Seebass-George-Darden (SGD) theory, the lift together with the aircraft volume 

directly affects the intensity of the sonic boom. The number of passengers (representing payload weight) 

has a significant effect on the cabin volume as indicated in Fig. 25. Thus, the sonic boom intensity is very 

sensitive to the number of passengers. 
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Fig. 25. Cabin volume versus number of passengers for supersonic vehicles (Source: [52]) 

A survey by the German Aerospace Centre (DLR) [1] among business aviation decision makers shows 

that 6 seats are sufficient for more than 80% of private long range flights, 7-9 seats are deemed to be 

enough for most of these operations. In the study, it is concluded that a seating capacity of 10-13 is 

required, with a minimum of 7-9. The MTOM of a 10-passenger SSBJ is about 50,000 kg, with a payload 

fraction of 2% [48]. Though, this is a quite low payload fraction. 

5.5 Environmental concerns 

5.5.1 Global environment 

Supersonic flights are usually at higher altitude, deep in the stratosphere, creating a larger impact on the 

atmosphere and climate compared to subsonic flights. Emissions from supersonic aircraft that would 

affect the atmospheric are oxides of nitrogen (NOx) and water vapour. Main concern about the global 

environment is the potential for altering the composition of the atmosphere, particularly the ozone layer, 

which would affect the climate significantly. 
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NASA has studied the potential impact of emissions from SSBJs on stratospheric and tropospheric 

ozone. In the report, 24 scenarios specified by total fuel burn, emission index of NOx, and cruise altitudes 

were evaluated by the UIUC 2D global atmosphere model. The results were obtained from ten-year 

steady state model simulations. It was found that above a specific altitude the ozone begins to deplete. For 

the most likely scenario (18 Mlbs/day fuel burn, 20g/kg E.I. of NOx at 15-17 km), the worst local ozone 

depletion was 0.038% [55]. 

SCENIC is an EU-funded project focused on assessing the potential climate impacts caused by fleets 

of future supersonic aircraft. The project analyses a set of different emission scenarios over a range of 

fleet size, E.I. of NOx, cruising altitude, cruising speed, and range. The results confirm previous findings 

(IPPC, [59] , as shown in Fig. 26) that the emissions of water vapour in the stratosphere are the dominated 

factor to climate change. The simulation also predicts that a reduction in cruise altitude or speed (from 

Mach 2.0 to 1.6) helps to reduce ozone destruction and climate impact by approximate 40% [60]. 

 

Fig. 26. Radiative forcing from aircraft in 2050 with supersonic fleet (Source: [59]) 

There have been other studies on the environmental impact of supersonic emissions, including the 

HSR program [61] and the EU-funded HISAC project [62, 63]. For aeroplanes cruising below the speed 
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of Mach 2, it is concluded that an NOx index of 15 g NOx/kg fuel appears satisfactory. From the National 

Research Council’s study [2], the water vapour emission index is referred to about 1400 g water/kg fuel. 

5.5.2 Local environment 

Design requirement can be found in the regulations (Table 3) to restrict the community noise level 

during take-off, climb-out, and approach to landing. For subsonic aircraft, U.S. and international 

standards used to be the Stage 3 requirements. After 2006, Stage 4 (10-dB-quieter to Stage 3 cumulative) 

has become the new requirement for subsonic jets and transport category large aeroplanes. This newest 

noise standard is likely to apply to the future supersonic aircraft when operating in the subsonic speed 

regime [64]. However, to ensure some margin for operational flexibility and technological viability, the 

noise level of the vehicle should not be higher than current small business jets, as indicated in Fig. 27. 

This noise requirement can be expressed as a nominally 10-dB-quieter cumulative level relative to Stage 

4. Therefore, most of the SSBJ conceptual design cases take Stage 4-10dB as the goal for community 

noise. 

 

Fig. 27. SSBJ community noise requirements (Source: [3]) 
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5.5.3 Sonic boom intensity 

There will be a sonic boom carpet on the ground if an aeroplane flies above the ‘cutoff Mach number’ 

(a low supersonic Mach number that the speed over the ground is less than the speed of sound at ground 

level), as the schematic indicated in Fig. 28. Structures and creatures in the carpet will experience sonic 

booms. 

 

Fig. 28. Schematic of sonic boom ground exposures (Source: [65]) 

There is no damage to structures or public reaction expected for sonic boom intensity below 1 psf. 

Noticeable public reaction will appear to a sonic boom for an overpressure of 1.5-2 psf, while minor 

structural damage may be caused by the overpressure of 2-5 psf. No injury occurs to the human body 

from sonic booms of 144 psf, generated by a supersonic fly-by at less than 100 ft. Human eardrums will 

not be damaged below 720 psf. Therefore, the sonic booms generating at cruise altitudes are annoying 

rather than harmful. Shepherd reported that [66], N-wave overpressures in the region of 0.3-1 psf, 

depending on the daily flight number, are acceptable to more than 90% of those people tested. 

The impact of sonic booms on wildlife and marine life caused concerns as well. Due to significant 

differences in hearing ability and noise influences on behaviour, the impact on animals resulting from 
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sonic booms varies widely [67]. The sonic boom from aircraft at supersonic speeds is reported to cause 

lowered reproduction [68]. However, the effect of sonic booms over water was expected to be 

imperceptible since about 99% of the impinging energy was reflected. Studies showed that sonic booms 

from normal operations of supersonic aircraft will not harm sea life [65]. 

Taking the physics of sonic boom into consideration, a small aeroplane is superior to a large aeroplane 

in terms of sonic boom intensity, as indicated in Fig. 29. As previously mentioned, the weight and size of 

a supersonic aeroplane have first-order effects on the intensity of the sonic boom strength. For a 100,000 

pound (45,359 kg) non-low boom shaped SSBJ, the initial overpressure is approximate 1.3 psf. The 

signature shaping, coupled with other sonic boom mitigation concepts in Section 6.2.3, might produce a 

practical way to mitigate the shock intensity to 0.5 psf or less. 

 
Fig. 29. Initial cruise sonic boom overpressure (Source: [3]) 

5.6 Airworthiness 

After Concorde aroused the public awareness of the sonic boom’s power, laws have been enacted by 

major industrial countries to restrict supersonic flight over land. Environmental regulations relevant to 

commercial supersonic aircraft are listed in Table 3. Commonly, the sonic boom is not permitted to reach 
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the ground. That is to say, a supersonic aeroplane can cruise up to the cutoff Mach number (about Mach 

1.15) which is the case in Germany (LuftVO Section 11). Supersonic civil flights (more than Mach 1.0) 

are totally banned in the U.S. (FAR Part 91. 817) [1]. 

In the long run, progress needs to be made toward introducing certifications for supersonic flight over 

land. The FAA intends to provide guidelines for manufacturers that are interested in designing supersonic 

aeroplanes. There used to be ‘Tentative Airworthiness Standards for Supersonic Transports’ during the 

SST program. Recent update emerged in a policy on the noise limits for future civil supersonic aircraft 

[64]. Efforts are still required in developing requirements appropriate to supersonic business class aircraft 

incorporating 21st-century technologies. 

