

Multi-Capacity Combinatorial Ordering GA in Application to Cloud Resources
Allocation and Efficient Virtual Machines Consolidation

Huda Hallawi1*, Jörn Mehnen1, Hongmei He1

1Manufacturing Department, Cranfield University, Bedford MK43 0AL, UK (corresponding author), Email: h.f.hallawi@cranfield.ac.uk

Keywords:
Cloud Resources Allocation
Cloud Resources Provisioning
Virtual Machines Consolidation
Vector Bin Packing
Genetic Algorithm

1. Introduction

Cloud computing has emerged as a computing model aiming
at providing computing resources as a service according to the
pay-per-use paradigm [1], [2]. Cloud computing is based on full
virtualisation technology where a single physical machine is able
to host several virtual machines which in turn are completely
isolated. The net effect of having shared resource usage is having
fewer physical servers with higher utilisation per server which
will effectively minimise the hardware costs and the operational
expenses [3], [4]. However, the flexibility enabled by
virtualisation has produced new computational challenges of
managing a shared pool of resources over the competing
instances of applications or jobs.

Resource allocation is the process of mapping the available
resources to competing jobs based on the individual job
requirements [5]. Computing resources must be well-managed to
prevent overloading and waste of bandwidth, processing unit,
memory, etc. This waste relates directly to significant financial
loss for large Cloud service providers with regards to energy,
operational cost as well as dissatisfaction of the Cloud service
user [6], [7]. Resources allocation systems control how multiple
VMs share the underlying Physical Machines (PM). Fast and
efficient resource allocation algorithms can help to save energy
and cost while increasing customer satisfaction.

Resource allocation is typically performed in two stages as
shown in Figure 1. The first stage is the jobs assignment to the
Virtual Machines: applications or jobs (both terms are used

synonymously in the context of this paper) are executed on
VMs. Each application has its own requirements of compute
power, disk space and RAM space, communication bandwidth,
priority, etc. (see [7]). Any VM must meet these requirements
when resources are allocated.

ABSTRACT
This paper describes a novel approach making use of genetic algorithms to find optimal solutions for multi-dimensional vector
bin packing problems with the goal to improve cloud resource allocation and Virtual Machines (VMs) consolidation. Two
algorithms, namely Combinatorial Ordering First-Fit Genetic Algorithm (COFFGA) and Combinatorial Ordering Next Fit
Genetic Algorithm (CONFGA) have been developed for that and combined. The proposed hybrid algorithm targets to minimise
the total number of running servers and resources wastage per server. The solutions obtained by the new algorithms are
compared with latest solutions from literature. The results show that the proposed algorithm COFFGA outperforms other
previous multi-dimension vector bin packing heuristics such as Permutation Pack (PP), First Fit (FF) and First Fit Decreasing
(FFD) by 4%, 34%, and 39%, respectively. It also achieved better performance than the existing genetic algorithm for multi-
capacity resources virtual machine consolidation (RGGA) in terms of performance and robustness. A thorough explanation for
the improved performance of the newly proposed algorithm is given.

Figure 1: Resource allocation phases in Cloud
computing

mailto:t.sreenuch@cranfield.ac.uk
Future Generation Computer Systems, Volume 69, April 2017, pp. 1–10DOI:10.1016/j.future.2016.10.025

Published by Elsevier. This is the Author Accepted Manuscript issued with:Creative Commons Attribution Non-Commercial No Derivatives License (CC:BY:NC:ND 3.0). The final published version (version of record) is available online at http://dx.doi.org/10.1016/j.future.2016.10.025. Please refer to any applicable publisher terms of use.

The second stage is the VM assignment to servers. One or
several virtual machines can be lodged on the same server. The
host is responsible for providing the computing resources to the
VM. The server is typically identical to the physical machine
with specified capacities. This phase is done by using a
hypervisor running on the top of the physical hardware. The
hypervisor enables to create virtual environment to operate
virtual machines [7], [8]. Xen and KVM are well known
examples of hypervisors.

Primarily, Cloud resource allocation handles queries and
assigns a number of independent services to physical machines.
Mapping services with complex computing to physical machines
with specified capacities can be transferred to a classic vector (or
multi-capacity) bin packing problem (VBPP) [9]. Each
dimension of the problem is corresponding to a type of resources
such as CPU, RAM memory, disk space and bandwidth.

In order to optimally allocate VMs to PMs, several
sophisticated techniques have been developed for different
purposes such as obtaining good resources utilisation, minimising
energy consumption or achieving good load balancing (see
[10], [11], [5] and [6]).

This paper is dedicated to introducing a new hybrid
optimisation algorithm which is aiming to calculate optimal
solutions to the VBPP and thus to optimise virtual machine
allocation and consolidation. Combinatorial Genetic Algorithms
(GA) [12] are used to find the best VMs order, while the packing
decision is handled by using an approximation heuristic in a way
that minimises the number of non-ideal physical machines and
total resources wastage in each machine. Two genetic algorithms
have been employed. The first one uses Next Fit as a heuristic
packing governor, while the second one uses First Fit. The aim is
to consolidate as many VMs as possible and to reduce the
resources wastage in each physical machine. This has been
formulated into a novel fitness function.

The rest of this paper is outlined as follows: Section 2
discusses the preliminary research in Cloud resources allocation
and vector bin packing problem solving then its application to
Cloud resources allocation and consolidation. Section 3 discusses
the approach followed in this paper towards a new problem
formulation. Section 4 explains the design of the new hybrid
algorithm and all associative configuration operations. Section 5
deals with data configuration and gives an outline to the results
and comparisons; in Section 6 the performance of the new
algorithms is presented and compared with existing algorithms
from literature. The paper also aims at giving explanations of
how the reformulation of the problem and the corresponding new
algorithm affected this improvement in performance. Finally,
Section 7 outlines the conclusions and future work.

2. Preliminary
2.1 Previous Work in Cloud Resources Allocation and VMs
Consolidation
 Resources allocation is a central theme in Cloud computing,
since it controls the way that resources and services are delivered
to the end entities, at the same time it maintains an efficient
utilization of computing resources [1], [3], [4]. Cloud providers
intend to optimize the usage of underlying resources, through
planned allocation of VMs in servers (hosts). Cloud service
providers are also keen to maintain a positive client experience.
Conserving a good Quality of Service level in Cloud Resources
Allocation was considered by Lin J. et al in [13]. They studied
the phenomena VM interference that resulted from interference
between the VMs on the same PMs and its effects on the
services’ degradation, especially the sensitive applications. The

QoS-aware VM placement (QAVMP) problem is formulated as
problem as an Integer Linear Programming (ILP) model. Then a
polynomial-time heuristic algorithm was developed to solve the
QAVMP problem.
 Energy consumption is an active research field in Cloud
resource management. Ramani and Bohara in [14] developed a
new approach for minimize the overall energy consumption. This
approach is based on defining a temperature threshold of the
hosts in Cloud data center. It reduces the consumption of the
maximum resources and controls the processor temperature at the
same time, thus succeeding to decrease the energy consumption
in total. Kumara, and Raghunathan in [15] proposed an integral
thermal and compute controlled heuristic approach to minimize
the energy consumption in IaaS Cloud. Shu et al. in [16]
enhanced the immune clonal selection algorithm to design Cloud
and Grid schedulers with a goal of simultaneous optimization of
the energy utilization.
 Efficient load balancing is one of the major challenges in
Cloud resources allocation process. It controls assigning the load
to different nodes to prevent overloaded or under-loaded nodes.
Many algorithms were proposed to tackle this problem for
example Biased Random Sampling in [17].
 VMs consolidation is a special problem that is mutually
exclusive to resources allocation in virtualized hosted platforms
like Cloud. It targets to consolidate maximum number of VMs
onto minimum number of PMs, thus improving resources
utilization [3], [18]. Frincu M. in [19] employed the Markov
Decision Process (MDP) to generate long term precise migration
decision which aims to improve the profit by avoiding the wrong
decisions which may have an adverse effect on the total profit.

