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Abstract: In this paper, a bias-eliminated output error model identification method is proposed for 

industrial processes with time delay subject to unknown load disturbance with deterministic dynamics. 

By viewing the output response arising from such load disturbance as a dynamic parameter for 

estimation, a recursive least-squares identification algorithm is developed in the discrete-time domain 

to estimate the linear model parameters together with the load disturbance response, while the integer 

delay parameter is derived by using a one-dimensional searching approach to minimize the output 

fitting error. An auxiliary model is constructed to realize consistent estimation of the model 

parameters against stochastic noise. Moreover, dual adaptive forgetting factors are introduced with 

tuning guidelines to improve the convergence rates of estimating the model parameters and the load 

disturbance response, respectively. The convergence of model parameter estimation is analyzed with 

a rigorous proof. Illustrative examples for open- and closed-loop identification are shown to 

demonstrate the effectiveness and merit of the proposed identification method. 
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1.  Introduction 

Unexpected or time-varying load disturbance is often encountered when performing 

identification tests for industrial processes [1-3], e.g. an inherent type load disturbance arising from 

the mold cavity pressure affects the injection velocity to fill up the mold cavity during the filling 

process of injection molding [4]. Unknown load disturbance may propagate throughout the process 

and blur the output response when performing an identification test, causing undesired identification 

error [2-5]. Bias-eliminated model identification against load disturbance has therefore become 

increasingly appealed in the recent years [6, 7]. Different identification tests have been explored to 

deal with load disturbance. To enumerate a few, for the use of step response test, a time integral 

identification method [8] was proposed to eliminate the influence from stochastic or static type load 

disturbance. A robust step response identification algorithm was developed for unbiased parameter 

estimation against unexpected deterministic type load disturbance [9], by using the transient response 

data obtained by adding and subsequently removing a step change to the process input. With a pulse 

type input excitation, a two-stage identification algorithm was developed to cope with a specific class 

of load disturbance with a continuous spectrum of amplitude [10]. The approach was further extended 

to deal with periodic disturbance by using multiple sinusoidal excitations [11]. For the use of a closed-

loop relay feedback identification test subject to static type load disturbance, a frequency domain 

transfer function identification method was proposed based on using the symmetric property of output 

response to eliminate the influence from such load disturbance [12]. By comparison, a so-called A-

locus analysis method was presented to identify integrating and unstable processes subject to static 

type load disturbance [13]. However, a prior knowledge of the occurrence of load disturbance or its 

dynamics is needed to apply these identification methods, which may not be available in engineering 

applications subject to unknown load disturbance. 

In discrete-time domain, a few output error (OE) model identification algorithms were presented 

to deal with stationary stochastic load disturbance for both open-loop and closed-loop identification 

tasks in the literature [5, 14]. In cases where both the system input and output suffer from colored 

noises, errors-in-variables methods were developed to procure consistent estimation [15, 16]. In the 

presence of unknown but bounded disturbance, an error-bounded parameter estimation algorithm was 
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proposed based on using a membership set [17]. A refined instrumental variable (RIV) approach was 

recently developed by using a unified operator to estimate the Box–Jenkins model [18]. For the 

presence of non-stationary disturbance, a bias compensation identification algorithm [19] was given 

to obtain an extended ARMAX or OE model with good accuracy, by using a variable forgetting factor 

to estimate the model parameters and disturbance. For time delay systems, only a few papers 

presented discrete-time domain identification methods for obtaining an OE model with an integer 

type delay parameter, due to the difficulties for identifying the linear model parameters together with 

an integer type delay parameter that involves mixed-integer programming, which was recognized to 

be a non-convex problem for parameter estimation [20-22].  

In this paper, to deal with unknown load disturbance having deterministic dynamics, a discrete-

time domain OE model identification method is proposed for industrial processes with time delay 

response, to facilitate computer-aided control design for implementation. The output response to such 

load disturbance is viewed as a dynamic parameter which is lumped into the model parameters for 

estimation. To solve the above non-convex problem for parameter estimation, a one-dimensional 

searching strategy is given by minimizing the output prediction error to determine the optimal integer 

type delay parameter. An auxiliary model is constructed to realize consistent estimation of the model 

parameters against stochastic noise, in consideration of that the standard recursive least-squares (RLS) 

algorithm cannot guarantee consistent estimation of an OE model [23]. Moreover, dual forgetting 

factors are introduced to expedite the convergence rates of estimating the model parameters and the 

load disturbance response, respectively, with tuning guidelines to avoid the ‘wind-up’ of estimation 

error arising from using a constant forgetting factor as adopted in a traditional RLS algorithm, in 

particular for using a poor excitation for identification [24-27]. The convergence and unbiased 

estimation of the proposed algorithm is analyzed with a rigorous proof. The paper is organized as 

follows. In Section 2, the identification problem is presented. In Section 3, the proposed identification 

algorithm is detailed, followed by convergence analysis given in Section 4. Two illustrative examples 

for open- and closed-loop identification together with an application to identify an injection molding 

process model under time-varying load disturbance are presented in Section 5. Finally, conclusions 

are drawn in Section 6. 
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Throughout the paper, the following notations are used. Denote by � , n� , and n mu�  the 

spaces of real number, n -dimensional real vector, and n mu  real matrix, respectively. For any 

matrix m mP u�� , 0P !  (or 0P t ) means P  is a positive (or semi-positive) definite matrix. For 

m mP u��  of full rank, denote by 1P�  the inverse of P , by TP  the transpose of P , and by tr( )P  

the matrix trace. Denote by 
2

P  the Euclidean norm of nP�� . Denote by ( )PU  the eigenvalue 

of P , and by min ( )PU  and max ( )PU  the minimum and maximum, respectively. The identity/zero 

vector or matrix with appropriate dimensions is denoted by I / 0 , where mΙ  indicates m m
m

u��I

and m nu0  for m n
m n

u
u ��0 .  Denote by [ ]E g  the mathematical expectation operator with respect 

to ng�� . Denote by D̂  the estimated value of mD �� . Denote by z  a discrete-time operator, 

i.e. 1 ( ) : ( 1)z u t u t�  � . 

2.  Problem description 

When performing an identification test for a sampled system with time delay subject to load 

disturbance and measurement noise, the output response can be generally described by the following 

discrete-time OE model with an integer type delay parameter,  
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where d  is an integer type delay. The polynomials 1( )A z�  and 1( )B z�  are coprime with the 

following forms,  
 1 1

1( ) 1 a

a

n
nA z a z a z�� � � � �"  

 1 1
1( ) b

b

n
nB z b z b z�� � � �"  

All zeros of 1( )A z�  are assumed to be inside the unity circle, i.e. the system is asymptotically stable. 

