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1. Introduction 

Cloud computing has emerged as a computing model aiming 
at providing computing resources as a service according to the 
pay-per-use paradigm [1], [2]. Cloud computing is based on full 
virtualisation technology where a single physical machine is able 
to host several virtual machines which in turn are completely 
isolated. The net effect of having shared resource usage is having 
fewer physical servers with higher utilisation per server which 
will effectively minimise the hardware costs and the operational 
expenses [3], [4]. However, the flexibility enabled by 
virtualisation has produced new computational challenges of 
managing a shared pool of resources over the competing 
instances of applications or jobs.  

Resource allocation is the process of mapping the available 
resources to competing jobs based on the individual job 
requirements [5]. Computing resources must be well-managed to 
prevent overloading and waste of bandwidth, processing unit, 
memory, etc. This waste relates directly to significant financial 
loss for large Cloud service providers with regards to energy, 
operational cost as well as dissatisfaction of the Cloud service 
user [6], [7]. Resources allocation systems control how multiple 
VMs share the underlying Physical Machines (PM). Fast and 
efficient resource allocation algorithms can help to save energy 
and cost while increasing customer satisfaction. 

Resource allocation is typically performed in two stages as 
shown in Figure 1.  The first stage is the jobs assignment to the 
Virtual Machines: applications or jobs (both terms are used  

 

 

 

 

 

synonymously in the context of this paper) are executed on 
VMs. Each application has its own requirements of compute 
power, disk space and RAM space, communication bandwidth, 
priority, etc. (see [7]). Any VM must meet these requirements 
when resources are allocated. 
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Figure 1: Resource allocation phases in Cloud 
computing 
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The second stage is the VM assignment to servers. One or 
several virtual machines can be lodged on the same server. The 
host is responsible for providing the computing resources to the 
VM. The server is typically identical to the physical machine 
with specified capacities. This phase is done by using a 
hypervisor running on the top of the physical hardware. The 
hypervisor enables to create virtual environment to operate 
virtual machines [7], [8]. Xen and KVM are well known 
examples of hypervisors. 

Primarily, Cloud resource allocation handles queries and 
assigns a number of independent services to physical machines. 
Mapping services with complex computing to physical machines 
with specified capacities can be transferred to a classic vector (or 
multi-capacity) bin packing problem (VBPP) [9]. Each 
dimension of the problem is corresponding to a type of resources 
such as CPU, RAM memory, disk space and bandwidth.  

In order to optimally allocate VMs to PMs, several 
sophisticated techniques have been developed for different 
purposes such as obtaining good resources utilisation, minimising 
energy consumption or achieving good load balancing (see 
[10], [11], [5] and [6]).  

This paper is dedicated to introducing a new hybrid 
optimisation algorithm which is aiming to calculate optimal 
solutions to the VBPP and thus to optimise virtual machine 
allocation and consolidation. Combinatorial Genetic Algorithms 
(GA) [12] are used to find the best VMs order, while the packing 
decision is handled by using an approximation heuristic in a way 
that minimises the number of non-ideal physical machines and 
total resources wastage in each machine. Two genetic algorithms 
have been employed. The first one uses Next Fit as a heuristic 
packing governor, while the second one uses First Fit. The aim is 
to consolidate as many VMs as possible and to reduce the 
resources wastage in each physical machine. This has been 
formulated into a novel fitness function.  

The rest of this paper is outlined as follows: Section 2 
discusses the preliminary research in Cloud resources allocation 
and vector bin packing problem solving then its application to 
Cloud resources allocation and consolidation. Section 3 discusses 
the approach followed in this paper towards a new problem 
formulation. Section 4 explains the design of the new hybrid 
algorithm and all associative configuration operations. Section 5 
deals with data configuration and gives an outline to the results 
and comparisons; in Section 6 the performance of the new 
algorithms is presented and compared with existing algorithms 
from literature. The paper also aims at giving explanations of 
how the reformulation of the problem and the corresponding new 
algorithm affected this improvement in performance. Finally, 
Section 7 outlines the conclusions and future work.   

2. Preliminary  
2.1 Previous Work in Cloud Resources Allocation and VMs 
Consolidation 
       Resources allocation is a central theme in Cloud computing, 
since it controls the way that resources and services are delivered 
to the end entities, at the same time it maintains an efficient 
utilization of computing resources [1], [3], [4]. Cloud providers 
intend to optimize the usage of underlying resources, through 
planned allocation of VMs in servers (hosts). Cloud service 
providers are also keen to maintain a positive client experience. 
Conserving a good Quality of Service level in Cloud Resources 
Allocation was considered by Lin J. et al in [13]. They studied 
the phenomena VM interference that resulted from interference 
between the VMs on the same PMs and its effects on the 
services’ degradation, especially the sensitive applications. The 

QoS-aware VM placement (QAVMP) problem is formulated as 
problem as an Integer Linear Programming (ILP) model. Then a 
polynomial-time heuristic algorithm was developed to solve the 
QAVMP problem.  
     Energy consumption is an active research field in Cloud 
resource management. Ramani and Bohara in [14] developed a 
new approach for minimize the overall energy consumption. This 
approach is based on defining a temperature threshold of the 
hosts in Cloud data center. It reduces the consumption of the 
maximum resources and controls the processor temperature at the 
same time, thus succeeding to decrease the energy consumption 
in total. Kumara, and Raghunathan in [15] proposed an integral 
thermal and compute controlled heuristic approach to minimize 
the energy consumption in IaaS Cloud. Shu et al. in [16] 
enhanced the immune clonal selection algorithm to design Cloud 
and Grid schedulers with a goal of simultaneous optimization of 
the energy utilization. 
     Efficient load balancing is one of the major challenges in 
Cloud resources allocation process. It controls assigning the load 
to different nodes to prevent overloaded or under-loaded nodes. 
Many algorithms were proposed to tackle this problem for 
example Biased Random Sampling in [17]. 
     VMs consolidation is a special problem that is mutually 
exclusive to resources allocation in virtualized hosted platforms 
like Cloud. It targets to consolidate maximum number of VMs 
onto minimum number of PMs, thus improving resources 
utilization [3], [18]. Frincu M. in [19] employed the Markov 
Decision Process (MDP) to generate long term precise migration 
decision which aims to improve the profit by avoiding the wrong 
decisions which may have an adverse effect on the total profit. 

