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1s . Introduction

In this paper we shall attenpt to review ‘thve existing
information, both theoretical and experimental, which felates to
some of the moré important aerodynemic problems arls:mg in the
study of the flow over Dhodles of revolution, | Hany of these
problems can only be explained by inélu&ing an account of the
effects of the air'viscosify on the flow, but this can more
easily be accomplished if we first consider the simpler conditions
existing in inviscid, irrotational flow. In cammon with many
other branches of aerodynamics, potential flow theory provides a
basic framework of knowledge, helping to suggest likely effects
of viscosity, which we can modify to explain and predict the

behaviour of a real fluid,

Thus the first pert of this peaver dis taken up with
a study of the various methods which have from time to time been
devised to ensble the calculation of the properties of axi-symme
etric potential flow, Ve shall first concern ocurselves with
more or less exact, rigorous theories, and afterwards with the
approximate methodss. Space does not permit a full discussion
of the exact techniques but it is not considered that any single
approach possesses advantages above all others to warrant
exclusive attentions so a brief review is given of most of
those which have been developed,  The theory of potential flow
sbout inclined bodies of revolution is next discussed, and leads
to an account of the manner in vhich these results can be used
to derive the surface pressure distribution, and the magnitude
of the theoretical destabilising moment on a body in a sf.mple

translational motion,.

The second part of the paper is concerned in the
main with the modifications introduced by viscosity effects,
These manifest themselves in the presence of a drag force which
can be readily assessed in axi-symmetric flow, and also of a 1ift

force whose magnitude cannot be so accurately predicted, In
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relation to this latter problem, we give a brief description of
the various changes in the flow pattern which have been observed
to take place as the body incidence is increased, A detailed
account of the theory of boundary layer flow, which lies behind
many of the results quoted, has been avoided,

Finally, brief sections are appended devoted to the
problems of the flow over bodies in curved motion, and to the

external flow about ducted bodies of revolution.

We shall for the most part concern ourselves only
with the steady motion of slender bodies in an incompressible
fluid of small viscosity. Thus we exclude from discussion the
flow zbout spheres or planetary ellipsoids ; and we make no

reference to phenomena typical of low Reynolds numbers,

2e The Flow about an Ellipsoid of Revolution

The most important of the exact solutions of the
equation of continuity for potential flow sbout ‘bodies of reve
olution is, no dbu“o't, the clessical treatment of the motion of
an ovary ellipsoid of revolution or sphefoid, given, for instance,
by Lemb (1879) and Munk (1934). A short swmary of this treat-
ment will be of interest here, as it introduces the use of
certain techniques which have been extended to the solution of

other problems to be discussed later,

The method depends essentially upon the use of semi~
elliptic coordinates (u,Z,0) defined in terms of the cylindrical

polars (r,0,x) by the relations

1 1
2y% 2 N\F, ;
r = Zf (1"}.1 ) (é "'1) s X = Zf HE e 0“00!'0.(1,)

The system of surfaces ¥ = comstant, for ¥ =1y, define a
family of confocal ellipsoids of revolution, centre the origin(see fige1)s
the surface & =1 is degenerate, being the line joining the
foci x =+ legy on r =0, The surfaces p = constant for

-1% p €1 define an orthogonal system of confocal hyperboloids



of revolution,

The metric for this system of coordinates is found to be

2 2 ) ;
az? = 12 {é—%—; w? +f Lt} a2 () (et |
[\ =07/ \ 571/ §

o
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and “s‘ne’ equation of continuity, which is the Leplace equation for

the velocity potentisl £, may be accordingly written as

! o o 2 2 2
3 ! 2 of | . b 2,y 38 5 - u 3°g
<. 1 O - : = G,
eril SRRl o KGRl (i) () 002

Using the method of separation of varilables, a general solution
for @ may be shovn to be cbtained by linear superposition of

solutions of the types:
Q/ = ﬁnm K?; (Li) Kgl (é) cos (m@ + OI’Jm)" opwooboaonao(z)

- o m o
where ﬁm and ©__ are constants, and K = denotes Legendre
associlated functions of either the first or second kind, (which

we later distinguish as Pg and Qlé respec*tively).

We suppose that the spheroid Z = Lo & constant.z> 1,
is to be a stream surface of a motion of the fluid in which the
velocity at infinity is paraliel to its ms and of magnitude
U e This motion will have an axial symmetry, end accordingly
we need only consider those solutions of £ indepénden’c of O,
The boundary condition on the surface is that

ap? A%

supposing that @' denotes the perturbation velocity potential,
so that @' tends asymptotically to a constant velue (say, zero)
at infinity, Accordingly we infer that @' is not only
inéiependeﬁ’c of 0, but linearly dependent on . Ve can
select the appropriate form of solution from (2) by’ noting that

m=0 and P?(p) = u, and consequently we cen deduce that

1
2 \
,th = - U;:{; ’[,f (Z’ff .-.‘}) Pfi(p,) Q?(Z,)/Qg (Z;W) ‘t..!‘t(B)
H
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The value of &, may be identified with the reciprocal of the

eccentricity of the given spheroid, and (21 f) is of course its
4

focal distance, so that 1 f(z_i', -1)? is the length of its minor

semi-axis (i,e. its maximum radius),

Similarly the flow over a spheroid moving la’cerally'
to its axis may be treated by considering it to be a strean
surface of a motion of the fluid in which the velocity at infin-
ity is parallel to the z-axis, say, and of magﬁitude W, s The

boundery condition for the perturbation velocity potential is

then
i
o odm g famBNT,
g |~ oz 5T Yo ffyg.‘i; L cos O, ong= .
~and it is found that ‘ ’ . -
1 2 z
ag, (2. ) (5 -1)
! ! 1\ 7
L B o s
g = i, Zf‘ P, () o (Z) cos 6 | —a .

[A— -

'.'Q'QQQQ‘D..(}‘}')

The appropriate linear superposition of the solutions (3) ena
() yields the potential of the disturbed flow for any transla~-
tionel motion, combining axial and lateral movement., The most
general motion of a spheroid can be treated by inclusion of the
effect of a rotation with angular velocity L ebout the axis

0 =0, through its centre, say, due to which the disturbed

flow is given by the potential
1 am] “¥
5 a9, (Z )

7= - 1002 Fl) ql(e) sin(omoy) | (2en)” 2t |,

377 2 2 o Sy ax

§

3. The Stokes Stream Function

In flows possessing axlal symaetry, - due to the
motion of a body of revolution parallel o its axis » = it ds
some times convenient to introduce the Stokes stream function ’3;,:‘”,

related to the velocity potential by the equations

‘}”““f,, ¥ 5. B
o g 3l o ]

-é—i-::.- = . P -é—:;c-— :-l"'é‘;" ........-..-(5)

e
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The definition of this function ensures that the flow satisfies
Ty

the continuity equation, and % = constant represents the

stream surfaces (Stokes, 1842, and Sampson 1891). The con=

dition of drrotational flow becomes

- 7~
> =0 o o;oao.:n.ocﬂ(C‘)

Corresponding to the general axially~symmetric solution for the

velocity potential given by putting m = 0 in (2), i.e.
O
¢ gno n(“) ) 3 &-ua'c:nt-'oa(?)

- there exists an equivalent solution of (6) which can be

written as
— 8 a2 (p) aK(z)
l:k - _.:‘?;.‘L.f;> ('1-‘“ )(Z) -‘}) d;l . g;/, ® os'a-(S)

n(n+1

The stream function for a uniform stream of speed U, E parallel

. s 2
to the axis is jéuwr - —éuwlf(%p )(é -1), so that after
superposing solutions we find that the expression
- ‘ B —
- x> ax
Tr 2y /.2 > ’d no 1.
‘gf = 1 (1=07)(£7-1) -’-‘f— n(n+1) S.{u dé + Sy Zf’s

oo neiceny

cessenceness(9)
represents the Stokes stream function for an axial motion about
an arb:::brarj body of revolution, Its surfece has a point on
the axis r =0 (or u =1) so that it is rcpresented by
mi}z 0, The Stokes stream function for the flow about a

spheroid can be found to be given by

, . ao® ()| /;a@ CORI
1 4 2 i ! 1My ii
N = o - “lji 1 - v § e cn ®
;'\m e 7 .

Evidently £ = &_ 1is a stream surface (Hﬁ 0), as required,

L4, XKaplan's ilethod

Keplen (193k) has used equation (9), with 3= and
x° ar® ag®

n n . .
I7 replaced by m an& 7 respectively, to determine

the axial flow about a surface of revolution represented by
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Za.v{‘r = &"Z:‘:M aI‘ U L) i'!htﬁ!!&l!’(ﬂo)
' =0

Expanding the expression for the Stokes stream function,

1 ; o7 o o
éf = hu b+ o fﬂ ng (11)
L (1=07) (8"-1) o n=1 nfn+1) ¥

on the surface of the body as a power series in u  with the
help of (10), and'ewating to zero’the coefficient of each power
of g, = as is necessary if the surface is to be a stream surface

of the motion, - yields a set of linear equations for the unknowms

g

o The multiple of cach term Q)’no in these equations can

consequently be cbtained from a knowledge of the values of &,
in (10)s  As a computational method, it is of practical value
if the given body shape closely corresponds to an ellipsoid, so
that the first few terms of the series of equation (10) are
adequate to describe its shape, and likewise all but the first
few unknowmns ﬁno nay be neglected ‘in the expression for the

potential or Stokes stream function.

Kaplan also describes a similar method appliceble to
the calculation of the transverge flow about the body of rev-
olution, in which a set of Iinear equations is obtained for the
coefficients ﬁn ;, Of the general expression for the corres-
ponding perturbation potential §

g = %ﬁm P (b) @ (8) cos 8 censsecesens(12)

As the flow has no longer an axial symmetry, Stokes stream

function cannot of course bé employed,

i more convenient computational method for evaluation
of the coefficients ano in equation (11) has been independently
suggested by R.H. Smith (1935)8 it is simply to substitute the
values of the cozrdjnates of m chosen points (Pgn,pn) on the
body profile (Y =0) in (11), and by neglect of all bub the

first m coefficients 52510, 52'20, cess gmo’ to obtain n



O

non~homogeneous linear equations for these coefficients, which
can be solved by usual methods, The knowledge of = form of
relation between 4 and p  like equation (10) assumed in
Kaplan's method, | is of couﬁ:‘se umecessary to this technique, but
the accuracy of both approacllles is alike sensitive to the choice
of the position of the focl of the coordinate system relative

to the body (see page 21).

. An alternative and later suggestion by Kaplan far the
solution of the longitudinal flow involves an extension of the
use of special coordinate systems, and brief details are given

in the next section,

5+ The Use of Generalised Orthogonal Coorgdinates for Axially
Symmetric Flows, (Xaplan, 1943)

An axial flow shout a body cen be described by treating
@, the velocity potential, as a function of the cylindrical
polar coordinates (r,x), Suppose however we now treat x and
r as if they were rectangular, or cartesian , coordinates of a

planeg then the equation of continuity for ¢,

e réﬁ> +§____ r%g>=0,
x

or or ox
< S

may be sald to be the two-dimensicnal form of the egquation

Va (ri?g) = 0O,

valld in two dimensional space for all values of r and 3’;'.
It may be noted that we can suppose @ to exist for <7 0,
by analyticel contimuation, as an even function of re If a
new set of two~dimensional orthogonal coordinates (8,m) is
‘ :inﬁroduce& to replace the cartesians (z,r), the contimuity

equation becomes

where ds® = ax° + dr° = h1da2 + hgdﬂz.
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In particuler, if the transformation is conformal, i.e,
r + dir = f(E_; + i’q), 000‘!90,«0"‘(13)

where I is 'some specified function different from a constant,
then h,! = h2 s S0 that the continuity equation simplifies to §

o (%), L (L), ~ e
3 (I' ag + a']’] (I‘ 6"(]", =0 , 04:1:-;.:.:1&!1\“)

Iet us choose the transformation of eguation (13) so
%hat the region external to the contour in the (x,r) plane,
representing the meridian plane of the body, meps into the upper
half-plane, m >0, This nay best be effected by mapping this
region of the (x,r) plane onto that exterior to a circle »

§Z§ = Ry in the Z-plane, by a conformal trensformation

a1R2 aZR_D
X 4+ Ar = Z + aOR + Z + Z2 + aew » slcaooqao(qs)
and then placing
Z =R SXp L:'i (E.; + iﬂ;} ® : . cepv;co'o.vc('!é)

The coefficients in the series (15) may be determined by
Theodorscon's method, We have seen that g is an even function
of r, so that accordingly, the contour representing the body
profile in the (x,r) plane is syrmetrical sbout “he x-axis s
and consequently the coefficients ao‘,a,l 3855 ees Will be real,
Seperating (15) into resl and imaginary parts with the help of

(16), we find that

w— -

x:Ranosikao—ka,iemoosE*.M! :}
Iy

r==Riel gin E + a,}e""ﬁ* sin £ + aze'-zﬂ gin 28 + ..:j}
- vesevsseansa(17)

The boundery condition satisfied at the surface by the perturbation

potential (@') in terms of the conformal orthogonal coordinates

(8ym), is given by

o, =

" = vy a’f} 2 on 1M = 0 » g.a."&lb‘0¥(18>
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where u{ -

turbed stream, in the direction of its axls of symaetrys at

is the velocity of the body relative to the undig-

infinity 5@' ' must tend asymptotically to a constant value, and
so this describes its behaviour as m=—2z¥, The simplicity of
" these boundary conditions is a result of the special ohoiée of
coordinate system, and leads to an iterative process of solution
of the differential equation (14) involving only simple quadra-
tures.