Denote by ( )u t , ( )x t  and ( )t[  the excitation signal, noise-free response, and load disturbance 

response, respectively. The output measurement noise is denoted by ( )v t , which is usually assumed 

to be a Gaussian white noise with zero mean and unknown variance denoted by 2
vV .  

Generally, it is assumed that the system is causal, i.e. ( )y t  depends on ( )u s  for s td , but 

not on future values of ( )u t  and ( )v t , while ( )v t  is uncorrelated with the input sequence, ( )u t . 

Assume that ( ) 0u t  , ( ) 0y t  , and ( ) 0v t   for 0t d , indicating the initial zero/steady state for 

identification.  
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For identifiablity, ( )t[  resulting from load disturbance having deterministic dynamics is 

considered herein. Stochastic load disturbance response is lumped into ( )v t  to treat with. 

The identification objective is to estimate the above OE model parameters including an integer 

delay from sampled data, with a prior knowledge or assumption on the orders of an  and bn  for 

model fitting. For unknown system dynamics, the optimal model order may be determined by using 

the Akaike information criterion (AIC), a hypothesis testing condition [14], or a cross-correlation 

function between the input and the univariate residual sequence [19], so as to check if a higher order 

model could result in better fitting in terms of the parsimony principle on the number of model 

parameters. 

3.  Proposed identification method 

3.1 Linear model parameter estimation 

Denote the linear model parameter vector and plant information vector, respectively, by  
 0

0 1 1[ , , , , , ]
a b

nT
n na a b bT  ��" "  (2) 

 0
0 ( ) [ ( 1), , ( ), ( 1 ), , ( )] nT

a bt x t x t n u t d u t n dM  � � � � � � � � ��" "  (3) 

where 0 a bn n n � . 

The noise-free output response can be written by 
 0 0( ) ( )Tx t tM T  (4) 

For the convenience of identification, the deterministic load disturbance response, ( )t[ , is 

considered as a dynamic parameter to be estimated. We define an augmented parameter vector 

together with the corresponding information vector, respectively, by                                    
 m

1 1( ) [ , , , , , , ( )]
a b

nT
n nt a a b b tT [ ��" "  (5) 

 m( ) [ ( 1), , ( ), ( 1 ), , ( ),1] nT
a bt x t x t n u t d u t n dM  � � � � � � � � ��" "  (6) 

where m 1a bn n n � � . 

Hence, the plant description in (1) can be rewritten as a linear regression form, 
 ( ) ( ) ( ) ( )Ty t t t v tM T �  (7) 

Note that a prediction of ( )y t  can be taken as  
 ˆˆˆ( ) ( ) ( )Ty t t tM T  (8) 

where ˆ( )tT  and ˆ( )tM  denote the estimated parameter vector and information vector, respectively. 

Accordingly, the prediction error is computed by 
 ˆˆ( ) ( ) ( ) ( )Te t y t t tM T �  (9) 
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Define the following cost function of prediction error with a forgetting factor for minimization, 

 2

1

1ˆ( , ) ( )
2

t
t i

i

J t e iT O �

 

 ¦  (10) 

where (0,1]O �  is a forgetting factor used for improving the tracking performance. 

Taking the first derivative of ˆ( , )J t T  with respect to T̂ , we have  

 
1
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i
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w
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w ¦  (11) 

By letting (11) be zero, we obtain 
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Let 
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ª º « »¬ ¼
¦  (13) 

Given a persistent excitation (PE) condition of m( )PE u nt , it can be easily verified that ( )P t  

keeps nonsingular and its inverse can be derived as 
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1
1

ˆ ˆ( ) ( ) ( )

ˆ ˆ( 1) ( ) ( )

t
t i T

i

T

P t i i

P t t t

O M M
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� �
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 � �

¦  (14) 

It follows from (12) that 

 
1

ˆ ˆ( ) ( ) ( ) ( )
t

t i

i

t P t i y iT O M�
 

 ¦  (15) 

which can be reformulated in a recursive form as below 
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1

1

ˆ ˆ ˆ( ) ( )[ ( 1) ( 1) ( ) ( )]
ˆˆ ˆ ˆ       ( )[( ( ) ( ) ( )) ( 1) ( ) ( )]

ˆ ˆˆ ˆ       ( 1) ( ) ( )[ ( ) ( ) ( 1)]
ˆ ˆ       ( 1) ( ) ( ) ( )

T
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T O T M
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 � � �

 � � �

 � � � �

 � �

 (16) 

where 1
ˆˆ( ) ( ) ( ) ( 1)Te t y t t tM T � � . 

To relieve the computation effort on matrix inversion involved with (14) for a recursive 

estimation of T̂ , we use the following fact of matrix inversion for any matrices, A , B , C , D , 

with appropriate dimensions [14], 
 1 1 1 1 1 1 1[ ] [ ]A BCD A A B C DA B DA� � � � � � ��  � �  (17) 

Denoting 1( 1)A P tO � � , ˆ ( )B tM , 
m mn nC u I  and ˆ ( )TD tM  to apply (17) for (14), a 

recursive computation law for P(t) is obtained as 
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m mn n

ˆ ˆ1 ( 1) ( ) ( ) ( 1)( ) ( 1)
ˆ ˆ( ) ( 1) ( )

T

T

P t t t P tP t P t
t P t t

M M
O O M Mu

§ ·� �
 � �¨ ¸¨ ¸� �© ¹Ι

  (18) 

Let 
 ˆ( ) ( ) ( )K t P t tM  (19) 

It can be derived from (18) that 

 
ˆ( 1) ( )( )

ˆ ˆ( ) ( 1) ( )T

P t tK t
t P t t

M
O M M

�
 

� �
 (20) 

Substituting (20) into (18) yields 

 
m mn n

1 ˆ( ) ( 1)[ ( ) ( )]TP t P t K t tM
O u � �I  (21) 

Accordingly, it follows from (16) that 
 1

ˆ ˆ( ) ( 1) ( ) ( )t t K t e tT T � �  (22) 

Since the information vector ˆ( )tM  contains the unknown inner variables ( )x t i�  for 

1,2, , ai n " , the above parameter estimation cannot be implemented. To solve the problem, an 

auxiliary model for predicting ( )x t  is therefore proposed based on the previously estimated result 

of ˆ( 1)tT � , i.e. 
 0 0̂ˆˆ( ) ( ) ( 1)Tx t t tM T �  (23) 

where 0ˆ ( )tM  is an estimation of 0( )tM  in (3), and 0̂ ( 1)tT �  is an estimation of 0( 1)tT �  in (2) 

at the ( 1)t � -th step for recursion. 