     2.2 Definition of Vector Bin Packing 
The vector bin packing problem this paper concerns is called 

a d-capacity bin packing problem which is a special 
generalisation of the traditional bin packing problem [9], [20], 
[21]. Given a set B, of m identical bins, the capacity of a bin is 
represented by a d-capacity vector 𝐶 = (𝐶1,  𝐶2 , 𝐶3 , 𝐶𝑖, … , 𝐶𝑑) 
where Ci is the ith component capacity and ∑ Ci

d
i=1 > 0, Ci ≥ 0. 

Assume a set of n items, L={X1, X2, X3,…., Xn}, where the 
items of L are required to be packed into as few bins as possible 
without exceeding the bin capacity. An item is also represented 
as a d-capacity vector 𝑋𝑗 ⃗⃗⃗⃗⃗ = (𝑋𝑗,1 ,  𝑋𝑗,2 , 𝑋𝑗,3 , 𝑋𝑗,𝑘 , … , 𝑋𝑗,𝑑 ), 
where Xjk is the kth component requirement of the jth item 
0 <  𝑋𝑗,𝑘 < 𝐶𝑗 .  

A solution of the vector bin packing problem can be 
represented as B = {B1, B2, Bi… Bm}, where m bins will be 
required to pack the n items where each bin accommodates S 
items. The packing decision for a bin can be represented as: 
 𝐵𝑖 = {𝑋2,𝑖,𝑋7,𝑖,, 𝑋5,𝑖, … 𝑋𝑠,𝑖,}  

The packing decision is subject to the following constraints:- 
 

1) ∀𝑋 ∑ 𝑋𝑗,𝑖 = 1𝑚
𝑖=1                                                          (1) 

2) ∀𝑋 ∑  0 < 𝑋𝑗,𝑟 
𝑑
𝑟=1 <  𝐶𝑖,𝑟                                           (2) 

3) ∀𝐵, 𝑋  𝐵𝑖⃗⃗⃗⃗⃗ +  𝑋𝑗 ⃗⃗⃗⃗⃗⃗ ≤  𝐶 ⃗⃗⃗⃗                                                  (3) 

The first constraint means that each item must be 
accommodated in a single bin; m is the number of bins used to 
pack the available items. The second constraint means that the 
item requirement in each dimension should not exceed the 
corresponding capacity of that bin. The third constraint shows 
that allocating a new item to a bin must not exceed the total 
capacity of that bin.   



 

        The fundamental problem of vector bin packing – and hence 
also its generalisation of d-capacity bin packing – is NP-hard (see 
[6, pp.7], and [10, pp. 125]). This implies that for large real-life 
problems such as Cloud Resource Allocation deterministic 
algorithms quickly reach computational barriers. 

2.3 Previous Approaches for Solving Vector Bin Packing in 
Cloud Resources Allocation and Consolidation 

Several researchers have studied VBPP (or d-capacity bin 
packing problem) and its connection with Cloud resources 
allocation [22], [23]. A range of approximation algorithms have 
been developed to solve the problem for different objectives as 
described in [24], [25] and [26]. Examples of that are Next Fit, 
First Fit, Best Fit, Dot Product and Permutation Pack.  
Dot Product is used by Microsoft’s virtual machine manger [27].   
Single capacity Next-Fit [20] deals with a list of items in a given 
order one at a time. It checks whether there is a space in a current 
bin for the current item; if there is a space it will allocate the 
current item into the current bin and then continues with the next 
item. If it does not fit, close that bin and open a new bin and 
allocate the given item. According to [28] and [29] the Next-Fit 
algorithm is the quickest algorithm compared to other heuristic 
algorithms as it requires O(N) time. When Next-Fit is extended to 
work with multi-capacity bin packing, the main difference is that 
it will deal with the d-capacity requirements item instead of one 
requirement only [20].   

The First-Fit Algorithm (FF) also treats the items in a given 
order; however, it will allocate the given item to the first fit non-
empty bin. If all opened bins do not have enough space to fit the 
current item, a new bin will be opened and the item allocated (see 
[28] and [29]).The First-Fit removes the restriction of the Next-
Fit algorithm as it allows the current item to be packed in any 
non-empty bin which can accommodate the item, however, it 
often provides non-optimal solutions. It is also known as a fast 
heuristic requiring O(N log N) time, where n is the number of 
items to be packed [30]. First-Fit has been modified to work with 
multi-capacity vector bin packing for scheduling and virtual 
machine packing as described in [22], [27] and [31]. 

Literature [24], [28] and [30] describe the First Fit 
Decreasing as another heuristic algorithm for traditional bin 
packing based on ordering the given items in a decreasing order 
and then applying the FF algorithm to make the packing decision. 
Due to the multiple dimensions in vector bin packing, the items 
are ordered according to predefined criteria either by taking the 
sum of the item weights 𝑉 (𝑖) = ∑ 𝑊𝑟𝑑

𝑟=1  , where V(i) is the 
volume of the 𝑖𝑡ℎ item and d is the number of resources; or, 
following [9], [25], [32], by using the dot product of the item 
weights  𝑉(𝑖) = 𝑊𝑖,1 ∗  𝑊𝑖,2 ∗. . .∗ 𝑊𝑖,𝑑. The main drawback of 
this algorithm lies in the fact that it ignores the correlation across 
the dimensions which can lead to excessive waste in resources.  