The substitution of the expression for r  from (17)
in (14) gives the equation for the perturbation potential in

the form
. o [a2g* 3°g: , Yk
sinh (n=) )sin £ a2 +=%5-| + sinh (=X )cos & SE
22 am _

+ cosh (n- X )sin & —g%,
L S B 2@: 225_:
S T (n+1 )anin(nM JE (a 5= + 2 2>
: fes 0% on

+ (n+1) cos{n+1)g %g—i ~ (n+1)sin(n+1)E %%-’- s seseses(19)

X 2y o
where 2/ = log 2ys and 2&1 bn € =a 4o

boundary condition (18) can be expressed as

Tikevrise the

. £x}
1 ! y o~ T ' ”""”3
gg—i = 21,;@,}35{ sinh 7\ cos & "‘?fi (n+1 )bn e cos (n+1)E] (20)
M 1"(}:0 o n=1 %

o -

&.

A solution of (19) subject to (20) is sought by putting
)

ﬁ’z;ﬁ*‘j en,
n:On

and equating the powers of & on each side of the equations,
Kaplan, in this mamner, arrives at the differential equations

for ﬁo s $Z(1 and 5252 and their appropriate boundary values on

mn = O« These equations he solves by separation of variables

after introducing new independent variables cos £ and cosh(n~f.),
which render the separated parts of the homogeneous left~hand-side

of equation (19) solveble in terms of ILegendre functions. The
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solution for ﬁo is for instance, found as

gjo =-u R(eﬂ: -1) P?(oos E;)Q? gicosh(n-}fli /Q:]] (cosh ),

but the expressions for Q’,‘ s ,dz s sse Dbecome increasingly involved,

The value of Qfo is by itself sufficient to describe
the flow about an ellipsoid of revolution when £ and 1 can
be identified with the semi-elliptic coordinates used in the
classical treatment (of section 2), As an application of the
general method, Kaplan considers the axial flow sbout a body
whose meridian section is of the form of a symmetrical Joukowski
profiles The resulting surface velocity distribution obtained
is practically indistinguisheble from that cbtained by Kaplan's
earlier method, but the computations involved are less formidaebles
The chosen body meridian section is particularly suitsble to this
method, as of course it is ‘t“ne result of a well known conformal
trensformation of a circle, The computational advantages are

less obvious for an arbitrary shape,

6o Source and Doublet Distributions

The most profitebly e@loi‘ced alternative technique to
the use of special coordinate methods has been found in the
simulation of the flow about bodies by distributions of singu~-
larities, such as sources and doublets, We shall begin with a
brief discussion of the flow dfascribed by such isolated singu-
larities and then pass on to a discussion of the several methods
developed to find the mamner of their distribution required to
describe the flow conditions sbout an arbitrary but stipulated
shape of body,

The velocity potential and Stokes stream function of
the three-dimensional source at the origin is given in terms

of cylindrical coordinates (r,x) by

St
we p

ﬁ“—-’- -‘-—.‘&*T s i = “"":_‘n}z{“""? & ia‘.t!!(g’l)
lg.vc(rz—s‘xz)? {! lm(r?'-f-xz )2
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The equivalent expression for a double source or doublet may be

obtained by differentiating with respect to x

-

s e 2
ige” g = S o 3 i‘y = ..__...‘..l.'.‘f{__r‘__._._:ﬁ ; "..“(22)
o 9. 0/2 o 2°/?
Lr(r©+x®) b (rax")

and corresponding solutions of higher order singularities, or

quadrupoles, may be easily found in terms of ILegendre functions

as s .
n )
1, 2.2, Y270
= ()"0l (Se®) BI=E)
n s o !
r2. 27
¥ xTar /
e y, forn’»0;
- -
e (1) (n=1)1 (x2+r2 T P:l rae iR B
B x“x({xg.{brg’} J
()
L 2
_ 2 2y 770 [ x / 17
525 = = (x4 ) -—(n-m )§ gjﬂmw'Z\ J ( 1’1“1)-{
, RS (fo.cn«*-fo.
(o)
gt N 2 b
i 2 2 X i
1}5:: - (x"+%) r Qz(nﬂ)} .émré\} j(-‘n}i E
VxS II o
‘...Q..'.‘.O(zﬁ)

By superposition of sources and sinks in a uniform
stream the axially symmetric flow about various closed bodies
of revolution can be simulated., This was first suggested by
Ranline (1871) and the concept was elaborated by D.W. Taylor
(1894)s A single source in a uniform stream produces a flow
about the so-called Blasius-Pubrmann half-body(fig.2). The addition
of an equal sink downstream of the source serves to close the
streamtube representing the body. {(For any closed body the
algebraic sum of the strengths of the enclosed sources rmust,
of course, be zero.) Fuhrmann (1911) computed several bodies
using continuous axial distributions of sources and sinks, Thus,
denoting by qx) the density of the source distribution per
unit length along the axis (r = 0), in the interval -l x K,

the potential and Stokes stream functions of the resulting flow



.

are evidently given from equation (21) by

§E+Z ) §s+l /
g = :_1_, : wq(’c dt . {i{‘f“ :[:: (e=t)alt c}j:;
bﬂ V=1 ;wgvx-t)z + rigz . Jnl t{‘x-t) +r?_§2

Fuh:c"nemr employed a step function or a piecewise linear function
of x for q(x). His method can be shown to be equivalent %o
the superposition of a discreet murber of singularities of the
type given by (23) with n= -1 and n == 2§ for we note,
for instance, that the potential due to a finite line of sources
of uniform density is propbrtional to

17

i

mdt po cc)sh“‘I {5') - czoshm1 {.29'.'..1.\
2 2i2 o , T/
40 L(X—'t) 1

i
E .
fooox o) Xx=-1
Q5 ) - QO ‘}
Olhfxz + o OCJ (x-l)2+r2

&

[t

Recently, the Rankine method has been applied by
iunzer end Reichardt (1944) to obtain bodies with neerly uniform
surface pressure distributions g the technigues employed appeaf
to be essentially peculiar to fhis problem, but certain general-

isations have been suggested by Riegels and Brandt (1944:) o

Another development of the use of source-sink distribu-
tions has been initiated by Weinstein (1948) who considered the
body shape generated by axi=symmetric source-sink distributions
on rings, and over discs and cylinders, The fundamental solution
is that for a source ring, the Vo‘chers being obtained by super-
position, Weinstein enﬁployed an operational approach in his
analysis, representing the velocity potentials and stream
functions in terms of improper integrals involving Bessel
functions. Sadowsky and Stervberg (1950) have considered the
alternative approach, using eliiptio integralss it may be shown
for instance, that the potential of thé source ring of total
strength n, situated on » = a 4in the plane x = 0, is given

by

g_ = 1 ’ Lar \?

) };2[ K\in«x—(m-a)z/ o emeeneee (B0

i

N

g
252 i;_c2+(r+a)

-
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where K 1s the complete elliptic integral of the first kind, »

Although flows obtained from distributioﬁs of source
rings involve in their analysis considerable complications, it
is possible by their use to simulate the axi-symmetric flow
over a far wider class of body shapes than is possible merely
with the use of axial distribuﬁions’of sources, Thus, a source
disc placed in a uniform stresm produces a flow sbout a body {(fig.
2) which has a much blﬁnter nose than is obtainable by any
axial distribution of sources (Van Tuyl, 1950). The assumption
that the axial flow sbout a certain body of revolution can be
simulated by a line distribution of sources, or of any other
single type of singularity, implies an analytical contimuation
of the flow into the interior of the body which is only possible
if the body shape satisfies certain conditions, It precludes,
for instance, the consideration of the flow sbout bodies of
revolution with discontinuities in their surface slope, On the
other hand, it has been showm by Lemb (1879), that any continous
acyclic drrotational motion of an incompressible fluid can be
regerded as due to a distribution of simple sources over the
boundaryy in particular, therefore, a surface distribution of
source rings exists which would simulate the axi-symmetric flow
past any body of revolution, whatever the shape of its meridian
scetion,  The method of von Karman, outlined in the next section,
is based on the representation of the flow by axial distributions
of sources, whilst that of liss Fligge-~Lotz (scction 8) employs
the less restrictive, but more involved, snalysis of source ring

distributions,.

7« The llethod of von Karman

tle have mentioned sbove some indirect methods of
obtaining the flow sbout bodies using stipulated singularity
distributions, The direct problem - to determine the dis-

tribution of singularities which will simulate the axi-symmetric
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flow over a given body appears first to have been assailed by
von Kerman (1927), ,

’ For a body of given meridian shape, an approximaticn
to the axi—-symmetric flow dbout it is obtained by subdividing _Y
its axis into a finite number of intervals, along cach of which
a cils tribution of sources of constant density is assigned, The
profile is thus simulated by a finite number of axial source
lines, the potential and stream function of esch being obtained,
as before ,‘ from the use of the relations of equation (23) with
n=-1, Thus, superposing this distribution on a uniform stream,
the stream function of the resulting motion may be quoted in
the form

- ol ks
'[%5 - %"“fx r2 + -117—{ .ﬁf_., % fL +(x=-x ~lk)2§ a~ E_2+(X_xk)i§2},

k=1 —

et

where % is the density of sources per unit length assigned to
the segment <X H + lk' The value of m{jﬁ»}” on the body is
the same as that on the axis r=0 upstream of the body, i.c.

yes (qulk) » 1in particular, if the body is closed it is zero.
Thgs if ‘1}(}” is equated to this value at m prescribed points on
the surface (taken at x = Xk""%zk) where the value of r is
knovm, a set of m non-homogenecus linear equations for

Ay spseead, is obtained, which can then be solved, The process
nay be made as accurate as desired by increasing the number of
intervals, although such refinement is only obtained at the
expense of greatly increased lsbour in the mmerical solution?
nevertheless 1t is the best known, and most frequently used, of
the direct methods, Von Kermen's method in application to the
flow over bodies at incidence is described later. ilodifications
to his methods have been recently suggested by Bilharz and HBlder

(1947) and Wijngaarden (1948),

8« The llethod of Fligge=Lotz

The most important alternative source distribution



method is that originated by lirs. Flligge-=Lotz (1931), which
- employs a generatlion of the body by a distribution of sources
over its surface, Ve have noted that this representation
avoids the restriction inherent in using an axial distribution -
that the latter is possible only if an analytic contimuation of
the flow into the body exists which is free from singularities
except on the axis, On the other hand, the method of irs.
Flllgge-~Iotz, although applicable to any type of body, has the
practical disadvantage of requiring much greater leabour in
computation,
The potential for a surface distribution of sources

can be obtained by superposition of a contimous distribution
of ring-sources, so that using equation (2L), the perturbation

potential of the motion can be written as

+1 o
gro- q()x(x") at
T NN iz’
Tl dx-t) +(r+a)w;

e

£
;ﬂ“[ E ‘“(‘x~’c)2+(r+a)§]§ .
i -

2

where k Lar

if

q(t) is the source intensity per unit axisl Length in the plane
x=t, and a = rw(t) is the radius of the body at x=t, (where
{t] < 1 on the surface). The boundery condition to be satis-

fied is that, in an axial flow of speed U 2

.ég.l.._u -é-}-{.

om £ on

The algebra involved in finding the normal derivative of the
potential is a little tedius, and care needs to be exercised,
but this boundary condition leads finally to an integral

equation for q(t) 3

—~ 1
a(x) = T T
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where k° and a ere defined as before s T =r (x),

T o= %x" rw(x), and D(k.z) is the complete elliptic integral
an/2 5
sin 6 39 ,
Jo (1-k%sin6)2

Vendrey (1953) has done much %o reduce the work
involved in the mumerical solution of this type of equation,

He suggests an iteration scheme of the type

:é‘ f(x):

it

q,(x)
£ '
7 4 g (e 2G5 g (6)K(x, 8)at, (n=1,2, 000 )

i e
1/

H

- a,(=)

supposing that the integral equation is of the form
a(x) = £(x) + j a(t) K(x,t)at,

to vhich (25) plainly corresponds, The main difficulty of this
scheme of iteration, which Vendrey finds rapidly convergent, lies
in the evaluation of the integral which involves the complicated
kernal shown in (25); to aid this evaluation, Vandrey derives

an integration formula of the type

gQ(t) K(x,t)dt = z Pm‘Zi(tm> K(X’tm)’
5 m

for which he calculates the weighting coefficients taking proper
account of the singularities in the kernel, by sulteble trans-

formation of the varisble of integration +t.

Por full details, the reader is referred to Vandrey's
paper, which contains computationel instructions and programmes.
However, to quote the author, 'the work is still so laborious
that a single computor is likely to get tired of it'. Neverthe-
less the accuracy is high; for a spheroid, for instance, the
calculated surface velocity is prectically indistinguishsable

from that obtained from the classic theorv.
A 5

If the body is slender -~ with a large (length/dismeter)

ratio and small surface slope - then the local source surface



density is proportional to the local surface slope 5 Or more
precisely,

A=) =5 q(x) = 2m worl = u) S1(x) sereseenana(26)
This result, which has been shom by Ward (1954) to ‘oe"\ true for
‘all types of slender body (and not merely bodies of revolution),

is one which we shall frequently meet in the ensuing pages.