3.2  Delay estimation  

It is obvious that the prediction error in (9) cannot be computed if the delay parameter is 

unknown, and therefore, the other model parameters cannot be estimated by using the above recursive 

algorithm without an estimated delay. In fact, the cost function ˆ( , )J t T  in (10) is a nonconvex 

function with respect to the delay parameter. For illustration, consider the following noise-free system, 

 
1 2

1 2

0.5 0.4( ) ( )
1 0.6

dz zy t z u t
z zD

� �
�

� �

�
 

� �
 (24) 

where 0.8D   and 25d  . The input excitation is taken as a Guassian white noise for model 

identification. By taking [5,  50]d �  and [ 1,  2]D � �  to represent identified models by using any 

identification algorithm, the corresponding J  of prediction error is plotted in Fig.1.   

It is seen that there exists many local minima for the cost function ˆ( , )J t T  with respect to an 

integer type time delay for parameter estimation, relating to a mixed integer programming problem 
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as studied in [20-22]. Note that if using the existing continuous-time identification algorithms (e.g. 

[7, 8, 22]) to simultaneously estimate all the linear model parameters together with the delay 

parameter, fractional delays will be turned out during the recursive procedure for parameter 

estimation, and thus the convergence of such a recursive algorithm cannot be guaranteed, especially 

for the presence of stochastic noise or load disturbance [22]. Although cross-correlation analysis [14, 

19] on the input and output sequences may be adopted to separately estimate the time delay, the 

approach may give incorrect estimation because the variance of cross-correlation estimation could be 

blurred by colored noise or load disturbance. 

 
Fig. 1. Plot of the cost function with respect to D  and d   

Considering that a possible range of the time delay (i.e. min max[ , ]d d d� ) can be determined  

based on a prior knowledge of system operation or experimental observation such as from a step 

response test, a one-dimensional searching of integer delay is preferred to implement the above 

recursive estimation algorithm, i.e.  
 ˆ ˆ ˆ( ) min ( , ( ), )i i id t J t t dT  (25) 

which means that ˆ( )d t  is determined by minimizing J  through a searching range of 

min max
ˆ [ , ]id d d� , and meanwhile, the remaining linear model parameters are estimated. Initially, it 

may be taken as mind  or maxd . Owing to the limited integer range of min max[ , ]d d d� , the proposed 

one-dimensional searching algorithm can be easily executed without heavy computation effort, such 

that the mixed integer programming problem together with the computation issue of fractional delay 

can be definitely avoided. 
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3.3  Recursive identification with dual forgetting factors 

It can be seen from (14) and (16) that a constant forgetting factor should be adopted in the 

standard RLS method, i.e. 

 

1 1
11 1

1

1 1
1

( 1) , ( 1)

( 1)
( 1) , ( 1)

m

m m m

n

n n n

P t P t
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« »� �¬ ¼

"

# % #
"

，
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 (26) 

Considering that the dynamic parameter reflecting load disturbance response is time-variant 

while the true model parameters are time-invariant, it is desirable to forget past values of ( )t[  with 

a fast rate and adjust the convergency rate for estimating the model parameters 0T  in terms of fitting 

accuracy. For this purpose, two adaptive forgetting factors (AFFs) are proposed for estimating 0T  

and ( )t[ , respectively, as 

 
2

1 0 0 1 1min2
ˆ ˆ( ) 1/ (1 ( ) ( 1) ), ( )t t t tO T T O O � � � t  (27) 

 2 2 2min
ˆˆ( ) 1/ exp( ( ) ( ) ( ) ), ( )Tt y t t t tO M T O O � t  (28) 

where 1min [0.95,1)O �  and 2min [0.8,0.95]O �  are the lower limit to avoid over sensitivity in the 

presence of the output measurement outliers. The key idea behind using these AFFs is to set a smaller 

forgetting factor to obtain a faster tracking rate when the prediction error is larger, and when the 

estimated model parameters converge to the true values, these AFFs will become a larger value closed 

to the unity to maintain fitting stability and accuracy against stochastic noise or disturbance. 

Correspondingly the AFF matrix is constructed as 

 

0

1 1 2

1 1 2

2 2 2

( ), , ( ) ( )

( ) ( ) , ( ) ( )
( ) , ( ) ( )

n

t t t

t t t t
t t t

O O O

O O O
O O O

ª º
« »
« »

 « »
« »
« »
« »¬ ¼

λ

"
# % # #
"
"���	��


，

， ，

， ，

 (29) 

Denote the Hadamard product of ( )tλ  and 1( 1)P t� �  by 

 1( ) ( ) ( 1)H t t P tO
� �λ D  (30) 

An updating law for 1( )P t�  is therefore obtained by substituting (30) into (14) as  
 1 ˆ ˆ( ) ( ) ( ) ( )TP t H t t tO M M�  �  (31) 

Note that the two AFFs should satisfy 1 2( ) ( )t tO Ot  to ensure the positive definiteness of ( )P t  

and ( )H tO  for recursive computation [14, 28]. 

By using the matrix inverse lemma in (17), it follows that 
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m m

1
n n ˆ( ) [ ( ) ( )] ( )TP t K t t H tOM �

u �I  (32) 

where the gain matrix is computed by  

 
1

1

ˆ( ) ( )( )
ˆ ˆ1 ( ) ( ) ( )T

H t tK t
t H t t
O

O

M
M M

�

� 
�

 (33) 

Hence, T  is estimated by 
 ˆ ˆ ˆˆ( ) ( 1) ( )[ ( ) ( ) ( 1)]Tt t K t y t t tT T M T � � � �  (34) 

To sum up, the proposed identification algorithm is given below. 

 

(i) Specify the initial values ˆ(0)T , (0)P , 1(0)O  , 2 (0)O , 1minO  , 2minO , mind , maxd  for 

recursion, e.g. 3
1

ˆ(0) 10
mnIT �
u , 6(0) 10

m mn nP I u , 1(0) 1O  , 2 (0) 1O  , 1min 0.99O  , and

2min 0.9O  . 