Permutation Pack (PP) is a dimension-aware vector bin 
packing algorithm which takes advantage of the complimentary 
requirements for different resources with the goal of minimising 
the resource wastage and the number of the required bins [10], 
[20]. It aims to pack those items which need excessive resources 
in one dimension in the same set of bins and the other items with 
different needs in other sets of bins. In Cloud resource allocation, 
we have a number of VMs, each of which is a vector of different 
resources, e.g CPU and memory. PP will pack those VM which 
need more CPU than memory in the same Physical Machine, 

while consolidating the other VMs which need more memory 
than CPU in the other set of bins. Choose Pack and Dot Product 
are other types of dimension-aware vector bin packing algorithms 
(see [10], [20], and [27]).  

Evolutionary Algorithms have been applied to VBPP. 
Examples are Genetic Algorithms (GA) and Ant Colony 
Optimisation [11]. Especially, GA have recently been used in 
Cloud resources allocation and scheduling by many researchers 
[11], [33-41] for various objectives covering load balancing, cost 
minimisation and resources utilization. Wilcox [35] and Jing Xu 
[39] applied and tested a special kind of Genetic Algorithm 
called GGA (Grouping Genetic Algorithm) to virtual machine 
bin packing. The algorithm was originally developed to deal with 
various grouping problems including BPP. However, according 
to [41] and [42] the algorithm suffers from performance 
problems due to the difficulty of crossover and mutation. Wilcox 
has applied RGGA (Reordering Grouping Genetic Algorithm) to 
Cloud virtual machine consolidation and developed a new 
crossover operator that avoids infeasible solutions within multi-
dimensional constraints [35]. However, the GGA permutation is 
still complex compared to a classic GA. The proposed algorithm 
as introduced in this paper is based on the rationale of the 
combinatorial ordering GA of Corcoran and Wainwright [43] and 
its concise permutation technique. It was developed for order 
based problems, but it is also supplemented by a range of user 
interface tools that offers a workbench for other genetic 
algorithm research. It comes with two GA: generational GA and 
steady state GA, and introduces a variety of genetic operators for 
selection, crossover and mutation.  This GA was applied to solve 
different combinatorial optimisation problems such as traditional 
Bin Packing, traveling salesman problem and multiprocessors 
scheduling [12]. 

3. Problem Formulation 

For this paper Cloud resources allocation (as described in 
Section 1) will be formulated as multi-capacity vector bin 
packing, where a number of jobs need to be severed by a number 
of servers in a Cloud data centre. In order to formalise the 
problem, a number of assumptions have been made:  

1) Requirements of each job are predefined probably by the user.  
2) Each job will be encapsulated in a VM; we aim to work with 
Infrastructure as a Service (IaaS) where a Cloud user leases a 
slice of hardware in the Cloud data centre, which is completely 
isolated from the other users.  

3) All jobs need a fixed amount of CPU and memory for a 
specified amount of time, i.e. this paper is dealing with a static 
scheduling problem. Only CPU and memory requirements are 
considered. Considering running time is future research.  
Synthetic workloads have been used in this paper. They are 
described in more detail in Section 4. The workload is assumed 
to be static and no job leaves or changes the resource requests.  

4) The Cloud cluster comprises only homogeneous servers. 
5) Each VM should be mapped to just one server; it is assumed 
that all VMs have deterministic load equal to the encapsulated 
job load.  

 
 



 

The mapping of the VMs aims to minimise the number of 
used servers and to reduce the resource wastage in each server. 
This is a challenge when one considers multi-dimensional 
requirements. Based on the above assumptions, the multi-
capacity VMs placement in a Cloud data centre can be converted 
into a 2-D vector bin packing problem. On that basis two novel 
algorithms have been formulated namely CONFGA and 
COFFGA for solving the multi-capacity VM placement problem. 

The number of the jobs in workloads determines the size of 
the vector. It equals to the number of items to be packed. Figure 
2 presents how resource allocation and VMs consolidation are 
handled as 2-D vector bin packing in two levels. The first level 
deals with mapping of the workload requirements to VMs with 
two different capacities, regarding CPU and memory, while the 
second level controls the VMs deployment over the available 
physical servers (PMs) under the constraints of unique packing 
per server and not exceeding the server capacities. The system 
under consideration comprises of N Jobs, correspondingly N 
VMs, M servers, R resources and A the number of VMs being 
packed in one server according to the resulted packing decision. 
The new algorithm targets to use as few servers as possible as 
described by formula (4) and to minimise the resources wastage 
in each server as formulated in formula (5). The goals and 
constraints can be formulated as follows: 
 
Goals: min ∑ 𝑆𝑖𝑀

𝑖=1                                                                              (4) 

            min  ∑ ∑ 𝑊𝑗,𝑖
𝑅
𝑗=1

𝑀

𝑖=1
       , R = [𝐶𝑘,𝑖,  𝑀𝑘,𝑖]                 (5) 

   
with 𝑊𝑖 = (𝑆𝑅𝐶𝑖 − ∑ 𝐶𝑘,𝑖

𝑎
𝐾=0  )  + (𝑆𝑅𝑀𝑖 −  ∑ 𝑀𝑘,𝑖

𝑎
𝐾=0 ),       (6) 

                        k� [0,...,A]                                                             

Constraints: 

  ∑ 𝑃𝑗,𝑖  = 1                          𝑗 � [1, … , 𝑁]                        
𝑚

 𝑖=1
             (7) 

∑ 𝐶𝑗  𝑃𝑗,𝑖     <  𝑆𝑅𝐶𝑖           𝑖 � [1, … , 𝑀]                                   (8) 
𝑛

𝑗=1
 

∑     𝑀𝑗  𝑃𝑗,𝑖     <  𝑆𝑅𝑀𝑖       𝑖 � [1, … , 𝑀]                                 (9) 
𝑛

𝑗=1
 

 
The parameters used in formulas 4 to 9 are stated in Table 1. 