9« Doublet Distribution ilethods

Other attempts to solve the direct problem have been
made using eaxial doublet distributions? such a distribution can
be easily shown to be equivelent to a continuous axial source
distribution, with the addition of a finite muber of simple
sources or sinks at the points of discontinuity in the doublet
distribution (such as its end points), Plainly the method is
therefore of slightly greater generality than that proposed by
von Karman,

The stream function describing the flow due +to +the

axial doublet distribution placed in a uniform stream (moving

parallel to the axis) may be found from equation (22) in the

form
4 2 22 m(t) dt
&_Eumr T =, T15/2 ? (a<C®) ,
Joa e (x-t)7)

o
i

On the surface %f = 0, so that the doublet intensity may be
found by solving an integral equation for m(%)2

nb
3 m(t) at

X_t)ﬂyz =T

u&,‘ s 0!‘00&0'0‘!0(27)

o

Ja |22
Of the various methods of solution of this type of equation
which have heen suggested, the iteration techniques due +to
Lendweber (1951) appear to be the most satisfactory, The
successive approximetions m, (x), mg(x), etcsy to the value

of m{x) are constructed by using the itération formmula
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B () =m (x) + 5 rw(x) P, g = i =372
[ o a i T (x)»t»(*c—-'t)z

,,i

The co,n.ou’ca't:.om are most conveniently carried out in terms of
the differences be‘meen successive approximations to m(x) s wnich .
also furnish a measure of the error at each stage in the DIrOCESS o
Two methods of integration are suggested, one semi-graphical, and
the other completely a:c'lthnetlc » but both involving the use of

Geussian quadrature formilae.

As the first epproximation to n(x), Iendweber uses
a variztion of doublet intensity in rroportion to the cross-
sectional area ré(x) s Which is equivelent to the slender~body
approximation of equation ( 26), In application to bodies with
bluff noses and tails, a slichi: modification to this approximation
is suggested, so as to give the appropr:.atc values to m(x) at
the end=points x=a and x=b of the doublet distribution, which
can be calculated independently, Iendweber shows that for such
bodies these end-points do not coincide with the extremities of
the body axis, there being a small length of the axis at the nose
end at the tail over which the doublet intensity vanishes, A
prior knovledge of the extent of these regions greatly increases
the rate of convergence of the successive approximations, and
their accuracy. ILendeber shows, for instance, that if the nose

of the body is, sey, at x=0, and if

70_"2(:_} = 8(x) = 3'(0)x + & s (O)xz +%

A

ST(0)%” 4eves

then a good approximation to the lower distribution limit &

at that end iz given by

!
!

i..s

o)

2= 87(0) [ i+ 387 (0) + L 81 (0)s (0]
ot 4
F

]

h

F

¢ dominant term a= L S’( 0) corresponds to a point half-way
between the centre of curvad cure of the nose and the nose itsels,

Figure 3 shows the results of (28) applied to the spheroid in

comparison with the exact theory,
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Hore accurate data for the determination of the distribution
limite will be found in Lemdweber's paper,

Such data are also of use in other methods employing either
doublet or some distributions along the axis, For instance s
Keaplan's early method (§4) can be shovm to be equivalent to the
similation of the flow by a source distribution extending along
the axis between the foci of the chosen system of semi-elliptic

coordinates, whose local intensity per unit length is

P
i

g , (0]
A = -2 2 A B

in the notation of equation (11): a knowledge of the proper
Limits of such a distribution therefore leads to the appropriate

choice of the positions of the foci.

10e Sihmulation of the Flow by Vortex Distribution

Any contimuous irrotational motion, whether cyclic
or not, of an incompressible fluid occupying a region extending
to infinity may be regarded as due to a distribution of vortices
Jover the interior boundaries, provided the fluid be at rest at
infinity, This theorem (proved by Lewb, 1879) provides an
alternative model to that of surface source distributions by
which one may attempt to simulate the axial flow about a body of
revolutions, The perturbed flow in this particular case may be
obtained by supposing the surface to be replaced by a contimious
distribution of vortex rings, enclosing fluid which is at rest
relative to the body, Now a vortex ring of circulation \fds
in the plane x=0, and of radius r=r = produces, in particular,
on the axis r=0 an axial velocity

. ! a'f % 3/‘?‘
2 \sj&S 5 ixz + 1’2 L]

i
T X
2 \ W/

w

as 1s shown for instence, by Sadowsky and Stemberg, 1950), Thus
3 b

the resultant axiael veloclty due to a distribution of such vortex
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rings extending over the surface of a body, r:rw(x) between

X =+ ly may be cbtained by integration in the usual way. But

the fluid velocity on the axis is equal %o the velocity of the k

body, (Q:c, in other words, equal and opposite to the free stream

velocity, u.., relative to the body)s  Thus

EEY

g i \f(:c) rr(:«:) ; as i

] } — 754 T—dx=-2u_, for all Wi« I,
iiww}h- +rW XM} - ocoooooo-not<29)

where V(xz) dis here the circulation per unit distence along

the body surface, designated by g, so that

}{1 + g‘;:*;(x.)‘]‘?;} ¢ dx o
“Q:' S P

Thus V'(x) is in fact the fluid velocity at the surface, and
(29) is an integral ccuation for V(x) if the body shape is
knovwmn, |

To find the complete flow field away from the body
would require the evaluation of the velocity components induced
at an arbitrary point by the vorticity cﬁistribu’cion thus obtained,
and this would involve some difficulties., But in problems where
only a distribution of surface velocity is required, the solution
of (29) gives the desired information more directly and rapidly
than any of the other exact techniques rroposed,

Lendweber (1951) obtained the integral equation (29)
by applying a Green's function method to ﬁhe solution of the
boundary value problen for the potential, and he has suggested
a method of successive approximation to its solution which is
identical in principle with that which he employed in solving %he
integral equation for the doublet distribution (given by equation

(27) in the previous section),
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1. Slender Body Theory

The methods so far described have becn exact in the
sense that generally any desired accuracy could be achieved by
their use, for the expenditure of sufficient labour in compubas-
‘tion, always provided, of course, that the body is appropriate
to the assumed singularity distribution. However the labour 5
in most instances, is so heavy that other methods have been,
and con%inué to be, suggested, where approximations are intro-
duced into the analysis at an early stage, providing simplified
computation at the expense of rigour and ultimate ACCUracy e
The cholce of the level of compromise, thus introduced, will
depend of course upon the particular application of the results
enxfisageé. by the investigatorj but it often falls in favéur of
the simplified techniques, The inherent approximation in
nearly all these methods has been {hat the body is slender , and
it has been appreciated, in the course of +time s that they can
all be absorbed into a generalised and rigorously developed
single 'Slender Body' theory, which is the subject of the
present section,

This theory is one in which the properties of the flow
over a bod;r, whose radius is small compaied with the length, are
discussed by expanding these properties as a series :Ln terms of
the (radius/length) ratio, It is appliceble %o all types of
flows, =~ those due to lateral, axial or curved mo*cion,- - and
to '\,’*arious‘ types of pointed bodies}y for instance, we have met
it before in terms of the theory of R.T. Jones for Slender
wingss We shall here a‘%‘bemp‘t a general statement of thé theory,
deriving 1t by the method of operational transforms ini'tiatéd by
Woard (1949) in relation to the supersonic flow problem, and
extended by Adems and Sears (1953) to the present problem,

¥

We define the Fourier Transform of the rerturbation

»

by

velocity potential as g that is
‘ e 72

P (r,0,x)e dx, saye(30)

o
S

W

, - 1 :
= §u (ry6,p) = L ;
| (2m)?

=



“Zlym
The resulting equation of continuity then becomes
19 a8y 1 %8 2«
&R L4 - S
r 290
using the boundary condition that @' and 535;: vanish at x = +:2,
A solution of this equation by separation of varisbles, including

the appropriate condition at infinity, yields the expression

o
¥ = 2 % (llr) § (p)oos | n6+‘“ﬁ (p)i @, = 0),
n=0 © n °©

0900000000-0(31)

where K - is the modified Bessel function of the second kind
and the §n 's and Qn 's  are srbitrary functions of D

On the body surface Iplr is a small quantity of general order
of magnitude r/l , so that in examining the behaviour of @'

or @_ s on or near the body surface we may replace the Kn’s

by their asymptotic forms?
2
X (e}~ §(n-1)} ( 3 11 +€)(s )f , (n=2,3,000),

X (s)m-g- il +@(s log Sﬂ ’
= sonfm@-10 0@,

where « 1s Euler's constant, Substituting these relations

in (31), for r—> 0

i r/ (
T P e
+ 2{ n-.1 @(P)COS} 6+On( g ‘ ‘u!if:(r?legr);.
n==1 p - < -

The Fourier transforms having served their purpose we revert back
to the varisble x by teking the inverse treansform of each term,
giving from (30) for r—30,

:::3{‘5

gra

L 1o (5) + g0 >

on 21, *

o — -
gﬂi}) cosl | n0+0 ( iz E,ﬁ(* log r) %,

n~1 X
OQ.C‘U‘I’..‘(32)

{a»-./v".m

where %}Ic‘ a(x) is the inverse transform of é;(p)_, and the
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functions @ (x), 0 _(x) can be related to 4 _(p), [ (p),
n'"’? n ~n n

although the precise nature of this relationship is of no con-

sequence, An exception is the value of ﬁ (x), which is the
inverse trensform of } log {’

5
} -y

L« x}pﬁ Z
calcula’ced using the product theoren for transforms, as

@ (p) 3 this can be

R A
Sgﬁ(X“'t)q_’(t)lOg ;%ﬁ‘é dt. qae#ct(}f})

)
-

S I
g, = JS

i
]
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Equation (32) shows that the flow nesr the body in
transverse planes x = constant is a two-dimensional potential
motions In particular, the asymetrical flow terms (n = 1)
are independent of conditions up or dome~stresm of the transverse
plane considered, and it is these terms (or, to be precise,
merely the first of these terms) vhich determine the flow due to
a lateral motion of a slender body of revolutions +the implica=-
tions of this fact will be considered later (see 815), However
we are here concerned with the terms independent of © which
can be expected to describe the axi-syimetric flow due to a
longitudinel motion of a body of revolution., This flow does
not conforn to the independence principle as the term ¢O(x),
and so also the longitudinal éomponen‘t of velocity, wu, depends
nesx the bocly on the variation of ¢(x) for all values of X, 2as
is implicit in equation (33),

Now q{x) describes the local density of a flow
singularity on the x-axis which can be recognised as a séurce
distribution, and its value may be readily found., Iet v 5T
be distances in the plane x~constent measured along the outward
normal, and along the circumference of the section of the body.
The boundary condition to be applied at the surfece in axi-

syrmetric flow shows that

~---—(\m., ) 1+@(rz r]

where iv is a length characteristic of the body radius., But
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using Gauss's theorem, equation (33), and this condition in turn,
(3 B ?

we have for a “jody of arbitrary cross-section c,

) Nan

i ¥ 3 !

| -S%—awj o= o) )

Wic w0 L ive. alx) = Uy SH(x),
P {
TN 4 ,,,......u.(ﬂl-)

where S(x) is the area enclosed by the local cross~section,
-l , D

The error in this derivation is again of the order (r\/ 17)e
This result can be of course obtained in verious other ways for
a body of revolution, and was given esrlier in cquation (26).
Ve see that the source density q(x) can be a discontinuous
function, 111 which event the integral in (34) must accordingly
be interpreted in the Stieltz sense, In particular, if S'(x)
is continuous for Exl <1, and zero elsevhere (describing a
body whose axls extends a distance ! on either side of +the
origin) we £ind from (32), (33) and (34) that on or near the

body surface the perturbation potential of the sxisl flow is

——

. +1 ‘ : S '

R Ve)oqt W S (x) 1 Y

P T = g“{) S (£) at + & log( ,i._m }{f §~j+?_¥(rzlog ),
g U =1 ,xf-tf 2% o¥ 12~:c2 fi}

QOVO'CQOQOQOQ(EB)
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provided that Ix} & 1,

In some exeamples, (where, for instance, the cross-
sectional area of the body is given by a polynomial in x), it
is convenient to express the variation of S'(t) in the form of

a Taylor series
(X

S1($) =7 %T s(“*q) (x) (t-x)"
n=0 °

and supposing that a term-by-term intesration is permissible
M ar E »

equation (35) becomes

r
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The longitudinal perturbation velocity u'! is ’cuor\ »‘iven by

!
5% » and so on performing the differentiation, e Tind that
£

U,y e n
v 2y () ()
where I = -1;1-_1_—2- i(xa-l)ﬂ -2 +( “...,l% s (n#2),
I i
and 12 = 10{; gé:LZ“’:ZEE"l ?" 2 llOl‘Cﬁl.#*O(56)
] ]

This result was cstablished by Taitone (1924.7}, using an aprrox-
imate method based on the axial source distribution, end later
independently by Neunark (4 950). There arc of course various
weys in which the results of Slender Body theory may be deduced,
but the operational =pproach can be rea adily exte nded to hig gher

orders of accuracy, if desired,

12+ The Inverse Problem

The determination of the shape of body having a
prescribed surface velocity distribution is a problen which has
eluded exact solution. M approximate approach due to Young
and Owen (1943) is however of interests its original treatment

25 based on a simplification of the early work of Kaplan s but
it can now be recdgvised as en approximation to Slender Body
theory in which the longitudinal perturbation velocit ty on the

body is written as

50

'U,' F= """"""‘ 10 {'Zé:"“ S” (K) > anoaw..ovl.é(}?)

