
Effects of biofuels properties on aircraft engine performance 

 

Abstract 

Purpose – The purpose of this paper is to examine the effects of heat capacity and density of biofuels on aircraft engine 

performance indicated by thrust and fuel consumption. 

Design/methodology/approach – The influence of heat capacity and density was examined by simulating biofuels in a 

two-spool high-bypass turbofan engine running at cruise condition using a Cranfield in-house engine performance 

computer tool (PYTHIA). The effect of heat capacity and density on engine performance was evaluated through a 

comparison between kerosene and biofuels. Two types of biofuels were considered: Jatropha Bio-synthetic Paraffinic 

Kerosene (JSPK) and Camelina Bio-synthetic Paraffinic Kerosene (CSPK). 

Findings – Results showed an increment in engine thrust and a reduction in fuel consumption as the percentage of 

biofuel in the kerosene/biofuel mixture increases. Besides a low heating value, an effect of heat capacity on increasing 

engine thrust and an effect of density on reducing engine fuel consumption are observed. 

Practical implications – The utilisation of biofuel in aircraft engines may result in reducing over-dependency on crude oil.   

Originality/value – This paper observes secondary factors (heat capacity and density) that may influence aircraft engine 

performance which should be taken into consideration when selecting new fuel for new engine designs.  
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Introduction 

Extensive growth in airlines industry contributes to the problem on the increases of conventional fuel price due to high 

demand on this fuel. Additionally the growth also contributes to the increases in pollution emission emitted into the 

atmosphere. Clercq and Aigner (2009) emphasized two approaches to address the problems: (1) By improving the overall 

aircraft energy efficiency and (2) By finding alternatives to crude/conventional fuel. The first approach may be quite 

challenging as it requires new aircraft and propulsion system design and new operation strategies but the second option 

might be less challenging. However attention must be given to issues of fuel sustainability and fuel properties which could 

possibly affect the performance of the engines and aircraft.   

Dagget et al. (2006) and Demirbas (2007) highlighted different types of alternative fuel that might be candidates 

towards the replacement of conventional fuel, namely hydrogen fuel (H2), other liquefied fuels (such as propane and 

butane), alcohols (such as ethanol and methanol), biofuels (combustible liquid manufactured from renewable sources 

such as animal fats and plants oils), and synthetic fuels (fuel produced from synthesis process, such as Fischer-Tropsch 

process). As mentioned above the challenges in choosing a new fuel are whether that fuel is sustainable and if the 

modification to the engine is required. The sustainability of the crops to produce the biofuel is important to ensure the 

production of the feedstock is not interfering with food or freshwater supply (O’Keeffe, 2010) and therefore contributes to 

higher food prices due to the competition with food crops (Sims et al, 2008). Other aspect that becomes concern is to 

ensure that the biofuels will not cause any anthropogenic issues through deforestation during the creation of sufficient 

farm land capacities (Dagget et al, 2007). In regard to properties of the biofuels, energy content, combustion stability and 

freeze point, etc. should be carefully assessed. In terms of low energy content, ethanol for example requires 64% more 
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storage volume to provide same amount of energy compared with kerosine. Consequently about 25% larger wings may 

be required to carry the fuel, which therefore may result in an increase of airplane’s empty weight by 20% and take-off 

weight by 35% (Dagget et al, 2006). In addressing thermal stability issue and tendency of the fuel to freeze, Dagget et al 

(2006) suggested new technology in relation to fuel processing which converting bio-derived oil rich with triglycerides and 

free fatty acids into biojet fuel, which has the composition of molecules already present in jet fuel. Through this 

technology, the new fuel will have higher heating value and improvement in thermal stability and freezing point. Moreover, 

blend biofuels with kerosene becomes an option to alleviate those anxieties as characteristics of the fuel not only can be 

improved but the fuel also can be utilised in the existing aircraft engines with no modifications required (Dagget et al, 

2006).  