 2.2 Definition of Vector Bin Packing
The vector bin packing problem this paper concerns is called

a d-capacity bin packing problem which is a special
generalisation of the traditional bin packing problem [9], [20],
[21]. Given a set B, of m identical bins, the capacity of a bin is
represented by a d-capacity vector 𝐶 = (𝐶1, 𝐶2 , 𝐶3 , 𝐶𝑖, … , 𝐶𝑑)
where Ci is the ith component capacity and ∑ Ci

d
i=1 > 0, Ci ≥ 0.

Assume a set of n items, L={X1, X2, X3,…., Xn}, where the
items of L are required to be packed into as few bins as possible
without exceeding the bin capacity. An item is also represented
as a d-capacity vector 𝑋𝑗 ⃗⃗⃗⃗⃗ = (𝑋𝑗,1 , 𝑋𝑗,2 , 𝑋𝑗,3 , 𝑋𝑗,𝑘 , … , 𝑋𝑗,𝑑),
where Xjk is the kth component requirement of the jth item
0 < 𝑋𝑗,𝑘 < 𝐶𝑗 .

A solution of the vector bin packing problem can be
represented as B = {B1, B2, Bi… Bm}, where m bins will be
required to pack the n items where each bin accommodates S
items. The packing decision for a bin can be represented as:
 𝐵𝑖 = {𝑋2,𝑖,𝑋7,𝑖,, 𝑋5,𝑖, … 𝑋𝑠,𝑖,}

The packing decision is subject to the following constraints:-

1) ∀𝑋 ∑ 𝑋𝑗,𝑖 = 1𝑚
𝑖=1 (1)

2) ∀𝑋 ∑ 0 < 𝑋𝑗,𝑟
𝑑
𝑟=1 < 𝐶𝑖,𝑟 (2)

3) ∀𝐵, 𝑋 𝐵𝑖⃗⃗⃗⃗⃗ + 𝑋𝑗 ⃗⃗⃗⃗⃗⃗ ≤ 𝐶 ⃗⃗⃗⃗ (3)

The first constraint means that each item must be
accommodated in a single bin; m is the number of bins used to
pack the available items. The second constraint means that the
item requirement in each dimension should not exceed the
corresponding capacity of that bin. The third constraint shows
that allocating a new item to a bin must not exceed the total
capacity of that bin.

 The fundamental problem of vector bin packing – and hence
also its generalisation of d-capacity bin packing – is NP-hard (see
[6, pp.7], and [10, pp. 125]). This implies that for large real-life
problems such as Cloud Resource Allocation deterministic
algorithms quickly reach computational barriers.

2.3 Previous Approaches for Solving Vector Bin Packing in
Cloud Resources Allocation and Consolidation

Several researchers have studied VBPP (or d-capacity bin
packing problem) and its connection with Cloud resources
allocation [22], [23]. A range of approximation algorithms have
been developed to solve the problem for different objectives as
described in [24], [25] and [26]. Examples of that are Next Fit,
First Fit, Best Fit, Dot Product and Permutation Pack.
Dot Product is used by Microsoft’s virtual machine manger [27].
Single capacity Next-Fit [20] deals with a list of items in a given
order one at a time. It checks whether there is a space in a current
bin for the current item; if there is a space it will allocate the
current item into the current bin and then continues with the next
item. If it does not fit, close that bin and open a new bin and
allocate the given item. According to [28] and [29] the Next-Fit
algorithm is the quickest algorithm compared to other heuristic
algorithms as it requires O(N) time. When Next-Fit is extended to
work with multi-capacity bin packing, the main difference is that
it will deal with the d-capacity requirements item instead of one
requirement only [20].

The First-Fit Algorithm (FF) also treats the items in a given
order; however, it will allocate the given item to the first fit non-
empty bin. If all opened bins do not have enough space to fit the
current item, a new bin will be opened and the item allocated (see
[28] and [29]).The First-Fit removes the restriction of the Next-
Fit algorithm as it allows the current item to be packed in any
non-empty bin which can accommodate the item, however, it
often provides non-optimal solutions. It is also known as a fast
heuristic requiring O(N log N) time, where n is the number of
items to be packed [30]. First-Fit has been modified to work with
multi-capacity vector bin packing for scheduling and virtual
machine packing as described in [22], [27] and [31].

Literature [24], [28] and [30] describe the First Fit
Decreasing as another heuristic algorithm for traditional bin
packing based on ordering the given items in a decreasing order
and then applying the FF algorithm to make the packing decision.
Due to the multiple dimensions in vector bin packing, the items
are ordered according to predefined criteria either by taking the
sum of the item weights 𝑉 (𝑖) = ∑ 𝑊𝑟𝑑

𝑟=1 , where V(i) is the
volume of the 𝑖𝑡ℎ item and d is the number of resources; or,
following [9], [25], [32], by using the dot product of the item
weights 𝑉(𝑖) = 𝑊𝑖,1 ∗ 𝑊𝑖,2 ∗. . .∗ 𝑊𝑖,𝑑. The main drawback of
this algorithm lies in the fact that it ignores the correlation across
the dimensions which can lead to excessive waste in resources.

Permutation Pack (PP) is a dimension-aware vector bin
packing algorithm which takes advantage of the complimentary
requirements for different resources with the goal of minimising
the resource wastage and the number of the required bins [10],
[20]. It aims to pack those items which need excessive resources
in one dimension in the same set of bins and the other items with
different needs in other sets of bins. In Cloud resource allocation,
we have a number of VMs, each of which is a vector of different
resources, e.g CPU and memory. PP will pack those VM which
need more CPU than memory in the same Physical Machine,

while consolidating the other VMs which need more memory
than CPU in the other set of bins. Choose Pack and Dot Product
are other types of dimension-aware vector bin packing algorithms
(see [10], [20], and [27]).

Evolutionary Algorithms have been applied to VBPP.
Examples are Genetic Algorithms (GA) and Ant Colony
Optimisation [11]. Especially, GA have recently been used in
Cloud resources allocation and scheduling by many researchers
[11], [33-41] for various objectives covering load balancing, cost
minimisation and resources utilization. Wilcox [35] and Jing Xu
[39] applied and tested a special kind of Genetic Algorithm
called GGA (Grouping Genetic Algorithm) to virtual machine
bin packing. The algorithm was originally developed to deal with
various grouping problems including BPP. However, according
to [41] and [42] the algorithm suffers from performance
problems due to the difficulty of crossover and mutation. Wilcox
has applied RGGA (Reordering Grouping Genetic Algorithm) to
Cloud virtual machine consolidation and developed a new
crossover operator that avoids infeasible solutions within multi-
dimensional constraints [35]. However, the GGA permutation is
still complex compared to a classic GA. The proposed algorithm
as introduced in this paper is based on the rationale of the
combinatorial ordering GA of Corcoran and Wainwright [43] and
its concise permutation technique. It was developed for order
based problems, but it is also supplemented by a range of user
interface tools that offers a workbench for other genetic
algorithm research. It comes with two GA: generational GA and
steady state GA, and introduces a variety of genetic operators for
selection, crossover and mutation. This GA was applied to solve
different combinatorial optimisation problems such as traditional
Bin Packing, traveling salesman problem and multiprocessors
scheduling [12].

3. Problem Formulation

For this paper Cloud resources allocation (as described in
Section 1) will be formulated as multi-capacity vector bin
packing, where a number of jobs need to be severed by a number
of servers in a Cloud data centre. In order to formalise the
problem, a number of assumptions have been made:

1) Requirements of each job are predefined probably by the user.
2) Each job will be encapsulated in a VM; we aim to work with
Infrastructure as a Service (IaaS) where a Cloud user leases a
slice of hardware in the Cloud data centre, which is completely
isolated from the other users.