NN

1 . . .
where 5 d is the meximu radius of the body, The *erms
o 2 ;
preserved are of order (r“log r) on the body, whereas for
instance equation (36) shows that those neglected are of order
2

r » Thus the approximetion is a crude one, but nevertheless
it provides o very ropid means of finding the cross-sectional
area distribution corresponding to a given type of variation

=3

of ul!, which is at least qualitatively significant, To
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this approximation’ the spheroid is the bécﬁ’qy’ of revolution which
has a uniform surface velocitys again, in figure &  we chow
the exact surface velocity distribution (calculated by the vortex
distribution me'thoci} about the shepe of body derived by this
means so as to give a uniform favoureble velocity gradient over
the body length. The approximate method will be secen %o provide

some guide to the shape required,

13+ Sinsularities representing the Transverse Fliow over Bodies

of Revolution
k'l”‘he incompressible flow over a body whose axis is

inclined to the direction of métion can be cbteined, of course,
by a superposition of the flows due to the resolved components
of longitudinal and lateral motion relative *to the axis. Ve
have noticed this carlier in the solution for the votential of
the lateral flow sbout en ellipsoid, (equation (L) ), and in the
expression of Kaplan f‘or‘ the potential of the flow about a body
of arbitrary meridisn~section (equation 12), Kaplan's method
of calculation of the transverse flow (i.e. thet due to a motion
perpendicular to the body axis) follows the lines of the approach
he used in evaluating exially syrmetric flows. In fact , in
meny instances analogous treatments of transverse flow exist
which follow, in their analytical and computational developnent,
the corresponding methods used by investigators in their treat-

ment of the axial flow problem,

| HMeny of the singularity distribution technicues cen
be applied to the calculation of the transverse flow. Thus s
whereas axi=symmetric flows can be determined by an axial dis-
tribution of éources s Or more generally of doublets (with the
doublet axes lying along the axis of syrimetry), transverse flows
may be simulated by the superposition along the body axis of
doublets =~ whose axes lie in the direction of the relative

lateral motion. Assuming the motion to be parallel to the



z=axis, say, the potential of the doublet at the origin whose

axis lies in this dircction is dbtained from elementary principles

as
g = i _ ilr cos @
) 2 2 2.3/2 2 2,72 °
bz 4y 42 ) La(r©ex®)

Such a doublet placed in a uniform stream parallel to the z-axis

produces a spherical closed stream surface,

A undform distribution of such doublets along the
camplete x~axis sizmlates in the seme uniform stresm the flow
apout an infinite circular cylinder, the flow in any transverse
plene corresponding, of course, to that of a two~dinmensional
doublet, & uniforn seri~infinite distribution of such doublets

along the positive x-axis s produces a flow given by the velocity

potential
cos © r X mi
ﬁ: 27"\1" 51 '5‘“%“\':;:‘. s 0‘::’...!1‘&(38}
L )R

which will be recognised as the potential of an infinitesimal

Qs

horseshoé vortex,

However, the use of axiel singularity distributions
is restricted to certain bodics s &8 In axi-symmetric flow,
whereas the acyclic flow about any body can be represented by
a surface distribution of sources, as we have noticed before.
In application to the lateral flow over bodies of revolution,
such a surface distribution cen be made up from source rings
each with sinusoldal variation of source density. Consegquently,
solutions can be developed by analogy with the methods initiated
by lirs. Fllzge~Ilotz for axial flow (in vhich source rings of
uniform density are used), If +the source density is assuned
to vary as (cos 9) round the circumference of a ring, of
ra¢ius g in the plane x = 0, the potential may be calculated

from elementary considerations of superposition asg

¢ - 4)§i_r cOS o 3/2 C(l{ ) 3 .‘.“..‘.""(}9)

= &2 (z'+a)i%

-
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where k° = har | %x k(r+a) as before, and C(k") is the

l";;’t/ 2" .

H
. 2 2
% sin 9 cos © -
ab .
| 5 > 3/2
i 0 (1=k° sin®0)
This expression for @ may be compared with that for the source

ring of uniform density given by equation (24),

1hs The llethods of von Xaruan and Pllgse-Lotz applied to the

Determination of Lateral Flow

Von Kearmen's method for axial flows depends on a
simulation of the flow by a superposition of a discrcet nuziber
[ line sources, and in application to lateral flows it depends
on & superposition of a discreet number of line doublets with

lateral axes., TFronm (58), the correaponding velocity potential

of the laterel flow is thereforc of the form

where Yy is the doublet :mtensrty per unit length assigned to

the segment xk{ x< ‘XZ{"Zk s & where the term w,,r cogs 6 denotes
the free stream potentisl, The velocity components v and u
may be found in a similar form by teking the appropriate derivas
tive of @, end the boundary condition to be satisfied at the

4

o the surface

-

surface 1s that the normal component of velocity

vanishes, which is that

o H
= :‘L“‘*“’q— = 03 cr v =Ul13 » Q.'tot{ll—o)

on i 51z r w

_,j +(I'Y’;f) j

where I‘.;] denotes the tangent of the angle of slope of +the
meridian section relative to the body axis, If this condition
is satisfied in one meridisn section 0 = congtent, it will
evidently be satisfied at all such sections, as v, end u both

vary in direct proportion to cos O 3 thus the boundary condition



may be satisfied by equating (vr - urw) to zero at n points

'
of
on any meridian line of the body, This results in a set of
n non=homogeneous linear equations for the n unknown values
of Yis Which may therefore be calculated in the usual manner,
An analogous treatment to ifrs, Fllgge~Lotz's technique
for axial flows consists of the represer;‘bation of the flow by a
surface distribution of sinusoidal source rings placed in a
uniform lateral stream, yielding a valué of the velocity

potential which can be calculated from (39) as

f‘s+bl 5
v(t) c(x°) at,

-1 §2x~t) 2+(z'+a) 213/

[ae

g =w rcos@—:«é—-roos@
& ﬁz

i
i

—

= Lar f{(x~t)2+(r‘+a)é} s and a = I'W(‘t).

LN

with k2

The normal derivative of # ot the surface needs care in its
evaluation, owing to the surface singularities, but the boundary
condition (40) can be expressed af‘te:i' rerforming the necessary
algebra as an integral equation for +(t) which is, in all
essential features, similar to that expressed by (25)s The
methods developed by Vandrey (1954) for the solution of that
equation are therefore directly applicable to the one above 3
and involve the method of successive approxination previcusly
ciescribed. Full computational details are to be found in

Vandrey's paper,

15s The Tateral Flow sbout a Slender Body of Revolution

Ve have seen that Slender Body theory is applicable
to the flow due to any type of motion of a slender body, and
therefore in perticular it will be applicable to the lateral
flow about a body of revolubion provided that it satisfies the
requirements of slenderness, The general expression for the
perturbation potential on or near "che body is given by equation

)
(32), where terms of order r~/ 1° are neglected compared with



unitys to an equivalent degree of approximation, the boundary

condition to be satisfied at the surface is found from (LO) as

et

@ﬁ: .
3 b W COS 6

Such o condition is met by supposing that in the expression for
the perturbation potential all terms vanish except that involving
cos 0, and so we find that in accordance vwith the boundary con~
dition,

P p—

WzﬂS(X) CéS 5] g..j +@(1"210gx:‘2“% c:-oa-wt:oo(iﬂ)

wr

g ! L

This remerkeble result expresses the fact that the flow may be
approximated by a doublet distribution along the axis whose
intensity per unit length varies Jocally as the body cross-—
sectional areay an equivalent variation for a doublet distribution
in axially symmeiric flow hes been already noted, | But more than
this, in any plane normal to the body axis, the lateral flow
perturbation potential, and so the perturbation velocity, depén&s
near the body only on the local surface shape, and is independent
of upstream or downstresm conditions. In other words, the lateral
flow may be adequately approximated, in any given transverse

plane, by en appi‘opria‘be two~dimensional motion about the

infinite cylinder of the same local radius placed in a uniform
stream, This 'i‘epresen‘ba‘cion of the flow seems first to have

been used by Munk (1934), in discﬁssing the aerodynanmic forces

on airship hulls, who derived it on the bhasis of vhysical

reasoning,

16, The Pressure Distribution about Bodies in Steady
Rectilinear lotion

The discussion so far has concerned itself with varicus
ways in which the potential flow mey be calculated, Broadly
speaking, the methods discussed fall into o categoriess

<

(1) those in which an integral equation is solved
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to give a source or doublet intensity (the methods of Flligge-
Iotz and Lendseber), and

(i) those in which the velocity potential, or stresm
function, is written as a series of terms whose coefficients
may be evaluated (the methods of Kaplan, von Karman, and of
Slender Body theory), The only exception is the Vortex dis~
tribution method, appliceble to exi~symmetric flow, in which
the surface velocity distribution is obtained directly as the
solution of an integral equation, In all other methods, to
find the surface velocity - which is of course necessary if the
pressure distribution is required, - either the velocity must
- be expressed in terms of integrals involving the derived singu-
larity distribution, or the terms of the derived series for .
the potential (or stream function) must be differentiated, In
the former eventuality, the calculations are often simplified by
the fact that the integrals to be evaluated are similar Lo those
of the fundamental integral equation, for which a means of

numerical quadrature is known,

A comparison of the results of the various ‘exact!
techniques, one with another, tells us very little, as - unless
the body shape is so unusual that only the surface singularity
representations are sppliceble, - all can give any desired
accuracy at the expense of sufficient labour in computation,
Vhat is of more interest is a comparison of the results of the
approximate but much more rapid Slender Body theory with those
of exact methods. Such a comparison is tinged by the degree

of 'slenderness' of the body, but a few examples are shown in
figure 5, for axi-symmetric flow,

The pressure distribution is derived from Bernoulli's
equation which can be written in the form
P = Pus
P

where @' is the perturbation velocity potentisl and jxv is

i of A 12
= ﬂ};ﬁ‘m?f - z(ﬁ?ﬁ) 5

the velocity vector of the free-stresm relative to the body e
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Tor a slender body in ami~-symmetric flow we find from (32) that
on or near its surface

~2

%gcrx § +£‘f’(x’ log r),

Anwan

1. 2 U,
zpum L&

where u'y, the perturbation longitudinal velocity, is ziven

P~ Pa ¥
C = —— G’“=-2<E~‘)
P ¥

for instance by equation (36) to the required accuracy. Ths »
in particular, the pressure coefficient on the surface of a

slender spheroid is

2 | 2 1612)]
C = "-"':(2"5 ; o + 2 - log ( ) .o-.oius-uvv(la‘z)
p ll-l *_:””z 5 kY d-“ 4

wnere 4 dis the maximum diameter.

We can compare this with the exsct potential flow pressure
distribution, which can be obtained from the expressions for
the velocity potential derived in section 2. The algebra
involved is a little tedius and we can do no better here than

quote the result originally obtained by Jones (1925) in the

form
. _*p, e
CP - %3 =1 - (1+k2)zsin2a sin’o - u1+k1)cos o cos fB
’é’ “T-':‘.‘ !2
“ +(14k,)sin @ sin 8 cos Oé .
‘»".".“'.(l‘"};)
o
; dQ
. - ,1
where k, == Q°(2. / o
1T ™ ‘w)g Z_
A /]
Ky = = e (;)/-—-—~1/(1+2k)
2 1 %z,
and. t;i = 4;2;’ (41°% = a®),

This applies to a spheroid in a free-stream of speed g},
inclined at an angle o to the body exisy £ is the angular
inclination of the meridian section to the axis, The values
of k 1 and l«:2 will later be identified with the longitudinal
and lateral virtual mass coefficients, and their values are

tabulated on p.4l3 Q? (and Q:) can be identified as Iegendre

(associated) functions of the second kind, For axi-symmetric
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. flow, equation (43) simplifies into the relstion

C

2 2
o 1 - (1+k1) cos“p

4 2 2»“‘«
d X

/(1* 2 2 2){
7= x

[

i

il

1 - (1+k'i)2
f ——

e

This is compared in figure 6 with the corresponding result in
equation (48) of slender body theory, which of course agrees
with 1t only if the fineness ratio is large.