 

Literature Review 

Blend fuels also termed as “drop-in” fuels (Dagget et al, 2007) or “fit-for-purpose” fuels (Clerq and Aigner, 2009) have 

been proposed and utilised during 2008–2009. There were three flight tests carried out in order to ascertain the capability 

of in the blend fuels in existing aircraft engines. In 2008 Air New Zealand’s Boeing 747-400 aircraft flew successfully with 

one of its four Rolls-Royce RB211-524 engines running with a 50% blend of Jatropha with Jet-A-1 (Rahmes et al, 2009) 

although no significant changes in performance were revealed (Warwick, 2009). In 2009, another successful test flight 

was carried out by Japan Airlines, where a Boeing 737-300 flew using a mixture of 50% biofuel (42% Camelina, and 8% 

of the mixture of Jatropha and algae) with 50% kerosene in one of the Pratt & Whitney JT9D-7R4G2 engines (Rahmes et 

al, 2009). Similarly, no difference in engine performance was detected. Furthermore, Continental Airlines flew a Boeing 

737-800 aircraft where one of its engines (CFM56-7B) used a mixture of 47.5% Jatropha and 2.5% algae with 

conventional jet fuel (Rahmes et al, 2009). The flight test  was successful although no difference in performance was 

found. To summarise, all flight tests were successful but improvement in engine performance was neglectable.   

In an attempt to understand the effects of adding biofuels to Jet-A on engine performance, an experimental study was 

conducted by (Habib et al, 2009) using soy methyl ester (SME), canola methyl ester (CME), recycled rapeseed methyl 

ester (RRME) and hog-fat (HF) fuel, which had been tested in pure form (100% or B100) and as blends (50% by volume, 

B50) with Jet-A in a small-scale (30 kW) gas turbine. The authors noticed almost a linear reduction of static thrust with 

engine speed for all fuels, and the measurements of all fuels feel within the experimental uncertainties except for RRME, 

which did not follow the trend; however, no explanation was offered for this result. Except for RRME, reduction in static 

thrust was observed due to lower heating values of biofuel (nearly 10% lower) in comparison to Jet-A which consequently 

reduces the available energy to produce thrust. Moreover, adding biofuels to Jet-A provided no significant differences in 

thrust specific fuel consumption (TSFC) as well as in thermal efficiency. Pure biofuels showed slightly lower TSFC and 

higher thermal efficiencies than Jet-A. Higher thermal efficiencies of gas turbine due to using B100 biofuels are believed 

to be the presence of oxygen molecules in the biofuel. Measurements of turbine inlet temperature for pure biofuels were 

found to be slightly lower than Jet-A at low speeds, but were nevertheless close to Jet-A at high speeds. However, 

exhaust gas temperatures for all fuels were found to be very similar to each other (Habib et al, 2009) 

During the same year, Rahmes et al (2009) conducted off-wing engine ground tests in order to evaluate the impact of 

Jatropha and algae-derived bio-synthetic paraffinic kerosine on engine performance and emissions. The test was carried 

out on a CFM56-7B engine, which was first run with Jet-A, followed by a 25% and then 50% blend of Bio-SPK fuel. It was 

noted that increases in the blending percentage of Bio-SPK improved the specific fuel consumption and fuel flow. Both 

25% and 50% Bio-SPK blends showed reduction in fuel flow by 0.7% and 1.2%, respectively, and were found to be 

consistent with differences in the heat of combustion (0.6% for the 25% blend and 1.1% for the 50% blend). 



Mazlan et al (2012) conducted a numerical study to evaluate the amount of thrust and the amount of fuel consumed by 

a two-spool high-bypass turbofan engine which was run on pure biofuel and on mixtures of 10% and 50% of the tested 

biofuels with Jet-A. The biofuels used in this work were JSPK and CSPK. Increases in engine thrust were observed as the 

percentage of biofuel in the mixture increased.. The highest thrust is produced when the engine runs with 100% biofuel, 

which is due to the low heating value (LHV) of the fuel being the highest among the fuels/fuel blends tested. In addition to 

an improvement in engine thrust, a biofuel blend with Jet-A was also observed to improve the fuel flow rate by 

approximately 0.3% (10% biofuel, 90% Jet-A) to 2.3% (100% biofuel) (Mazlan et al, 2012). Both of the studies conducted 

by Rahmes et al (2009) and Mazlan et al (2012) have shown the effect of LHV on engine thrust.  