Table 3. Environmental regulation applicable to civil supersonic aircraft (Source: [2]) 

Environmental 
Issue 

Current or Expected 
Method of Control 

International Regulations and 
Authorities 

U.S. Regulation 
and Authorities 

Community 
noise 

Aircraft certification 
standards, operating 
restrictions 

ICAO (Annex 16, Vol. I) 14 CFR Part 36 
and 14 CFR Part 
91 

Sonic boom  Operating restrictions ICAO (Resolution A33-7) and 
LuftVO Section 11 

14 CFR Part 91  

Climate change Aircraft certification 
standards, market-based 
measures (emissions trading 
or charges) 

United Nations Framework 
Convention on Climate Changes 
and ICAO (under Kyoto 
Protocol, if ratified) 

14 CFR Part 34 

Ozone depletion Operating restrictions Montreal Protocol Section 615 of 
the Clean Air 
Act 

Local air quality Aircraft certification 
standards 

ICAO (Annex 16, Vol. II) 14 CFR Part 34 
and 40 CFR Part 
87 

5.7 Summary 

This part analyses the mission requirements for SSBJs. The range capability is a result of routes 

selection and fuel fraction limitations. The cruise Mach number is closely related to the aerodynamic heat 

protection and time advantage. Issues with High altitude emissions and cosmic radiation restrict the cruise 
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ceiling of SSBJs. The passenger number is defined considering the sonic boom and market demand. 

Emission indexes come from the ozone layer simulation and climate change analysis Airport noise level 

are the newly aviation requirement. The sonic boom intensity is a possible goal to achieve. The design of 

SSBJs should definitely under specific airworthiness. As a result of the top-level design requirement 

analysis, likely mission profiles for future SSBJs are listed in Table 4. These values are assumed to be the 

appropriate initial requirements for environmentally friendly and economically viable small civil 

supersonic transports. 

Table 4. Mission requirements for SSBJs 

Requirements Value 

Range 4000-4500 nm 

Cruise Mach number 1.4-2.0 

Cruise altitude <17 km 

Seating capacity 8-12 

Emissions <15 g NOx/kg fuel 

~1400 g water/kg fuel 

Cumulative airport noise Stage 4–10dB 

Sonic boom intensity <0.5 psf 

6. Technological challenges and solutions 

Low drag and low boom are the biggest challenges for an SSBJ. These issues, however, are tightly 

related to many other aspects, such as wing configuration, body shape, propulsion system, structure, 

operations, and so on. Design methodologies that can properly predict the aerodynamic coefficients and 

sonic boom intensity are well worth exploring. Technological issues will be specified in this section and 

solutions will be addressed. 
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6.1 Configuration 

Whilst many researchers have explored a wide range of possible wing geometries, as no supersonic 

business jet currently exists there is no real data against which these designs could be available. The basic 

goals for geometry design are to mitigate sonic boom intensity, reduce supersonic wave drag, and provide 

a comfortable environment for passengers. 

6.1.1 Wing shape 

6.1.1.1 Conventional high-sweep wing: 

The high-sweep wing, Fig. 30(a), is applied to the supersonic cruise aircraft primarily to reduce the 

wave drag. Another advantage of this configuration is that, during take-off and landing, at high angles of 

attack, the vortex produced by the leading edges can help to augment wing lift. 

The canard configuration, Fig. 30(b), compared with the aft tail configuration, exhibit of two 

advantages; lower trim drag and lower sonic boom intensity. The canard contributes to lift compared to a 

aft tail configuration. Hence the size of the main wing is reduced. The lower lift on the main wing leads to 

lower trim drag. The canard configuration can potentially mitigate sonic boom through a more uniform 

equivalent area and lift distribution along the length of the vehicle.  

 

(a) Generic conventional supersonic configuration 
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(b) Generic canard supersonic configuration 

Fig. 30. Various configuration concepts for supersonic aircraft (Source: [69]) 

6.1.1.2 Variable geometry wing: 

The variable geometry wing (Fig. 31) is introduced to improve low-speed performance without 

compromising high-speed potential. 

The variable wing concept could, compared with the fix-wing high-sweep configuration, improve 

supersonic efficiency, mitigate sonic boom overpressure, result in better subsonic aerodynamic 

performance, lower noise level and lower take-off and landing distance. A 120,000 lb (54,431 kg) 

variable geometry wing configuration was reported to achieve a sonic boom overpressure of 0.977 psf, 

13% less compared to a constrained highly swept configuration [70]. However, the inefficient wing load 

paths caused by the pivot leads to a structural weight penalty. The mechanical system challenge and flight 

control system make the design more complex. Regulations today may not be enough to fully address the 

difficulties of a variable geometry wing [71]. 
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Fig. 31. Variable-geometry wing SSBJ configuration (Source: [71]) 

6.1.1.3 Supersonic laminar flow wing: 

Supersonic laminar flow is regarded as a key technology to improve the aerodynamic efficiency of 

supersonic transport. The technology is the main characteristic of Aerion Corporation’s SSBJ concept, as 

presented in Fig. 6. 

Delta wing configurations cannot maintain extensive laminar flow as a result of adverse pressure 

gradients and boundary-layer crossflow [72]. The schematic in Fig. 32 indicates the wing shape, airfoil, 

and pressure distribution of a delta wing compared with the low-sweep laminar wing. The laminar flow 

wing features a low swept leading edge and sharp-nosed biconvex airfoil. The low-sweep wing helps to 

reduce spanwise gradients to alleviate the crossflow transition. The sharp leading edges can delay the 

pressure peak on the airfoil. Favorable streamwise pressure gradients can be obtained as a result, leading 

to the stabilization of the laminar boundary layer [72]. The supersonic flow compressibility contributes to 

the stabilization of extensive laminar flow up to a Ma 2.0 [73]. 

The biggest advantage of the laminar flow wing is to reduce supersonic skin friction drag. The 

challenge is that the highly constrained laminar flow concept leaves little space for low-boom design. 
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There is supersonic laminar flow control (SFLC) technology to help achieve extensive laminar flow. 

However, the difficulty with the SFLC is the complexity of the structural layout resulting in weight 

penalty. 

 

Fig. 32. Comparison of laminar flow on delta wing and the low-sweep laminar design (Source: [69]) 

6.1.1.4 Oblique wing: 

The oblique wing configuration seems to be a promising concept in terms of aerodynamics and sonic 

boom at lower supersonic cruise speeds. 

The oblique wing arrangement is twice the wing length as a symmetrically-swept wing of the same 

span, sweep and volume, which offers a reduction in volume wave drag by a factor of 16, as depicted in 

Fig. 33. The lift induced wave drag of the oblique wing is only 1/4th that of the conventional swept wing 

of the same span and sweep. 