If the flow is inclined at a finite angle a to the
axis of a body of revolution, we can derive from slender body
theory an expression for the perturbation potential due to the
lateral flow, which is given by equation (41), and using
Bernouilli's equation, we can accordingly calculate the surface

Pressure distributions as

CP = (1~I+sin26)sin2a - Zr%(x)cos ® sin 2¢

“2 -
+@(rw 10g I',W) oua-ouvatcdl(z'}li-)

This result is compared with that of the exact theory for a
‘spheroid (equation 43) in figure 7 o As will be seen from the
analogous expression for axi-symmetric flow, - equation (48) s =

he approximation of the Slender Body theory is such that the
pressure changes due to the effect of lateral flow sre of rmch
larger magnitude,

The dominant term on the right hand 'side of equation

(k) is the first one, which is of unit order, and simply
describes a Pressure variation proportional to +that on an
infinite circular cylinder, Being symmetrical it does not,
however, contribute to any lateral force on the bodys such a
force arises from the second term, end acts in the direction of
the resultant frec-streanm velocity component perpendiculsr to
the body exis. It has a magnitude % per wiit length of the
body, say, where we can calculate from (4k) that for a sufficiently

slender body
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= % o‘v"a' sin 2¢ S'(x) ’;’i + @(x‘w log r.{;}

PV X SHe ea(l5)

For a spheroid we find, however, from equation (43) that the

lateral force per unit length is exactly equal to

14k, ) (1+k,)
- (
%‘;—; = % p"“’&%} 12 ‘ 20 sin 24 ooszﬁ? S1(x)  eeellb)

A comparison of the slender body approximation with the exact
variation for spheroids is shown in figure 8 , The result of
slender body theory given by equation (45) suggests that the
variation of lateral force is dépenden‘t only on local conditions
(namely, on the variation of cross-section area), The exact
expression for spheroids in eqjua*cipn (46) differs in the

inclusion of the term ’coszﬁ ~ which is also an effect of local
geometry, as [ 1s the surface slope, - and of the term
%(Hk,l)(wkz); ~ which represents an effect of overall geometry,
nanﬁely the fineness ratio, Now the virtual mass factors for
spheroids are tabulated on p, 41 , and it will be seen that this
product varies monotonically from % for a sphere, to unity for

a slender body, Iittle accuracy is lost therefore by neglecting
this change due to overall geonmetry, and Upson and Klikoff (1931)
were prompted on this basis to suggest that the lateral force on
any body could be expressed merely as a function of local condi‘tioﬁs;
thus, in accordance with the exact theory Ffor the spherolds, we can
put

.
sin 2(1.00323:? St(x),
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P

for a body of revolution of arbitrary shape and fineness ratio,
This result presents a slight modification to tha’ of Slender
Body theory, and to judge by experimental evidence, it is a
modification in the right direction.

It will be secn from the distribution of lateral force
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calculated by Slender Body theory in equation (45), that the
resultant force is zero if the body is closed at the base. The
same is also true, by symmetry, of the exzic“t distribution oa.i-
culated for the spheroid. In fact, as we shall show in the

- next section, this is a general result of potential theory,

17« Overall Forces and Moments

The potential theory we have developed fails s 8s is
W@ll-kz}o*.‘m, to account for a drag force on a body, The absence
also of a lift force, may perhaps at first sight seem surprisings
but it will be recbgnised thgt the essential difference between
the approach to finite wing theory (Vf;*here of course the 'body!
has a 1ift acting on it) and the development of the theory for
bcdie’s of revolution has been in the inclusion in the former of
the effects of a vortex wake, | This wake s 1n a steady state of
Tlow, is a direct consequence of the 1ift on the wing, and vice
versa. In a potential flow, the wake can be represented by a
d«istri"bu;‘cion of flow singularities in the fluid, extending 1‘:‘0
infinity dovmstresm of the body. In all mathematical inter=
prefaticns of the flow about bodies of revolution we have so
fer described, however, all the flow singularities exist by
direct design, or implication, within or on the surface of the
bodys Consegquently there are no forces if the body is closed,

| To particulerise, we have seen that the genersl flow
due to a translational motion of the body mey be represented
by a superposition of doublets, so that the magnitude of +the
peftm:‘bation velocity decreases at infinity inversely as the
cube of the distence from the body; +thus the pressure force
on, end momentum flux through, a spherical surface of infinitely
large radius is infinitesimally small, Thus s by the momentum
theorem, there are no overall forces on the body necessary to
sustain the flow,

This deduction is a consequence of +the assumptions
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madey in fact of course a 1ift force and a drag force are dev—
eloped on a body of revolution in a real fluid, and a wake
exists downstream of the body., The origin of these forces lies
in the action of viscosity on the flow, and the measufed magnitude
of these forces and their prediction will be the Sﬁbj@c‘c of the
later sections of this paper, Suffice it to say here that
there is no generally accepted hypothesis, asnalogous say to that
of Kutta and Joukowski in aerofoil theory, by which the action
of viscosity mey be sdequately included in a description by
potential flow methodsy consequently its action is neglccted.
Although there are no féroes on a body in a steady
motion there is nevertheless a moment, For let us consider the
steady translational motion of the body (with velocity +V say)
through & fluid otherwise at resty the body engenders a dis-
turbance, which we have called the perturbation flow about the
body, which will have‘ a certain momentum and moment of momentum,
end we represent these respectively by the vector quantities
ié» and g, measured relative to axes fixed in the body. There
1s no force on the body, as the momentum measured with respect
to axes fixed in the undisturbed fluid, and likewise that
neasured with respect to the axes fixed on the body, do not
change with ﬁime. On the other hand the rate of change of the

monent of momentum sbout a point fixed relative to the undisturbed

. oN
fluid is evidently 5T + Vsl , which is non-zero, although (as
o N
the motion is steady) we note that =—— must vanish, This rate

ot
of change of momen'tlm equals the resultant moment of the external

Forces, or since there is no resultant force on the body, it
equals the external couple G, say, acting on the bodys that
Wi

is

=
(=Y

."Q‘!QQ‘O#.(I‘P'?)

3«4

The evaluation of the momentum of the perturbed flow
Presents some difficulties in interpretation, and it is more
usual to work in terms of the energy of the perturbed field,

To effect this change, we note that in an accelerated motion
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the force on the body is Sﬂ% s S0 that a change in 31 of
'..‘fn'./'

smount 8 , say, at an instent of timc represents the impulse
applied to the body systems The work done by an infinitesimal
impulse is then V . SIi which is eciual to the increment in
kinetic energy, 06T, But the momentum of the perturbed flow
varies in pro@of'tion to the magnitude of the perturbation
velocity components of the fluid. These in turn vary with

time in proportion to the components of the body velocity of

which, therefore, 3} is & homogeneous linear function. Whence

g

1 AT . T L Ny T
\IT & 6).‘5 - il s 6}*»7;" — 2 6 (;:\.;}u » ri‘\"z'-)

Lt L A
Thus integrating over all the impulses which have generated the

motion from rest, the total kinetic energy of the fluid is

T =

==

3

",;\Z:, ‘6"'00‘000'(&"8)

F ]

nof=

e may suppose that v has components (=u Lns "V s -xm) along
the axes, where x 1s measured along the body axis. Now
cvidently T d4s a homogeneous quadratic function of the velocity

components, and by syrmetry it must accordingly have the form

p 2 . 2 2
T - .‘2%31.‘1&3 +§m2(%'@+v\€’§;}) : h'!bﬂ&ot.tﬂ.(l{"g}'

where 1 y and m, ~are characteristic of the body shape and

called its longitudinal and lateral virtual mass. From (48)

we can evidently identify the components of ;;!. as

- - W
( mqll@g 5 1oVne 5 "HoWy >'

The physical interpretation of the ‘'virtual nass' is
perhaps too well knovn to need restatement here, but we see that
(47) now shows that the couple on the body necessary to nmaintain

the motion has the single component
2 .
(1";11 - mg} W, sin a cos a
in the plane of motionj or in other words, the flow produces
a moment

2 .
Tl - T TNt S
(s, 13,1)%;0 in ¢ cos a
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on the body. Defining the non-dimensional coefficients of

virtual mass as

n I

2

K, =— -
p(Vol)

v p(voen)

ky

where p is the £luid density and (Vol) the body volume, the

pitching moment coefficient is

¢ - J[pitching moment) _ (X, = k,) sin 2a, ».(50)
ol 1 2 2 L
Z PV (Vol)

As we shall see, on elongated bédies the lateral virtual mass

coefficient, k2 s exceeds k, so that the moment is generally

1
destabilising,

To calculate k 1 and k2

theorem, that since Vg = 0,
p i
t=% | (7% =% j V.(#78) a
Ve L

we note using Gauss's

where Q denotes the fluid volume, bounded on the inside by the
body surface S, and on the outside by a spherical surface R,
saye The integral over R vanishes as the radius of the
sphere becomes infinite, since (¢! V) decreases inversely

as the fifth power of the distance from origing thus
™

"
a!
T == 3%p g1 B%m:-%pv.gﬁ'ﬁas.

hr
vS L}S

To evaluate the kinetic energy, T, of the flow
induced by the translational motion of a spheroid, we can use
the expressions for the perturbation potential previously found
in equations (3) and (4), end in accordsnce with (49), we
would deduce the relations for k1 and k2 given in equation
(Z;.j); their values are tabulated below as a function of fineness

ratio,



-

For a slender body, of arbitrary meridian section,
| g2 -
we can calculate from (32) and (41) that k, = 1 +§§(rvlog r )
¢ ¥
and k1 venishes to this order of approximations thus
Crﬂﬁsm 2a .nc-otcvcoto(51>
This is a result which can of course be obtained directly from
(45), end which is in accordance with the particular results for
a spheroid of infinitely lerge fineness ratio, as shown by the Table,

Table 13 Virtual llass Coefficients of Spheroids

Y

Vaxdirmum Dianeter ! Coefficient of Coefficient of

Iength / Longitudinal  Iateral Virtual (ky=k,) %(1+k1)(ﬁ+k2)
< Virtual mass,k1 iass, k2
0 0 1 1 ; 1
005 0.0068 0.9866 0.9798 1.,0000
0o 0,0207 0.9602 049395 4« 000k
0.15 0.0386 0928 0.8898 140014
0.2 0.0591 0.8943 0.8352 1,0031
0425 0.0815 08598 0.7782 1,0057
0.3 0, 1054 ~ 0.8259 07204 41,0092
0435 061304 0.7932 0.6627 1,0135
Ol 041563 0.7619 0.6056  1.0186
0.45 - 0.1829 0.7322 0.549L 1,0245
0.5 0.2100 0.7042 044942 1.0311
0655 Q¢2576 0.6778 Oa 4207 1.0383
0.6 | 042657 0.6530 0,3872 1.0L61
Ca65 | 0.29 0,6296 0.335L 1,0545
0.7 0;3250 , 0,6076 0,286 1,063k
0475 0,3520 0,5869 0e2349 1.0727
0.8 03812 0,567k 0.1862 140825
0.85 0.4106 045491 0,138k 1.0926
0.9 | 044402 0.5318 0.0915 141031
0.95 064700 : 05154 0.0454 11139
1 0.5 0.5 0 14125
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18+ Camparison of Theory with Experiment

We have remarked on the sbsence of any ovefall forces
on a body of revolution as a result of the assumption of potential
flowe In any real flow there is however a 1ift force and = drag,
which is not entirely due to the direct action of viscous shearing
farces, and correspondingly the potential flow pressure distribution
does not correspond exactly with that observed., Howéver the
discrepancies generally become appreciable only near the tail.

In figure 9 we show calculated pressurés over a
spheroid in axi=-symmetric flow, compared with measured values
(Jones, 1925), The comparison is typical of many which could
be cited, and shows that the only significant difference lies in
the absence in reality of the rapid recompression to stagnation
conditions at the tail, This is due to the displacement effect
of the boundery layer in the real flow, and of course a similer
effect is well=known in the observation of the flow over a wing,
or indeed any shape of body.

The différence between theory and measurement is more
nmarked in the flow over bodies of revolution at incidence.

Figure 10 shows the potential flow lateral force distribution
Tor a model of the airship 'Akron' compared with experimental
measurements (Freeman, 1932 (a) ). The theory suggesis a
slightly smaller positive side force over the nosc portion than
actually exists s but greatly overestimates the negative lateral
force on the tail. As a result there is, in a real flow, a
resultant lateral force on a body of revolution, which grows
rapidly with increase of incidence, with the result that the
disparity between theory and experiment becomes greater at
higher incidences, A comparison of the circumferential pressure
distributions (figure 10 ) at verious stations along the body
shows that the disparity is caused mainly by the sbsence of the
theoretical high pressures over the top surface of the body at

the tail, suggesting a local separation of the boundary layer,



Ve shall have more to say sbout these effects of the
boundary leyer in the following sections, However for the most
part the sbudy of these ef'fects has been aimed at providing a
means of estimating the overall forces on the body, rather than
their more particular effects upon the distribution of surface
Pressure.

Consequently, potential flow uethods provide the best,
and only, means of predicting the pressure distributiong the
above remerks, however, will suggest the limitations of the
theorys At least it apme ars from the discussion of the later
sections that the inevitsble differences between the potential
and real flows become less accentuated at the larger Reynolds

number of full=-scale conditions than in model tests,

The Bffects of Viscosity

19, Skin Priction Drag in Ieminer Flow

Tt is not intended here to deal at any length with
the various theories of the boundary layer on bodies of revolu-
tione  Rather we arc concerned for the present with the results
of the theories, and the nmanner in which the boundary layer
modifies the picture of the fluid motion obtained from potential
flow nethodsy consequently iwe shall, in the main, nention only
briefly the method of derivation of the results which we shall
have cause %o cite,

Among the most fully discussed cffects of the boundary
layer is the skin friction drag, ond some brief corments on this
property mey be appropriete here, We shall first consider the
deternination of the skin friction intensity in laminsr flow,

To the first order, a2t least, the skin friction drag is indep-
endent of incidence, and consequently we shall concern ourselves
only with axi~symmetric flow, Perhaps the nost useful theoret-
ical approach to this problem is found in the use of Mangler's
transfornation (Mangler, 1946)¢ +this shows that the local shear

stress at a distance =z behind the nose of a body of revolution,
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whose local radius is r_, is (J:;v /1) ‘tines that at a distence
W i

X from the nose of a two-dimensional contour, vhere

_ o
X = '-Z-;j dx
o '

and where the pressure is identical at corresponding points on
each surface, For a slender body at zero incidence we may
ignore the change in pressure along the body, in which case the
Mransformed' contour is a flat-plate, (i.e. one having a uniform
surface pressure), and the shear stress over the slender body
of revolution can accordingly be found from the well-knowm
Blasius solution for laminar flow over a flat plate. It is
given by
4

N ""!;X 5 —é-

T = 0,332 gs fv‘\:" I‘2 ‘{ r2 dx
e Q)) p w :“!:;; vr — »

W 7}

]
v o

where ‘&g‘*g is the free stream velocity, By integration we can
express the skin friction, developed upstream of the plane ahead

of vhich the enclosed body volume is V(x) by the formula

p = &l % pv;i) v2/3 , where V = V(x)
and R =W v1/3/v‘
sesssensrsse(52)
Compared with a flat plate of the same length and wetted area,
we can calculate that a spheroid of high fineness ratio has a
skin friction drag 4 per cent higher, and a body with a para-
bolic meridian section a drag lerger by 9% per cent, However
it will be apparent that the body enclosed volume is the only
important geometrical factor determining the sbsolute value of
the drag.