 
Overview of present work 
 
This present study is conducted as an extension of Mazlan et al (2012) but focuses on heat capacity and density as 

secondary factors that might influence engine thrust and fuel consumption. This study evaluates the performance of a 

turbofan engine running with JSPK (C12H26) and CSPK (C12H24.5) (Mazlan et al, 2012), as a pure fuel and as blend with 

Jet-A at 20%, 40%, 60% and 80%, in order to find a correlation between engine performance and the percentage of the 

biofuel in the mixture. Additionally, despite LHV being the major factor influencing engine thrust this study investigates the 

effect of other fuel properties, namely, the effect of the fuel’s heat capacity and density on engine thrust and fuel 

consumption respectively. To investigate the effect of the heat capacity and density only pure JSPK and pure CSPK are 

used and a comparison between these biofuels and Jet-A is performed. The evaluation is performed using a Cranfield in-

house engine performance (PYTHIA) computer program where a set of calorific properties of fuel generated by NASA 

Chemical Equilibrium with Application (CEA) (McBride, J. B. and Gordon, S., 1996) have been implemented. Due to 

limited data available in NASA CEA’s library, Mazlan et al (2012) generated the calorific properties of the selected biofuels 

by introducing NASA CEA with the predicted molecular formula and heat of formation of the fuels while a comparison of 

this data with the nearest molecular formula available in literature was performed to assess whether it is reasonable and 

dependable to be used in PYTHIA.  The assessment recorded low percentage of differences (1%) and therefore 

considered acceptable.  

 

Overview of Computer Tool Used 

PYTHIA is a computer program developed at Cranfield University, UK over 30 years ago. This program is able to execute 

performance calculations for both design points and off-design points for any types of open-cycle engines. In addition, this 

program is also considered user-friendly because users are only required to prepare the input file, which describes the 

engine configuration and the parameters for each of the engine components (Li and Singh (2005)). The capability of 

PYTHIA in calculating engine performance has recently been improved due to a study conducted by Kamunge (2011), 

who introduced and developed a theoretical method that is able to generate fuel properties such as heat capacity over a 

wide range of temperature. This method was introduced due to the earlier limitation of PYTHIA, where the value of heat 

capacity was based on the experimental set-up and ambient temperature measurements. Although the value obtained 

through the experiment is very precise, the value is restricted to a certain range of temperature. Additionally, in the early 

stages of PYTHIA development, the gas property calculation was based on kerosene fuel so the performance calculation 

was limited to the use of single fuel. Kamunge (2011) successfully introduced new fuel property models for multiple fuels. 

Additionally, Kamunge (2011) also includes a dissociation effect into PYTHIA to increase the accuracy of PYTHIA in 

calculating engine performance. According to Kamunge (2011) dissociation effects become noticeable at high 

temperatures (above 1200 K) and/or low pressures. If these effects are neglected, this can lead to significant deviations in 

the calculation of caloric properties, especially of Cp and ɣ. In addition to sensitivity to high temperature and low pressure, 



caloric properties also are sensitive to the ratio of hydrogen and carbon atom (H/C). Therefore, neglecting the effect of 

fuel chemistry on the caloric properties calculation (by assuming non-dissociation effects) may also lead to significant 

simulation errors.  

 

Engine Parameter 

In evaluating the performance of the engine in the present study, a model of two spool high bypass turbofan engine 

considered in Mazlan et al (2012) was used.Engines similar to this model engine are widely used in most of modern civil 

aircraft and more fuel-efficient compared to other types of engines. It was assumed that the assessment of engine design 

selections of the model engine was at cruise condition with the baseline engine design parameters presented in Table. 1. 

This data was partly obtained from public domain and partly assumed based on data obtained in public domain.  