(ii) Construct the information vectors 0ˆ ( )tM  and ˆ( )tM  in terms of (3) and (6) by using the 

auxiliary model in (23). 

(iii) Choose the two AFFs satisfying 1 2( ) ( )t tO Ot  to construct the AFF matrix ( )tλ  in (29). 

(iv) Compute ˆ ( )i tT  by (30), (32)-(34), and the cost function ˆˆ( , ( ), )i i iJ t t dT  by (10). 

(v) Increase ˆ
id  by one and return to the above step (ii) for computation, until maxîd d . 

(vi) For the smallest ˆˆ( , ( ), )i i iJ t t dT  computed from the above step (v), take the correspondingly 

estimated parameters as ˆ( )tT  and ˆ( )d t  at the t-th step for recursion. 

(vii) Increase t  by one and return to the above step (ii), until a specified convergence condition is 

satisfied, i.e. � � � �
2

2
ˆ ˆ 1t tT T H� � d , where H  is a user-specified threshold, or the end of the 

measured data length ( t N ).   

 

4.  Convergence analysis 

Before the convergence analysis, a preliminary lemma is firstly presented as below. 

Lemma 1 [29]. For any matrices, m mA u��  and m mB u��  while 0B t , and a positive scalar

min ( )AJ U� , there stand  
 min max( ) ( )T

m mA A A AU Ud dI I  (35) 
 2

min( ) ( ) [ ( ) ]T
m m mA A AJ J U J� � t �I I I  (36) 

 min max( )tr( ) tr( ) ( )tr( )A B AB A BU Ud d  (37) 

Then the following corollary is given for analysis on the persistent excitation (PE) condition for 
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model identification. 

Corollary 1. For a sampled system described by (7), if there exist D  and E satisfying 

0 D E� d � f , such that the following PE condition with respect to the memory data length NO  

relating to the use of a forgetting factor for recursion holds 

 � � � �
1

0

1 ˆ ˆ
N

T

j

t j t j
N

O

O

D M M E
�

 

d � � d¦I I  (38) 

where mN nO ! , and t NO! , then the covariance matrix ( )P t  satisfies 

 M m
1

m

1 1lim ( ) Nt
P t

N O
O

O O
E DO �of

� �
d dI I  (39) 

where mO  and MO  satisfy 1 1 1
m M( ) ( ) ( ) ( )P i i P i P iO O� � �d dλ D . 

Proof : Taking into account on the PE condition in (38), it follows from (30) and (31) that 
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Note that 
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1

1M
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1
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ˆ ˆ( ) ( 1) ( ) ( )

ˆ ˆ( ) ( ) (0)

ˆ ˆ[ ] (0)

(0)

1 (0)
1

(0)
1 1

I

I
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t
t i T t
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Nt
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i j

t
t i t
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t
t

t

P t P t t t

i i P
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N P

N P
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O

O

O

O O

O M M

O M M O

O M M O

O E O

O E O
O

E EO
O O

� �

� �

 

�
� �

  

� �

 

�

�

d � �

 �

d � � �

d �

�
 �

�

ª º
 � �« »� �¬ ¼

¦

¦ ¦

¦
 (41) 

Owing to M m{ , } (0,1)O O � , it follows from (40) and (41) that 

 
1

1m

m M

lim ( )
1 1

I I
N

t

NP t
O

OEO D
O O

�
�

of
d d

� �
 (42) 

which is equivalent to (39) in Corollary 1. This completes the proof.                       □ 

Consequently, the asymptotic property of the proposed algorithm is addressed in the following 

proposition.  

Proposition 1. For a sampled system subject to load disturbance as described by (1), the proposed 

algorithm based on the persistent excitation condition in (38) and the assumption of 
2

02
ˆ(0) (0)E T T Gª º�  � f« »¬ ¼

 guarantees the parameter estimation error satisfies 
2 2 2 2 2 22 2 2 2 2 2M m 0 mm m

2( 1) 1 2( 1)2 2 2 42
0 m m m M

4 (1 ) (1 )12 (1 )ˆ( ) ( ) ( ) 4( )
(1 )

t

v m wN N N

NnE t t n
p O O O

O
J F

O O G E OOT T V V V V
D O DO D O O� � �

� ��ª º� d � � � � �« »¬ ¼ �
  (43) 

where 0 (0)p P , 2
FV , 2

JV  and 2
wV  denote the variances of 

1

ˆ( ) [ ( ) ( )]
an

k
k

t a x t k x t kF
 

 � � �¦ ,
ˆ

1

( ) ( ) ( )
bn

d d
j

j

t b z z u t jJ � �

 

 � �¦ , ( ) ( ) ( 1)w t t tT T � � , respectively. 

Proof:  Define the parameter estimation error vector by  
 ˆ( ) ( ) ( )t t tT T T ��  (44) 

It can be seen from (5) that ( ) ( ) ( 1)w t t tT T � �  arises from the load disturbance response and 

therefore its variance is denoted by 2
wV . 

Substituting (16) into (44) yields 
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1

ˆ ˆ

1

ˆ( ) ( ) ( )
ˆ( ) [ ( 1) ( )]
ˆ ˆˆ ˆ( 1) ( ) ( )[ ( ) ( ) ( 1)] ( 1) ( )

ˆ ˆ ˆ( 1) ( ) ( ) ( )[ ( 1) ( )] ( ) [ ( ) ( )]

ˆˆ( ) ( ) ( ) ( 1)

a

b

T

n
T

k
k

n
d d T

j j
j

t t t

t t w t

t P t t y t t t t w t

t P t t t t w t v t a x t k x t k

b z b z u t j t t

T T T

T T

T M M T T

T M M T

M T

 

� �

 

 �

 � � �

 � � � � � � �

§
 � � � � � � � � �¨

©
·

� � � � �
¹

¦

¦

�

�

� �

( )

ˆ ˆ( 1) ( ) ( ) ( ) ( 1) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )I

T T

T T

w t

t P t t t t t w t v t t t w t

P t t t t P t t t w t P t t t w t

T M M T M J F

M M T M M M

�¸

ª º � � � � � � � � �¬ ¼

 � � � � * �

� �

�

 (45) 

where ( ) ( ) ( ) ( )t v t t tJ F*  � � , 
1

ˆ( ) [ ( ) ( )]
an

k
k

t a x t k x t kF
 

 � � �¦  is the mismatched error of the 

auxiliary model, 
ˆ

1

( ) ( ) ( )
bn

d d
j

j

t b z z u t jJ � �

 

 � �¦  arises from the time delay estimation error. Denote 

by 2
FV  and 2

JV  the variances of ( )tF  and ( )tJ , respectively. 