3) All jobs need a fixed amount of CPU and memory for a
specified amount of time, i.e. this paper is dealing with a static
scheduling problem. Only CPU and memory requirements are
considered. Considering running time is future research.
Synthetic workloads have been used in this paper. They are
described in more detail in Section 4. The workload is assumed
to be static and no job leaves or changes the resource requests.

4) The Cloud cluster comprises only homogeneous servers.
5) Each VM should be mapped to just one server; it is assumed
that all VMs have deterministic load equal to the encapsulated
job load.

The mapping of the VMs aims to minimise the number of
used servers and to reduce the resource wastage in each server.
This is a challenge when one considers multi-dimensional
requirements. Based on the above assumptions, the multi-
capacity VMs placement in a Cloud data centre can be converted
into a 2-D vector bin packing problem. On that basis two novel
algorithms have been formulated namely CONFGA and
COFFGA for solving the multi-capacity VM placement problem.

The number of the jobs in workloads determines the size of
the vector. It equals to the number of items to be packed. Figure
2 presents how resource allocation and VMs consolidation are
handled as 2-D vector bin packing in two levels. The first level
deals with mapping of the workload requirements to VMs with
two different capacities, regarding CPU and memory, while the
second level controls the VMs deployment over the available
physical servers (PMs) under the constraints of unique packing
per server and not exceeding the server capacities. The system
under consideration comprises of N Jobs, correspondingly N
VMs, M servers, R resources and A the number of VMs being
packed in one server according to the resulted packing decision.
The new algorithm targets to use as few servers as possible as
described by formula (4) and to minimise the resources wastage
in each server as formulated in formula (5). The goals and
constraints can be formulated as follows:

Goals: min ∑ 𝑆𝑖𝑀

𝑖=1 (4)

 min ∑ ∑ 𝑊𝑗,𝑖
𝑅
𝑗=1

𝑀

𝑖=1
 , R = [𝐶𝑘,𝑖, 𝑀𝑘,𝑖] (5)

with 𝑊𝑖 = (𝑆𝑅𝐶𝑖 − ∑ 𝐶𝑘,𝑖

𝑎
𝐾=0) + (𝑆𝑅𝑀𝑖 − ∑ 𝑀𝑘,𝑖

𝑎
𝐾=0), (6)

 k� [0,...,A]

Constraints:

 ∑ 𝑃𝑗,𝑖 = 1 𝑗 � [1, … , 𝑁]
𝑚

 𝑖=1
 (7)

∑ 𝐶𝑗 𝑃𝑗,𝑖 < 𝑆𝑅𝐶𝑖 𝑖 � [1, … , 𝑀] (8)
𝑛

𝑗=1

∑ 𝑀𝑗 𝑃𝑗,𝑖 < 𝑆𝑅𝑀𝑖 𝑖 � [1, … , 𝑀] (9)
𝑛

𝑗=1

The parameters used in formulas 4 to 9 are stated in Table 1.

Formula (5) indicates that consolidation decision resulted from
the algorithm should minimise all resource wastage in all used
servers. Formula (6) describes how to count the resource
wastage. In the case considered in this paper, R = 2 represents
CPU and Memory requirements; K is the index of the VMs
packed in one server as results from our algorithm. Formula (7)

indicates that each VM should be assigned to just one server. The
formulas (8) and (9) specify that the VMs consolidation decision
should not exceed sever capacity in any dimension.

Table: 1 Parameters used in the Problem Formulation

𝑊𝑗,𝑖 i�[1,..,M],
j�[1,..,R]

Total Resources wastage in all
servers.

[𝑆𝑅𝐶𝑖, . . , 𝑆𝑅𝑀𝑖]
𝑖 �[1, … , 𝑀]

The capacity vector of the ith server;
CPU capacity, and memory capacity
respectively.

[𝐶𝑘,𝑖, 𝑀𝑘,𝑖],
K� [1,…,A]
i� [1,..,M]

The vector of CPU and Memory
requirements for the kth VM packed
in Serveri, according to the packing
decision.

𝑃𝑗,𝑖 ∈ [0, 1],
i� [1,..,M],
j�[1,..,N]

Packing decision

4. Novel Multi-Capacity Combinatorial Ordering GA

4.1 Algorithm Design
The target is to develop an optimisation algorithm for vector

bin packing. The approach followed in this paper is to combine a
genetic algorithm with multi-dimension aware heuristic
algorithms, such as multi-dimension First-Fit and multi-
dimension Next-Fit heuristics, to optimise the packing solution.
The GA is dealing with multi-dimension vector bin packing as a
combinatorial optimisation problem. GA is an iterative procedure
which borrows the concepts of the natural selection and survival
of the fittest individual from the natural evolution. By choosing
the suitable representation of the problem and emulating the
biological selection and reproduction techniques, the GA can
search a large problem space. It has been pointed out that the
classical GA performs poorly in the application for bin packing
problems [43], [44]. Therefore, a variation of the classic GA had
to be developed to deal with bin packing problems more
efficiently. L. Corcoran and R. Wainwright have introduced a
software package [12] which helps to develop genetic algorithm
for different combinatorial optimisation problems. The proposed
algorithm is based on the above mentioned software package.

Bin packing is an optimisation problem which aims to
minimise the number of bins used to pack a group of items. In
order to find a good solution for ordering the items and to find
relations between item requirements in the vector bin packing
problem, the genetic algorithm was combined with another
heuristic algorithm. The idea is to use a cooperation of GA and
traditional multi-dimension packing heuristics to produce
packing decision under multiple constraints.

The GA evolves solutions to find a new packing solution.
The goal is to find the best VM order to be packed by the
heuristic objective function. The optimal solution should have the
minimum number of servers and least resources wastage; the
order (chromosome) is evaluated by using a fast multi-
dimensional heuristic as an objective function. The heuristic is
part of the objective function which guides the GA in its search
for optimum packing solutions. Two new hybrid algorithms have
been developed. These two algorithms follow the same basic
procedure; however they apply different objective functions for
getting their packing decision. The first algorithm is called
Combinatorial Order Next Fit Genetic Algorithm (CONFGA).

Figure 2: Problem formulation of resource allocation seen
as 2-D vector bin packing in two levels

CONFGA uses Next-Fit as a packing solution governor and the
second one uses First-Fit instead. Both FF and NF heuristics have

been introduced in Section 2. The Combinatorial Order First-Fit
Genetic Algorithm is called COFFGA. As Next-Fit heuristic does
not provide backtrack packing. This will lead to better results
with COFFGA than CONFGA as discussed later.

In the box above the proposed hybrid Multi-Capacity
Combinatorial Ordering GA Procedure is shown in more detail.
The procedure also describes the way of applying the proposed
Combinatorial Ordering GA to Cloud resources allocation
problem. It is divided into three main functions: INITIALIZE
VMs, FIND PLACEMENT USING COMBINTORIAL
ORDERING GA, and PLACE VMs. Each function is dedicated
to specific purpose, the INITIALIZE VMs covers the
initialization of VMs according to the input workload. On the
other hand, FIND PLACEMENT USING COMBINTORIAL
ORDERING GA function produces the deploying decision of the
pre-initialized VMs. It explains the design of the proposed
Combinatorial Ordering GA that wraps a fast heuristic as an
objective function to make the optimal packing decision. Finally,
PLACE VMs function deploys the packing decision generated by
the previous function onto Cloud servers.

4.2 Chromosome Encoding
Vector bin packing is an optimisation ordering problem; in a

GA the chromosome is encoded to represent a permutation of the
order of VMs; this is similar to the encoding one would use in the
well-known traveling salesperson problem [47], [48]. In
permutation encoding every chromosome is a string of numbers
that represent a position in a sequence.

