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a b s t r a c t

Increased market demand for composite products and shortage of expert laminators is compelling the
composite industry to explore ways to acquire layup skills from experts and transfer them to novices and
eventually to machines. There is a lack of holistic methods in literature for capturing composite layup
skills especially involving complex moulds. This research aims to develop an informatics-based method,
enabled by consumer-grade gaming technology and machine learning, to capture and digitise
manufacturing task knowledge from skill-intensive hand layup. The digitisation is underpinned by the
proposed human-workpiece interaction theory and implemented to automatically extract and decode
key knowledge constituents such as layup strategies, ply manipulation techniques, motion mechanics
and problem-solving during hand layup, collectively categorised as layup skills. The significance of this
research is its potential to facilitate cost-effective transfer of skills from experts to novices, real-time
automated supervision of hand layup and automation of layup tasks in the future.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The demand for goods made out of composite materials is ever
increasing in aerospace, automotive and sports equipment sectors.
This is because compositematerials exhibit superior qualities (e.g. a
carbon fibre reinforced polymer is up to 5 times stronger than steel
1020 while weighing only a fifth), have high corrosion and fatigue
resistance and provide high product-design flexibility [1].
Increased demand has resulted in growing pressures on the com-
posite industry to increase production volumes, speeds and pro-
ductivity while maintaining high product quality. However, the
very properties of the composite materials that make them supe-
rior are also responsible for making them difficult to mass produce
[2]. The manufacturing process involves hand layup of stacks of
woven composite plies pre-impregnated with resin on to an intri-
cate mould to form complex shapes without leaving any air gaps
between the mould surface and the ply. Moreover, different
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composite materials exhibit different deformation mechanisms
depending on the direction of the ply and the pattern of the weave.
This multifaceted relationship between the geometry of the mould,
the deformation characteristics of the ply and the ply manipulation
techniques is a knowledge that is possessed by experienced lami-
nators [3].

Manual layup remains a significant part of the composite in-
dustry despite its low production speeds and discrepancies in
quality caused by human variation. However, it is becoming
increasingly difficult to sustain because of high process costs,
dwindling number of skilled laminators and the gestation periods
to acquire expert layup skills. At the same time, automating the
layup is difficult because the inherent knowledge about the process
is not explicitly available [4]. To reinforce this point, in the review of
the engineering aspects of automated prepreg layup, Dirk et al.
have observed that the commercial automated layup systems such
as Automated Tape Laying (ATL) and Automated Fibre Placement
(AFP) are developed by industrial machine companies with either
none or limited background in the composite industry and are
currently building up their composite layup expertise [5].

There are a few related studies in literature that have attempted
to understand the manual layup process. Most recently, Elkington
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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et al. [6] have presented a detailed study of the approach and
techniques used by laminators of varying layup experience while
manipulating pre-impregnated woven composite plies onto com-
plex mould shapes. Using visual observation of video footages,
specific hand gestures and plymanipulation techniques used by the
laminators were identified and documented. Kikuchi et al. [7,8]
have presented a motion analysis method to extract tacit knowl-
edge, such as expert hand gestures and eye movements, during a
hand layup and spray coating process and their relationship with
mechanical properties and dimensional stability of the resulting
composite samples. In other recent studies in extraction of human
skills, Gu et al. [9] have developed a skill acquisition method that
uses a single RGB-D camera to capture human demonstration of a
simplified toy assembly task. The method can recognise the part
involved, the actions used and estimate the assembly states to
generate an assembly skill script for robot learning. Yoshida et al.
[10] have used field-oriented interviews and video analysis to
extract and compare hand movements during a manual whetstone
polishing task performed by skilled technicians and novices. In
recent research in human action recognition and extraction from a
manual task, Tang et al. [11] have used depth imaging and extrac-
tion of variability between different depth image modalities and
pre-defined action datasets. Chen et al. [12] have used a combina-
tion of depth camera and inertial sensors strapped to the human's
body to extract and analyse human actions during a manual task.
Han et al. [13] have provided a detailed study of manufacturing task
analysis by comparing the capabilities and limitations of different
motion sensing technologies using depth imaging such as the
Microsoft Kinect, Leapmotion and Senz3D. The more traditional
approach of experimental derivation of manufacturing knowledge
of layup tasks is demonstrated by Kim et al. [14] and Lightfoot et al.
[15]. Kim et al. reported the study of material characteristics, layup
accuracy, and thickness variations recorded during the continuous
tow shearing (CTS) layup technique using microscopic observation
of impregnation quality, tow path tracing using image analysis to
gauge layup accuracy and CT scanning to measure thickness vari-
ation of the manufactured specimen. Lightfoot et al. studied the
mechanism of shear force based wrinkle formation during hand
layup due to ply slippage as well as mismatches between the
thermal characteristics of the composite material and tool.
Fig. 1. Human-workpiece
The above studies have been able to capture information about
the specific techniques involved in the manual tasks at specific
times but fail to extract the expert's overall task strategies as well as
provide amedium to conduct real-time automated task supervision
and a guide to automate the manual tasks. Moreover, the knowl-
edge about these techniques is limited to the expert's hand and eye
movements without considering how the other parts of the body
may have contributed to the techniques. Also, the real-time effects
of these techniques on the workpiece are not simultaneously
tracked thereby making the association of human actions to
workpiece progress a near impossible affair. Another disadvantage
of these studies is that the knowledge extracted is limited to the
process runs that have been directly observed and human response
to unobserved/unforeseen process scenarios cannot be anticipated.
Finally, the methods proposed are highly specific to the concerned
manufacturing task and the task-recording set-up and therefore are
not generic enough to capture knowledge from other manual in-
dustrial tasks.