The oblique wing mitigates the sonic boom because the lift distribution is more uniform along the 

vehicle length. Wind tunnel tests have been carried out to determine the magnitude of the ground track 

sonic boom overpressure generated by an oblique-wing aeroplane cruising at Mach 1.4 at 13,800m. The 

results show that the oblique-wing configuration produces less sonic boom overpressure at cruise 

condition than an equivalent swept-wing vehicle [74]. 
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The straight carry-through structure of the oblique wing avoids torques that usually reacted by fuselage 

structure and makes the structure simpler. One of the primary concerns is the nonlinear aerodynamic 

behaviour of the asymmetric geometry, which offers challenges in control system design. 

 

Fig. 33. Oblique wing drag reduction features (Source: [69]) 

6.1.1.5 Busemann biplane: 

The supersonic biplane concept is proposed by Adolf Busemann, therefore, it is called Busemann 

Biplane. The biplane is believed to solve the two major challenges for supersonic cruise—the supersonic 

drag and sonic boom problem [75]. 

Fundamentally, the wave drag is separated into wave drag due to lift and wave drag due to thickness 

(volume). Even if drag due to lift is inevitable, it can be alleviated significantly by applying the biplane 

configuration. The configuration is believed to decrease lift induced drag by re-distributing the total lift 

among the airfoil elements, resulting in a lift reduction on each element and thus reduction in drag, which 

is called the ‘wave-reduction effect’. Likewise, by choosing the geometries and relative locations of the 

multi-airfoil, the waves mutually cancel each other to eliminate the wave drag due to thickness, which is 

called the ‘wave-cancellation effect’ [76]. The biplane can mitigate the sonic boom by the ‘wave 

reflection effect’. The elements can be configured to reflect the shock wave produced by the upper plane 
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skyward [77]. These effects can be applied to design an ideal quiet and efficient supersonic aeroplane, as 

depicted in Fig. 34. 

The problems with the Busemann biplane occur at the off-design conditions. The choke-flow 

phenomenon would increase the drag significantly. Even worse, there would be a risky flow-hysteresis 

phenomenon. Flow control measures, such as leading and trailing edge flaps, can help to alleviate these 

problems [78]. Previous study on Busemann biplane focus on the aerodynamic aspect. There is few study 

on the structure. The surface area may increase as the separated surfaces. However, the jointed wing 

structure can be more efficient. It is hard to judge the mass change without in-depth study. 

 

Fig. 34. Conceptual drawing of a biplane supersonic aeroplane (Source: [78]) 

6.1.2 Fuselage 

The fuselage design is highly constrained considering sonic boom mitigation and wave drag 

minimization. The basic theories for fuselage design are the supersonic area rule theory and Whitham’s 

theory (see Section 6.2.1) to minimize wave drag and sonic boom intensity respectively. 

Wave drag will be effectively reduced by improving the vehicle fineness ratio. Modifying the shape of 

the configuration to that of the Sear Haack body and smoothing the surface curvature will make a further 

contribution to wave drag reduction [51]. According to the Seebass-George-Darden (SGD) theory, 

modifications to the fuselage can contribute to the mitigation of sonic boom intensity [79]. 
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The fuselage volume allocation is represented in Fig. 35. The internal items are arranged inside to 

achieve an area-ruled fuselage. The main cabin and the fuselage fuel tank locations are the two main 

variables that have the most influence on the distribution [49]. An SSBJ cabin is designed to typically 

accommodate 8- 12 passengers, as presented in Fig. 36. Under the category of comfort, the longer the 

flight time, the wider the cabin should be. The relatively short travel time in an SSBJ should reduce the 

need for a larger cabin. Configuration studies performed in Ref. [3] indicate that it will be difficult to 

integrate a large-diameter cabin into a 100,000 lb (45,359 kg) SSBJ. A cross section comparison of G550 

subsonic business jet with two supersonic business jet designs is shown in Fig. 37. Integration of large 

cabin diameters into a minimum boom fuselage, as determined by Seabass-George theory, will be 

challenging. A possible way is to change the circular cross section to an ellipse or double bubble for more 

cabin height.  

 

Fig. 35. Fuselage volume packaging (Source: [49]) 



43 
 

 

Fig. 36. Typical SSBJ cabin layout (Source: [48]) 

 

Fig. 37. Comparison of fuselage cross section (Source: [3]) 

6.2 Sonic boom 

The sonic boom is the biggest obstacle to supersonic aircraft re-entering service. There have been 

numerous studies on sonic boom regarding the basic theory, prediction methods, flight tests and 

experiments, and low-boom technologies. The study of the sonic boom phenomenon started with the 

faster than Mach 1 flight of the X-1 in 1947. Research in the 1950s attempted to understand the properties 

of sonic boom. Tests significantly increased during the 1960s, with the development of British-French 

Concorde, as well as the SST programs of the US and the Soviet Union. The space shuttle launch and 

entry boom minimization were the focus of NASA research during the 1970s to the mid-1980s. The late 
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1980s saw the early optimism towards large SSTs. Further research worked on human factors issues, 

sonic boom effects on animals and structures, and sonic boom propagation modelling. Recent research 

focuses more on supporting the development of SSBJs as large SSTs now seem further into the future 

[80]. 

6.2.1 Boom theories 

Usually, three distinct regions (as illustrated in Fig. 38) are classified in analysing sonic boom: 1) the 

near-field region where the flow is fully three-dimensional, 2) the mid-field region where nonlinear 

distortion of the pressure signature occurs due to atmospheric turbulence, and 3) the far-field region 

where the pressure signature of the aircraft has acquired a shape that persists to infinity. The N-wave 

signature features its maximum overpressure (∆p), rise time (τ) and duration (∆t). 

 

Fig. 38.  Sonic boom generation, propagation and evolution (Source: [65]) 

The Whitham theory [81] is based on the linear theory which provides the correct first order values 

along a characteristic. By developing a procedure to correct the characteristic location from the zeroth 

order to the first order, Whitham obtained a uniform first order solution. The theory is known as the ‘F-
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function’ in the following form. 

 𝐹(𝑥) = 1
2𝜋 ∫

𝐴𝑒′′(𝑥)
√𝑥−𝑥 𝑑𝑥

𝑥
0  (3)  

For a non-axisymmetric geometry, the effective area 𝐴𝑒 combines the effects of both volume and lift. 

 𝐴𝑒(𝑥, 𝜃) = 𝐴𝑣(𝑥, 𝜃) + 𝛽
2𝑞∞

∫ 𝐿(𝑥, 𝜃)𝑑𝑥𝑥
0  (4)  

The near-field over pressure 𝛿𝑝 caused by the aeroplane is directly related to the F-function, as 

presented in a simpler general form. 

 
𝛿𝑝
𝑝 = 𝐹(𝜏)

√𝐵  (5)  

Walkden [82] extended the theory by applying the supersonic Area Rule Theory to the sonic boom of 

wing-body combinations. George [83] initiated a higher order analysis to modify complex configurations 

to minimize sonic boom, which also played an important role in the subsequently advanced source 

methods. 