 

Table 1: Engine Characteristics (Mazlan et al, 2012) 

Parameter Unit Value 

Altitude  m 10668 

W  kg/sec 130 

M  0.8 

TET K 1660.0 

BPR   5.46 

FPR   1.8 

IPCPR  1.811 

HPCPR  10.0 

OPR  32.6 

Power taken from HPT  kW 200 

 

Engine Performance Validation 
 
To check the reliability of PYTHIA in evaluating engine performance provided with biofuels calorific properties data, the 

investigation on the relationship between consuming fuel flow with LHV for 50% biofuel with 50% kerosene mixture was 

performed. The results was compared with experimental work from Rahmes et al., (2009) who conducted an off-wing 

engine ground test for 50% Jatropha-Algae/50% Jet-A. It appears that, the fuel blend used in this off-wing engine ground 

test was not similar to that evaluated in this work, although they are of the same family. The fuel used in the off-wing 

ground test is a mixture of two bio-SPK fuels with Jet-A, while fuel used in this research is a mixture of one bio-SPK fuel 

with Jet-A. However, the total composition of bio-SPK fuel in the mixture was taken as the same. Although the fuel mixture 

in the literature is different to the one used in this work, it is not expected to have significant difference in the trends.  

Figure 1 shows the percentage difference of fuel flow reduction and percentage difference of increased LHV with 

respect to Jet-A over the fuels used in this work and in the literature. It is observed that the reduction of fuel flow expected 

from this research work is consistent with the reduction of fuel flow predicted in the literature. As expected, the 

relationship between the fuel flow reductions predicted in this research work is consistent with the increases of LHV as 

predicted in the literature. This comparison assessment summarises that the calculated molecular formula and enthalpy of 

formation used in generating the caloric properties data as the input for PYTHIA can be relied upon and the capability of 

PYTHIA of conducting the engine performance evaluation is dependable. 



 
  

Figure 1: The comparison of Fuel flow and Heating Value with Literature 
 

Influence of Biofuel Mixture 

Figure 2 shows the percentage difference of engine thrust, fuel consumption and specific fuel consumption (SFC) 

predicted for the implementation of CSPK either as a pure or by blend with Jet-A in a two-spool high-bypass turbofan 

engine. Figure 3 shows the results in respect of JSPK. Both fuels showed the same trend in terms of predicted thrust, fuel 

flow and SFC. Specifically, in comparison to Jet-A, CSPK and JSPKshowed an increase in thrust, a reduction in fuel flow 

and an improvement in SFC, although the improvement was considered to be small and not significant. The same trend 

was also observed as the proportion of bio-SPK fuel in the blend increased. The highest increase in thrust, largest 

reduction of fuel flow and greatest improvement in SFC were observed when 100% of bio-SPK fuel was used. When both 

fuels were compared, it was observed that CSPK provided a greater improvement in thrust (0.12%) compared to JSPK 

(0.09%). However, the use of JSPK improved the results for fuel flow and SFC of the two-spool high-bypass engine 

simulated at the design point condition by 2.31% and 2.39%, respectively, as opposed to CSPK, which improved fuel flow 

and SFC by 1.69% and 1.80%, respectively.   

 



 

Figure 2: Comparison of Thrust, Fuel Flow, and SFC of Pure CSPK and CSPK/Jet-A blend with Jet-A 

 

 

Figure 3: Comparison of Thrust, Fuel Flow, and SFC of JSPK/Jet-A blend with Jet-A 

 

Effect of Heat Capacity of the Fuel and air Combustible Mixture on Engine Thrust 

As known, LHV becomes an utmost factor that influence engine thrust. Besides LHV, heat capacity of the combustible 

mixture (fuel and air) (Cp) could be another factor that might affect the amount of thrust generated by an aircraft engine. 