The length of each chromosome is equal to the number N of
the VMs to be packed at any time. The chromosomes can be
presented as:
 0 1 2 3 4 … N-1

3 18 7 15 8 ……. 20
Chromosome 1

0 1 2 3 4 …… N-1
9 5 20 3 8 ……. 20

Chromosome 2

The chromosome is encoded as a one dimension array of N
integers. The chromosome gene is an index to the VM attributes
as shown below:

0 1 2 … N-1
7 8 11 …. 6

 VM(7) VM(8) VM(11) VM(6)
CPU MEM CPU MEM CPU MEM . . CPU MEM

Two VM attributes (CPU and Memory) have been

encapsulated in the algorithm. More VM attributes could be
investigated in future work. Using integer encoding in one
dimension facilitates crossover and permutation operations.

4.3 Objective and Fitness Function
Generally, the objective function is incorporated inside the

fitness function of a GA. The objective function is a vital
component also of the proposed algorithm. In the proposed new
approach, the heuristic packing algorithm is “encapsulated” in
the fitness function. In the following, this new concept will be
explained in more detail.

Each packing solution will be associated with a chromosome.
Therefore, the performance of an individual can be evaluated
based on the packing solution. The objective function receives
the pre-described chromosome. The objective function will find

Multi-Capacity Combinatorial Ordering GA Procedure

FIND PLACEMENT USING COMBINTORIAL ORDERING
GA

1. Initiate Termination Condition, Pool Size;
2. ChromLength=VMs; // set the length of each

Chromosome
3. Pool = N; //create a pool of N chromosomes with

random VMs orders
4. While T < Termination Condition do: //run GA

Begin
5. N = Pool Size;
6. T = T+1;
7. While N≠0: //Find Fitness for all Pool Chromosomes
 Begin

a. Fetch servers’ capacities and VM’s
requirements;

b. Pack the given VMs using Multi-Capacity
vector bin packing heuristic, based on the
VMs’ order in a chromosome;

c. Use packing function to convert the chrome
VMs order to PackingSolution;

d. Calculates the chromosome fitness using the
fineness function in (4-C);

e. N = N – 1;
f. bestSolution = findBestOrder(Pool);

 End
8. For i=1..PoolSize/2; // apply selection and crossover

 Begin
a. [chrom1, chrom2] = Mini-Roulette; (4-D).
b. [chd1, chd2] = Crossover(chrom1, chrom2); (4-

E).
c. Save(newPool, chd1, chd2);

End
 Pool=newPool;

End

x Initially, J=0 ; VMs=0; T=0; // number of jobs; number of
VMs; termination condition

x Initially, OptSolution = NULL;
1. To host a number of jobs with multi-capacity demands

in hosted servers: Initialize a descriptive file that
identifies number of servers, capacity of the servers’
resources, number of jobs [services], and the
requirements of each job [service].

2. Call INITIALIZE VMs
3. Call FIND PLACEMENT USING COMBINTORIAL

ORDERING GA
4. Call PLACE VMs

 INITIALIZE VMs
While J < number of jobs: // from descriptive file
 Begin
 J = J+1;
 Encapsulate a given job in a proper VM according to the
 job requirements.
 VMs= VMs+1;
 End

PLACE VMs
If (OptSolution=NULL or fit(OptSolution)<fit(BestSolution)

OptSolution = Best Solution;
 OptPacking = PackingSolution(Best Solution); //the
PackingSolution Associated with the Best Solution
 Apply OptPacking (VMs, Servers);

chromosome packing decision using the wrapped heuristic (NF
or FF) and the input VMs requirements using the following
operations:

x Match the VMs in the given chromosome order with
their actual VMs requirements. This step changes the
chromosome from a one dimension array of integers
into an array of structures. Any array element comprises
all required multi-dimensional attributes associated with
a VM. This operation feeds the packing heuristic in the
following operation with all required inputs.

x Apply the packing function which comprises of the
chosen multi-dimensional heuristic (FF or NF) to find
the packing order under the capacities constraints. The
packing solution is represented as an array of two
elements. The first element represents the number of
VMs to be packed while the second element marks the
index of a host server. The corresponding array
encoding is shown below:

 0 1 2 3 4 … N-1
(20, 1) (4,2) (6,1) (11, 3) (9, 1) … (VMj, Serveri)

x Determine the number of servers required to host the
given VM packing order (chromosome) and the total
resources wastage in each server.

The objective function also provides the parameters to feed
the fitness function such as the number of servers for the
associated packing decision and the resources wastage. The
output of the algorithm is the packing solution, associated to the
best chromosome (individual). The packing solution describes
which VM will go to which server.

Previous genetic algorithms in Cloud resource allocation and
vector bin packing used also heuristics e.g. for initialising the
pool of individuals. However, these algorithms were suffering
from the extra difficulties caused by the inadequate genome
encoding during the crossover and the permutation operations.
The proposed approach is different. In this case, the heuristic is
used as integral part of the objective function. The objective
function uses a permutation as an input (chromosome), which
greatly reduces the complexity of the encoding and crossover.

In Genetic Algorithms, a fitness function is used to quantify
the quality of the individuals in the population, thus directly
reflecting the performance of the individuals. Each chromosome
bears its individual fitness value. The individuals are selected for
crossover depending on their fitness values. Therefore, the fitness
function is the key driver within a Genetic Algorithm. In this
paper the bi-objective goal of the proposed algorithms is to
minimise, both, the total number of servers and the normalised
capacity of the servers. This is formulated in equation (10):

𝑓(O)= 𝑇𝑆 ∗ 𝑅𝑡𝑜𝑡 (10)
𝑇𝑆 = ∑ 𝑆𝑖

𝑠
𝑖=1 (11)

𝑅 𝑡𝑜𝑡 = 𝑅𝑐𝑝𝑢 + 𝑅𝑀𝐸𝑀 (12)

𝑅𝐶𝑃𝑈 = ∑ 𝑆𝑅𝐶𝑖−∑ 𝐶𝑘,𝑖𝑎
𝐾=0

𝑆𝑅𝐶𝑖

𝑠

1=1
 (13)

𝑅𝑀𝐸𝑀 = ∑ 𝑆𝑅𝑀𝑖−∑ 𝑀𝑘,𝑖𝑎
𝐾=0

𝑆𝑅𝑀𝑖

𝑠

1=1
 (14)

where f(O) is the fitness of the given chromosome order, TS is
the total number of servers in the given packing decision, S is the
number of servers needed to host the VMs of the given order,
𝑅tot is total normalized residual capacity in the used servers and
𝑅cpu normalized CPU residual capacity; the total wastage is

reduced by minimising the residual in each server as presented in
[20] and [21]. Normalising the total wastage helps to reach the
right convergence, as it assigns each chromosome a unique
fitness.