The ‘exact sélu’cion for the body with arbitrary, non-
slender, meridian section evidently presents a difficult problem,
as the appropriate pressure distribution is often difficult to
describe, and the number of known solutions for two-dimensional

boundary layer flow with varying pressure is few. Consequently
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greater progress has been made using the approximate momentun
cquation methods, The momentum equation for axi~symmetric

boundary layer flow is

2 dlr. 5,.) T
I3) W_2X av _ w
I.'W dX + (H+2) U 62X a:x - P ’ tcaquvo(53>

vhere U = U(x) is the velocity outside the bouhdary layer

along the body whose radius is ‘:rw at a distance x downstrezm
of the nose 2long the surface, and H is the ratio of dis-
placement thickness to the momentum thickness, 62::’ (MH1likan,
1932). It differs from the two=dimensional form nmerely in the
presence of the tem T the body rgdius. Onc of the carliest
solutions for laminer flow sbout bodies of revolution is due to
Milliken (1932), who used thisV equation together with a quadratic
approxination to the variation of u (the boundery loyer velocity)
with z (the distance normal to the surface) to find the variation
of 623:' A later paper by Tcmo‘bika; (1935) assuned a quartic

approximation, satisfying the conditions

2
u = U, g—% = -@-—% =0, altz =208, the outside of the boundary layers
0z
3 5% au
u =0, ;.L—gg-: T, v-{;—-}iz-‘U»—d-;{-, at y = 0, the surface.
z

These conditions enable us to relate T R H, and 52:5: with each
other and with thé kmovm external velocity distribution; so we
mey determine any of these properties by solution of the differ-
ential equation (53),

liore generally if we define a one-parsmetric fenily
of velocity profiles, so that

2

u TR 'z
"":Zi""‘"“) +’é‘m("—‘"‘"} T oese
U 823{, 62}(!!

where 1, Iy ess are supposed to be related to a single para-

meter, then it follows that

2
o ()
)

L= 1 § 3 T oz owe s F}
W k 2}:} dJC v .
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and the momentum equation becones

U d<rv~76 2x)
2

y r
- dx

=21 + 2( M2)n = G, say.

The assumption of a one~parametric family of velocity profiles
implies that G, like I end H, is a function of mn. Further,
the use of the lengler transformation (Rott and Cra'bfree , 1952)
shows that these relations are identical with those existing
between >G, ly, Hend n in two-éjmensiorlai flow A(where‘ the
Tgrowth p@r&ﬂe%er’ G is obtained by putting r, = constant in
the above émession). Consequently we could invoke the results
of Thwaites (1949) (obtained from a study of the various exact
two~dimensional solutions) to cobtein 'universal'! relations
between 1 and rﬁ, and between G and mn, which are valid
for axi-symmetric as well as two-dimensional flow. Using these
relations the momentun thickness can again be found_ as the
solution of a differential equation.

Thus, Thwaites puts G = a+bm, where a = 0,45 and
b = 6 appear to be 'best values', and accordingly we can find
that

>
S

¢

2

o}
Thwaltcs 4a1so tabulates the variation of 1 with m which
permite the calculation of the skin friotiqn intensity. The
condition 1 =0 denotes the onset of reversed flow in the
boundary layer, and consequently a laminer flow separations
according to Thwaites this occurs vhere mn = +0,082, and this
velue is achieved near the tall of the body in the region of
recompression towards the stagnation pointe The plane of
lominar separation for spheroids, calculated by this method,

is shown in figure 11 .

20, Turbulent Skin Friction

The skin friction within a turbulent boundary layer
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is again generally found using momentun equation methocié,
although the assumptions made in solving the ecuation differ
widelys The valuc of H is usually accepted as 1.4 for the
turbulent layer, corresponding to the results of experinental
obscrvations (Iyon 1934); then the momentun equation (53) can
be integrated if the relation is known connecting the shear
stress at the surface with the nomentunm thickness. There are
swo such relations which are most cormonly invokedf  the first
was originally used by fillikan (1932) and is based on the well~
knowm seventh power law for the veriation of boundexry layer
veloeity with distance from the surface s Which yields the

relation

:5-2- = 0,0128 (U&Zx/v)"m*

pU
The assumption of such a variation is justified at least by
some boundary layer flow cxplorations (Freeman, 1932(b) ) as
shovm in figure 12 o The power law formula has been more
recently used by Truckenbrodt (see Schlichting, 1951) in a
generalised forme The second is thet used by Young (1939)
based on an extension of von Xerman's Togerithmic law for the
velocity distribution, which implies the relation

ué

’ i3
2L 0,205k exp | 043914 /2L \)
Vv i@\ lf T

This is evidently 2 rmmuch less simple form, though the law
governing the velocity distribution on which it is based is
velid at least for the flat plate up to higher Re':moldfs nuzibers
than Jahe’ power lewe In either applicaticn, however, it is
evident that the effects on the relation between shear stress
and monentun thiclnese of the difference betieen two= and
thrce-dinensional flow, and of the surface pressure distribution,
have Dbeen ignored, | |

The power law for the velocity distribution yilelds

a convenient explicit expression for the totel turbulent skin
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friction drag of a slender-body (i.e. one with negligible

surface pressure cheanges), which is given by

i " 002 ~
Fy 1 o2 T8
D= OG%O%";‘{;L; z P \V{‘,’(-‘ L 2
o S
e
ot 3 1/9
‘ g £/,
where L ::{f i _‘,f /b le} .

cecordingly, we can calculate that the skin friction coefficient,
based on wetted area, exceeds that of a flat plate of the sane
length by 1.2 per cent for a slender spheroid, uﬁd by nearly

3 per cent for a slender body of parebolic meridisn sechion.

The inference is that to a good degree of approxiretion the

skin friction intensity is the sanc as in two-dimensional flow

at an equivalent Reynolds number: or in other words

0.2 2
D = —-5—%9—— % p“sfgif} A w.ecowocviﬁﬂ(fﬂ*)
RZ“

where RZ is the Reynolds muiber based on body length, eand

A is the side area of the body,

21, IExperimental Volues of Skin Friction Intensity

t

| =2

Ve see by examining equations (52) and (54) that
is not possiblc to present the theoreticel expressions for skin
Triction drag of slender bodies in both leninar and turbulcnt
flow on emy comparsble basis, as they depend upon different
geonmetrical properties of the body. The same can therefore
be expected of the experimental results, Accordingly, it is
most convenient to dividc these rcsults into those relevant
to the two flow reginmes, as is donc is figure 13 .

There 1s plenty of cxperimental data to support the
contention that the skin friction drag in turbulent flow can
be celculated from the laws derived for two=dimensionsl notion,
such as that of equetion (54) abovey only a small selection
of the data is shown in the figere, indicating agrecuent over

a wide range of Reynolds muiber, On the other hand, it is
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difficult to adduce any confirmation of the theoretical laminar
flow skin friction values, as given by equation (52), This is
almost certainly due to the fact that only in very few tests can
there have been conditions of laminar flow over the greater part
body surface, The lowest values of drag coefficient appeer to
have been recorded in tests on the model of the airship R.101,
as shown in the figure,

A great deal of other information exists (over a Reynolds
number range from O.1 to 10 million), giving velues of drag inter=
mediate betwecen the *bhecre‘cical results for leminer and turbulent
flow, and differing from cither by lerge factors, It 1is
reasonable to imply thet this is due to a transition from one
state of flow to the other cxisting on the surface, but the data
do not suggest that transition movenment is regular or predicteble
in any ways. The apparent chaos in the results, even for identical
models in different tunnels, must be largely due to their varving
free stream turbulence levels (Gold.stein, 1938); transition
position is particularly sensitive to this property, as well of

coursc as to many others,

224 Form and Profilec Drag

Skin friction is the main, but not the only, contribution
to the profile drag of bodies of revolution, There is an addi=-
tional resistance arising out of the displacement effect of the
boundery layer on the potential flow, which is known as the fofra
drage This has been assesscd theoretically by estimating the
total mementum decrement of the weke far downstream of the body,
although the form drag manifests itself physically, of course,
in the slightly changed pressure distribution over the body.
These theoretical discussions have concerned bodies over which
the flow remains unscparated, and in particular this precludes
the application of the results obtained to bodies of projectile
shape = with flat bascs - or indeed to any non-slender body,

It is also difficult to find any rclisble drag measurcments
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at low speeds on projectile shaped bodics, although of course
their performance at high subsonic and supersonic speeds has been
a topic rmuch discussed and investigated,

Young's method of estimating the total profile drag of
a body of revolution (1939) assumes a boundary leyer of mixed
laminer and turbulent flow, the transition occurring at a plane
across which the momentum thickness remains contimuouss the
laminar beoundary layer is investigated using the momentum equation
method of Tomatika, and the state of the turbulent layer is found
by e.sévming von Kermen's logorithmic law for the velocity dis-
tribution, as noted earlicr, Finally the conditions of flow in
the woke are found by solving the relevant form of the nomentun

equation (53), which is

do’
1 2 . 1.du _
o 3 +(H2) 5= 5= = O

where O5s ‘the momentum area of the wake, replaces 27&*,‘?*62}(.
¢V

In integrating this cquation, Young uses the approximation that R

in the weke, the velue of (H-1) wvarics linesrly with log ;g-:— ’
. o

¥

whore U 1s the velocity just outside the wake , (Squire and Young s
1937)e It follows then that, if the subscript 'I1' denotes
conditions at the tail of the body, the ultimete nmomentum arca

of the wake, o, , (say), is given by

i

S———— —

%21 \ Vi)

The value of Soys the momentum area of the boundary layer at

342
U
0‘2"?‘!} {__}_\ g.n.‘.""..(55)

the tail, is known as the limiting value of ZWWSZX cn the body
surface ot the tail (which remains finite, although T vanishes),

The total profile drag of the body is obtained from the expression
L)

P
! , 2
D = Zﬁp g u <\gp -u)y'dy = Gé&}pn%w
where u is the velocity in the wake parallel to the main stream,
and  y is measured normal to the centre line of the wake

infinitely far downstream of the body, The results (using



experimental determinations of U z) show that over the Reynolds
number range from 106 to 108, the proportion of the total profile
drag due to the form drag is practically constant s depending
nainly on the fineness ratio of the body, and to a small extent s
also, on trensition position, as is illustrated in figure 14,

A very similer method of estimating profile drag is
due to Grenville (1953)s the main differences be:mg in his use
of a power law velocity distribution for the turbulent boundery
layer, with a special modification of the momentun equation to
compute conditions near the tail of the body, and the assumption
that the parameter (H-1) varies (in the wake) as the seventh root
of log(U/«.,r;% )e The last mentioned difference might seem an
important one, but in fact it has little effects it merely
implies that in the relation (55) the power index is 3438,
instcad of 3,24 Both methods require the assumption of a certain
transition plane, and Grenville adepts certain criteria which have
been developed for the prediction of its position in two-dimensional
flow to the axi=-symmetric boundary layer, by the use of the langler
transformationg the accuracy of the resulting procedures for

transition prediction are not known, however,

23¢ Conditions of Flow in the Laminar Boundsry Lever at Low

Incidence

The evaluation of the poundary leyer over a body of
revolution moving at incidence to the direction of motion presents
a difficult and involved theoretical problem which has as yet
received but little attention. It is no longer generally
possible, owing to the non—linearity of the boundary layer
equations, to express the effects of the lateral flow by supcr-
position, as in the study of potential flow, Boundary layer
phenomena, as revealed for instance in the variation of 1ift
with incidence, are strongly non-lincar in character,  Super=

position is only possible if the incidence is assumed to be



very small, although the results thus cbiained are, naturally s
of limited significance,

Such a solution has been givc:}n by Nomwediller (1955 a)
for laminer flow about slender bodics of revolu;tion‘ The
asstumaptions of slenderness and low incidence are in this connec=
tion a great simplification but to a certain extent in conflict,
as 1t cen be shown that the magnitude of the velocity perturba-

tlons within the boundary layer due to incidence depends on the

ratio
al . length
=5~ = incidence x ———S——
diameter

which must be small for the theory tc apply. These incremental
velocity componen“bs‘ arc all found %o ‘vary simsoidally round the
body, but their downstreem variation, however, is much more
difficult to describe and depends to some extent at least on
the actual shape of the meridian section,

It can best be illustrated by a study of the flow
pattern in plancs perpendicular %o the body aoxis, | ag shown
diagrammatically in figure 15. |

Over the fore-part of the body the boundery layer motion
consists of a radial outflow -~ due to the axi-symmetric displace=
nent effect - together with a decclleration of the circumfercntial
flow (figure 1 5&). Further downstream where the body crosse
section starts to contract, this decelleration becomes nore
nerked, ultinately causing the circumferential velocity component
to reverse near the surface (figure 16 ), This,at first,
produces the streamline pattern show in figure 15(b ), but as the
extent of the reversal increascs, the radial velocity also
beconmes significantly modified, due to the increased mess flow
defect of the circumfercntial flow. The modification talkes the
form of an induced outflow duc to incidence, in the outer strata
of the bcﬁ.néiwy 1&er over the bottom surface, (where the mass

defect of the clrcumfercntial flow increases in its direction of
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motion), but an incremental inflcw occurs over the lee=gide of

the bodye Ultimately this induced inflow is sufficicnt to
reverse the radial velocity over the top surface, and the resulting
streamline pattern shows that two vortex lobes are then formed

in the boundary layer on cither side of the body (figures 15(c) and (a).)