This article presents a cohesive and holistic process for digiti-
sation of manual manufacturing task knowledge based on the
proposed human-workpiece interaction theory. In this work,
innovative informatics methods using gaming technology, such as
the Microsoft Kinect, and using machine learning such as Hidden
Markov Modelling are used to capture and digitise important
constituents of manufacturing knowledge embedded within any
manual task involving a human and a workpiece, which in this
study is the manual composite layup task. The Kinect is used
because it provides a robust and low-cost way of obtaining human
motion capture as well as object recognition and tracking from
infra-red (depth) and colour imaging [16].

The knowledge constituents of interest in the composite layup
task are: (i) layup strategy, (ii) time taken per sub task, (iii) precise
human motion, (iv) ply manipulation techniques, (v) mechanics of
the laminator's motion during task execution, and (vi) problem
solving approach used to correct layup errors. These constituents
collectively categorised as layup skills are thus captured and digi-
tised to enable skills transfer from expert laminators to novices, to
facilitate real-time automated supervision of manual tasks as well
as eventual automation of the manual task. Researchers from the
value-creation domain can subsequently develop technology
interaction theory.



V.A. Prabhu et al. / Composites Part B 112 (2017) 314e326316
strategies that companies can use to extract value and capture
profits from digitised knowledge assets, such as the above for
composites manufacturing, as illustrated by Kyl€aheiko et al. [17].
Fig. 3. Task capture setup using two Kinect sensors.
2. Method

2.1. Underlying human-workpiece interaction theory

The concept of human-workpiece interactions proposed by
Prabhu et al. [18] states that any manual manufacturing task
involving a human and aworkpiece can be considered as a series of
human-workpiece interactions in which every human action is
followed by feedback from the workpiece on its state of progress.
This feedback is analysed by the human on the fly to choose and
execute the next action on the workpiece to channel it towards
successful completion. Successive such iterations, some of which
may include problem solving, take the workpiece from its initial
state to final desired state.

The above theory however is rudimentary in nature, as it does
not completely represent human response to different task sce-
narios. This research is of the view that human response during a
task changes according to the way in which workpiece feedback is
analysed. Therefore, in order to advance the theory, three seminal
theories from literature that are popularly used to analyse human
behaviour in industrial settings, namely, Rasmussen's Skill-Rule-
Knowledge (S-R-K) framework, Rasmussen's Decision Ladder and
Gibson's theory of object affordances are used with relevant ad-
aptations to suit the basic theory (Fig. 1) [19e21].

In a manual manufacturing task there are periods in which
human actions on the workpiece are repetitive in nature and are
largely governed by muscle memory. This is skill-based human
response in which workpiece feedback is subconsciously processed
as signals. A task is typically associated with a standard procedure
for normal execution. The human response when following the
standard procedure is rule-based in which workpiece feedback is
observed consciously as signs that direct the human to pick
appropriate rules to apply while choosing actions during the task.
Sometimes when unforeseen problems occur during a task, a
standard solution is not available. In such cases, the human
Fig. 2. 6-Step Digiti
response is knowledge-based in which the human uses his/her
knowledge accumulated from past task executions to solve the
problem. This is the adaptation of Rasmussen's S-R-K framework to
the human-workpiece interaction theory.

A detailed approach to understanding human problem-solving
behaviour during the knowledge-based response is needed. Ras-
mussen's Decision Ladder concept is used to understand the
human's approach as a 4-step process. The human detects a
problem with the workpiece by observing its feedback as a symbol
that represents the problem, e.g., a wrinkled ply surface after layup.
This activates the problem-solving response which begins by
identifying the problem and its underlying cause, evaluating the
various solutions at the human's disposal and selecting the most
appropriate one by keeping the overall task goal in mind, and
finally planning the actions within the chosen solution for
execution.

Finally, human action on the workpiece at all the 3 response
levels depends on the state of the workpiece, which is continuously
observed during the task. According to Gibson, an object's affor-
dances are action possibilities available to a human to execute on
sation process.



Fig. 4. Laminator's skeleton being tracked during the task.