The early propagation theories were developed through a uniform atmosphere by the method of 

geometrical acoustics. The atmospheric turbulence was found to be the main factor that would affect the 

boom amplitude and shock rise times. Crow [84] successfully developed distortion analysis to his 

scattering formulation. Rise times were analysed by two successful theories. One is the Burgers equation 

[85] introduced by Plotkin and George to relate dissipation to turbulence. The other is the theory 

developed by Pierce [86] to take wavefront folding into consideration. 

Sonic boom minimization emerged with the development of sonic boom theories. A major conceptual 

progress occurred when McLean [87] found that N-wave booms were not inevitable. When taking real 

atmosphere effects into consideration, the boom on the ground may be mid-field instead of far-field, 

which made it possible to shape the sonic boom. George [88] pointed out that shocks could be alleviated 
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with a long nose to raise the pressure gently, much like an isentropic spike inlet. George and Seebass [89] 

developed a theory to minimize shocks by modifying the distributions of both lift and area. 

6.2.2 Prediction methods 

Theoretically, there are three steps in predicting the sonic boom signatures [90]. The first step is to 

specify the near-field static pressure signatures around the aircraft. The second step is to propagate the 

pressure signatures to the ground considering the nonlinear turbulence of the atmosphere. The third step is 

to calculate the interactions of the boom signatures with the ground. The third step, however, is not 

usually mentioned in the literature. The roadmap of sonic boom prediction is illustrated in Fig. 39. 

 

Fig. 39. Ingredients of sonic boom prediction programs (Source: [65]) 

The path for the F-function approach starts with the parametric geometry model of the aeroplane. Area 

development for the desired Mach number and azimuth angle is obtained for the geometry model. Lift 

development is provided from the aerodynamic analysis. The resulting equivalent area distributions are 

input to the Whitham F-function to get the near-field signature, which then evolves into the ray-tracing 

code or a mid-field propagation program which better accounts for nonlinear or three-dimensional effects. 

The output of the latter program is then input to the propagation codes considering the atmospheric 

distortion to provide the detailed sonic boom signatures at ground level. A third path is indicated where 
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the Ks, Kp, and Kt factors are obtained using the Carlson methodology [91]. 

The CFD approach starts with a computational grid. Ideally, the code should have an adaptive grid 

capability to concentrate the grid in the vicinity of shocks, or a shock fitting routine, since shock jumps 

tend to smear as the distance from the configuration increases. In most cases, Euler equation codes are 

used since, for vehicles at cruise conditions, viscous effects are second order [65]. Boom predictions with 

Euler equation have been used by various researchers [92-94]. 

The wind-tunnel approach was developed so as to use the near-field pressures measured on small scale 

supersonic aeroplane models. These models provide the same input as the primary path. This alternate 

path is of great use when sonic boom prediction is required for non-standard configurations, for vehicles 

operating at extreme conditions, and particularly at relatively high Mach numbers. In these special cases, 

the results of experimentally based methods are more representative than numerical predictions. 

6.2.3 Low boom solutions 

6.2.3.1 Mitigation through aircraft operations 

Several approaches to sonic boom minimization through the use of flight operations are summarized in 

Ref. [65]: (1) increase the flight altitude to decrease the impact of volume and lift on the boom, as 

illustrated in Fig. 40(a), and (2) use a climbing flight path to delay the arrival of the boom to the ground, 

as illustrated in Fig. 40(b), and (3) operating at a speed below the cutoff Mach number without the boom 

reaching the ground, as illustrated in Fig. 40(c), and (4) tailoring the flight path over heavily populated 

areas, the schematic is illustrated in Fig. 40(d). 



48 
 

 

Fig. 40. Aircraft operations for sonic boom mitigation (Source: [65]) 

6.2.3.2 Mitigation through aircraft shaping 

Sonic boom signature mitigation through aircraft shaping is based on the equivalent area concept 

established by Whitham [81] and Walkden [82]. To reduce the overpressure for a given design, the 

equivalent area must be spread so as to increase the slenderness ratio as illustrated by the three sketches 

shown in Fig. 41. The sonic boom intensity is inverse proportion to the slenderness ratio (∆pmax ∝ d/L). 

Thus the larger the L/d, the lower the maximum overpressure will be. 

(a) Sonic boom attenuation with altitude (b) Schematic of shock-ray pattern 

(c) Boomless flight at Mach cutoff (d) Schematic of pull-up manoeuvre 
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Fig. 41. Relationship of signature shapes to vehicle area development (Source: [65]) 

Direct shape optimization [95] is a widespread method to optimise low-boom configurations. The 

inverse design approach is the focus of present research [96]. The inverse design approach based on the 

Seebass-George-Darden (SGD) boom minimization theory is proposed to design the fuselage-wing 

configuration [97]. As the schematic in Fig. 42 indicates, the inverse design process begins with the 

calculation of the effective area (Ae) for a given configuration. Ae is fed back to Whitham’s F-function 

method to generate the boom signature. The configuration’s low-boom target signature is approximated 

by modifying the curve of the wing/body cross section area distribution [6]. 
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Fig. 42. Schematic of SGD method (Source: [98]) 

Lift distributions can be used to control the strength and location of shocks by means of planform 

changes, wing section thickness, wing twist, wing camber and dihedral. Active lift control is a way to 

mitigate sonic boom by modifying the longitudinal lift distribution with no effects on the trim state [99]. 

SAI hold a patent to control the thickness and camber by deploying a device to generate expansions ahead 

of compressions in off-design conditions. This technology enables to achieve low intensity sonic booms 

[100]. 

6.2.3.3 Mitigation through exotic concepts 

The method of ‘phantom bodies’ has found application to test the sonic boom level. Different 

magnitudes of heating flows are supplied to the incoming flow in the numerical research. A 20%  sonic 

boom level reduction was observed in the study [101]. 

Miles et al. [102] propose an approach of energy addition to mitigate the sonic boom. In this approach, 

an energy addition process contributes to increase the apparent length of the aircraft and thus to reduce 
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the extent of shock-wave coalescence. Here, an initial rise of 0.8 psf reduced to 0.2 psf with a peak rise of 

0.6 psf. 

The extendable nose spike is a mass addition developed to alter the shock wave field. The Quiet Spike 

concept [103] patented by Gulfstream Aerospace has achieved a 0.25 psf initial shock compared 0.4 psf 

without spike and an increase of 25% in rise time [93]. There are some other exotic concepts that can be 

found in Ref. [65]. Not only for these exotic concepts, even for other sonic boom mitigation measures, 

there will always be cost, such as loss in performance, mass penalty or energy increase. 

6.2.4 Flight tests and experiments 

Wind tunnel and flight tests help to support the sonic boom prediction methods by measuring the near-, 

mid- and far-field shock flow fields. Low-boom solutions were tested during many flight test programs. 

The early flight tests focused on gaining insight into the nature of the wave flow field, measuring the 

near-field shocks, and insight into effects of aircraft lift.  