4.4 Selection Strategy

Selection is a mechanism that favours well-fitted individuals
and rejects the others. It chooses individuals of a current
generation for producing offspring. This mechanism follows
Darwin’s principle of “Survival of the fittest”. Different selection
strategies have been developed for GA, such as roulette, rank
biased or uniform random. The proposed algorithm adopted
mini-selection roulette strategy [43]. The mini-selection roulette
is similar to the classic roulette selection where each individual is
assigned a slice of a circular roulette wheel where the size of the
slice of the roulette wheel is proportional to the individual’s
fitness F(i). However, the exception in the mini-selection roulette
wheel strategy is that chromosomes are assigned a fitness F’(i)
which is reciprocal to F(i). P(i) is the probability that the
chromosome is selected and that is proportional to F’(i). This
means that the smaller the F(i) value the larger the value of P(i).
P(i) is formalised in equation 15:

 𝑃(𝑖) = �́�(𝑖)
∑ 𝐹(𝑗)𝑛

𝑗=1
 , (15)

�́�(𝑖) = 1
𝐹(𝑖) , (16)

4.5 Crossover Operation and Mutation

Generally, crossover in genetic algorithms is the process of
producing new individuals by substituting and reforming genes
of two or several subsequently selected parental chromosomes.
Crossover is a particularly important operator in genetic
algorithms. Different types of chromosomes can have different
crossover operations. Since a chromosome variation can be seen
as a permutation introduced by the GA, a number of crossover
operations are available for permutation of a chromosome such
as Order crossover, Partially matched crossover (PMX), Position
Crossover and Asexual Crossover [46],[49]. All these types of
crossovers have been dedicated to prevent repetition or missing
the encoded values in the new ordered chromosomes. For
instance, for the Order Crossover operation, two strings are
aligned and two crossover points are selected and then a sliding
motion applied for filling the left holes by transferring the
mapped positions. For example, consider two chromosomes with
10 genes:

Parent 1: 4 8 7| 3 6 5| 1 10 9 2
Parent 2: 3 1 4| 2 7 9| 10 8 6 5

By merging parent 2 with parent1, the places of 3, 6, 5 are
left with holes.
Child 2: H 1 4 | 2 7 9 | 10 8 H H

The given holes will be filled with sliding motion that starts
from the second crossover point:
Child 2: 2 7 9 | H H H | 10 8 1 4

Similarly the holes are filled from the parent 1, thus the
resulted children will be represented as:
Child 1: 3 6 5 2 7 9 1 10 4 8
Child 2: 2 7 9 3 6 5 10 8 1 4

For this paper all the mentioned crossover operators have
been tested. Order crossover and asexual crossover gave best
results. Therefore, this type of operator has been adopted for the
experiments.

5. Experimental set-up

The GA used in all experiment is the generational GA with
the parameters of the above described operators presented in
Table 2. These parameters have not been chosen randomly, they
were selected based on literature [35], [39] and on experience
after performing 300 experiments with different parameter
settings.

In general, any new algorithm should be compared against
similar existing algorithms. Since there was no standard
benchmark for comparison, a set of systematic experiments has
been performed to evaluate the performance of the proposed
algorithms. The algorithm performance was tested in three parts:
1) The first experiment is dedicated to the comparison of the two
proposed algorithms CONFGA and COFFGA.
2) The second experiment focuses on comparing the new
algorithms with existing vector bin packing heuristics on a set of
Multi-capacity vector Bin Packing Problems (MCVBPPs). These
experiments have been designed to highlight the particular
properties of the algorithms.
3) The third experiment is dedicated to compare COFFGA with
RGGA and other existing MCVBPP.

The proposed algorithms have been implemented in the
C programming language and built on the LibGA development
package [45]. LibGA is a set of fast routines written in C with a
convenient developer interface. The underlying operating system
is LINUX Ubuntu 14.4LTS.

Table 2: Algorithm Parameters
Genetic Parameters Magnitude

Crossover probability 0.8
Population size 75
Type of crossover Order
Mutation rate 0.1
Selection type Mini Roulette
Size of chromosome N = 20-4500

5.1 Comparison of COFFGA and CONFGA

To evaluate the performance of the two new algorithms
CONFGA and COFFGA, they were first compared against each
other. The comparison was done using a data set that was
developed particularly for this comparison. The data set contains
26 problem instances. The problems were constructed similar to
the ways described in [49] where the authors based their analysis
on Cloud servers capabilities [27], [50]. However, the new data
set has been modified to represent multi-capacity vector bin
packing instead of the conventional bin packing [49]. The data
set is constructed using the following parameters:

N = [10 -350] Number of virtual machines

S = 128 Number of servers

Ci⃗⃗⃗⃗ = [Ci, 1⃗⃗⃗⃗⃗⃗ ⃗⃗⃗, Ci, 2⃗⃗⃗⃗⃗⃗ ⃗⃗⃗] equals to [SRCi, SRMi], as defined in Table
(1).

Wj = [[C𝑖,1/3, Ci,2/5], [C𝑖,1/5, Ci,2/7], [C𝑖,1/9, Ci,2/3],
[C𝑖,1/11, Ci,2/5], [C𝑖,1/7, Ci,2/9], [C𝑖,1/13, Ci,2/11]]j where
Wj the vector of the requirements of the jth VM,
j = 1,…, N.

5.2 Conventional Vector Bin Packing Heuristic
 Generally, any new algorithm should be compared with
its predecessor from literature. This comparison focuses on
demonstrating the benefit gained by using COFFGA and
CONFGA against the conventional vector bin packing heuristics
First Fit and First Fit Decreasing in terms of packing decision
robustness. Given that the output of the new algorithms is a
packing decision specifies which VM should be deployed to
which server with the aim of minimising the number of servers
(bins) and resources wastage, consequently maximising
utilisation of each server. The packing decisions have been
compared against the packing decisions generated by previous
multi-dimensional bin packing heuristics. The comparison was
done using the same data set described in (5.1).

5.3 Reordering Grouping Genetic Algorithm

 This comparison has been done to compare the proposed
algorithm with literature sources that used genetic algorithm for
vector bin packing. RGGA has been proposed in [35] with the
similar target of solving multi-capacity vector bin packing in
application to a Cloud Virtual Machines consolidation problem.
The number of servers equals to the number of bins while the
number of VMs equals to the number of items to be packed. For
the comparison with RGGA here 10 sets of data were used. Data
sets 0 to 9 deal with big problems of up to 4500 VMs. They deal
also with different problems sizes of 500 to 4500 VMs. Their
data in [35] was designed in a way that each VM can sit perfectly
in a server and the servers can consolidate the VMs with zero
residual capacities in all resources which do not happen in real
cloud consolidation. However, RGGA is a steady state GA with
75 as a population size, with 0.8 crossover probability and 0.1
mutation probability.

6. Results

6.1 COFFGA and CONFGA

About 430 experiments were performed to evaluate the
proposed algorithms (COFFGA and CONFGA) in terms of
performance and packing robustness. These experiments were
carried out using 26 problem instances (data initialisation as
discussed in (5.1)); the problems sizes are varied by changing the
number of VMs (20-340), and their CPU and memory requests.

Figures 3 and 4 present the average performance of COFFGA
and CONFGA in a problem of size 70 VMs over 8 runs. They
show that COFFGA is competitively performed better than
CONFGA; COFFGA finds minimum fitness function about
10000, while the average fitness function of CONFGA is 30000.
At the same time, COFFGA easily converges after 10
generations, whereas CONFGA needs 250 generations. The main
reason of this variance is that COFFGA uses the First Fit
heuristic that provides backtracking packing feature which leads
to produce minimum fitness function for the same chromosome.
The minimum fitness function makes COFFGA converges easily
and accompanies with better packing decision.

Figure 5 compares the average of 8 fitness functions for 26
problem instances of COFFGA and CONFGA. It can be clearly
seen that COFFFGA provides minimum fitness function for all
cases, correspondingly COFFGA finds packing decision with
minimum number of required servers. For each problem instance
the fitness function solutions vary slightly in each run, but they
do not extremely affect the number of required servers, almost
the same number of servers produced over the 8 runs. In the
worst case (+1) server is rarely required for the same problem

Figure 5: Comparison between COFFGA and CONFGA in
terms of average fitness function for 26 problem instances
over 8 runs

Figure 6: Comparison Combinatorial Ordering Vector Bin-
Packing Genetic Algorithms (COVBGA) with Preliminary

Vector Bin Packing Heuristics

instance across all experiments. This shows the precision and
consistency in the performance of the proposed algorithms, and it
also proves the reliability of the COFFGA and CONFGA. The

results show that COFFGA performed better than CONFGA for
both metrics, i.e. performance and packing robustness. In term of
performance, COFFGA needed 750 to 7500 function evolutions
as average. The variation is caused by the problem sizes.
CONFGA required about 1500 to 37500 function evaluations.