As can be observed in Fig. 4, the thrust generated by CSPK and JSPK was higher than Jet-A. As reported in Mazlan et al 

(2012), increases in engine thrust was due to  the increases in the LHV. However, the comparison between both selected 

biofuels showed that the thrust generated by 100% CSPK was slightly higher than that generated by 100% JSPK (i.e., by 

0.03%). Hence, although the LHV of JSPK is higher than that of CSPK (JSPK = 44.3 MJ/kg and CSPK = 44.0 MJ/kg), it 

appears that LHV itself is not only the factor influencing thrust generation. In the present study, the effect of heat capacity 

of fuel and air combustible mixture on engine thrust was observed. In order to check the effect of heat capacity on engine 



thrust, the simulation was performed in which the fuel flow was fixed while the other parameters were unchanged. Heat 

capacity of combustible mixture for fuel selected in this study was predicted using NASA CEA which measured at 

constant fuel air ratio (FAR) of 1.65% which is equivalent to equivalence ratio of 0.25. It was observed that in comparison 

to CSPK, increasing 0.034% of heat capacity of JSPK/air combustible mixture increased thrust by about 0.34%.  

 

Figure 4: Effect of Heat Capacity on Engine Thrust 
 

 

According to Mattingly (1996), the thrust of a turbofan is a total of the thrust generated from the core stream and the thrust 

from the fan stream as presentedaccordingly inEq (1).  

   01909 -- VV
g

m
VV

g

m
F

c

F

c

C




 

(1) 

 

where F is thrust (N), gc is gravity constant,  and cm  and Fm are the mass flow rate of the core stream and of the fan 

stream, respectively (kg/s), while V0, V9, and V19 are initial velocity, core exit velocity and fan exit velocity (m/s), 

respectively.  

On the other hand, core exit velocity, V9 can be presented as in Eq (2), where the correlation between the velocity and 

turbine temperature ratio is shown as follows: 
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where γ is gamma,   is the ratio of the burner exit enthalpy to the ambient enthalpy, c  is the compressor temperature 

ratio, r  is the ratio of total to static temperature of the free stream, and t  is the turbine temperature ratio. Ratio of the 

turbine temperature can be calculated from energy balance equation as shown in Eq (3). 
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In Eq. 3, tW  is the turbine power (Watt), Cp is the heat capacity of the combustible mixture (fuel and air), T t4 and Tt5 

are the temperature at the turbine inlet and at the outlet, respectively, (K), and 0m  is total mass flow rate (kg/s). 



Rearrange Eq (3), the relationship between turbine temperature ratio with turbine work and heat capacity can be 

determined (Eq (4)). Considering the turbine work, total mass flow and TET are known, therefore turbine temperature ratio 

depends only on heat capacity. 

404

5 1
tp

t

t

t
t

TCm

W

T

T




   

(4) 

 

 

Therefore as Cp increases, the turbine temperature ratio increases consequently increase the velocity and engine thrust. 

Although the increases are not significant, in order to compare the effect of the fuels, the contribution of heat capacity has 

to be taken into account. 

 

Effect of Fuel Density on Fuel Consumption 

 

The evaluation of the effect of density on fuel consumption showed that the fuel consumed by the engine increases with 

increases in fuel density (Fig. 5). A simulation of the engine running with biofuels (low-density fuel) revealed that less fuel 

is consumed than when running the engine with Jet-A. As shown in Fig. 4, an engine running with JSPK with a density 

difference that is about 7.7% lower than Jet-A consequently consumed about 2.3% less fuel than when running on Jet-A, 

while for CSPK, the fuel consumed was about 1.6% lower which resulted from a 7.4% lower density compared to Jet-A. 

In the present study, the simulation was performed in a condition where the turbine entry temperature (TET) value was 

set and kept constant for all types of fuel. Therefore, in order to accommodate the TET, the fuel injector had to inject a 

larger mass of dense fuel due to its low energy content, while in contrast, only a small quantity of mass had to be injected 

for the less dense fuel. This is advantageous in terms of achieving a reduction in fuel consumption. 