NASA carried out tests on the SR-71 to validate CFD codes by measuring the near- and mid-field 

pressure signatures on a probing aircraft [104]. A reasonable agreement was shown in the comparison of 

flight-test data and the computed pressure signatures [105]. During DARPA’s Shaped Sonic Boom 

Demonstrator (SSBD) program [106], an F-5E aircraft was modified, particularly in the forebody region, 

to produce a flat-top sonic boom signature, as shown in Fig. 43. The program successfully demonstrated 

the sonic boom signature can be modified through aircraft shaping, as indicated in Fig. 44. A total of 56 

in-flight signatures on the F-5E and 68 on the SSBD were generated suitable for methodology and tool 

validation. A high correlation is seen between the measured and predicted signatures proving the accuracy 

of the CFD tool [107]. 
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Fig. 43 Modified F-5E aircraft for SSBD program (Source: [65]) 

 

Fig. 44 Baseline and low boom signature comparison (Source: [106]) 

Gulfstream and NASA cooperated in the flight trails which aimed to test the effect of the Quiet Spike 

in sonic boom mitigation. The Quiet Spike was adapted to an F-15B flight research aircraft and a total of 

32 research flights were conducted. The schematic of the Quiet Spike, as shown in Fig. 45, is that the 

series of weak shocks generated by each of the telescoping sections will not coalesce into an N-wave but 

propagate to the ground in parallel fashion. The Quiet Spike has proven that it can play a significant role 

in achieving the desired area distribution for a low-boom aeroplane [108-110]. 
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Fig. 45 CFD analysis of Quiet Spike structure (Source: [108]) 

The D-SEND (Drop test for Simplified Evaluation of Non-symmetrically Distributed sonic boom) 

project was commenced by Japan Aerospace Exploration Agency (JAXA) for the demonstration of the 

low boom design technologies. The project is conducted in two phases, the D-SEND#1 and the D-

SEND#2. The D-SEND#1 drop tests were carried out twice from a balloon. The low-boom model 

signatures compared with N-wave model signatures plotted in Fig. 46 indicate the success of the project. 

The D-SEND#2 was to drop an unmanned aeroplane (Silent Supersonic Technology Demonstration, Fig. 

47) at an altitude of up to 30 km to validate the shock waves reduction. 

 
Fig. 46 Measurement results of D-SEND#1 (Source: [111]) 
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Fig. 47 D-SEND#2 Silent Supersonic Technology Demonstration (Source: [112]) 

During the NASA N+2 Advanced Supersonic Commercial Transport Aircraft project, tests were carried 

out in NASA Ames 9’×7’ supersonic wind tunnel to validate boom shaping tools. The results saw sonic 

boom reductions in both front and aft near-field which matched predictions [113, 114]. 

6.3 Aerodynamics 

Another central challenge for SSBJ design is to minimize supersonic drag under the stringent civil 

aviation regulations and mission requirements. The dilemma of balancing the supersonic cruise and 

subsonic performance is sketched in Fig. 48. The highly swept wing will provide a higher supersonic lift 

to drag ratio at supersonic speeds to help meet the long range requirement. However, its lower 

aerodynamic efficiency at subsonic speeds results in more fuel consumption. 
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Fig. 48. Supersonic cruise aircraft aerodynamic dilemma (Source: [115]) 

6.3.1 Aerodynamic efficiency 

The level of aerodynamic efficiency (L/D) at subsonic and supersonic flight are both important. From 

the analysis in Section 5.1, a small increment of L/D in supersonic cruise would result in a significant 

improvement in range. It is estimated that if the Concorde’s L/D drop to 7 in subsonic regime, 40% of the 

fuel would be used in the low-speed flight. The supersonic cruise efficiency is directly and indirectly 

related to most of the challenges. 

Promising means to improve the aerodynamic efficiency are referred to in Ref. [115]. The variable 

sweep configuration seems to be an obvious way to cope with subsonic and supersonic speed regimes. 

Though military aircraft have adapted this concept, difficulties do exist to apply it to a highly constrained 

commercial transport. The swept-delta or delta-ogee wing, used by Concorde and American SST, is still a 

compromise between subsonic and supersonic L/Ds. Leading- and trailing-edge flaps have been verified 

to be able to improve the aerodynamic performance of a supersonic configuration at low speed [116, 117]. 

There are novel ideas to solve this dilemma, such as the supersonic bi-directional flying wing concept 

[118]. 
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6.3.2 Supersonic drag 

Supersonic drag consists of several components. A good drag breakdown is provided in Ref. [119]. 

Basically, supersonic drag is categorised into friction drag, wave drag, and other drag (vortex, 

interference, etc.). The wave drag produced by the cross-sectional area distribution is called ‘wave drag 

due to volume’, while the wave drag produced by lift generation is named ‘wave drag due to lift’. These 

supersonic drag components are summarized in the following equation: 

 𝐶𝐷 = 𝐶𝐷𝑓 + 𝐶𝐷𝑤𝑣 + 𝐾(𝐶𝐿 − 𝐶𝐿0)2 + ∆𝐶𝐷𝑖 (6) 

where 𝐶𝐷𝑓=friction drag, 𝐶𝐷𝑤𝑣=wave drag due to volume, 𝐾(𝐶𝐿 − 𝐶𝐿0)2=wave drag due to lift, 

∆𝐶𝐷𝑖=other drag. Therefore, based on supersonic linear theory, the supersonic drag can be reduced in 

different aspects. The effects of drag reduction methods used in JAXA’s experimental aeroplane are 

depicted in Fig. 49. 

 

Fig. 49. Effect of each drag reduction concept (Source: [119]) 

Wave drag starts to contribute to the total drag in the transonic regime, while it becomes significant for 

supersonic cruise aeroplane, which is a major barrier for an economically viable SSBJ. An indepth review 
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on two nonreacting wave drag reduction approaches, shock weakening by altering the shock formation 

processes and favorable wave interferance, can be found in Ref. [120]. Possible technologies to resolve 

the challenge are introduced in Ref. [2]. Modifying the flow field, including active flow control, virtual 

shaping, and energy addition [121] can reduce supersonic wave drag. Unconventional designs, such as an 

oblique wing, present a fundamentally different solution to the problem. However, it will take a long time 

to verify these approaches because of the low maturity levels. High fidelity analysis is expected to be 

needed to explore the feasibility of novel technologies. This technology should be introduced via a 

multidisciplinary design analysis and optimisation environment, taking other design requirements into 

consideration. 

6.3.3 Supersonic laminar flow 

Laminar flow design is a key technology that could have a large aerodynamic performance benefit for 

the SSBJ. A quantitative drag breakdown of the conventional supersonic aeroplane is shown in Fig. 50. It 

is not difficult to see that skin friction drag represents a significant contribution to total drag which 

justifies efforts to reduce it. 

 

Fig. 50. Supersonic drag components (Source: [122]) 

Skin friction, 
40% 

Wave drag 
due to 

volume, 20% 
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drag, 35% 

Other drag, 
5% 
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As shown in Fig. 51, an increase in laminar flow fraction from 5% to 70% is needed to extend the range 

of a typical SSBJ from trans-Atlantic to trans-Pacific. Fig. 52 depicts the weight saving for a 5000 nm jet. 