It can be easily verified from (14) that 
 1ˆ ˆ( ) ( ) ( ) ( ) ( 1)TP t t t P t P tM M O ��  �I   (46) 

Substituting (46) into (45) yields 

 

^
`

1

1 1

ˆ ˆ( ) ( ) ( 1) ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ( ) ( 1) ( 1) ( 2) ( 2) ( 1) ( 1) ( 1) ( 1)

ˆ ˆ( 1) ( 1) ( 1) ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

T

T

T

t

t P t P t t P t t t w t P t t t w t

P t P t P t P t t P t t t w t

P t t t w t P t t t w t P t t t w t

P t P

T O T M M M

O O T M M

M M M M

O

�

� �

 � � � � * �

 � � � � � � � � �

� � � * � � � � � * �

 

� �

�

#

1 1

1 1 1

1 1

1

ˆ ˆ ˆ(0) (0) ( ) [ ( ) ( ) ( )] ( ) [ ( ) ( )] ( ) [ ( ) ( )]

( ) (0) (0) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ( ) ( )]

t t t
t i T t i t i

i i i

t
t T t i

i

P t i i w i P t i i P t P i w i

P t P P t t t W t P t t t P t P i w iO

T O M M O M O

O T O

� � � � �

   

� � �

 

� � * �

 � ) ) � ) * �

¦ ¦ ¦

¦

�

�

(47) 

where 1 ˆ ˆ( ) [ (1), , ( )]tt tP M M�)  " , 1( ) [ (1), , ( )]t Tt tO P �*  * *" , ( ) [ (1), , ( )]W t w w t "  and P O . 

Considering that 1 1 1
m M( ) ( ) ( ) ( )P i i P i P iO O� � �d dλ D  and using Lemma 1, we have 

 

21

2

1

2 1
M max max

2 2 2
M m 0

2( 1)2 2
0 m

( ) (0) (0)

tr[ (0) (0) ( ) ( ) (0) (0)]

( ) [ ( ) ( )] [ (0) (0)] tr[ (0) (0)]

(1 )

t

t T T T

t T T T

t

N

E P t P

E P P t P t P

t P t P t P P E

p O

O T

O T T

O U U T T

O O G
D O

�

� �

� �

�

ª º
« »¬ ¼
ª º ¬ ¼

ª ºd ¬ ¼
�

d

�

� �

� �  (48) 

It can be seen from (14) that 

 1 1

1

ˆ ˆ( ) ( ) ( ) (0)
t

t i T t

i

P t i i PO M M O� � �

 

 �¦  (49) 
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1

1
m

( ) ( ) ( ) ( ) (0)

( ) (0)
m m

m m

T
n n

t
n n

P t t t P t P

P t P

O

O

�
u

�
u

) )  �

d �

I

I
 (50) 

Correspondingly, it follows that 

  

2

2

2 2

2

2 2
m

( ) ( ) ( ) ( )

( ) ( ) ( )

T

T
w

w

E P t t t W t

E P t t t

n

V

V

ª º) )« »¬ ¼
ª º ) )« »¬ ¼

d

 (51) 

Using (39) and (50), we have 

 ^ `

2

2

m
max1

m

m m
1

m

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

tr[ ( ) ( ) ( ) ( ) ( ) ( )]

(1 ) ( ) ( ) ( ) tr ( ) ( )

(1 ) tr 3[ ( ) ( ) ( ) ( ) ( ) ( )]

T T T

T T T

T T
N

T T T
N

E P t t t

E P t t t t t P t

E P t t t t t P t

P t t t E t t

n E v t v t t t t t

O

O

O

O O

O O

O O
O U

DO
O J J F F

DO

�

�

ª º) *¬ ¼
ª º ) * * )¬ ¼
ª º ) * * )¬ ¼
� ª º ª ºd ) ) * *¬ ¼ ¬ ¼

� ªd � �¬� �
2 2 2m m

1
m

3 (1 ) ( )vN

n
O J F
O V V V

DO �

º¼

�
d � �

 (52) 
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2( 1)2
1m 2

22
2m

M2( 1)2
1m M 2

22
2m M

2( 1)2
m M M

2 2 2
m

( ) [ ( ) ( )]

(1 ) [ ( ) ( )]

(1 ) [ ]
1

(1 ) 1
1 1

(1 )

t
t i

i

t
t i

N
i

t
t i

wN
i

t

wN

E P t P i w i

E P i w i

NE

N

N

O

O

O

O

O

O

O

O O
D O

EO V O
D O O

EO OV
D O O O

E O V

� �

 

� �
�

 

�
�

 

�

ª º
« »
« »¬ ¼

ª º�
d « »

« »¬ ¼
ª º�
« »d

�« »¬ ¼

§ ·� �
 u u¨ ¸� �© ¹

�
d

¦

¦

¦

2

2( 1)2 4
m M(1 )

w
NOD O O� �

 (53) 

Taking the expectation on (47), we have 

 
^2 2 21

22 2

2
2 1
2

1 2

( ) 4 ( ) (0) (0) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) [ ( ) ( )]

t T

t
t i

i

E t E P t P E P t t t W t

E P t t t E P t P i w iO

T O T

O

�

� �

 

ª º ª º ª ºd � ) )« »« » « » ¬ ¼¬ ¼ ¬ ¼

½ª º°ª º� ) * � « »¾¬ ¼ « »°¬ ¼¿
¦

� �

 (54) 

Substituting (51), (52), (53) into (54), it follows the expression in (43) in Proposition 1.  

This completes the proof.                                                             □ 
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Proposition 1 can be used to evaluate the upper bound error of parameter estimation. It is seen 

from (43) that a larger D  and a smaller E  can result in a smaller upper bound of the estimation 

error, which means the stationarity of the input and output data can improve the parameter estimation 

accuracy. Besides, it is indicated by (43) that a smaller memory data length NO , a lower 

measurement noise level, or a slow-varying disturbance can facilitate reducing the upper bound of 

estimation error.  

Owing to a one-dimensional searching strategy on the time delay, the optimal delay estimation 

can surely be obtained, i.e. d̂ d , leading to ˆ

1
( ) ( ) ( ) 0

bn
d d

j
j

t b z z u t jJ � �

 

 � �  ¦  and 2 0JV  . 