Formula (5) indicates that consolidation decision resulted from 
the algorithm should minimise all resource wastage in all used 
servers. Formula (6) describes how to count the resource 
wastage. In the case considered in this paper, R = 2 represents 
CPU and Memory requirements; K is the index of the VMs 
packed in one server as results from our algorithm. Formula (7) 

indicates that each VM should be assigned to just one server. The 
formulas (8) and (9) specify that the VMs consolidation decision 
should not exceed sever capacity in any dimension.  

Table: 1 Parameters used in the Problem Formulation 

𝑊𝑗,𝑖    i�[1,..,M], 
j�[1,..,R] 

Total Resources wastage in all 
servers. 

[𝑆𝑅𝐶𝑖, . . , 𝑆𝑅𝑀𝑖]     
𝑖 �[1, … , 𝑀]      

The capacity vector of the ith server; 
CPU capacity, and memory capacity 
respectively.  

[𝐶𝑘,𝑖,  𝑀𝑘,𝑖],  
K� [1,…,A] 
i� [1,..,M]   

The vector of CPU and Memory 
requirements for the kth VM packed 
in Serveri, according to the packing 
decision. 

𝑃𝑗,𝑖  ∈ [0, 1],    
i� [1,..,M],  
j�[1,..,N] 

Packing decision  

4. Novel Multi-Capacity Combinatorial Ordering GA 

4.1 Algorithm Design 
The target is to develop an optimisation algorithm for vector 

bin packing. The approach followed in this paper is to combine a 
genetic algorithm with multi-dimension aware heuristic 
algorithms, such as multi-dimension First-Fit and multi-
dimension Next-Fit heuristics, to optimise the packing solution. 
The GA is dealing with multi-dimension vector bin packing as a 
combinatorial optimisation problem. GA is an iterative procedure 
which borrows the concepts of the natural selection and survival 
of the fittest individual from the natural evolution. By choosing 
the suitable representation of the problem and emulating the 
biological selection and reproduction techniques, the GA can 
search a large problem space. It has been pointed out that the 
classical GA performs poorly in the application for bin packing 
problems [43], [44]. Therefore, a variation of the classic GA had 
to be developed to deal with bin packing problems more 
efficiently. L. Corcoran and R. Wainwright have introduced a 
software package [12] which helps to develop genetic algorithm 
for different combinatorial optimisation problems. The proposed 
algorithm is based on the above mentioned software package. 

Bin packing is an optimisation problem which aims to 
minimise the number of bins used to pack a group of items. In 
order to find a good solution for ordering the items and to find 
relations between item requirements in the vector bin packing 
problem, the genetic algorithm was combined with another 
heuristic algorithm. The idea is to use a cooperation of GA and 
traditional multi-dimension packing heuristics to produce 
packing decision under multiple constraints.  

The GA evolves solutions to find a new packing solution. 
The goal is to find the best VM order to be packed by the 
heuristic objective function. The optimal solution should have the 
minimum number of servers and least resources wastage; the 
order (chromosome) is evaluated by using a fast multi-
dimensional heuristic as an objective function. The heuristic is 
part of the objective function which guides the GA in its search 
for optimum packing solutions. Two new hybrid algorithms have 
been developed. These two algorithms follow the same basic 
procedure; however they apply different objective functions for 
getting their packing decision. The first algorithm is called 
Combinatorial Order Next Fit Genetic Algorithm (CONFGA). 

Figure 2: Problem formulation of resource allocation seen  
as 2-D vector bin packing in two levels 



 

CONFGA uses Next-Fit as a packing solution governor and the 
second one uses First-Fit instead. Both FF and NF heuristics have 

been introduced in Section 2. The Combinatorial Order First-Fit 
Genetic Algorithm is called COFFGA. As Next-Fit heuristic does 
not provide backtrack packing. This will lead to better results 
with COFFGA than CONFGA as discussed later.  

In the box above the proposed hybrid Multi-Capacity 
Combinatorial Ordering GA Procedure is shown in more detail. 
The procedure also describes the way of applying the proposed 
Combinatorial Ordering GA to Cloud resources allocation 
problem. It is divided into three main functions: INITIALIZE 
VMs, FIND PLACEMENT USING COMBINTORIAL 
ORDERING GA, and PLACE VMs. Each function is dedicated 
to specific purpose, the INITIALIZE VMs covers the 
initialization of VMs according to the input workload. On the 
other hand, FIND PLACEMENT USING COMBINTORIAL 
ORDERING GA function produces the deploying decision of the 
pre-initialized VMs. It explains the design of the proposed 
Combinatorial Ordering GA that wraps a fast heuristic as an 
objective function to make the optimal packing decision. Finally, 
PLACE VMs function deploys the packing decision generated by 
the previous function onto Cloud servers.    

4.2 Chromosome Encoding 
Vector bin packing is an optimisation ordering problem; in a 

GA the chromosome is encoded to represent a permutation of the 
order of VMs; this is similar to the encoding one would use in the 
well-known traveling salesperson problem [47], [48]. In 
permutation encoding every chromosome is a string of numbers 
that represent a position in a sequence.  