V.A. Prabhu et al. / Composites Part B 112 (2017) 314e326 317
that object depending on his/her action capabilities. Therefore by
adopting Gibson's theory it can be noted that every workpiece
Fig. 5. Tracking ply orientation by computing surf

Fig. 6. Capturing workpiece progress by tracking ply surface o
feedback conveys a set of affordances to the humanwho selects the
most appropriate one depending on his abilities, the task situation
and the response level at which he/she is operating.

2.2. Digitisation process

The digitisation process is underpinned by the above advanced
human-workpiece interaction theory and is designed to extract and
decode manufacturing knowledge constituents of a task that
belong to the skill, rule and knowledge based levels. The data flow
within the process follows the standard informatics data flow,
namely, data input, data processing, data storage and data output.
The resulting digitisation process comprises 6 sequential steps,
namely Capture, Segment, Model, Extract, Decode, and Reproduce
(Fig. 2).

Step 1) Capture: This is a critical first step whose reliability and
accuracy determines the eventual success of the digitisation pro-
cess of the manual composite lamination task. The main objective
of this step is to acquire the actions of the laminator during the
ace normals of the finite triangular elements.

rientation and comparing against that of the bare mould.
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layup process and the effects of those actions on the workpiece
(composite prepreg ply draped over themetallic mould) into digital
data. The vital requirement and the key innovation in this step is to
simultaneously acquire digital action and effect data in real-time so
that the action-effect relationships within the task can be estab-
lished in the subsequent steps using the common data acquisition
timestamps.

The key and unique focus of this work is to use consumer-grade
gaming technologies for data acquisition. Within this focus, there
are three main methods to acquire laminator's action data during
the layup task. The first method is to use high-end fixed motion
capture systems such as the OptiTrack [22], which captures human
motion by tracking markers attached to the human body. This
method is not suitable to capture manual tasks in manufacturing
settings because it requires installation of multi-sensor localisation
infrastructure in each area of task capture on the shopfloor, making
it an expensive piece of kit to own and operate. Secondly, apart
from the inconvenience of attaching markers on the laminator's
body, such systems are tailored to accurately capture human mo-
tion but are not designed to recognise objects and track deforma-
tion in objects in real-time. The second method is to use inertial
sensors, such as accelerometers [23] and attach them to the lami-
nator's body in order to obtain 3D position and orientation data of
the human body joint during motion. Even though these sensors
are affordable and provide accurate motion capture data, the entire
system including data acquisition and communication modules are
not fully portable apart from being intrusive for the laminators
during the layup task. Wireless inertial sensors are also available
such as Perception Neurons [24], but the body kit comprises cables
that connect the sensors to the wireless communication module
thereby not making any significant improvement in reducing
intrusiveness. Also, inertial sensors cannot provide data on how the
Fig. 7. Seven sectors of the workpiece (mould) named according to their position on
the mould.

Table 1
Segmentation of continuous human action and workpiece data according to workpiece p

Time (s) Timestamp (s) Frame_No WP_Progress_State Head_X Hea

50.6 50.6 441 0 1166 254
50.7 50.7 442 0 1208 201
50.8 50.8 443 0 1242 141
51.0 51.0 444 0 1236 119
51.1 51.1 445 0 1194 106
51.2 51.2 446 0 1133 109
52.3 0.8 470 1 973 71
52.4 0.9 471 1 997 69
52.5 1.0 472 1 1032 66
52.7 1.2 473 1 1078 64
52.8 1.3 474 1 1102 65
52.9 1.4 475 1 1129 69
workpiece deforms as a result of the laminator's actions and hence
another camera-based solution including image processing for
object recognition is needed. The third method, chosen in this
work, is to use depth imaging based portable, markerless and low-
cost motion capture solution, such as Microsoft Kinect, which not
only provides reliable human skeletal motion data but also RGB and
depth image streams which can be used for 3D object recognition
and tracking in real-time.

In the ‘Capture’ step, Kinect sensors capture the human-
workpiece interactions involved in a composite layup task per-
formed by an expert laminator in a 20 �C clean room environment
at the University of Bristol's Advanced Composite Centre for Inno-
vation and Science (ACCIS) (Fig. 3). The workpiece is a
600 mm � 400 mm stainless steel mould with varying surface
ramp angles and features. The laminator drapes a plain-woven
glass fibre ply pre-impregnated with resin onto the mould. Six
runs of the layup task are captured including two in which the
laminator has solved simulated layup problems. The task captures
were conducted in accordance to the University of Bristol's policy
for experiments involving human participants.

The laminator's actions during the task are captured using the
standard skeletal motion tracking provided by the second genera-
tion of the Kinect sensor (Kinect V2). The 3D coordinates of the 12
skeletal joints belonging to the laminator's upper body are tracked
at the rate of up to 20 times per second and recorded in a
spreadsheet along with the tracking timestamps in seconds (Fig. 4).