Increasing the laminar flow fraction from 10% to 60% can drop the take-off weight by a half [123].  

 

Fig. 51. Impact of laminar flow on range (Source: [123]) 

 

Fig. 52. Impact of laminar flow on weight (Source: [123]) 

Natural laminar flow (NLF) is a passive way to achieve extensive laminar flow by design the wing 

shape carefully. A NASA F-104 sublimation test in 1959 illustrated the extent of stable natural laminar 

flow. Laminar flow over 50% of wing chord was achieved at an approximate three-quarters span location 

[124]. NASA flight test on F-15B demonstrated an impressive amount of laminar flow, Fig. 53.  

 

Trans-Atlantic Trans-Pacific 
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Fig. 53. F-15 full-chord laminar flow simulation and flight test (Source: [72]) 

The National Experimental Supersonic Transport (NEXST) project was performed by JAXA to validate 

the natural laminar flow wing design developed by CFD technology. The flight testing was carried out on 

a 1/10 scale cranked arrow wing aeroplane, as shown in Fig. 54. The laminar flow was verified to cover 

an area of over 30% of the wing upper surface at Mach 2.0 [45]. 

 

Fig. 54. NEXST project aircraft (Source: [125]) 

Supersonic Laminar Flow Control (SLFC) is applied to actively keep the boundary-layer flow from 

transitioning to turbulent flow at supersonic speeds. SLFC schemes include slot suction, porous suction, 
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wall cooling [126, 127], and distributed roughness [128, 129]. NASA has successfully achieved an extent 

of 46% supersonic laminar flow on a crank arrow wing configuration (70° inboard and 50° outboard). 

Active control technology uses a perforated titanium glove [130], as shown in Fig. 55. However, this 

technology is not mature enough to go from laboratory to daily operation. 

 

Fig. 55. F-16XL flight test with LFC glove on the left wing (Source: [131]) 

6.4 Propulsion system 

As with all aspects of supersonic aircraft design, the propulsion system is heavily constrained by 

numerous requirements. Better fuel efficiency is, of course, of high importance to improve the payload 

fraction and will contribute to a reduction of emissions. Novel fuel propulsion systems provide another 

way of solving these problems. Fuel system and aircraft sizing need to be designed carefully due to high 

fuel fraction. 

6.4.1 Engine selection 

The engine selection for an SSBJ is not easy considering the three-speed regimes (subsonic, transonic 

and supersonic) that the aircraft will be operating in. The dilemma is that propulsion systems that perform 
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optimally at supersonic speeds do not perform very well at subsonic speeds, and vice versa. Trade-offs 

need to be evaluated between the engine efficiency and the stringent environmental requirements. In fact, 

the winner will be chosen because of its balanced behaviour over the whole flight spectrum. 

Rolls-Royce studied different engine concepts for second generation quiet supersonic transports. The 

Variable Cycle Engine (VCE) was selected after a comparison with the Variable Cycle Conventional 

Turbofan (CTF), Mixed Nozzle Ejector (MNE) and Mid-Tandem Fan (MTF) configurations. Inlet and 

nozzle requirements to solve acoustic problems appropriate to VCE were also considered [132]. 

NASA compared six candidate engine concepts for the HSCT project. These propulsion systems 

include the turbojet, turbine bypass engine, mixed flow turbofan, variable cycle engine, FLADE (Fan-on-

blade) engine and the inverting flow valve engine. The mixed flow turbofan (Fig. 56) is preferred for its 

good performance, low weight and low risk and complexity. Low-noise features helped the FLADE 

engine to be the second choice. While the VCE was crossed off the list because of its heavier weight 

caused by the additional secondary outer bypass duct to the mixed flow turbofan [133].  

 

Fig. 56. Mixed flow turbofan schematic and model (Source: [134]) 

A conceptual design of an SSBJ propulsion system was performed under NASA’s Ultra-Efficient 

Engine Technology Program (UEETP). The program developed several key technologies (highly loaded 

turbomachinery, emissions reduction, materials and structures, controls and propulsion-airframe 
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integration) to enhance the performance of future supersonic transports. The high-level goals of the 

program are a 70% reduction in take-off and landing NOx and an 8% decrease in mission CO2 emission. 

The study concluded in the design of a mixed flow turbofan engine with a fan pressure ratio of 0.3 and a 

throttle ratio of 1.143 [135]. 

The overall propulsion system design is significantly influenced by the engine cycle selection, which is 

particularly true for supersonic cruise aeroplanes. Gulfstream Aerospace has conducted research to 

compare the integrated performance of two Rolls-Royce turbofan-derived propulsion systems, an 

advanced highly variable cycle (HVC) engine and a more conventional high bypass cycle (HBR) engine. 

The assessment was performed on Gulfstream’s low-boom SSBJ concept, as shown in Fig. 11. The results 

indicated that the HVC, compared to HBR, is 8% superior in terms of elapsed integrated fuel burn 

improvements and up to 11% increase in time-to-climb advantages [136]. 

On-design engine performance is determined by design choices. This helps to examine the engine 

performance trends with design variable changing and to narrow the range for each design parameter. 

Off-design conditions are also important to determine a selected engine performs at all operating 

conditions in its flight envelope [137]. Off-design analysis of supersonic aircraft engines can be found in 

Ref. [134]. 

6.4.2 Novel fuel 

Liquid hydrogen (LH2) is a promising alternative energy source compared to kerosene considering 

weight minimization, sonic boom mitigation, and emissions reduction. 

A conceptual design study evaluated the feasibility of the hydrogen-fuelled SST and made a 

comparison between LH2 and kerosene in terms of weight and sonic boom. By using LH2, the weight 
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reduces by around 30% and a 13PLdB reduction in sonic boom noise can be seen [138]. 

In another study, the SST fuelled by LH2 is calculated to reduce sonic boom about 2.2-4.3 PLdB, while 

a 1.3EPNdB higher airport noise will result due to the higher jet velocity. However, the climate change 

impact becomes more severe because the water vapour emitted to the stratosphere is 2.6 times higher 

[139]. 

6.4.3 Emission and noise 

The Central Institute of Aviation Motors (CIAM) optimized an SSBJ NOx emission model to study the 

effects of the emission parameters under a set of criteria. The results concluded that a 15-18% NOx 

emission reduction can be reached with range and jet noise criteria and the range would reduce 8-10% as 

a penalty. Optimization of the design variables allows an NOx reduction of 25-30% under three criteria 

(range, noise and emission) with range losses by merely 2-3% [140]. 