 

 

Figure 5: Effect of Fuel Density on Fuel Consumption 

 

Conclusion 

 

The present study assessed the performance of two-spool high-bypass turbofan engines running with Bio-Synthetic 

Paraffinic Kerosine (bio-SPK) fuel, namely, Jatropha Bio-Synthetic Paraffinic Kerosine (JSPK) and Camelina Bio-



Synthetic Paraffinic Kerosine (CSPK). The assessment was conducted with 100% of bio-SPK fuel and with blends at 

20%, 40%, 60%, and 80% of the biofuel with 80%, 60%, 40% and 20% of Jet-A, respectively. An evaluation and 

comparison of the thrust, fuel flow, and specific fuel consumption (SFC) of pure bio-SPK fuels and their blends with Jet-A 

were presented. Additionally the secondary factors that effect the engine performance were discussed. Results obtained 

showed that both bio-SPK fuels produce more thrust than Jet-A. The improvement of engine performance increases 

almost linearly as the percentage of biofuel in the mixture increases. For each bio-SPK fuel, the highest thrust is produced 

by implementing 100% of the fuel in the engine. However, CSPK is found to generate higher thrust than JSPK. The 

implementation of bio-SPK fuels in the aircraft engine either at 100% or by blending with Jet-A is observed to reduce the 

consumption of fuel and improve the SFC which consequently improves (increases) efficiency. Similarly with thrust, the 

highest reduction in fuel flow is found when the engine is running with 100% bio-SPK fuel. However, the highest reduction 

of fuel flow is observed when 100% of JSPK is used. Although it was known that LHV is the important factor that effect the 

engine thrust, the effect of heat capacity on engine thrust also is observed.The comparison of heat capacity of 

combustible mixture between the selected biofuels have shown the effect of this variable on engine thrust as it provides 

high velocity at the nozzle exit consequently increases engine thrust. In addition, the effect of density is also observed to 

influence the reduction of fuel flow during the design point condition. This is because the fuel injector has to inject a 

greater quantity of higher-density fuel than lower-density fuel. As a conclusion, assessments conducted in this present 

study have shown the capability of bio-SPK fuel to provide an improvement in engine performance.  

 

Further Work 

 

The current multi-fuel version of PYTHIA is limited to design point computations for individual engine configurations with a 

specific selected fuel, and so changes in fuel composition can also have an effect on the other engine design point 

conditions. In order to avoid this possibility in comparing the variation of performance with different fuel blends, a more 

general off-design capability is required, and this is presently the subject of further development by biofuel is essential.  
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Nomenclature 

c   = compressor temperature ratio 

cm  = mass flow rate of core stream (kg/s) 

Fm  = mass flow rate of fan stream (kg/s) 



  = ratio of burner exit enthalpy to ambient enthalpy 

r  = ratio of total to static temperature of the free stream 

0m  = total mass flow rate (kg/s) 

tW  = turbine power (Watt) 

t  = turbine temperature ratio 

Cp = heat capacity 

F = thrust (N) 

ɣ = gamma (dimensionless) 

gc = gravity constant 

Tt4 = turbine inlet temperature (K) 

Tt5 = turbine outlet temperature (K) 

V0 = initial velocity (m/s) 

V19 = fan exit velocity (m/s) 

V9 = core exit velocity (m/s) 

 

Definition, Acronyms and Abbreviations 

B100 = pure biofuel (100% biofuel) 

B50 = mixture of 50% biofuel with 50% kerosene 

BPR = bypass pressure ratio (dimensionless) 

C = carbon atom 

CEA = NASA chemical equilibrium with application 

CME = Canola methyl ester 

CSPK = Camelina bio-synthetic paraffinic kerosene 

FAR = Fuel air ratio 

FPR = fan pressure ratio (dimensionless) 

H = Hydrogen atom 

H2 = Hydrogen 

HF = Hog-fat 

HPCPR = high pressure compressor pressure ratio 

HPT = high pressure turbine (dimensionless) 

IPCPR = intermediate pressure compressor pressure ratio (dimensionless) 

JSPK = Jatropha bio-synthetic paraffinic kerosene 

LHV = low heating value (MJ/kg) 

M = mach number (dimensionless) 

OPR = overall pressure ratio (dimensionless) 

PYTHIA = Cranfield in-house engine performance computer tool 

RRME = Recycled rapeseed methyl ester 

SFC = specific fuel consumption 

SME = Soy methyl ester 

TET = turbine entry temperature (K) 

TSFC = thrust specific fuel consumption 



W = mass flow rate (kg/s) 