Simultaneously, the workpiece progress is tracked by the 1st
version of the Kinect sensor (Kinect V1). The Kinect V1 is used
because it is not possible to operate two Kinect V2 sensors at the
same time on the same computer. An innovative and effective
method is proposed to track the deformations on the composite ply
as it is pressed down on to the mould during the layup task.
Workpiece progress is tracked by obtaining the orientation of the
ply and comparing it continuously with that of the surface of the
mould underneath. The surfaces of the ply that have the same
orientation as that of the contours of the mould surface are
considered to be fully conformed and laid up. The conversion of the
ply from non-conforming to conforming can be captured by
dividing its surface into finite triangular elements and tracking the
orientation of these elements in real-time by computing their
surface normals (Fig. 5).

The surface normals are then grouped and displayed in different
colours depending on their orientation with respect to the unit
vectors along x, y and z axis. This way, the surface orientation of the
ply can be visualised as either being conformed to the mould sur-
faces underneath or not (See Fig. 6).

The workpiece progress is recorded as running numbers from
0 (ply placed over the mould) to 7 (fully laid up ply) according to
when the layup process is completed in a sequence across the seven
workpiece sectors as identified by the laminator (Fig. 7).
rogress.

d_Y Head_Z Left Hand X Left Hand Y Left Hand Z LH_Elbow_X

729 894 873 778 910
754 891 848 792 918
799 901 782 815 936
873 910 741 826 937
968 905 686 913 926
1083 913 678 1041 897
1176 895 712 1022 785
1157 912 724 995 802
1132 932 738 947 824
1088 955 778 859 855
1061 956 790 832 871
1026 981 823 805 899



Table 2
Discrete human action and workpiece states.

State Sequence Human Action States Workpiece States

1 H_C_T WP_C_T
2 H_C_M WP_C_M
3 H_R_T WP_R_T
4 H_L_T WP_L_T
5 H_C_B WP_C_B
6 H_R_MB WP_R_MB
7 H_L_MB WP_L_MB
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The workpiece progress is recorded in the same
spreadsheet alongside the human action data with the corre-
sponding timestamps. This way specific human action that is
responsible for specific workpiece progress can be identified.

Step 2) Segment: The main objective of this step is to segregate
the continuous human action data acquired in step 1 into action
primitives where each primitive has a notable effect on the prog-
ress of the workpiece in the manual layup task. Thus continuous
human action and workpiece progress data is segmented into
discrete human action states and workpiece states. In literature,
motion capture data segmentation has been addressed by consid-
ering the human motion data as stand-alone for purposes such as
behaviour analysis, ergonomic analysis and activity recognition.
Stand-alone motion capture data segmentation has been reported
using methods such as filtered sub-space clustering [25], K-means
algorithm [26], kernelised temporal cut method [27], and recently
low-level temporal segmentation followed by hierarchical clus-
tering [28].

These methods, though successfully applied to segment motion
capture data into distinct human action, cannot be applied in this
work. This is because a manual layup task involves close interde-
pendency between the human action on the workpiece and the
Fig. 8. Discrete human actio
progressive change in the workpiece with workpiece change being
the primary driving factor behind the human action. Therefore,
segmentation of human action is made more effective by segre-
gating the continuous human action data at points where the layup
task on the workpiece progresses from one sector to another
(Table 1), i.e. when one sector of the mould is completely laid up
and the next one is attended to.

Even though the human action states are considered discrete,
each state is a set of continuous skeletal motion data, which con-
tributes to changing the workpiece state (Fig. 8). The nomenclature
of the states is given in Table 2.
n and workpiece states.
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Step 3) Model: The main objective of this step is to give a digital
representation to the human-workpiece interactions involved in
the layup task for subsequent extraction of the layup task knowl-
edge. The discrete human action and workpiece states, obtained in
step 2 above, are modelled using Hidden Markov Models (HMMs)
inwhich the observable states are the human action states whereas
the hidden states are the workpiece states.

In literature, modelling is primarily used to recognise human
activity from segmented human action data. The most common
modelling method is 3-dimensional Convolutional Neural Net-
works (CNNs), a deep modelling approach that extracts human
action features from both temporal and spatial dimensions of ac-
tion data frommultiple continuous frames of video frames [29e31].
Hidden Markov modelling is a stochastic machine learning tool for
modelling a time series of multivariate observations and is widely
used to analyse and predict time series phenomena [32]. Several
forms of Hidden Markov Models (HMMs) are common in literature
Table 3
HMM lT1 for the normal layup task scenario.

p H_C_T H_C_M H_R_T

0.5 0.05 0.15

A H_C_T H_C_M H_R_T

H_C_T 0.03 0.60 0.15
H_C_M 0.05 0.05 0.40
H_R_T 0.05 0.05 0.05
H_L_T 0.05 0.05 0.05
H_C_B 0.04 0.04 0.04
H_R_MB 0.05 0.05 0.05
H_L_MB 0.05 0.20 0.10