The five-year ESPR project summarises the achievements of environmentally compatible technologies 

for the next generation SST. The jet noise can be reduced 3.1 dB by utilising a mixer-ejector (Fig. 57) and 

the fan noise reduction of 3 dB was achieved by the concept of swept/leaned stator vanes in the bypass 

duct. The NOx emission level goal of 5 g/kg E.I. can be realized by benefiting from an LPP (Lean 

Premixed Prevaporized) combustor, NOx feedback AI control and CMC liner walls. The third target of a 

25% CO2 reduction from the 1999 technology level was achieved through the engine weight reduction 

and cooling airflow [141]. 
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Fig. 57. Mixer-ejector configuration (Source: [141]) 

6.4.4 Fuel system 

A characteristic of the SSBJ is its high fuel fraction, which causes challenges on the fuel packaging and 

fuel system management. The fuel tanks are distributed throughout the wing and fuselage, Fig. 58. Fuel 

need to be pumped from tank-to-tank to actively manage the aeroplane centre of gravity to improve 

performance and mitigate sonic boom. 

 

Fig. 58. SSBJ fuel system layout (Source: [48]) 

6.5 Structure 

Designing an aircraft for supersonic flight results in many additional structural issues that should be 

taken into consideration in the design phase, such as thermal effects, supersonic panel flutter and acoustic 

fatigue. The high fuel fraction requirement for the SSBJ concept to achieve the desired range demands a 
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minimum structural mass. Therefore, there is an increasing need for optimal structure design and 

materials selection. 

6.5.1 Structural design 

As shown in Table 5, the aerodynamic heating effects become severe as the Mach number increases. 

There will be a significant thermal protection problem over Mach 2.0. Thermal protection measures result 

in a weight penalty, which is unacceptable for business class aircraft. A limitation on the Mach number 

has alleviated the problems induced by aerodynamic heating. 

Table 5. Aerodynamic heating effects (Source: [51]) 

Cruise Mach Surface Temperature (°C) 
Peak Average 

1.6 65 40 
1.8 85 65 
2.0 120 95 
2.2 155 125 

The SSBJ is usually featured with swept thin wings with long root chords, which is required for wave 

drag reduction. High speeds increase the lifting surface susceptibility to high-frequency flutter modes. By 

way of experience that a flexible airframe combined with aft mounted engines tends to be susceptible to 

flutter [142]. Smart wing structures are mentioned to reduce wing flutter [143]. The supersonic panel 

flutter analysis will need high-fidelity finite element analysis [144]. 

The sonic fatigue problem was studied in NASA’s HSR program. Honeycomb structures were tested 

and analysed for its fatigue resistance ability. It is found that the core thickness should be greater than 0.5 

inches and the panel length less than 50 inches. The skin-stringer fuselage concept is regarded as the most 

promising structure to meet the sonic fatigue resistant requirement. Addition damping techniques are to 

add substructure or enlarge material gages [145]. 
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6.5.2 Materials 

It is clear that different parts of a supersonic aeroplane are heated up to different temperatures; hence 

different parts should be designed with the most appropriate materials. Polymer matrix composites and 

most aluminium cannot maintain their mechanical properties at 120°C or above (greater than Mach 2.0) 

for long-term operation [146]. Titanium’s high melting point (1668°C) ensures the aerodynamic heat 

would not have any adverse effects on the aircraft structure. However, it is applied in limited parts as a 

result of the high density. A review of supersonic aircraft material selection [147] suggests possible 

materials for aircraft cruise speed up to Mach 2.0. The fuselage can use aluminium 2090-T651, 7075-T6 

and 8090-T651 (for nose). Commercial grade CFRP can be applied for the wing, while Ti-6Al-4V or 

other Ti can be used for the skeleton. NASA’s HSR program has found that IM7/PETI-5 is the potential 

material for high-speed supersonic aircraft. This material can maintain its mechanical capacity at 350°F 

(177°C) and its capability to resist fatigue damage is extremely high [145]. 

An appropriate Material Selection Chart is usually referred to for supersonic aircraft material selection 

[147]. Progress has been made in developing an efficiently computer-aided material selection system for 

the design of advanced supersonic aircraft [148]. 

6.6 Design methodologies 

6.6.1 Sonic boom prediction codes 

Normally, the sonic boom prediction consists of two parts: near-field pressure generation and boom 

propagation. There have been numerous codes for sonic boom prediction. Some of them are sorted in 

Table 6.  
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Table 6. Sonic boom prediction codes 

Codes Task Comments Feature Source & Available 
HWAVE Volume 

Distribution 
Obtain Mach slice area Also used for wave drag 1964, NASA [149] 

LSTAR Aerodynamic 
Analysis 

Estimate wing nonlinear 
aerodynamic characteristics at 
supersonic speeds 

Nonlinear theory 1980, NASA [150] 

USM3D Aerodynamic 
Analysis 

Finite volume method Unstructured flow solver 
for unsteady flows 

1990s, NASA [151] 

Cart3D Aerodynamic 
Analysis 

3D Cartesian grid generation and 
Euler flow solution techniques 

CFD method for off-body 
pressure distribution 

1995, NASA [152] 

Hayes/ARA
P Code  

Boom 
Propagation 

Prediction the evolution of an 
aircraft’s pressure signature 

Based on the Whitham 
theory (F-Function) 

1969, Aeronautical 
Research Association 
of Princeton [153] 

Thomas’s 
code 

Boom 
Propagation 

3-D flow solver for ground 
signature prediction 

Based on a modified linear 
theory (not F-Function) 

1970, NASA [154, 
155] 

TRAPS Boom 
Propagation 

Follows Hayes’ formulation; use 
ray distance as its independent 
variable; 

Add secondary boom 
capability to the ARAP; 
Nonlinear theory 

1980, NOAA [156] 

PBOOM Boom 
Analysis 

Evaluate sonic boom of actual 
configuration 

AWAVE, ALIFT & ARAP 1983, NASA [157, 
158] 

JBYMAX Boom 
Propagation 

Combine the previously separate 
equivalent area and F function 
development with a signature 
propagation method 

Linear theory method 1983, George 
Washington 
University [157] 

ZEPHYRUS Boom 
Propagation 

Application of molecular 
relaxation to the sonic boom; 
Inhomogeneous, windy 
atmosphere 

Mixed time and frequency 
code 

1991, The University 
of Texas at Austin 
[159] 

MDBOOM Boom 
Propagation 

Mid-field pressure signature did 
not decay as fast as the near-field 
decay of the Thomas code. 

Linear code based on the 
Thomas code 

1992, Boeing [160] 

PCBOOM3 Boom 
Prediction 

Three major inputs: the aircraft, 
the atmosphere and the aircraft 
manoeuvre 

Extension of the Thomas 
code 

1996, USAF [161] 

BOOM-UA Boom 
Analysis 

Automate the process of mesh 
generation, solution adaptation, 
and signature extraction and 
propagation. 

Numerical method 2004, Stanford 
University [92, 162] 

sBOOM Boom 
Propagation 

An approach to predict the sonic 
boom ground signatures 
accurately by numerically solving 

The augmented Burgers 
equation entirely in the 
time domain 

2011, National 
Institute of Aerospace 
[163] 

Several practical ways of different fidelity have been concluded as follows [164]: For the low-fidelity 

sonic boom analysis, Ae due to lift can be generated by LTSTAR [150] and Ae due to volume can be 

generated by HWAVE [149]. The boom propagates to the ground with ARAP [153] or sBOOM [163]. For 

the medium-fidelity option, the total Ae comes from the CFD simulation, which is then propagated 

utilising sBOOM. The highest fidelity option used the mid-field pressure distribution from Cart3D [7] or 
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USM3D [165, 166] and propagates the signature using either PCBOOM [161] or sBOOM. 