Expectation on the upper bound of the parameter estimation error is therefore simplified to 

 
2 2 2 2 2 22 2 2 2 2M m 0 mm m

2( 1) 1 2( 1)2 2 2 42
0 m m m M

4 (1 ) (1 )8 (1 )ˆ( ) ( ) ( ) 4( )
(1 )

t

v m wN N N

NnE t t n
p O O O

O
F

O O G E OOT T V V V
D O DO D O O� � �

� ��ª º� d � � � �« »¬ ¼ �
  (55) 

Note that when the load disturbance response settles down, ( )w t  goes to zero. Correspondingly, 

the parameter estimation error in (45) is reduced to 
 ˆ ˆ ˆ( ) ( ( ) ( ) ( )) ( 1) ( ) ( ) ( )Tt P t t t t P t t tT M M T M � � � *I� �  (56) 

Substituting (46) into (56) yields 

 

1

1 1

1

1

ˆ( ) ( ) ( 1) ( 1) ( ) ( ) ( )
ˆ( ) ( 1)[ ( 1) ( 2) ( 2) ( 1) ( 1) ( 1)] ( ) ( ) ( )

ˆ( ) (0) (0) ( ) [ ( ) ( )]
t

t t i

i

t P t P t t P t t t

P t P t P t P t t P t t t P t t t

P t P P t i i

T O T M

O O T M M

O T O M

�

� �

� �

 

 � � � *

 � � � � � � � * � � *

 � *¦

� �
�

#

�

 (57) 

Based on the PE condition in (38), we take the expectation on both sides of (57), obtaining 

 
^ `2 2 21

22 2

2 2 2
2 2 2M m 0 m m

2( 1) 12 2
0 m m

( ) 2 ( ) (0) (0) ( ) ( ) ( )

2 (1 ) 6 (1 ) ( )

t

t

vN N

E t E P t P E P t t t

n
p O O

O

J F

T O T

O O G O V V V
D O DO

�

� �

ª º ª ºª ºd � ) *« » « »¬ ¼¬ ¼ ¬ ¼

� �
d � � �

� �

 (58) 

Owing to that the true time delay estimation can surely be obtained by using a one-dimensional 

searching algorithm, i.e d̂ d  together with 2 0JV  , the above upper error bound can be further 

reduced to  

 
2 2 22 2 2M m 0 m m

2( 1) 12 22
0 m m

2 (1 ) 4 (1 )( ) ( )
t

vN N

nE t
p O O F

O O G OT V V
D O DO� �

� �ª º d � �« »¬ ¼
�  (59) 

Note that the auxiliary model prediction ˆ( )x i  could converge to its true value ( )x i  for linear 

model identification under stochastic measurement noise and static disturbance, as discussed in the 

references [5, 23, 30]. The conclusion can be easily extended to time delay system identification 
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based on the true delay estimation, i.e. 
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1 1
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¦

¦

¦

 (60) 

With the convergence of parameter estimation, the two AFFs will tend to one, i.e. M 1O o  and 

m 1O o . Since ( )iF , ( )iJ , and ˆ( )iM  are all bounded at each step for recursion, there follows for 

t of  by using (58), (59) and (60) that 

 

m

m

2 2 22 2 2 2M m 0 m m
2( 1) 12 22

0 m m1

2 2 2
2 2M m 0 m m

2( 1) 12 2
0 m m1

ˆ

2 (1 ) 6 (1 )lim ( ) lim ( )

2 (1 ) 4 (1 )lim ( )

0

t

vN Nt t

t

vN Nt

d d

nE t
p

n
p

O O

O O

J F
O

F
O

O O G OT V V V
D O DO

O O G O V V
D O DO

� �of of
o

� �of
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� �ª º  � � �« »¬ ¼

� �
 � �

 

�

 (61) 

which indicates that the proposed algorithm can give unbiased estimation when the load disturbance 

response settles down. 

5.  Illustrative examples 

Example 1. Consider a benchmark example studied in the reference [23],  

 
1 2

1 2

0.6804 0.6303( ) ( ) ( ) ( )
1 0.412 0.309

dz zy t z u t t v t
z z

[
� �

�
� �

�
 � �

� �
 

where ( )t[  is assumed to be a disturbance of multiple sinusoidals as studied in [19], i.e. 

( ) 0.5sin(0.02 ) 0.5sin(0.05 )t t t[  � , and 10d   is assumed for illustration. 

To perform an identification test, the input excitation ( )u t  is taken as a pseudorandom binary 

sequence (PRBS) with a magnitude switching between ±1. The measurement noise ( )v t  is assumed 

to be a white noise sequence with zero mean and variance of 2 20.18vV  , causing the signal-to-noise 

ratio, SNR=14 (dB). For applying the proposed algorithm, 3
5 1

ˆ(0) 10 IT �
u , 6

5 5(0) 10P I u , 1(0) 1O  ,  

2(0) 1O  , 1min 0.99O  , 2min 0.9O  , 1000N  , min 0d   and max 15d   are taken for computation. 

The identification algorithm given in [19] for identifying an extended OE model is also performed. 

In addition, the identification algorithm composed of (20)-(23) in section 3.1 using a single forgetting 
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factor ( 0.99O  ), therefore named as SDLS, is performed for comparison. To procure consistent 

estimation, a one-dimensional searching approach to estimate the integer time delay is adopted for all 

these identification methods. The recursive identification results for parameter estimation are shown 

in Fig.2. It is seen that without using any prior knowledge of the load disturbance, the proposed 

algorithm gives evidently improved identification accuracy and convergence rate. In contrast, the 

extended OE model identification algorithm given in [19] results in biased estimation on a few model 

parameters except for the time delay identified by the one-dimensional searching approach, due to 

using the predicted output rather than the auxiliary model prediction to construct the regressor, and 

using a single forgetting factor for recursive estimation. The SDLS algorithm gives unstable 

estimation arising from the use of a constant forgetting factor that cannot make a good compromise 

between estimating the time-invariant model parameters and tracking time-varying load disturbance. 
 

 

Fig. 2. Identification results by using different algorithms for Example 1 
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To demonstrate the identification effectiveness in the presence of time-varying load disturbance 

and stochastic measurement noise, one hundred Monte-Carlo (MC) tests are performed under time-

varying load disturbance imitated by 
 1 1 2 2( ) sin( ) sin( )t C A w t A w t[  � �  (62) 

where (0,0.7)C� , 1 (0,0.6)A � , 2 (0,0.8)A � , 1 (0,0.05)w � , and 2 (0,0.1)w �  vary randomly 

from test to test, while the measurement noise level is the same as above, i.e. SNR≈14 dB. 