B WP_C_T WP_C_M WP_R_T

H_C_T 0.90 0.02 0.02
H_C_M 0.02 0.90 0.02
H_R_T 0.02 0.02 0.90
H_L_T 0.02 0.02 0.02
H_C_B 0.02 0.02 0.02
H_R_MB 0.02 0.02 0.02
H_L_MB 0.02 0.02 0.02

Table 4
HMM lT2 for the problem-solving scenario (highlighted).

p H_C_T H_C_M_P H_C_M_PS1 H_C_M_PS2 H_C_M_P

0.525 0.2 0.025 0.025 0.025

A H_C_T H_C_M_P H_C_M_PS1 H_C_M_PS2 H_C_M_P

H_C_T 0.013 0.600 0.013 0.013 0.013
H_C_M_P 0.025 0.025 0.500 0.060 0.050
H_C_M_PS1 0.025 0.025 0.050 0.500 0.060
H_C_M_PS2 0.025 0.025 0.050 0.050 0.500
H_C_M_PS3 0.025 0.025 0.040 0.050 0.050
H_C_M 0.025 0.025 0.025 0.025 0.025
H_R_T 0.025 0.025 0.025 0.025 0.025
H_L_T 0.025 0.025 0.025 0.025 0.025
H_C_B 0.025 0.025 0.025 0.025 0.025
H_R_MB 0.025 0.025 0.025 0.025 0.025
H_L_MB 0.025 0.200 0.025 0.025 0.025

B WP_C_T WP_C_M_P WP_C_M_PS1 WP_C_M_PS2 WP_C_M

H_C_T 0.900 0.010 0.010 0.010 0.010
H_C_M_P 0.010 0.900 0.010 0.010 0.010
H_C_M_PS1 0.010 0.010 0.900 0.010 0.010
H_C_M_PS2 0.010 0.010 0.010 0.900 0.010
H_C_M_PS3 0.010 0.010 0.010 0.010 0.900
H_C_M 0.010 0.010 0.010 0.010 0.010
H_R_T 0.010 0.010 0.010 0.010 0.010
H_L_T 0.010 0.010 0.010 0.010 0.010
H_C_B 0.010 0.010 0.010 0.010 0.010
H_R_MB 0.010 0.010 0.010 0.010 0.010
H_L_MB 0.010 0.010 0.010 0.010 0.010
for human activity recognition such as Hierarchical HMMs and
Parametric HMMs. Generally, the HMM is used to classify human
action time series data into distinct gestures that when combined
form a complete activity. The classification is made by assigning
exemplar gestures as observable states and the segmented human
action states as hidden states in order to stochastically determine
which action states sequences contributed to forming a gesture and
then using known gesture sequences to recognise activity [33e35].
The common limitation of both the above popular approaches is
that the workpiece states are completely excluded from the models
and therefore close dependency of the human action with the
changes observed in the workpiece are not modelled. Hence the
action-effect relationship that exists within a manual task such as
composite layup is not represented and therefore the models
cannot be subsequently queried to extract task insights.

In this work, HMMs are used to both represent as well as extract
the manufacturing knowledge constituents that are specific to
H_L_T H_C_B H_R_MB H_L_MB

0.15 0.05 0.05 0.05

H_L_T H_C_B H_R_MB H_L_MB

0.15 0.03 0.03 0.03
0.20 0.10 0.10 0.10
0.50 0.10 0.20 0.05
0.05 0.50 0.15 0.15
0.04 0.04 0.50 0.30
0.05 0.05 0.05 0.70
0.10 0.40 0.10 0.05

WP_L_T WP_C_ B WP_R_MB WP_L_MB

0.02 0.02 0.02 0.02
0.02 0.02 0.02 0.02
0.02 0.02 0.02 0.02
0.90 0.02 0.02 0.02
0.02 0.90 0.02 0.02
0.02 0.02 0.90 0.02
0.02 0.02 0.02 0.90

S3 H_C_M H_R_T H_L_T H_C_B H_R_MB H_L_MB

0.025 0.05 0.05 0.025 0.025 0.025

S3 H_C_M H_R_T H_L_T H_C_B H_R_MB H_L_MB

0.013 0.150 0.150 0.013 0.013 0.013
0.050 0.100 0.100 0.030 0.030 0.030
0.050 0.100 0.100 0.030 0.030 0.030
0.060 0.100 0.100 0.030 0.030 0.030
0.500 0.150 0.100 0.020 0.020 0.020
0.025 0.500 0.100 0.200 0.025 0.025
0.025 0.025 0.500 0.100 0.200 0.025
0.025 0.025 0.025 0.700 0.050 0.050
0.025 0.025 0.025 0.025 0.500 0.275
0.025 0.025 0.025 0.025 0.025 0.750
0.025 0.050 0.050 0.350 0.200 0.025

_PS3 WP_C_M WP_R_T WP_L_T WP_C_ B WP_R_MB WP_L_MB

0.010 0.010 0.010 0.010 0.010 0.010
0.010 0.010 0.010 0.010 0.010 0.010
0.010 0.010 0.010 0.010 0.010 0.010
0.010 0.010 0.010 0.010 0.010 0.010
0.010 0.010 0.010 0.010 0.010 0.010
0.900 0.010 0.010 0.010 0.010 0.010
0.010 0.900 0.010 0.010 0.010 0.010
0.010 0.010 0.900 0.010 0.010 0.010
0.010 0.010 0.010 0.900 0.010 0.010
0.010 0.010 0.010 0.010 0.900 0.010
0.010 0.010 0.010 0.010 0.010 0.900



Table 5
Layup time taken in workpiece sectors.