Robust packing decision is a decision with best possible
packing. Therefore, the decision within minimum number of
servers is more robust than the other decisions. In terms of
packing robustness, COFFGA appears more robust than
CONFGA as its decision required less number of servers for all
problem instances (see Figure 6 in (Section 6.2)). Section 6.2
compares the number of required servers of the COFFGA and
CONFGA for all problem instances.

6.2 Conventional Vector Bin Packing Heuristics

The proposed algorithms aim to find new solution for multi-
capacity vector bin packing problems, therefore they were
compared with the traditional multi-capacity first fit heuristic
(MFF), and Multi-Capacity first fit decreasing heuristic (MFFD).
The number of severs per packing solution in COFFGA and
CONFGA for different problem sizes were compared against the
number of servers associated with packing decision made by
MFF and MFFD. MFF is implemented according to the
definition of FF in Section 2.3. The main idea of MFFD is that
VMs should be ordered before submitting to the FF algorithm.
VMs order has been made by giving a priority to each VM
according to 𝑃(𝑉𝑀) = ∑ 𝑊𝑗

𝑟
𝑗=1 , where r is the number of VMs

requirements; then VMs order is configured according to VMs
properties in a decreasing order.

Figure 6 shows the comparison of CONFGA, COFFGA,
MFF, and MFFD; it can be clearly observed that COFFGA far
yields the least no of servers in all problem instances. It
consistently produces best result than all other tested algorithms.

It has succeeded to reduce the number of used servers (PMs)
by 39% when compared to Multi-Capacity FFD. At the same
time, the number of servers is decreased by 34% compared to
CONFGA. COFFGA has improved Multi-Capacity FF
performance by 31.4%. It is also noticeable that CONFGA
results are quite similar to MFF which means incorporating Next-
Fit heuristic in ordering genetic algorithm has improved the
performance of Next-Fit heuristic. Next Fit was considered
earlier as an inefficient solution for vector bin packing [20]. FFD
shows the worst performance among the compared algorithms
which means combining the item requirements for ordering the
items is inefficient for finding a priority to order the given items
in multi-capacity vector bin packing.

Figure 3: Average COFFGA Performance with 70VMs
Problem Instance

Figure 4: Average CONFGA Performance with 70VMs
Problem Instance

6.3 Reordering Grouping Genetic Algorithm

In this section we will show that the proposed algorithms
outperform RGGA which was considered the best genetic
algorithm in terms of multi-capacity bin packing for virtual
machines consolidation. The comparison was made using a
specified data set of RGGA that comprises 10 problems of
various sizes between 500 and 4500 VMs. RGGA developers
devoted their data to be very hard in a way no free space is
allowed per server. However, they knew the optimal packing for
each problem. This paper aimed to do a fair comparison;
therefore, here the set of algorithm parameters were set to the
values used in RGGA as described in Section 5.3. COFFGA is
able to find the optimal packing. Table 3 presents a comparison
of CONFGA, COFFGA, RGGA, Permutation Pack (PP) and
FFD over all problems.

It should be noted that COFFGA consistently overtakes
RGGA and Permutation Pack (PP) for all problems by
minimising the number of the servers by about 4%. It also
significantly outperforms FFD in each problem instance.

Importantly, COFFGA is able to reduce the function
evaluations used in RGGA by 77.33% from 7500 in RGGA to
1700 in COFFGA, while CONFGA decreasing this by 26.66%
from 7500 in RGGA to 5500 in CONFGA. This comparison
shows that the proposed algorithms perform well on different
problem sizes and independently of the underlying data.

7. Conclusions

In this paper, the problem of Cloud resources allocation and
consolidation has been studied and solved by converting it to
multi-capacity vector bin packing. The contribution lies in two
areas: the first area is d-capacity vector bin packing, and the
second area is optimization in cloud resources allocation.

In terms of d-capacity vector bin packing our conclusions are:
firstly, finding independent dimension order for items needed to
be packed before applying heuristics highly affects packing
decision in vector bin packing problem. Secondly, the proposed

approach of wrapping heuristic in the ordering genetic
algorithm has succeeded in providing superior d-capacity vector
bin packing with robust packing decisions. For that, two new
hybrid algorithms CONFGA and COFFGA have been proposed.
It was found that COFFGA is superior to other tested algorithms
as it reduced the number of severs by (39%) over FFD, (31%)
compared with FF, and (4%) of PP.

In term of cloud resources allocation, it was analyzed how the
number of servers required to run a set of VMs can be minimized
by applying genetic warping heuristic approach. The proposed
algorithms COFFGA and CONFGA were applied. The
algorithms were able to deal with different problem sizes ranging
from 20VMs to 4500VMs. Minimizing the number of running
servers and the resources wastage in each server lead to
maximizing resources utilization in total. The proposed
algorithms are capable of producing VMs assignment decision
which strongly increases the consolidation density without
violating the quality of the required services.
In comparison with state-of-the-art multi-dimensional aware
genetic algorithm for virtual machine consolidation, the
algorithms succeeded to find the optimal assignment decision of
RGGA data. The results show that COFFGA and CONFGA do
not only offer improving solutions but also the expense for
getting the solutions compared to RGGA, because it reduced the
number of servers by finding the optimal solution and also
reduced the function evaluations from 7500 in RGGA to 1700 in
OCFFGA and 5500 in OCNFGA.

The future plan is to develop a comprehensive multi-
objective scheduling algorithm in application to Cloud resources
allocation. The algorithm shall deal with all Cloud resources
allocation problems like load balancing, energy consumption,
and Makespan. Another future plan is considering the dynamic
Cloud resources allocation problem that needs to go through
variable size multi-capacity vector bin packing.

Acknowledgment
This work has been supported by the Ministry of Higher
Education and Scientific Research of Iraq. The authors gratefully
acknowledge this support.

References

[1] A. Escalante and A. Escalante, Handbook of Cloud

Computing Springer New York Dordrecht Heidelberg
London, 2010, DOI 10.1007/978-1-4419-6524-0.

[2] C. Höfer and G. Karagiannis, Cloud computing services:
taxonomy and comparison, Journal of Internet Services and
Applications, 19 June 2011 - Springer, 2011, DOI
10.1007/s13174-011-0027-x.. [Online]
http://link.springer.com/article/10.1007/s13174-011-0027-
x#page-1

[3] B. Wang, Y. Cheng, and W Chen, Efficient Consolidation-
aware VCPU Scheduling on Multicore Virtualization
Platform, Future Generation Computer Systems, vol: 56,
March 2016, pp:229-237, DOI:10.1016/j.future.2015.08.007.

[4] K. Radha, B. Rao, S. Babu, K. Rao, V. Reddy, and
P.Saikiran, Allocation of Resources and Scheduling in Cloud
Computing with Cloud Migration, International Journal of
Applied Engineering Research ISSN 0973-4562, Vol 9 (19)
2014.

Table 3: Comparison between COFFGA, CONFGA and
RGGA algorithms

DATA
SETS

Our Result RGGA Result

CONFGA COFFGA Opt FFD PP RGGA

DSET1 61 59 59 61 61.4 60

DSET2 116 112 112 121 117.8 113

DSET3 203 191 191 207 196.5 192

DSET4 226 216 216 234 223.9 217

DSET5 253 241 241 262 250.3 242

DSET6 281 267 267 269 277.7 268

DSET7 343 320 320 353 331.8 321

DSET8 399 371 371 412 384.7 372

DSET9 462 425 425 465 439.8 426.02

DSET10 523 481 481 541 499.5 482

http://link.springer.com/article/10.1007/s13174-011-0027-x#page-1
http://link.springer.com/article/10.1007/s13174-011-0027-x#page-1
http://dx.doi.org/10.1016/j.future.2015.08.007

 http://news.bbc.co.uk/1/hi/world/americas/4808342.stm
[5] J. W. Smith, I. Sommerville, -Understanding tradeoffs

between Power Usage and Performance in a Virtualized
Environment-, IEEE Sixth International Conference on
Cloud Computing, IEE Computer Society,2013: 978-0-
7695-5028, DOI 10.1109/CLOUD.2013.138.