For model identification, the data length is taken as 4000N   in each test. The identification 

results are listed in Table 1, where the results are shown by the mean value along with the standard 

deviation in parentheses, and ‘err’ denotes the relative error of the model parameter estimation with 

respect to the true values (i.e. 0 0 0 22
ˆ( ) ( ) / 100%err t tT T T � u ). For assessing the load disturbance 

estimation, denote by m ( )t[  the mean value of ( )t[  and by ( )t[V  the standard deviation. The 

corresponding estimations are denoted by m
ˆ ( )t[  and ˆ ( )t[V , and the mean prediction error is 

denoted by m ( )t[' . The results are shown in Fig.3 for comparision. It is seen that faster convergence 

is obtained by the proposed algorithm, e.g. 1 44%.err   at the time step 2000t  . 

 
Fig. 3. Load disturbance identification based on 100 Mont Carlo tests for Example 1 
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Table 1 Identification results based on 100 Mont Carlo tests for Example 1  

t a1 a2 b1 b2 d err(t) 
The proposed algorithm 

100  0.3545 
(±0.0604) 

0.2789   
(±0.0313)

0.6818  
(±0.0191)

0.5973  
(±0.0501)

10.00 
(±0.00) 

 9.17 
(±5.41) 

500 0.4086 
(±0.0164) 

0.2953  
(±0.0219)

0.6835   
(±0.0124)

0.6323 
(±0.0187)

10.00 
(±0.00) 

3.16 
(±1.72) 

1000 0.4106  
(±0.0108) 

0.3011  
(±0.0145)

0.6823 
(±0.0079)

0.6321 
(±0.0119)

10.00 
(±0.00) 

2.05  
(±1.06) 

2000  0.4115 
(±0.0076) 

0.3046   
(±0.0104)

0.6815 
(±0.0061)

0.6320 
(±0.0086)

10.00 
(±0.00) 

1.44 
(±0.76) 

3000 0.4120 
(±0.0059) 

0.3058  
(±0.0084)

0.6813 
(±0.0050)

0.6319  
(±0.0074)

10.00 
(±0.00) 

1.16 
(±0.63) 

4000 0.4125 
(±0.0054) 

0.3066 
(±0.0070)

0.6808 
(±0.0044)

0.6318 
(±0.0061)

10.00 
(±0.00) 

0.99 
(±0.53) 

True 0.412 0.309 0.6804 0.6303 10  
The OE algorithm in ref.[19] 

100 0.1643 
(±0.1639) 

0.1924  
(±0.0543)

0.6902   
(±0.0197)

0.4762  
(±0.1204)

 9.98 
(±0.14) 

30.94 
(±17.80) 

500 0.3382 
(±0.0596) 

0.2264   
(±0.0449)

0.6899   
(±0.0126)

0.5842 
(±0.0502)

10.00 
(±0.00) 

12.83 
(±6.09) 

1000 0.3649  
(±0.0445) 

0.2488  
(±0.0326)

0.6835 
(±0.0078)

0.6048 
(±0.0345)

10.00 
(±0.00) 

8.70 
(±4.48) 

2000  0.3810 
(±0.0349) 

0.2664   
(±0.0243)

0.6830 
(±0.0055)

0.6143 
(±0.0251)

10.00 
(±0.00) 

6.06 
(±3.48) 

3000 0.3874 
(±0.0311) 

0.2752  
(±0.0201)

0.6819  
(±0.0044)

0.6178  
(±0.0223)

10.00 
(±0.00) 

4.91 
(±3.08) 

4000 0.3914 
(±0.0289) 

0.2805  
(±0.0175)

0.6818 
(±0.0042)

0.6198 
(±0.0206)

10.00 
(±0.00) 

4.26 
(±2.79) 

True 0.412 0.309 0.6804 0.6303 10  
The SDLS algorithm 

100 0.3793 
(±0.0417) 

0.2794   
(±0.0399)

0.6911   
(±0.0232)

0.6200  
(±0.0413)

10.00 
(±0.00) 

7.56 
(± 3.37) 

500 0.4008 
(±0.0305) 

0.2961   
(±0.0545)

0.6878   
(±0.0298)

0.6289 
(±0.0409)

10.00 
(±0.00) 

6.61 
(±4.05) 

1000 0.4025  
(±0.0279) 

0.3065  
(±0.0448)

0.6814 
(±0.0309)

0.6227 
(±0.0435)

10.00 
(±0.00) 

5.95 
(±3.96) 

2000  0.4039 
(±0.0253) 

0.3034   
(±0.0374)

0.6811 
(±0.0224)

0.6244 
(±0.0297)

10.00 
(±0.00) 

4.89 
(±2.74) 

3000 0.4091 
(±0.0255) 

0.3082  
(±0.0396)

0.6797 
(±0.0270)

0.6293  
(±0.0363)

10.00 
(±0.00) 

5.04 
(±3.50) 

4000 0.4003 
(±0.0313) 

0.3192  
(±0.0574)

0.6722 
(±0.0456)

0.6099 
(±0.0629)

10.00 
(±0.00) 

7.86  
(±5.97) 

True 0.412 0.309 0.6804 0.6303 10  
  

        

Example 2. Consider a closed-loop identification example studied in the reference [31], 

 
1 2

1 2

0.0997 0.0902( ) ( ) ( ) ( )
1 1.8858 0.9048

dz zy t z u t t v t
z z

[
� �

�
� �

�
 � �

� �
 

where ( )t[  is assumed to be a disturbance of multiple sinusoidals and 6d   is taken for 
illustration. 

A block diagram of the closed-loop identification test is shown in Fig.4, where 1( )cC z�  is a 

proportional-integral (PI) controller, the setpoint 2 ( )r t  is taken as zero, i.e. 2( ) 0r t  , while 1( )r t  is 

an external excitation for test. The plant input ( )u t  is therefore written as 
 1

1( ) ( ) ( ) ( )cu t r t C z y t� �  (63) 



 -20-

1

1
( )
( )

dB z z
A z

�
�

�
1( )cC z�

( )t[

( )y t

( )v t
( )x t ���

�
( )u t

1( )r t
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Fig. 4. Schematic of a close-loop system for identification test 

To perform an identification test, the external excitation 1( )r t  is taken as a PRBS sequence with 

a magnitude switching between ±1. The noise ( )v t  is taken as a white noise sequence with zero 

mean and variance of 2 20.01vV  , causing SNR=29 (dB). One hundred MC tests are performed under 

different controller settings and time-varying disturbance, i.e. 