State Time taken (s)

W_C_T 51.5
W_C_M 113.6
W_L_T 30.6
W_R_T 38.4
W_C_B 28.1
W_L_MB 92.8
W_R_MB 100.9
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individual experts that perform the manual layup task. A novel and
effective way of modelling human-workpiece interactions using
HMMs is proposed in which the workpiece states that are con-
spicuous are considered observable whereas the human action
states that have implicit skills embeddedwithin them, even though
the actions themselves are conspicuous, are considered hidden.
This way, the interdependency between the human actions and the
workpiece states are completely modelled within a single HMM
rather than separately.

The HMM is defined as l ¼ ðp; A; BÞ with discrete states S and
O where S ¼ fs1; s2:::; sng is a finite set of 0n0 human action states
(hidden states), O ¼ fo1; o2; :::; omg is a finite set of 0m0 workpiece
states (observation states), p ¼ fpig are the initial state probabili-
ties, A ¼ faijg is the state transition matrix where aij is the proba-
bility of human action state i transitioning to state j, B ¼ fbiðOkÞg is
the emission matrix where biðokÞ is the probability of observing
workpiece state Ok at human action state i. It is assumed that the
state machine emits an observation and starts to jump to a new
state at the same time. Time t is discrete and starts with t ¼ 1. The
probabilities in the two matrices are time invariant.

Out of the six task runs performed by the laminator, four are
uneventful and nearly identical while two include a scenario each
where a wrinkled ply surface during the layup was corrected.
Therefore, two distinct HMMs are constructed; lT1 for the normal
task scenario and lT2 for the problem-solving task scenario. The
probabilities aij and biðokÞ are assigned heuristically with inputs
from the laminator and on observing multiple runs of the layup
task performed by the laminator (Table 3 and Table 4).

HMM lT1 captures how the expert laminator performs the layup
task routinely on the chosen mould. This model represents the
laminator's actions and the effects of those actions on the ply layup
on the mould. The human action states and the workpiece progress
states listed in Table 2 and their interdependency is modelled
within lT1.

HMM lT2 represents how the expert laminator solves the
problem (wrinkled ply) that occurs in the state 2 (H_C_M now
named H_C_M_P) in 3 steps, namely, H_M_PS1, H_M_PS2, and
H_M_PS3 to restore the task back to the correct state H_C_M.

It must be noted that the probabilities in the above HMMs are
heuristically obtained and may not be the most optimum values.
Though there are two commonly used methods to optimise these
probabilities, namely, ‘Viterbi’ and ‘Baum-Welch’ training algo-
rithms [36], in this research the Baum-Welch algorithm is preferred
Fig. 9. Layup strategy adopted by the expert laminator.
due to its robust and exhaustive nature. However for these HMMs,
the Baum-Welch algorithm did not advance past the first iteration
implying that the probabilities assigned are reasonably true to the
task scenarios being modelled.

This research believes that the two HMMs lT1 and lT2 collec-
tively represent the expert laminator's manufacturing knowledge
that is embedded within the execution of the layup task thereby
realising a way to digitise this task knowledge and its constituents.
The last 3 steps of the digitisation process that enable the extrac-
tion, decoding and reproduction of task knowledge are described in
the next section.
3. Results and discussion

The HMMs that represent the layup task are queried with a
given task scenario to extract, decode and reproduce the
manufacturing knowledge constituents belonging to the task. The
standard methods/algorithms reported in literature to query or
analyse hidden Markov models are used in this work without any
modifications. However, the way in which these standard algo-
rithms are used to extract and decode key constituents of knowl-
edge used by the expert laminators during the manual composite
layup task are new and are described below.