The length of each chromosome is equal to the number N of 
the VMs to be packed at any time. The chromosomes can be 
presented as: 
    0      1    2  3 4 … N-1 

3 18 7 15 8 ……. 20 
Chromosome 1  

0 1 2 3 4 …… N-1 
9 5 20 3 8 ……. 20 

Chromosome 2 

The chromosome is encoded as a one dimension array of N 
integers. The chromosome gene is an index to the VM attributes 
as shown below:   

0 1 2 …  N-1 
7 8 11 …. 6 

      
      
     VM(7)       VM(8)    VM(11)  VM(6) 
CPU MEM CPU MEM CPU MEM . . CPU MEM 

 
Two VM attributes (CPU and Memory) have been 

encapsulated in the algorithm. More VM attributes could be 
investigated in future work. Using integer encoding in one 
dimension facilitates crossover and permutation operations. 

4.3 Objective and Fitness Function 
Generally, the objective function is incorporated inside the 

fitness function of a GA. The objective function is a vital 
component also of the proposed algorithm. In the proposed new 
approach, the heuristic packing algorithm is “encapsulated” in 
the fitness function. In the following, this new concept will be 
explained in more detail.  

Each packing solution will be associated with a chromosome. 
Therefore, the performance of an individual can be evaluated 
based on the packing solution. The objective function receives 
the pre-described chromosome. The objective function will find 

Multi-Capacity Combinatorial Ordering GA Procedure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIND PLACEMENT USING COMBINTORIAL ORDERING 
GA 

1. Initiate Termination Condition, Pool Size; 
2. ChromLength=VMs; // set the length of each 

Chromosome  
3. Pool = N; //create a pool of N chromosomes with 

random VMs orders 
4. While T < Termination Condition do: //run GA 

Begin  
5. N = Pool Size;  
6. T = T+1; 
7. While N≠0: //Find Fitness for all Pool Chromosomes 
        Begin 

a. Fetch servers’ capacities and VM’s 
requirements; 

b. Pack the given VMs using Multi-Capacity 
vector bin packing heuristic, based on the 
VMs’ order in a chromosome;  

c. Use packing function to convert the chrome 
VMs order to PackingSolution; 

d. Calculates the chromosome fitness using the 
fineness function in (4-C); 

e. N = N – 1; 
f. bestSolution = findBestOrder(Pool); 

         End 
8. For i=1..PoolSize/2; // apply selection and crossover 

     Begin 
a. [chrom1, chrom2] = Mini-Roulette; (4-D). 
b. [chd1, chd2] = Crossover(chrom1, chrom2); (4-

E). 
c. Save(newPool, chd1, chd2); 

End 
 Pool=newPool; 

End 
 
 
 
 
 
 
 
 

x Initially, J=0 ; VMs=0; T=0; // number of jobs; number of 
VMs; termination condition 

x Initially, OptSolution = NULL; 
1. To host a number of jobs with multi-capacity demands 

in hosted servers: Initialize a descriptive file that 
identifies number of servers, capacity of the servers’ 
resources, number of jobs [services], and the 
requirements of each job [service]. 

2. Call INITIALIZE VMs 
3. Call FIND PLACEMENT USING COMBINTORIAL 

ORDERING GA 
4. Call PLACE  VMs 

  
 INITIALIZE VMs  
While J < number of jobs: // from descriptive file 
  Begin  
          J = J+1; 
           Encapsulate a given job in a proper VM according to the  
          job requirements. 
          VMs= VMs+1;    
  End 
 

PLACE VMs 
If (OptSolution=NULL or fit(OptSolution)<fit(BestSolution) 

OptSolution = Best Solution; 
             OptPacking = PackingSolution(Best Solution); //the 
PackingSolution Associated with the Best Solution 
 Apply OptPacking (VMs, Servers); 



 

chromosome packing decision using the wrapped heuristic (NF 
or FF) and the input VMs requirements using the following 
operations: 

x Match the VMs in the given chromosome order with 
their actual VMs requirements. This step changes the 
chromosome from a one dimension array of integers 
into an array of structures. Any array element comprises 
all required multi-dimensional attributes associated with 
a VM. This operation feeds the packing heuristic in the 
following operation with all required inputs. 

x Apply the packing function which comprises of the 
chosen multi-dimensional heuristic (FF or NF) to find 
the packing order under the capacities constraints. The 
packing solution is represented as an array of two 
elements. The first element represents the number of 
VMs to be packed while the second element marks the 
index of a host server. The corresponding array 
encoding is shown below: 

       0               1             2          3             4          …         N-1    
(20, 1) (4,2) (6,1) (11, 3) (9, 1) … (VMj, Serveri) 

x Determine the number of servers required to host the 
given VM packing order (chromosome) and the total 
resources wastage in each server.  

The objective function also provides the parameters to feed 
the fitness function such as the number of servers for the 
associated packing decision and the resources wastage. The 
output of the algorithm is the packing solution, associated to the 
best chromosome (individual). The packing solution describes 
which VM will go to which server.  

Previous genetic algorithms in Cloud resource allocation and 
vector bin packing used also heuristics e.g. for initialising the 
pool of individuals. However, these algorithms were suffering 
from the extra difficulties caused by the inadequate genome 
encoding during the crossover and the permutation operations. 
The proposed approach is different. In this case, the heuristic is 
used as integral part of the objective function. The objective 
function uses a permutation as an input (chromosome), which 
greatly reduces the complexity of the encoding and crossover.  