 
1 2

1
1( )

1c
kz kzC z

z

� �
�

�

�
 

�
 (64) 

 1 1 2 2( ) sin( ) sin( )t C A w t A w t[  � �  (65) 

where (0.01,0.2)k � , (0, 0.3)C � , 1 (0,0.3)A � , 2 (0,0.4)A � , 1 (0.02,0.025)w � , and 

2 (0.05,0.055)w �  varies randomly from test to test. 

For applying the proposed algorithm, 3
5 1

ˆ(0) 10 IT �
u , 6

5 5(0) 10P I u , 1(0) 1O  ,  2(0) 1O  , 

1min 0.99O  , 2min 0.7O  , 4000N  , min 0d   and max 10d   are taken for computation. The 

extended OE model identification algorithm given in [19] and the above SDLS method with 0.99O   

are also performed for comparsion. A one-dimensional searching approach to estimate the integer 

time delay is adopted for all these identification methods. The averaged parameter estimation results 

for 100 MC tests are shown in Fig.5. It is seen that convergent and unbiased parameter estimation is 

obtained by the proposed method, while the OE model identification algorithm given in [19] and the 

above SDLS method result in biased estimation though the time delay is identified by using the one-

dimensional searching approach.  
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Fig. 5. Mean parameter estimates results based on 100 Mont Carlo tests for Example 2 
 

Example 3. Consider the filling process of injection molding subject to inherent-type load 

disturbance as studied in the references [4, 32, 33]. The injection velocity response with respect to 

the proportional valve opening for an industrial injection molding machine was identified [33] as an 

OE model, 

 
1 2

5
1 2

1.69 1.419( ) ( ) ( ) ( )
1 1.582 0.5916

z zy t z u t t v t
z z

[
� �

�
� �

�
 � �

� �
 

where the load disturbance response ( )t[  varies from test to test although the same valve opening 

is set for operation, due to the existence of time-varying process uncertainties in practice. The 

fundamental dynamics of the load disturbance response for the production of a rectangular high-

density polyethylene mold were estimated in [4] as 1 2 1( ) [( 0.15 0.15 ) / (1 0.993 )] 1( )t z z z t[ � � � � � � � . 

0 1000 2000 3000 4000
-2

-1.5

-1

-0.5

0

0.5

t

a 1

 

True
Proposed
Ref.[19]
SDLS

0 1000 2000 3000 4000
-0.5

0

0.5

1

t

a 2

 

 

True
Proposed
Ref.[19]
SDLS

0 1000 2000 3000 4000
0

0.05

0.1

0.15

t

b 1

 

 

True
Proposed
Ref.[19]
SDLS

0 1000 2000 3000 4000
-0.1

-0.05

0

0.05

0.1

t

b 2

 

 
True
Proposed
Ref.[19]
SDLS

0 1000 2000 3000 4000
-0.3

0

0.3

0.6

0.9

t

[ (
t)

 

 
True
Proposed
Ref.[19]
SDLS

0 1000 2000 3000 4000
0

2

4

6

8

10

t

d

 

 

True
Proposed
Ref.[19]
SDLS



 -22-

For illustration, the nominal injection velocity response is assumed to be described by the above 

identified model for injection molding. The measurement noise ( )v t  is assumed to be a white noise 

sequence with zero mean and variance of 2 20.2vV  , in view of the fact that the maximal 

measurement error on the injection velocity is no larger than 1.0 (m/s) [4]. To perform a practical 

identificaiton test, the excitation sequence of the valve opening is taken a trapezoidal signal between 

10% and 70%, which is generated in terms of a PRBS sequence with zero mean and variance of 

2 20.07vV   to determine the duration times for the magnitudes of 10% and 70%, respectively, while 

the switching time between these two magnitudes is taken as five sampling periods, by  

monotonously increase or decrease them as shown in Fig.6. A time-varying load disturbance is 

imitated as 

 
1 2

1 2
1

1

( ) ( )
1
z zt t

z
E E[ G

D

� �

�

� �
 

�
 (66) 

where ( ) 1tG  , and  

1

0.05, 1000
0.15, 1000

t
t

E
�­

 ® t¯
, 2

0.08, 1000
0.15, 1000

t
t

E
�­

 ® t¯
, 1

0.992, 1000
0.993, 1000

t
t

D
�­

 ® t¯
. 

The injection velocity response with respect to the above trapezoidal input excitation is shown 

in Fig.7, with a sampling period of 10 (ms). Using the proposed algorithm, we take 3
5 1

ˆ(0) 10 IT �
u , 

6
5 5(0) 10P I u , 1(0) 1O  , 2(0) 1O  , 1min 0.995O  , 2min 0.95O  , min 0d   and max 10d   for 

computation. The extended OE model identification algorithm given in [19] and the above SDLS 

with 0.995O   are also used for comparison. The identification results are shown in Fig.8. It is once 

again seen that the proposed algorithm gives evidently improved estimation. Moreover, the dynamics 

change of load disturbance is well predicted by the proposed method, while the OE model 

identification algorithm given in [19] and the above SDLS method could not give proper estimation 

on the load disturbance and thus result in biased estimation on the model parameters.  
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Fig. 6. Trapezoidal input excitation of the valve opening for identifying Example 3 

 

 

 
 

Fig. 7. The injection velocity response under an inherent type load disturbance 
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Fig. 8. Identification results using different algorithms for Example 3 
 

6.  Conclusions 

For identifying industrial sampled systems with time delay subject to unknown load disturbance 

with deterministic dynamics, a bias-eliminated OE model identification method has been proposed 

by taking the output response arising from such load disturbance as a dynamic parameter for 

estimation together with the model parameters. A discrete-time domain recursive identification 

algorithm is developed to estimate the linear model parameters together with the load disturbance 

response, while the integer delay parameter is determined by using a one-dimensional searching 

approach that can guarantee the minimization of the output fitting error. Dual AFFs are introduced to 
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expedite the convergence rate of parameter estimation and tracking load disturbance, together with 

tuning guidelines for implementation. A rigorous proof is given to verify the estimation convergence 

under time-varying load disturbance, and moreover, it is clarified that unbiased estimation can be 

obtained when the load disturbance response settles down. The applications to two benchmark 

examples for open- and closed-loop identification, and an injection process model subject to time-

varying load disturbance has well demonstrated the effectiveness and merit of the proposed 

identification method.  
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