6.6.2 Integrated design environment 

The primary challenges in the design of a supersonic cruise vehicle are to increase the efficiency and to 

remove the environmental and performance barriers. Recognizing that these barriers are not captured by 

traditional disciplinary analysis, the top-level goal of SSBJ design is to build a practical multidisciplinary 

design and analysis environment, where a global optimization algorithm is inside the framework. There 

have been many attempts to apply multidisciplinary optimization to SSBJ design throughout the 

literature, such as ModelCenter, Program for Aircraft Synthesis Studies (PASS) [167], the CAD-based 

Automatic Panel Analysis System (CAPAS) [46], and the Flight Optimization System (FLOPS) [168]. 

GENUS is a multidisciplinary aircraft design analysis and optimization environment developing at 

Cranfield University. GENUS consists of nine modules: 1) geometry, 2) mission, 3) propulsion 

specifications, 4) mass breakdown, 5) aerodynamics, 6) propulsion, 7) packaging and C.G., 8) 

performance, and 9) stability and control. Three optimization methods have been implemented into the 

program, including a gradient based optimizer, a genetic algorithm, and a hybrid algorithm. This aircraft 

design environment has been successfully used in a hypersonic space design [169] and a blended-wing-

body design [170]. 

6.7 Summary 

There are various technologies appropriate to SSBJs’ design challenges. In fact, they are of different 

levels of maturity. Technology Readiness Levels (TRL) are introduced to quantify technology maturity to 

reduce risk, enhance cost effectiveness and safety. TRL 6 is expected to incorporate new technologies into 

commercial aviation products. A number of technologies mentioned in this section have been evaluated in 
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NASA’s N+3 Supersonic Program [171]. The enabling technologies to realize environmentally acceptable 

and economically viable supersonic vehicle are listed in Table 7. 

Table 7. TRL roadmap for SSBJ (Source: [171]) 

Technology Goal Description Benefits TRL 
Swing canard Efficiency, 

boom 
Deploy canard only at low speeds to 
control trim and stability 

Lower drag, better boom 9 

Oblique wing 
with fuselage 

Efficiency, 
boom 

Oblique angle of wing could be adjusted in 
flight about a single pivot 

Better adapts to low speed and high-
speed optimum sweep. Less of a 
weight penalty than a standard swing 
wing. Reduce boom 

6 

Variable 
sweep 
outboard 
wing panels 

Efficiency, 
noise, 
boom 

Variable sweep of wing using pivots or 
other mechanical system 

Easier to balance low-speed take-off 
requirements with high-speed drag 
and boom goals, less weight than full 
variable sweep wings 

9 

Quiet spike Efficiency, 
boom 

Extending and retracting spike, extends for 
cruise to increase effective length of 
aeroplane, retracts for better landing 

Reduce boom 5-6 

Lift 
distribution 
control 

Efficiency, 
noise 

Ability to conform portions of 
configuration/control lift surfaces 

Ability to control lift, decreased drag, 
lower noise 

2-3 

Configuration 
shaping 

Boom, 
efficiency 

Shape configuration to close fore and aft 
shock to acceptable levels using advanced 
MDO techniques 

Optimized boom configuration 
capable of achieving 70 PLdB 

1-2 

Plasma boom 
optimization 

Boom, 
efficiency 

Use plasma generators to change airflow at 
key locations on aircraft and dissipate 
shocks 

Reduce boom without having to 
heavily constrain the configuration 

2-3 

Distributed 
roughness 
laminar flow 

Fuel 
efficiency, 
range 

Distributed bumps on aircraft surfaces. 
Creates acoustic disturbances out of phase 
with crossflow disturbances and maintains 
laminar flow on swept wings 

L/D+ 1 to 1.5, increased efficiency at 
higher Mach, less friction/drag, 
reduction in weights 

3 

Low 
noise/high-
performance 
nozzle 

Airport 
noise, fuel 
efficiency 

Lower the engine noise through various 
methods without much weight and 
efficiency penalties 

Meet noise and efficiency goal 3 

VCE Airport 
noise, fuel 
efficiency, 
sonic 
boom 

Advanced turbofan engine with adaptive 
cycle features. Similar to conventional 
mixed-flow turbofan with secondary outer 
bypass duct 

Smaller, lighter propulsion system that 
meets airport noise goals 

3 

Thrust 
vectoring 

Boom, 
efficiency 

Vector engine exhaust slightly downward 
during cruise to improve boom 

Reduce aft shock without having to 
heavily constrain configuration 

6 

CFD-based 
MDAO 

Boom  Shapes lifting surfaces to low boom targets Optimized boom configuration 
capable of achieving 70 PLdB 

2-3 

Synthetic 
cockpit vision 

Efficiency Use TV camera system to give pilot better 
visibility where nose is in the way 

Eliminates need for folding nose or 
any other design compromises 
necessary for the pilot to see the 
runway 

2-3 

Windowless 
cabin 

Efficiency Eliminate windows and replace with TV 
flat-screens 

Huge weight savings from eliminating 
holes in structure, manufacturability 
benefits, cabin noise benefits 

6 
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7. Conclusion 

The small-size SSBJ has been consistently regarded as the pioneer of the next-generation supersonic 

civil transport. The steady growth in air traffic calls for more efficient, faster commercial transport. 

Several studies lead to a convincing high-end market in business class transport. Regulations appropriate 

to supersonic airliners need to be introduced in the near future as the studies on sonic boom acceptance 

continue. The need to reduce the sonic boom loudness and supersonic cruise drag are of vital importance. 

There seems to be a common view on the mission specifications of the SSBJ. With the trans-Atlantic 

ability, the number of passengers between 8 and 12, and a cruise Mach number of about 1.8, the SSBJs 

are highly constrained by environmental concerns. However, it is not easy to balance these concerns with 

the ‘value of time’ benefits offered by the high speeds. The low-boom requirement restricts all aspects of 

the design from wing shape and fuselage geometry, cabin and nacelle, through to aerodynamic 

performance, engine selection and propulsion integration to the applications of other novel technologies. 

Public acceptance plays an important role in the return of supersonic transport. A possible approach is the 

development of a flight demonstrator scaled to produce a representative reduced boom waveform 

signature and assess the response of the public. 

Despite these challenges, considerable investment has been made in de-risking many of the enabling 

technologies and raising readiness levels. Many technologies are moving beyond theoretical and 

numerical analysis into the experimental and flight testing domains. The multidisciplinary design, 

analysis and optimization with higher-fidelity capacities can hopefully carry out in-depth studies founded 

on physics to limit the design space and thus to reduce future development costs. 

The efforts from both the industry and the academy will speed up the process in bringing commercial 



71 
 

supersonic aircraft back. The next-generation low-boom supersonic flight is expected in the next few 

years. 
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