The reversal of the circumfercential flow, shovm in
figure 16 from calculations for the airship 'Akron', is an
important effect which can be accounted for by noticing that,
over the recer of a body at low incidence, there is a suction on
the bottom surface and a positive pressurce over the top surfece,
{together caubining to yield a local ncgative lateral force)
The boundary layer flow né&m the surface would tend to rove
from the high to the low pressure region s which is therefore in

a direction opposed to the external flow,

2ls The Latercl Force on Bodies at Low Incidence

The properties of the boundary layer flow discusscd
in the'prcvious section :h:meclia‘tely’ suggest one reason for the
overall 1ift or lateral force which we have earlicr noticed
exists on a body at incidence, The pair of vortices formed
over the rear of the body would induce a dovrwash, tending to
alleviete the negative Iateral force which exists in that region
in poten’cidl flows An enalogy to this effect comes to mind
in relation to conditions on a slender plane wing, such as is
sketched in figuré 17 o« That part of its surface behind
the noximum span is irmersed in the vortex leyer = or boundary
layer - coming off the front part of the wings this induces
over the rear part a dowmwash, exactly cancelling the freé-
strean normal component of velocity, with the result that no
bound vorticity, and so no 1ift, is developed in this region,
This can of course be found without knowledge of the state of
flow of the boundary layer, rmerely as a result of applying the

Joukowskl condition at the trailing-edge of such a wing, This
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condition in itself is an expression of a viscous flow cffcct,
and in fact enables one to select the unique potential flow
solution of the infinite number which could exist merely satise
fying the boundary condition on the normal velocity at the
surface,

However, the motion of a solid (as distinet from a
plane body) produccs a potential flow in a simply connected
space, for which a unique solution exists, Viscosity cffects s
as menifested by the mresence of the boundary laycr, may only be
simulated by modifying the boundary condition to be applied at
the surface so that the normal component of fluid velocity in the
external potential flow is not zero, but is continuous with that
produced by the boundery loyer at its outer edge. Now, in the
flow over the rear of a body’ of revolution at low incidence, we
have secn that it is an adequate approximation to suppose that
the incremental normal velocity in the boundary layer variecs
simusoidally round the body, proéucing an inflow over the top,
and an outflow over the bottom surface, On the basis of slender-
body theory, for ins’ca.née s We could simulate‘ this in potential
flow by en additional axial doublet (or vortex pair) distribution.
But as the lateral force per unit length is proporﬁional to the
dowmstrean rate of increasc of doublet intensity, the effcct of
the boundory layer flow is , therefore, to supply a 1ift,

Again, the concept of a 'displacement surface! s Or
'equivalent body', can be used to illustrate this effect, The
displacenent eff‘ect in longitudinal motion merely indicates a
progressive fattening of the body towsrds the tail (figurc18(a)),
in proportion to the total volume ocutflow from the boundary layer,
This is unaltered ot low incidences, the only effcct of the
additi’onal > sinusoidel veriation of normal velocity, at the
outside of the boundery layer, being to deflect the displecenent
sﬁrf’ace downwards ncar the tail, and maybe to distort its shape

(figure 18(b) )s It will be readlly appreciated that the
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fequivalent body' thus formed would expericnce a 1ift fofoe, and
the vortex~pair within the weke will contimie indefinitely downe
strean, like the trailing vortex systen of a wing (figuref8@ﬁ).
The theoretical solution for low incidence permits the
calculation of the effect of the boundeary loyer on the lateral
force distribution, and results for the 'Akron' body are shqwn
in figure 19, 1t will be noted first of all thet the incremental
lateral force decreascs with increasing Reynolds muwber, - as the
Gisplacement area of the boundory layer becomes smaller.,  The
theory will also be scen to indicate an ultimatoJreversal of
the lateral force, but this is plainly unrecalistic, For it is
the pressure distribution associated with the existence of a local
negative side=force which causes the reversal of the boundary
layer flow, which in turn is the reason for the large increment
in side force, The latter effect could never be so largé as
conpletely to remove its cause, althbugh it will certainly go
some way towards this, as appears from the experimental meazsurenents.
There are, of course, many other examples of reversal of flow
acting in such a way as to remove its cause, = the formation of
the starting vortex on a wing being a particularly important
oNe e |
In the theory quoted, this interaction between cause
and effect is neglecteds and so it overcstimates the force
developed, Consequently, the value it indicates for the total
lateral force, existing on the body chead of the plone of
theorctical 1ift reversal, should provide an upper limit to
the overall lateral force actually developed, (figure20 ),
This theoretical force is proportional to Tys the displacement
area of the boundary layer, andt the cffective local inciﬂcﬁco
of the displacement surface, which in turn is proportional to
the body incidence, a¢ o The local incidence appcars to be
also dependent on the parancter (GH/S )s vhere § is

max max
the body frontal areca, = at least for bodies with similar
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meridian sections, but of arbitrary fineness ratioc, Thus the
theoretical upper limit to the total lateral force can be

written as

g
ar 4 .2 1 \\
— 'Q‘p\;‘;",} S f(

da i max S E::.,e}

- Fortuitously, perhaps, as shown in figure 21(a), such an
expression also provides an excellent means of ccllapsing the
measured data of tests on the actual first-order variation of
side force with incidence, as revealed by teéts on a veriety of
airship hlls,

Thin is all the more surprising when it is noted that
S is taken here as the laminar-flow displacement area, whereas
in the tests the boundary layer was ‘tq a greater or less extent
turbulents On the other hand, taking o, as the turbulent-rlow
&isplaéemn’c area provides almost as good a means of collapsing
the data, and further suggests that the lla‘beral force vgries in
direct proportion to o, in this case (figure 21())s A good
f£it is cbtained by putting |

i

api 2 A i .2
= = 6pv. O, =175 == , % pi
da ;Q:O » v 1 R?.Z e

In this equation, A is the side area of the body, and RZ the
Reynolds number based on body length,

It seems then that the state of the flow has no effect
(upon the magnitude of the 1ift developed) that we can isolate
from the availsble dAta which cover a Reynolds number range
from 0,3 to 18 millions, What is better established is that,
for a body of given side area, the 1ift decreases either as the
(length/diemeter) ratio is increased, or as the Reynolds number
is increased. However, all the numerical data quoted so far
refer to airship hulls, and other body shapes might well yield
different results, Indeed, some tests by Lenge (1949) on a
family of bodies with bluff, spherical noses s although displaying
similar trends, show the side force to be about twice that given

gbove,
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2he Conditions over a Body at High Incidence

At low incidences we have noted that a reversal of the
cross=flow occurs where the circumferential pressure gradient
reversess This result follows from a study in which the effects
of incidence are small perturbations, linear with the incidence
e, to Whichvapproximation the pressure coefficient sbout slender

bodies may be quoted from equation (44) as

= - 1 2 &y 7
C, == Lcos® r!(x)e .Li + {41

Thus the pressure gfadien‘cs are reversed behind the plane of
maximum diameter (where rv’v < 0)e In‘ the general case, such
an approximation is inadequate, except in an incidence range 80
small as to be insignificant, and a better one is obtained for
slender Bod.:i.és by including the second~order term in a2. This
has the effect of adding a pressure distribution similar in form
to that on a circular cyiinﬂer in two-djmensionél motion, as
illustrated in figure 10 , The pressure gradient reverses =
not at the plane of maximum dismeter (as is true only of vanish-
ingly small incidence) = but along a line which tends towards the
meridians 6 = + 225 as the incidence is increased., This 1is
shown in figure 22 , for the Akron hull, In the limiting con-
dition of high incidence, the maximum suction occurs at fhe max=
imum diameter of the body viewed in the lateral planes, as it
would do of course on an :Lnf:i.m.‘he circular cylinder in potential
flow,e

Allen and Perkins (1951) have conjectured that the
(circumferential flow will reverse aloﬁg a line which would be
rozighly parallel to the position of minimum pressure on the
mll, This we see is entirely compatible with the results
quoted earlier, relevent to conditions at low incidence, Thus,
as the incidence is increased, more and more of the flow over

the top surface will reverse,

Furthermore, they have noticed that there would exist
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a certain analogzy between the cross flow at various stations
along the body and the development with time of the flow about a
circular cylinder starting from rest, For, considering con-
ditions in a plane perpendicular to the body axis, and moving
with the free-stream velocity component “‘«ij;:cos ay, the trace
of the bedy will be a circle, whose size will expand and contract
as the plane moves along the body. Ignoring this rate of change
of cross-sectional area, we see that the development of the cross
flow, as viewed in this moving plane, would appear at least
similar to that observed with passage of time for a cylinder
suddenly introduced into a stream of velocity "«,:;&:2 sin aA. The
potential flow pattern sbout the cylinder would at first be modi-
fied by a reversal of flow over its lee side, leading to the
formation of a pair of é‘;’canding vorticessy wultimately these might
elongate and break up into a Karman vartex-sheet, if the scale
were sufficiently high, Thus, in the flow over a b'ody of revolu~-
tion we would be led to expect the circumferential flow to reverse
(as already suggésted), and a pair of vortices to be formed as a
consequence., This again has been cbserved to be theoreticelly
justified at low incidences, and certainly it would be true of a
slender body at high incidence, where the flow will resemble that
about a yawed infinite circuler cylinder (except, perhaps, near
its end points).  In other words the cross-flow appears two=
dimensional in character bver a slénd,er body at high incidence,
in much the same way as it does if the flow is inviscid and
potential, This can, in fact, be demonstrated to be true in
theory, provided that the parameter (al/d) is large, using the
method of analysis of Moore (1951).

| The analogy is particularly useful in that it al-lcws
us to infer that, in certain conditions, the ’peir of vortices
might each in turn discharge from the body, being cari‘ied away
downstresm on its lee sidey also; that a new pair will form

and. these break away, and S0 on, going to form a vortex-street.
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Relative to the body these shed vortices would appear fixed,

but relative to a transverse plane moving with the flu'iél, the
cylinder would appear to leave them behind in its lee-side wake
(figure 23), The length of body over which the vortex pair
could remain attached would presumebly become shorter as the
incidence grows, because the trace of the body in the transverse
plane would then move furthers On the other hand, if the
Reynolds mumber of the cross-flow were small enough - due to a
small radius of the body, or its low incidence, say =~ thc standing

vortices might well remain stable,

26, The Separation of the Flow

The shedding of the vortices from the body surface would
seem inevitebly to imply a separation of the boundary layer,
Whilst this is no doubt true, the meaning of separation, and the
indication of its presence in three dimensional boundary layer
flow, needs careful consideration, In plane flow, no ambiguity
exists if we take the separation point as the position where the
boundary leyer velocity profile reverses at the surface, loore
(1953) generalises this to three dimensions by postulating that,
at a separation line, the wall stream surface bifocates, and
further if there is a :point of reattachment, the separated stream
surface joins again with the wall., Thus there would be a
distinct bubble embedded in the boundary layer which does not
exchange fluid with the rest of the flow (figure 2L),

Within this bubble would be sheet pattern of varticity,
whose nature would of course depend on the particular problems
lMoore shows, however, that such a vartex sheet tends to coalesce
into strong discreet vortices, with the result that the extermal
flow becomes greatly disturbed. 1In this way, the formation of
a bubble of separation might often presage a complete breskaway
of the flow from the surface. It will be evident that this
kind of breakaway could not be predicted by a theory which assumes

the existence of a finite, thin boundsry layer, whereas the
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occurrence merely of & bubble of separation is not incompatible
with the assumptions of that theory. It is difficult to envisage
how one could determine by experiment the position of such a com=
plete breakaway, simply because it is & phenomenon so loosely
defined,

One must be content, therefore, to look for the symptoms
of its origin, such as the existence of a separation bubble,
although here again difficulties of interpretatidn arise, since
this type of flow never seems to occur in the boundary layer of
a body of revolution, It is most appropriate in this connection
to examine the streamlines of the boundary layer flow close to
the surface, which are tangential to the local direction of shear
stress on the body, end cen be revealed by the well-known surface
flow visualisation techniquess.