In Genetic Algorithms, a fitness function is used to quantify 
the quality of the individuals in the population, thus directly 
reflecting the performance of the individuals. Each chromosome 
bears its individual fitness value. The individuals are selected for 
crossover depending on their fitness values. Therefore, the fitness 
function is the key driver within a Genetic Algorithm. In this 
paper the bi-objective goal of the proposed algorithms is to 
minimise, both, the total number of servers and the normalised 
capacity of the servers. This is formulated in equation (10): 

𝑓(O)=  𝑇𝑆 ∗  𝑅𝑡𝑜𝑡                                 (10) 
𝑇𝑆 = ∑ 𝑆𝑖

𝑠
𝑖=1                                            (11) 

𝑅 𝑡𝑜𝑡 = 𝑅𝑐𝑝𝑢 +  𝑅𝑀𝐸𝑀                           (12) 

𝑅𝐶𝑃𝑈  = ∑ 𝑆𝑅𝐶𝑖−∑ 𝐶𝑘,𝑖𝑎
𝐾=0

𝑆𝑅𝐶𝑖

𝑠

1=1
              (13)  

𝑅𝑀𝐸𝑀  = ∑ 𝑆𝑅𝑀𝑖−∑ 𝑀𝑘,𝑖𝑎
𝐾=0

𝑆𝑅𝑀𝑖

𝑠

1=1
           (14)  

where f(O) is the fitness of the given chromosome order, TS is 
the total number of servers in the given packing decision, S is the 
number of servers needed to host the VMs of the given order,  
𝑅tot is total normalized residual capacity in the used servers and 
𝑅cpu  normalized CPU residual capacity; the total wastage is 

reduced by minimising the residual in each server as presented in 
[20] and [21]. Normalising the total wastage helps to reach the 
right convergence, as it assigns each chromosome a unique 
fitness. 

4.4 Selection Strategy 

Selection is a mechanism that favours well-fitted individuals 
and rejects the others. It chooses individuals of a current 
generation for producing offspring. This mechanism follows 
Darwin’s principle of “Survival of the fittest”. Different selection 
strategies have been developed for GA, such as roulette, rank 
biased or uniform random. The proposed algorithm adopted 
mini-selection roulette strategy [43]. The mini-selection roulette 
is similar to the classic roulette selection where each individual is 
assigned a slice of a circular roulette wheel where the size of the 
slice of the roulette wheel is proportional to the individual’s 
fitness F(i). However, the exception in the mini-selection roulette 
wheel strategy is that chromosomes are assigned a fitness F’(i) 
which is reciprocal to F(i). P(i) is the probability that the 
chromosome is selected and that is proportional to F’(i). This 
means that the smaller the F(i) value the larger the value of P(i). 
P(i) is formalised in equation 15: 

 𝑃(𝑖) = 𝐹́(𝑖)
∑ 𝐹(𝑗)𝑛

𝑗=1
   ,                             (15) 

𝐹́(𝑖) = 1
𝐹(𝑖)        ,                                  (16) 

4.5 Crossover Operation and Mutation 

Generally, crossover in genetic algorithms is the process of 
producing new individuals by substituting and reforming genes 
of two or several subsequently selected parental chromosomes.  
Crossover is a particularly important operator in genetic 
algorithms. Different types of chromosomes can have different 
crossover operations. Since a chromosome variation can be seen 
as a permutation introduced by the GA, a number of crossover 
operations are available for permutation of a chromosome such 
as Order crossover, Partially matched crossover (PMX),  Position 
Crossover and Asexual Crossover [46],[49]. All these types of 
crossovers have been dedicated to prevent repetition or missing 
the encoded values in the new ordered chromosomes. For 
instance, for the Order Crossover operation, two strings are 
aligned and two crossover points are selected and then a sliding 
motion applied for filling the left holes by transferring the 
mapped positions. For example, consider two chromosomes with 
10 genes: 

Parent 1:  4  8  7| 3  6  5| 1 10 9 2 
Parent 2:  3  1  4|  2  7  9| 10 8 6 5 

By merging parent 2 with parent1, the places of 3, 6, 5 are 
left with holes. 
Child 2:  H 1 4 | 2 7 9 | 10 8 H H 
 

The given holes will be filled with sliding motion that starts 
from the second crossover point: 
Child 2:  2 7 9 | H H H | 10 8 1 4 

Similarly the holes are filled from the parent 1, thus the 
resulted children will be represented as: 
Child 1:  3 6 5 2 7 9 1 10 4 8    
Child 2:  2 7 9 3 6 5 10 8 1 4 

For this paper all the mentioned crossover operators have 
been tested. Order crossover and asexual crossover gave best 
results. Therefore, this type of operator has been adopted for the 
experiments. 



 

5. Experimental set-up 

The GA used in all experiment is the generational GA with 
the parameters of the above described operators presented in 
Table 2. These parameters have not been chosen randomly, they 
were selected based on literature [35], [39] and on experience 
after performing 300 experiments with different parameter 
settings.  

In general, any new algorithm should be compared against 
similar existing algorithms. Since there was no standard 
benchmark for comparison, a set of systematic experiments has 
been performed to evaluate the performance of the proposed 
algorithms. The algorithm performance was tested in three parts: 
1) The first experiment is dedicated to the comparison of the two 
proposed algorithms CONFGA and COFFGA.  
2) The second experiment focuses on comparing the new 
algorithms with existing vector bin packing heuristics on a set of 
Multi-capacity vector Bin Packing Problems (MCVBPPs). These 
experiments have been designed to highlight the particular 
properties of the algorithms.   
3) The third experiment is dedicated to compare COFFGA with 
RGGA and other existing MCVBPP.  

The proposed algorithms have been implemented in the  
C programming language and built on the LibGA development 
package [45]. LibGA is a set of fast routines written in C with a 
convenient developer interface. The underlying operating system 
is LINUX Ubuntu 14.4LTS.  