Step 4) Extract: The main objective of this step is to obtain likely
human response for any given task scenario, not just the captured
ones, thus extracting the task knowledge possessed by the lami-
nator which was used in the layup task. The task scenario is a
sequence of workpiece states and the human response is a
sequence of human action states that are likely responsible for the
scenario. However, before the human action states can be extrac-
ted, it is necessary to pick the right HMM for the given task scenario
that contain the human action states. Consider a task scenario
represented by the workpiece observation sequence OQ as

OQ ¼ {WP_C_T, WP_C_M, WP_C_B, WP_R_T, WP_R_MB, WP_L_T,
WP_L_MB}. The ‘Forward’ algorithm [19] is used to obtain the
probabilities of observing OQ, given the two HMMs lT1 and lT2 as
P(OQ j lT1) ¼ 8.34e-7 and P(OQ j lT2) ¼ 3.12e-7. Since P(OQ j lT1) ¼
8.34e-7 is the highest probability, lT1 is picked as the most likely
model to represent the task scenario OQ.

i. Using the ‘Viterbi’ algorithm [19], HMM lT1 is queried with the
workpiece state sequence OQ to obtain the most likely sequence
of human action states HQ that could produce the given task
scenario as HQ ¼ {H_C_T, H_C_M, H_C_B, H_R_T, H_R_MB, H_L_T,
H_L_MB}

Similarly, multiple task scenarios can be queried from the
HMMs to obtain the human actions responsible for them. Because
of the stochastic nature of the HMMs, human response to not only
captured task scenarios but also those that are not captured can be
extracted. From these extracted human action states, the constit-
uents of manufacturing knowledge are decoded.

Step 5) Decode: Themain objective and innovation of this step is
to decode four key manufacturing knowledge constituents of the
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composite layup task from the extracted human action states. The
constituents are i) Task strategy, ii) plymanipulation techniques, iii)
mechanics of the laminator's motion during task execution, and iv)
problem solving approach used to correct layup errors.

i. Task strategy: The approach taken by the technician to lay
the ply on the mould depends on the geometry of the mould,
the deformation characteristics of the ply and the awareness
of sector dependencies where one sector must be laid before
another to avoid layup errors. In this case, the task strategy
can be observed from the sequence of actions taken by the
technician to perform the task. This sequence is already ob-
tained in the previous step where human action state se-
quences are obtained for any given task scenarios. For
example, for task scenario OQ, the human action sequence
obtained was HQ which when superimposed on the mould
shows the task strategy adopted (Fig. 9).

ii. Time taken: The time taken by the laminator to layup each
sector of theworkpiece can also be obtained from the human
action states by using the capture timestamps stored. With
this knowledge, workpiece areas that take longer to layup
than others indicating higher layup complexities in those
sectors, can be automatically identified (Table 5).

iii. Precise human motion: The actual action data from within
each extracted human action state is obtained from the
Fig. 10. Layup strategy adopted
spreadsheet that contains the laminator's skeletal motion
data. The x, y and z motion of the laminator's left and right
hands are plotted against time so that the motion patterns
can be visualised thereby revealing the ply manipulation
techniques used in each state. As an example, the techni-
cian's hand motion during action state 5 (H_C_B) is shown in
Fig. 10. Similarly, motion charts of the rest of the upper body
joints, such as head, neck, elbows, shoulders, and torso can
also be plotted and visualised.

iv. Ply manipulation techniques: According to the Elkington
et al. [4], there are seven standard hand ply manipulation
techniques. The techniques are (i) one handed guiding, (ii)
two handed guiding, (iii) manual folding, (iv) mould inter-
action shearing, (v) double tension shearing, (vi) tension
secured shearing, and (vii) smoothing and tensioning. One or
more of these techniques are used within each of the human
action states and therefore can be isolated and revealed as an
important constituent of layup task knowledge. The lami-
nator's hand motion charts during the techniques are listed
in Fig. 11.

v. Laminator's motion mechanics: The skeletal joint co-
ordinates belonging to the laminator's upper body are
recorded in the capture step of the framework. From these
joint coordinates, severalmotion parameters can be obtained
using vector computing. Examples of four different motion
by the expert laminator.



Fig. 11. Ply manipulation techniques used by the expert laminator.
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Fig. 12. Laminator's motion mechanics during the layup task.

Fig. 13. Laminator's hand motion speeds during the layup task.
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mechanics computed using skeletal coordinate data is shown
in Fig. 12. This data helps in visualising the laminator's body
posture sand orientations, glance angles and the positions of
his hands with respect to the ply and the mould while per-
forming critical hand layup techniques.

Another influential constituent of motion mechanics that is
critical to the success of the layup is the laminator's hand speed
while performing ply manipulation [6]. A small portion of hand
motion chart is shown in Fig. 13 and the hand speed in two zones A
and B is computed from coordinate data stream of the hands. The
screen coordinates are converted to real-world coordinates to
obtain speed values in mm/s rather than in pixels/s.

vi. Laminator's problem-solving approach: In this study, the
laminator deliberately introduced an error into the task. A
simulated error wasmadewhile laying up the ply on a particular
area of theworkpiece resulting in awrinkle on the surface. If not
resolved, the wrinkle might result in a serious surface defect
that could weaken the structure post curing. The laminator
using a 3-step approach removed the wrinkle from the surface
of the ply. This problem solving scenario is represented by the
workpiece observation sequence OQP as OQP ¼ {WP_C_M_P,
WP_C_M_PS1, WP_C_M_PS2, WP_C_M_PS3, WP_C_M}

In order to understand this approach, the HMM that most likely
represents this scenario is chosen using the ‘Forward’ algorithm.
The chosen HMM is lT2 fromwhich the human action sequence HQP
that is most likely responsible for OQP is extracted using the ‘Viterbi’
algorithm (Fig. 14). HQP ¼ {H_C_M_P, H_C_M_PS1, H_C_M_PS2,
H_C_M_PS3, H_C_M}



Fig. 14. Laminator's problem-solving approach during the layup task.