[6] Z. A. Mann, A taxonomy for the virtual machine allocation
problem*, International Journal of Mathematical Models
and Methods in Applied Sciences, 2015, volume 9, pp:
269-276,

[7] J. Lin, C. Chen, C. Lin, Integrating QoS Awareness with
Virtualization in Cloud Computing Systems for delay-
Sensitive Applications, Future Generation Computer
Systems, vol:37, pp: 478-487, July 2014,
DOI:10.1016/j.future.2013.12.034.

[8] S. Gabriel and M. Barbulescu. A comparison of the
performance and scalability of Xen and KVM hypervisors.
In proceeding to Networking in Education and Research
International IEEE Conference, 2013 RoEduNet 12th
Edition, pp. 1-6.

[9] N. Dahmania, F. Clautiauxb, S Krichena, and G. Talbib,
Self-adaptive metaheuristics for solving a multi-objective
2-dimensional vector packing problem, Applied Soft
Computing, March 2014, 142-136, Vol 16.

[10] M. Stillwella, D. Schanzenbacha, F. Vivienb, H.
Casanova, Resource Allocation Algorithms for Virtualized
Service Hosting Platforms-, Parallel and Distributed
Computing, September 2010 vol:70(9),
pp:962-974, DIO:10.1016/j.jpdc.2010.05.006

[11] K. Chandrasekaran, and U. Divakarla, Load Balancing
Virtual Machine Resources in Cloud Using Genetic
Algorithm, ICCN 2013, pp 156-168.

[12] L. Corcoran and R. Wainwright, Using LibGA for Solving
Different Combinatorial Optimization Problems*, The
Application Handbook of Genetic Algorithms CRC
Press,1995, pp: 143-172, vol:1.

[13] J. W. Lin, C. H. Chen, and C. Y. Lin, “Integrating QoS
Awareness with Virtualization in Cloud Computing
Systems for Delays Applications”, Future Generation
Computer Systems, vol. 37, pp. 478–487, 2014.

[14] M. Ramani, and M. Bohara, “Energy Aware Load
Balancing In Cloud Computing Using Virtual Machines”,
Journal of Engineering Computers & Applied Sciences,
vol. 4, no.1, pp:1-5 , 2011.

[15] M. Kumara, and S. Raghunathan, “Heterogeneity and
Thermal Aware Adaptive Heuristics for Energy Efficient
Consolidation of Virtual Machines in Infrastructure
Clouds”, Journal of Computer and System Sciences, vol.
82, pp:191–212, 2016.

[16] W. Shu, W. Wang, Y. Wang, A novel energy-efficient
resource allocation algorithm based on immune clonal
optimization for green cloud computing, Journal on
Wireless Communications and Networking, 2014, vol 64,
doi:10.1186/1687-1499-2014-64

[17] M. Randles, D. Lamb, A. Taleb-Bendiab, “ A Comparative
Study into Distributed Load Balancing Algorithms for
Cloud Computing”, IEEE International Conference on
Advanced Information Networking and Applications
Workshops, IEE Computer Society, pp: 551-556, April
2010.

[18] H. Ferdaus and M. Murshed, “Virtual Machine
Consolidation in Cloud Data Centers Using ACO
Metaheuristic”, Springer, Euro-Par 2014: Parallel
Processing: 20th International Conference, pp. 306–317,
2014.

[19] M. E. Frincu, “Scheduling highly available applications on
cloud environments,” Future Generation and Computer
Systems, vol. 32, no. 1, pp. 138–153, 2014.

[20] W. Leinberger, G. Karypis, and V. Kumar, Multi-
capacity bin packing algorithms with applications to job
scheduling under multiple constraints, Proceedings
International Conference on Parallel Processing 1999,
IEEE, 404412, 0-7695-0350-0, DOI:
10.1109/ICPP.1999.797428.

[21 R. Masson, T. Vidal, J. Michallet, P. Penna, V. Petrucci,
A. Subramanian, H. Dubedout, An Iterated Local Search
Heuristic for Multi-Capacity Bin Packing and Machine
Reassignment Problems. 2013, Expert Systems with
Applications. vol 40, pp: 5266-5275. DOI :
10.1016/j.eswa.2013.03.037

[22] L. Dubies, Optimizing Resources Allocation while
handling SLA violations in Cloud Computing Platform,
Proceedings of the IEEE 27th International Symposium on
Parallel & Distributed Processing (IPDPS), pp: 79-87,
978-1-4673-6066-1, DOI: 10.1109/IPDPS.2013.67

[23] M. Stillwell; F. Vivien, and . Casanova, Virtual Machine
Resource Allocation for Service Hosting on Heterogeneous
Distributed Platforms, Proceedings of the 2012 IEEE 26th
International Parallel and Distributed Processing
Symposium, 2012, 786 - 797, DOI:
10.1109/IPDPS.2012.75

[24] W. Tian, X. Liu, C. Jin, and Y. Zhong, LIF: A Dynamic
Scheduling Algorithm for Cloud Data Centers Considering
Multi-dimensional Resources*, Journal of Information &
Computational Science, 2013 10:12 pp:3925–3937, .

[25] A. Alahmadi, A.Alnowiser, M. Zhu, D. Che and P.
Ghodous*, -Enhanced First-fit Decreasing Algorithm for
Energy aware Job Scheduling in Cloud-, International
Conference on Computational Science and Computational
Intelligence, 2014.

[26] A. Wolke, and C. Pfeiffer, Improving Enterprise VM
Consolidation with High-Dimensional Load Profiles, 2014
IEEE International Conference on Cloud Engineering,
978-1-4799-3766-0/14, DOI 10.1109/IC2E.2014.12

[27] S. Lee, R. Panigrahy, V. Prabhakaran, V.
Ramasubramanian, and K. Talwar, Validating Heuristic
for Virtual Machines Consolidation, TechReport,
Microsoft, 2011, Microsoft Research Silicon Valley,
Mountain View, CA 94043

[28] K. Maruyama, S. Chang, and D. Tang. A general packing
algorithm for multidimensional resource requirements,
International Journal of Computer and Information
Sciences, 1977, Vol 6, pp:131-149,

[29] C. Chekuri, Approximation Algorithms for Scheduling
Problems, PhD dissertation, Stanford University, August
1998.

[30] R. Yesodha, and T. Amudha, A comparative study on
Heuristic Problems to Solve Bin Packing Problem,
International Journal in Foundations of Computer Science
& Technology (IJFCST), Vol. 2, No.6, November 2012,
DOI:10.5121/ijfcst.2012.2603

http://dx.doi.org/10.1016/j.future.2013.12.034
http://dx.doi.org/10.1016/j.jpdc.2010.05.006
http://www.journals.elsevier.com/future-generation-computer-systems
http://www.journals.elsevier.com/future-generation-computer-systems
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Leinberger%2C%20W..QT.&newsearch=true
http://dx.doi.org/10.1109/ICPP.1999.797428
http://dx.doi.org/10.1016/j.eswa.2013.03.037
http://dx.doi.org/10.1109/IPDPS.2013.67
http://dx.doi.org/10.1109/IPDPS.2012.75

[31] S. Genaud, and J. Gossa, Cost-wait Trade-offs in Client-
side Resource Provisioning with Elastic Clouds, in
proceeding of 2011 IEEE 4th International Conference on
Cloud Computing, published by IEEE Computer Society,
DOI 10.1109.