Table 2:  Algorithm Parameters 
Genetic Parameters      Magnitude  

Crossover  probability 0.8 
Population size 75 
Type of crossover Order  
Mutation rate 0.1 
Selection type Mini Roulette 
Size of chromosome  N = 20-4500 

5.1 Comparison of COFFGA and CONFGA 

To evaluate the performance of the two new algorithms 
CONFGA and COFFGA, they were first compared against each 
other. The comparison was done using a data set that was 
developed particularly for this comparison. The data set contains 
26 problem instances. The problems were constructed similar to 
the ways described in [49] where the authors based their analysis 
on Cloud servers capabilities [27], [50]. However, the new data 
set has been modified to represent multi-capacity vector bin 
packing instead of the conventional bin packing [49]. The data 
set is constructed using the following parameters: 

 

N = [10 -350]                          Number of virtual machines   

S = 128                                   Number of servers 

Ci⃗⃗⃗⃗  = [Ci, 1⃗⃗⃗⃗⃗⃗ ⃗⃗⃗, Ci, 2⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ ] equals to [SRCi, SRMi], as defined in Table 
(1).  

Wj = [[C𝑖,1/3,  Ci,2/5],  [C𝑖,1/5,  Ci,2/7],  [C𝑖,1/9,  Ci,2/3],  
[C𝑖,1/11,  Ci,2/5],  [C𝑖,1/7,  Ci,2/9],  [C𝑖,1/13,  Ci,2/11]]j where 
Wj the vector of the requirements of the jth VM,  
j = 1,…, N. 

 

5.2 Conventional Vector Bin Packing Heuristic 
 Generally, any new algorithm should be compared with 
its predecessor from literature. This comparison focuses on 
demonstrating the benefit gained by using COFFGA and 
CONFGA against the conventional vector bin packing heuristics 
First Fit and First Fit Decreasing in terms of packing decision 
robustness. Given that the output of the new algorithms is a 
packing decision specifies which VM should be deployed to 
which server with the aim of minimising the number of servers 
(bins) and resources wastage, consequently maximising 
utilisation of each server. The packing decisions have been 
compared against the packing decisions generated by previous 
multi-dimensional bin packing heuristics. The comparison was 
done using the same data set described in (5.1). 

5.3 Reordering Grouping Genetic Algorithm  

 This comparison has been done to compare the proposed 
algorithm with literature sources that used genetic algorithm for 
vector bin packing. RGGA has been proposed in [35] with the 
similar target of solving multi-capacity vector bin packing in 
application to a Cloud Virtual Machines consolidation problem. 
The number of servers equals to the number of bins while the 
number of VMs equals to the number of items to be packed. For 
the comparison with RGGA here 10 sets of data were used. Data 
sets 0 to 9 deal with big problems of up to 4500 VMs. They deal 
also with different problems sizes of 500 to 4500 VMs. Their 
data in [35] was designed in a way that each VM can sit perfectly 
in a server and the servers can consolidate the VMs with zero 
residual capacities in all resources which do not happen in real 
cloud consolidation. However, RGGA is a steady state GA with 
75 as a population size, with 0.8 crossover probability and 0.1 
mutation probability. 

6. Results 

6.1 COFFGA and CONFGA 

About 430 experiments were performed to evaluate the 
proposed algorithms (COFFGA and CONFGA) in terms of 
performance and packing robustness. These experiments were 
carried out using 26 problem instances (data initialisation as 
discussed in (5.1)); the problems sizes are varied by changing the 
number of VMs (20-340), and their CPU and memory requests.  

Figures 3 and 4 present the average performance of COFFGA 
and CONFGA in a problem of size 70 VMs over 8 runs. They 
show that COFFGA is competitively performed better than 
CONFGA; COFFGA finds minimum fitness function about 
10000, while the average fitness function of CONFGA is 30000. 
At the same time, COFFGA easily converges after 10 
generations, whereas CONFGA needs 250 generations. The main 
reason of this variance is that COFFGA uses the First Fit 
heuristic that provides backtracking packing feature which leads 
to produce minimum fitness function for the same chromosome. 
The minimum fitness function makes COFFGA converges easily 
and accompanies with better packing decision.  

Figure 5 compares the average of 8 fitness functions for 26 
problem instances of COFFGA and CONFGA. It can be clearly 
seen that COFFFGA provides minimum fitness function for all 
cases, correspondingly COFFGA finds packing decision with 
minimum number of required servers. For each problem instance 
the fitness function solutions vary slightly in each run, but they 
do not extremely affect the number of required servers, almost 
the same number of servers produced over the 8 runs. In the 
worst case (+1) server is rarely required for the same problem 



 

Figure 5: Comparison between COFFGA and CONFGA in 
terms of average fitness function for 26 problem instances 
over 8 runs 

Figure 6: Comparison Combinatorial Ordering Vector Bin-
Packing Genetic Algorithms (COVBGA) with Preliminary 

Vector Bin Packing Heuristics 

instance across all experiments. This shows the precision and 
consistency in the performance of the proposed algorithms, and it 
also proves the reliability of the COFFGA and CONFGA. The 

results show that COFFGA performed better than CONFGA for 
both metrics, i.e. performance and packing robustness.  In term of 
performance, COFFGA needed 750 to 7500 function evolutions 
as average. The variation is caused by the problem sizes. 
CONFGA required about 1500 to 37500 function evaluations.  

Robust packing decision is a decision with best possible 
packing. Therefore, the decision within minimum number of 
servers is more robust than the other decisions. In terms of 
packing robustness, COFFGA appears more robust than 
CONFGA as its decision required less number of servers for all 
problem instances (see Figure 6 in (Section 6.2)). Section 6.2 
compares the number of required servers of the COFFGA and 
CONFGA for all problem instances.  