V.A. Prabhu et al. / Composites Part B 112 (2017) 314e326 325
Step 6) Reproduce: The captured human action and workpiece
data consists of a stream of skeletal joint coordinates of the tech-
nician's upper body and the progress of the workpiece as an ac-
curate digital representation of the task. This way a task can be
digitally captured and stored in a spreadsheet less than a megabyte
in size instead of the usual practice of capturing and storing tasks in
large video files. The skeletal coordinates stored in the spreadsheet
can be rendered graphically to produce a stickman animation of the
captured layup task (Fig. 15). However, when greater level of task
detail, such as finger positions, is required then an animation does
not suffice and the corresponding colour images can be referred to.

Though only 2D animation is used in this work, the digital na-
ture of the extracted and decoded knowledge enables the ‘Repro-
duce’ step to also use graphics-rich media such as immersive virtual
environments in which tasks can be demonstrated by virtual hu-
man avatars on virtual workpieces or the manufacturing knowl-
edge can be augmented on a real environment during a task using
mixed reality technologies. Both these methods help in enabling
quick and cost-effective transfer of manual layup skills.

The two main innovations in this research work are: (i) the
proposed human-workpiece interaction theory that for the first
time seeks to integrate and expand Rasmussen's concept of skill-
based, rule-based and knowledge-based behaviours, Rasmussen's
concept of a decision ladder for problem solving and Gibson's
theory of affordances during human-object interactions, in order to
fully describe a manual skill-intensive task such as composite
layup. The theory is then used to underpin the new digitisation
Fig. 15. Layup task animation which is a digital representation
framework to extract manufacturing knowledge frommanual tasks
and (ii) the 6-step digitisation process that demonstrates the use of
the theory and enables automated extraction and reproduction of
manufacturing knowledge from skill-intensive manual tasks. The
implementation of this process is demonstrated using low-cost
gaming devices to simultaneously capture and digitise human ac-
tions and the more critically the effect of those actions on the
deformableworkpiece during a layup task. This is followed by using
hidden Markov models to digitally represent and query the in-
teractions between the laminator and the composite ply during the
layup task. Interestingly, this research uses standard algorithms
such as the ‘Forward’ algorithm, the ‘Viterbi’ algorithm and the
‘Baum-Welch’ algorithm to extract key knowledge constituents
from the layup task, made possible because of the innovation in
which the human-workpiece interactions are modelled within the
hidden Markov model.

The significance of this research is its direct impact to facilitate
quick and cost-effective skill transfer between people. The captured
knowledge can also be used in a real-time supervision system using
the Kinect sensor that watches the newly trained laminator do the
task and benchmarks his/her layup actions against those captured
and verified by the system. Any movements that are outside the
acceptable limits are flagged as areas of improvements, thereby
constantly refining the layup skills of new laminators. The proposed
digitisation framework can also be an enabler for (i) automated
analysis of manual tasks on the shopfloor to assess task ergonomics
in real-time, (ii) real-time physical collaboration between remote
of the actual layup task as performed by the laminator.
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engineering teams and (iii) intelligent automation of skill-intensive
manual manufacturing tasks, all contributing towards enhancing
the productivity of the manufacturing industry.

4. Conclusion

The proposed digitisation process, underpinned by the human-
workpiece interaction theory is successfully implemented for
digitising the task knowledge embedded within a manual com-
posite layup task. The framework itself is of a plug and play nature
in which different methods, tools and techniques could be used in
each of the 6 steps to implement it for digitisation of a variety of
manual manufacturing tasks. In summary, this research contributes
to knowledge in the five main areas, namely, (1) the theory of
human-workpiece interactions to decipher human behaviour in
manual manufacturing tasks, such as manual composite layup (2) a
cohesive and holistic framework to digitise manual manufacturing
task knowledge with well defined steps, (3) the use of low-cost
gaming interface technology to simultaneously capture human
actions and the effect of those actions on workpieces during a
manual manufacturing task in an industrial setting, (4) a new
approach to use hidden Markov models to represent human ability
to perform a complex task on a workpiece and (5) extraction and
decoding of manufacturing knowledge constituents from the hid-
den Markov models. The biggest contribution to research as a
combination of all the above is the new ability to unearth and
decode human skills that were always considered very difficult to
extract and reproduce. In the future, more task observations need
to be captured in order to extract layup knowledge from diverse
task scenarios to increase the depth of this study. Involving mul-
tiple laminators with varying degrees of expertise would also
provide a means to digitise each laminator's knowledge into
distinct representations of individual skill models to be used in skill
training and assessments.
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