[31] S. Doddavula, M. Kaushik, and A. Jain,Implementation of
a Fast Vector Packing Algorithm and its Application for
Server Consolidation, 2011 IEEE Third International
Conference on Cloud Computing Technology and Science,
2011, pp: 332 - 339, DOI: 10.1109/CloudCom.2011.52

[33] Z. Xu, X. Xu, X. Zhao, Task Scheduling Based on Multi-
objective Genetic Algorithm in Cloud Computing*, Journal
of Information & Computational Science, 1st March 2015,
1429-1438, DOI: 10.12733/jics20105468

[34] N. Quang-Hung, P. Nien, N. Nam, N. Tuong, and N. Thoai,
A Genetic Algorithm for Power Aware Virtual Machine
Allocation in Private Cloud, International Federation for
Information Processing 20132013, pp: 183–191,

[35] D. Wilcox, A. McNabb, K. Sepp:i, Solving Virtual
Machine Packing with a Reordering Grouping Genetic
Algorithm, 2011, Congress on Evolutionary Computation
(CEC), 2011 IEEE, 362 - 369, ISBN:978-1-4244-7834-7,
DOI: 10.1109/CEC.2011.5949641,

[36] Y. Ding, X. Qin, L. Liu, and T. Wang, Energy Efficient
Scheduling of Virtual Machines in Cloud with Deadline
Constraint, Future Generation Computer Systems,
vol:50,September2015, pp: 62–74,
DOI:10.1016/j.future.2015.02.001

[37] J. GU, J. HU, T. ZHAO, and G. SUN, A New Resource
Scheduling Strategy Based on Genetic Algorithm in Cloud
Computing Environment, Journal of Computers, Vol 7, No
1 /2012, 42-52, Jan 2012, doi:10.4304/jcp.7.1.42-52

[38] R. Kaur, N. Ghumman -Load Balancing Tactics in Cloud
Computing: A Systematic Study-, International Journal of
Advanced Scientific and Technical Research, August 2014.
available online on:
http://www.rspublication.com/ijst/index.htm

[39] J. Xu and J.Fortes, Multi-objective Virtual Machine
Placement in Virtualized Data Center Environments,
International Conference on Green Computing and
Communications IEEE, 2010, DOI 10.1109/GreenCom-
CPSCom.2010.137.

[40] H. Ravani, H. Bheda, V, Patel, Genetic Algorithm Based
Resource Scheduling Technique in Cloud Computing,
International Journal of Advance Research in Computer
Science and Management Studies, 2013, vol:1, pp::168-
174, available online at: www.ijarcsms.com.

[41] E.Browna, R. Sumichrastb, Impact of the Replacement
Heuristic in a Grouping Genetic Algorithm, Computers &
Operations Research, 2003, vol 30, pp::1575–1593.

[42]

M. Quiroz-Castellanosa, L. Cruz-Reyesa, Jose T.Jimenezb,
S. Claudia Gómez, H. Huacujaa, and A. Alvimc, A
Grouping Genetic Algorithm with Controlled Gene
Transmission for the Bin Packing Problem, Computers &
Operations Research, 2015, Vol:55, pp:: 52-64,
http://dx.doi.org/10.1016/j.cor.2014.10.010.

[43] L. Corcoran and R. Wainwright, LibGA: a user-friendly
workbench for order-based genetic algorithm research,
Proceedings of the 1993 ACM/SIGAPP: symposium on
App:lied computing: states of the art and practice, pp::
111-117, DOI10.1145/162754.162828.

[4] H. Imia, and T. Yakawa, A New Design of Genetic
Algorithm for Bin Packing, The 2003 Congress on
Evolutionary Computation, IEEE, 1044 - 1049 Vol.2,
ISBN:0-7803-7804-0, DOI:10.1109/CEC.2003.1299783

[45] ftp://ftp.aic.nrl.navy.mil/pub/galist/src/ga/libga100.tar.Z
[46] A Review Paper on Different Encoding Schemes used in

Genetic Algorithms, International Journal of Advanced
Research in Computer Science and Software Engineering
vol 4, Issue 1, January 2014 ISSN: 2277 128X

[47] R. Malhotra, N. Singh & Y. Singh, Genetic Algorithms:
Concepts, Design for Optimization of Process Controllers,
Computer and Information Science, March 2011, vol. 4,
Canadian Center of Science and Education.

[48] K. SastryAffiliated withUniversity of Illinois, D. Goldberg,
and G. Kendall, Genetic Algorithms, E.Burke, G. Kendall,
Search Methodologies(Introductory Tutorials in
Optimization and Decision Supp:ort Techniques), 2005,
New Yourk, Springer, pp::97-125

[49] R. Klein, A. Scholl, and C. Jurgens, Bison: A fast hybrid
procedure for exactly solving the one-dimensional bin
packing problem. Computers and Operations Research,
1997, vol: 24(7), pp:: 627–645.

[50] VMWare. Server consolidation overview, building a virtual
infrastructure, September 2009.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Doddavula%2C%20S.K..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Kaushik%2C%20M..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6133161&newsearch=true&queryText=Implementation%20of%20a%20Fast%20Vector%20Packing%20Algorithm%20and%20its%20Application%20for%20Server%20Consolidation
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6133161&newsearch=true&queryText=Implementation%20of%20a%20Fast%20Vector%20Packing%20Algorithm%20and%20its%20Application%20for%20Server%20Consolidation
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6133161&newsearch=true&queryText=Implementation%20of%20a%20Fast%20Vector%20Packing%20Algorithm%20and%20its%20Application%20for%20Server%20Consolidation
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6133161&newsearch=true&queryText=Implementation%20of%20a%20Fast%20Vector%20Packing%20Algorithm%20and%20its%20Application%20for%20Server%20Consolidation
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6132468
http://dx.doi.org/10.1109/CloudCom.2011.52
http://dx.doi.org/10.1109/CEC.2011.5949641
http://dx.doi.org/10.1016/j.future.2015.02.001
http://scholar.google.co.uk/citations?user=5gMpP1gAAAAJ&hl=en&oi=sra
http://dx.doi.org/10.1145/162754.162828
http://dx.doi.org/10.1109/CEC.2003.1299783
ftp://ftp.aic.nrl.navy.mil/pub/galist/src/ga/libga100.tar.Z
http://link.springer.com/search?facet-creator=%22Edmund+K.+Burke%22
http://link.springer.com/search?facet-creator=%22Graham+Kendall%22
http://link.springer.com/book/10.1007/0-387-28356-0

Cranfield University

CERES https://dspace.lib.cranfield.ac.uk

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

2016-11-02

Multi-capacity combinatorial ordering

GA in application to cloud resources

allocation and efficient virtual machines consolidation

Hallawi, Huda

Elsevier

þÿ�H�u�d�a� �H�a�l�l�a�w�i�,� �J�o���r�n� �M�e�h�n�e�n�,� �H�o�n�g�m�e�i� �H�e�,� �M�u�l�t�i�-�c�a�p�a�c�i�t�y� �c�o�m�b�i�n�a�t�o�r�i�a�l� �o�r�d�e�r�i�n�g� �G�A� �i�n

application to cloud resources allocation and efficient virtual machines consolidation, Future

þÿ�G�e�n�e�r�a�t�i�o�n� �C�o�m�p�u�t�e�r� �S�y�s�t�e�m�s�,� �V�o�l�u�m�e� �6�9�,� �A�p�r�i�l� �2�0�1�7�,� �p�p�.� �1 ��1�0

http://dx.doi.org/10.1016/j.future.2016.10.025

Downloaded from Cranfield Library Services E-Repository