6.2 Conventional Vector Bin Packing Heuristics 

The proposed algorithms aim to find new solution for multi-
capacity vector bin packing problems, therefore they were 
compared with the traditional multi-capacity first fit heuristic 
(MFF), and Multi-Capacity first fit decreasing heuristic (MFFD).  
The number of severs per packing solution in COFFGA and 
CONFGA for different problem sizes were compared against the 
number of servers associated with packing decision made by 
MFF and MFFD. MFF is implemented according to the 
definition of FF in Section 2.3. The main idea of MFFD is that 
VMs should be ordered before submitting to the FF algorithm. 
VMs order has been made by giving a priority to each VM 
according to 𝑃(𝑉𝑀) = ∑ 𝑊𝑗

𝑟
𝑗=1 , where r is the number of VMs 

requirements; then VMs order is configured according to VMs 
properties in a decreasing order.   

Figure 6 shows the comparison of CONFGA, COFFGA, 
MFF, and MFFD; it can be clearly observed that COFFGA far 
yields the least no of servers in all problem instances. It 
consistently produces best result than all other tested algorithms.  

It has succeeded to reduce the number of used servers (PMs) 
by 39% when compared to Multi-Capacity FFD. At the same 
time, the number of servers is decreased by 34% compared to 
CONFGA. COFFGA has improved Multi-Capacity FF 
performance by 31.4%. It is also noticeable that CONFGA 
results are quite similar to MFF which means incorporating Next-
Fit heuristic in ordering genetic algorithm has improved the 
performance of Next-Fit heuristic. Next Fit was considered 
earlier as an inefficient solution for vector bin packing [20]. FFD 
shows the worst performance among the compared algorithms 
which means combining the item requirements for ordering the 
items is inefficient for finding a priority to order the given items 
in multi-capacity vector bin packing. 

 

Figure 3: Average COFFGA Performance with 70VMs 
Problem Instance 

Figure 4: Average CONFGA Performance with 70VMs 
Problem Instance 



 

6.3 Reordering Grouping Genetic Algorithm 

In this section we will show that the proposed algorithms 
outperform RGGA which was considered the best genetic 
algorithm in terms of multi-capacity bin packing for virtual 
machines consolidation. The comparison was made using a 
specified data set of RGGA that comprises 10 problems of 
various sizes between 500 and 4500 VMs. RGGA developers 
devoted their data to be very hard in a way no free space is 
allowed per server. However, they knew the optimal packing for 
each problem. This paper aimed to do a fair comparison; 
therefore, here the set of algorithm parameters were set to the 
values used in RGGA as described in Section 5.3. COFFGA is 
able to find the optimal packing. Table 3 presents a comparison 
of CONFGA, COFFGA, RGGA, Permutation Pack (PP) and 
FFD over all problems. 

It should be noted that COFFGA consistently overtakes 
RGGA and Permutation Pack (PP) for all problems by 
minimising the number of the servers by about 4%. It also 
significantly outperforms FFD in each problem instance.  

Importantly, COFFGA is able to reduce the function 
evaluations used in RGGA by 77.33% from 7500 in RGGA to 
1700 in COFFGA,  while  CONFGA decreasing this by 26.66% 
from 7500 in RGGA to 5500 in CONFGA. This comparison 
shows that the proposed algorithms perform well on different 
problem sizes and independently of the underlying data. 

 
7. Conclusions 

In this paper, the problem of Cloud resources allocation and 
consolidation has been studied and solved by converting it to 
multi-capacity vector bin packing. The contribution lies in two 
areas: the first area is d-capacity vector bin packing, and the 
second area is optimization in cloud resources allocation. 

In terms of d-capacity vector bin packing our conclusions are:  
firstly, finding independent dimension order for items needed to 
be packed before applying heuristics highly affects packing 
decision in vector bin packing problem. Secondly, the proposed 

approach of wrapping heuristic in the ordering genetic 
algorithm has succeeded in providing superior d-capacity vector 
bin packing with robust packing decisions. For that, two new 
hybrid algorithms CONFGA and COFFGA have been proposed. 
It was found that COFFGA is superior to other tested algorithms 
as it reduced the number of severs by (39%) over FFD, (31%) 
compared with FF, and (4%) of PP.    

In term of cloud resources allocation, it was analyzed how the 
number of servers required to run a set of VMs can be minimized 
by applying genetic warping heuristic approach.  The proposed 
algorithms COFFGA and CONFGA were applied. The 
algorithms were able to deal with different problem sizes ranging 
from 20VMs to 4500VMs. Minimizing the number of running 
servers and the resources wastage in each server lead to 
maximizing resources utilization in total. The proposed 
algorithms are capable of producing VMs assignment decision 
which strongly increases the consolidation density without 
violating the quality of the required services.  
In comparison with state-of-the-art multi-dimensional aware 
genetic algorithm for virtual machine consolidation, the 
algorithms succeeded to find the optimal assignment decision of 
RGGA data. The results show that COFFGA and CONFGA  do 
not only offer improving solutions but also the expense for 
getting the solutions compared to RGGA,  because it reduced the 
number of servers by finding the optimal solution and also 
reduced the function evaluations from 7500 in RGGA to 1700 in 
OCFFGA and 5500 in OCNFGA. 

The future plan is to develop a comprehensive multi-
objective scheduling algorithm in application to Cloud resources 
allocation. The algorithm shall deal with all Cloud resources 
allocation problems like load balancing, energy consumption, 
and Makespan. Another future plan is considering the dynamic 
Cloud resources allocation problem that needs to go through 
variable size multi-capacity vector bin packing. 
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