At low incidences, such that a¢ ¢ (d/1), these surface
streamlines are - according to theory (Nomweiler 1955a) = as shown
in figure25(a), First the circumferentisl component of flow
reverses over the rear of the body, where a vortex pair is formed
in the cross flow (figure 15), and ultimately the longitudinal
component also tends to reverse, on the windward side of the body
in the plane of symmetry, If indeed it did so, then a nodal, or
‘stagnation?, point of the surface streamlines would be formed
on the underside, where the local shear stress intensity vanishes,
and ncar where the flow is being radiated outwards and dowrmwards,
As is shown in figure 25Cb), a degenerate form of bubble would
thereby be produced, (in the plane of syrmetry), containing a
vortex which effectively serves to join the two ldbes on either
side of the body (figure 25(c).). However, as mentioned earlier
the theory breaks down very near the tall, where in any case it
predicts infinitely large disturbances in the boundary layer, and
this suggests that a thin layer cannot exist in this region,

In turn, this lends substance to the belief that a complete

breakaway of the flow would occur, carrying this connecting
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vortex downstream fran the under;urface, like the starting
vortex from a wing (figure 25(@)). If this were so, the theoret-
ical reversal of the longitudinal flow on the underside would not
be observable in the steady state, but the two vortex lobes would
trail dovmstream in the weke, as shaWn in figure 18 .‘(

At higher incidences (where al/d is say, about unity),
experimental evidence suggests that a reversal of the longitudinal
flow occurs over the sides of the body., This, like the theoret-
ical reversal over the rear, is presumcbly duc to the accumilation
of the boundary layer flow, in a low pressure rcgion. The
position of the line of minimum pressure is illustrated in figure 26
and the oircumferential floW'is generally reversed on the lec side
of this line, tending to move dovmward, away from the upper meride-
ian and towards this line. As verified by experiment, the line
of minimum pressure thus morks closely the edge of the vortex
lobes in the circumferentisl flow, and to judge from surface flow
studies using the lampblack technique, (Plate 1(b)) a region of
de~energised air exists close to, and just to the lceward side
of this line. In the photograph this shows itsclf as a dark
region where the lampblack has collected, and where it 1s not
casy to see the precise shape of the surface strcamlincs.  Like=-
wise, velocity explorations (figurc 26 ) have verified that the
axial component is locally considersbly reduced at least in the
outer strata of the boundary layer, without so far being able
to penetrate sufficiently close to the surface to show positive
evidence of a reversal, The presumed state of the surface flow

is suggested in figure 27(a).
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As seen in figure 26 and in the streamline patterns of Figure 27,
there are usually two distinet pairs of vortex lobes in the cross-
flow; one just to the 1eeward side of the stagnant region (and the

- minimum pressure line), and another pair - often separated from it by
a region of unreversed circumferential flow - whose core lies close
to the upper meridian, (It is of interest to note that a similar
formation of two pairs of vortices is cbservable in the two-dimens-
ional flow, at low Reynolds numbers, zbout a circulsr cylinder).

The upper pair of vortices is generally of weaker intensity, and
rarely produces any observable retardation of the 1ongitudihal flow

except perhaps near the tail, (see Plate 1a),

These regions of retarded flow have often been termed 'separation
fronts', but it seems doubtful at least whether any separation of
the kind defined by Moore exists; as it appears there is an exchange
of air betweén those regions and the rest of the béundary layer,
Moreover veiocity explorations show that (at least up to a length
within 20% of the body length from the tail) the vortex lobes
remain attached to the surface,

Admittedly at much higher incidences, they do in fact shed from
the surface to form a 'vortex street' sbove the body in the manner
shown in figure 23, Surface flow studies then reveal the oscill-
atory character of the flow in this condition, by theirvmarked
assymmetrical patterns, It is difficult to suggest the incidence
at which this chenge in the character of the cross-{low occurs,
but it’WDUld seem safe to infer that it is well outside the range

of practical aeronautical interest,

27, Forces on  a Body at High Incidence

- We have noted earlier that the viscous cross flow about
a slender body is the same as that about an infinite circular

‘cylinder of the same local radius, provided that the parameter
(al/d) is sufficiently large, It follows that the viscous

drag force associated with the flow about a circular cylinder
will occur as a local side~force on the body, In other words,
the circumferential pressure will be constant over the

leg~side surface, as it is in the separated flow



B

about the cylinder , instead of recompressing in the way indicated
by potential theory., Except near the nose, this deduction is
verified by experimental evidence (figure 10 ), If c& is the
drag coefficlent of a circular cylinder, based on its diameter,
then the local side farce will be simply (c d%ps,f; singa.ZrW)

per unit length, This drag coefficient appears to be virtually
insensitive to changes of the cross-flow Reynolds number, except
in so far as this determines the state of the boundary layer flow,
-~ whether it is laminar or turbulent, - so that a strict inter-
pretation of the theory would indicate the addition of a side

force on a body given by
AT = 3.4 pvoA sin’ | (56)
L4 = Cd T PV sin @ evecsascsnnslD
where A 1is the body side area,

Figure 28 shows the variation of the side force at high
angles of attack on a mmber of airship hulls, f’rombwhich it will
be seen that sbove an incidence of about 60, some such force - as
given by the sbove expression (56) = provides an increasingly
important contribution to the totel side force variation. The

value of the cross-flow drag coefficient, c a2 inferred from
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these results appears to vary with the parameter

numbers, In this comnection we recall that for a two-dimensional
circular cylinder, a value of c¢ a = 12 would be appropriate for
laminar flow, and ¢ g = Oul for turbulent flow, |

For purposes of prediction, it would be convenient to
find some way of reconciling these figures with the walues of
c a inferred from the side force measurements, Allen and
Perkins (1951) have suggested, for instance, that an allowance
ought to be included for the end effects on the body by compariﬁg
the measured value of o 3 with that for a c:l.rcula:c" cylinder of
corresponding (length/diameter) ratiof with leminar flow,

experimental evidence indicates a value of Ed = 0,8 for a
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circular cylinder whose span is 5 to 10 times its diameter. Agein,
by enslogy of the development of the cross~flow along the body with
that sbout ¢ circular cylinaer started impulsively from rest, we
note that the reduced drag of the latter in the first few
diameters of its travel would account for a lower value of the
side farce on a body, depending on the parameter (al/d), which
describes the distance moved by the trace of the body relative

to the cross~stream in terms of the body diemeter, However, in
view of the complexity of the problem we are attempting to
retionalise, it could herdly be anticipated thet a simplified
theory could give any more then qualitative agrecment, and these

comparisons will be pursucd no further,

28y Side Force on Bodies with Flat Rases

Allen end Porkins (1951), end also Kelly (195L), have
attempted to apply the concepts cutlined in the previous section
to the prediction of the side force)on projectile bodies (with
flat bascs), and have thereby discovered that slender-body theory
provides an adequate means of estimating the sidé force at low
incidences, The result is,bfrom’equation (L5) that the side
force | |

AL o= 2
7 ooy p\«ifx’ S(Z)a

where S(Z)‘ is the base area, This seems to be fortuitous,

ag of course no form of potential theory is strictly applicable
to such shapes, owing to the inevitoble flow scparation at the
base section. It appears therefore, that such a separation
precludes the existence of any violenf change of flow velocity
or direction at the base, which would render slender body theory
inapplicebley conscquently, the separation has 1ittle or no

influence on the cross-flow upstrcan.



29, Pitching Monent and Drag of Bodies of Revoluticn

We have earlicr seen that potential theory accounts

for a deskabilising pitching moment given from equation (50) by

C, = (k2~k1) sin 2a

and slender body theory suggests from equation (51) that we
may ‘take k2 =1, k’i =0 to find an approximate value, In
fact, in most applications there seems little point in attempting
any more refined assessment, as in practice the pitching moment
is considersbly modified by viscosity effects. In -the. first
place, the shear stresses on the body contribute to a destabil-
iging moment, owing to the reversal of the cross-flowy and
secondly, the modification to the normal pressure distribution,
which results in the side force, prodﬁces appreciable effccts, -

he centre=of=pressure of this side force apperently moving up-
stream from the tail as the incidence is increased, and gs the
cross-flow pattern becomes similer over the entire body lengths
However, the phencmena appear to depend on too many factors to
allow any quantitative deductions to be made from the experi-
nental measurements,

This is equally true of the estimation of the long=
itudinal force on a body of revolution. This force at low
incidences consists of the form and friction drag, which can
be assessed by the methods described earliery but as the
incidence is increased, an apprecisble suction or thrust force
is also deveioped., This arises from the typical 'ecircular
cylinder! type of circumferential pressure distribubtion which
exists at low incidences over the front part of the body
surface, but not over the rear part where tho effects of flow
separation arc more pronounced, Using the results of Slender
Body thedfy, from equation (44), we con work out that the
Pressure on the body surf’acé upstream of the meximun dismzter
contributes to a longitudinal (thrust) force of amount

2

4ol s ~
z PV, sin q Smax
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This should theoretically be cancelled ocut by an equal force over
the rear of the body, but as we have noted this is not so, owing
to the flow separation, However, when the sepafation front
moves forward on to the nose of the body at higher angles of
attack, then in turn this suction force also become reduced,

No doubt the separation of the flow has other important effécts
on the friction and form drag. Nevertheless, a reduction in

the resultant longitudinal force is invarisbly observed with

increase of incidencee Typlcal results are showm in figure 29 .

%0. Flow gbout Rotating Bodics

Little relieble experimental information is availeble
concerning the conditions over rotating bodies. Thus we have
to rely in the main upon the results of potential theory, and
in this connection we note that all the methods available for
the analysis of the potential flow about bodies at incidence are
easily applied to the problem of the flow cbout rotating bodies,
The only differcnce of course lies in the change of the boundany’
condition to be applied to the normel velocity at the body
surfaces this affccts the details but not the principles of the
ncthods which we have discussed earlicr,

For instance, in Slender Body theory, if the body is
rotating with angulear velocity £} cbout an axis © =6 in

©

the plane x = x we can easily calculate that the perturba-

(o)d

tion potential on or near the body surface is given, by analogy

with equation (41), as

e —y

Fi(x=x )S(x) i
gt = ﬁ; sin (6~OO) §1~+€§(r2log r)%

referred to a system of coordinateé fixed in the body, This
solution may of coursc be superposed on that duc to the longi=
tudinalland,1ateral.translational velocities, to give the
general expression for the perturbation potential, relevant to

an arbitrary motion of a body of revolution.
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With a frame of axes moﬁ.ng with the body -~ the yanotion
being specified by a translational velocity ;{h s relative to the
undisturbed fluid, end by en snguler velocity -fL sbout the
origin, referred in both instances to the instantaneous positions
of the axes, =~ the relevant form of Bernouilli's equation can be
found as |

p_p Faakd
£ phe

= (U +Lunz)e TP -4 (Tg0)° - %%’ (57)

where r is the position vector of any point referred to the
moving axes. Of the various kinds of quasi-steady flow, for
which -g%T = 0, the one of greatest interest here is that due
to the motion of the body in a circular path, so that X . :&:,4” O
Using Slender Body theory we may then calculate from equation

(57) that, if the axis of rotation is taken as the y-axis énd

the body incidence is a, the surface pressure coefficient is

given by
PP, e 2
C = 2 {””X-;-sin al (1=4 Si'flze)
P 1.2 L3, )
2P¥m . ;
7
i a oy e 2 -
_2cosa cos 6 d 1 S a‘; S(x)] + £ (r log £ )
7 W(X) / 3

- o cevecesanass(58)
This reduces of course to the resuit for translational motion,
in equation {(44), if i = 0O,

Jones (1925) has derived the exact surface pressure
distribution for a spheroid, based on the potential flow solution
outlined in section 2 , and figure 30 gives a comparison of
these results with those deriveé. from Slender Body theory.

The latter shows from cquation (58) that the curvature
of the path introduces an incremental side force per unit
length (/iF) given by

e .

L wm = pyulese & lxst)l

from which it follows that, to this order of approximation,

the resultant incremental side force is zerog moreover, if
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the axis of rotation passes through the centre of volume, the
incremental pitching moment also vanishes, On the other hand,
the exac"c theory for a spheroid predicts a finite resultent side
force, but the reason for this apparent d:Lspara.ty may easily be
ascer’ca:med.

Using arguments similar to those of section 17 , we
can show that if ,Eﬁ is the momentum of the undisturbed flow
relative to axes fixed in the body, which has a translational
velocity V, end angular velooity -flebout the origin, then
there must be an external force acting on the body necessary to
maintain the fluid motion, which (with respect to thé same ref=-

erence system) is equal to

ol
£ = "‘a“"‘g +'~3§'”‘}"§,DT

We may, as before, relate 3{% to the virtual mss components m,
and Ty, by introducing the expression for the total kinetic

energy of the disturbed flow in the form

imoud 4 bm (v sl ) 4 4 T(? on?
T=zm um+2m2(%;a+v§;w)+2l(’}’“y+”z)

i ) : It e
where (-uﬁ_} 9 "V s =Wy ) and («.'LX, .u’;y,wz L ) are the components

of V and »;’L’iw respectively, Ve can always express T in this
ways by sultably choosing the origin of the ‘axes of references
then m, end m,, - end so also the virtual mass coefficients
k 1 and lc2 » = depend only on the fluld motion engendered by “the
translation, Accordj.ngly, ir nz"ﬁ';y =i, and < lx :‘*‘% = 0y we
can calculate that the fluid exerts a 'centrifugal'! side force
on the body of magnitude

F == k,lp"vg:;,,f?; cos a (Vol)
and a retarding longitudinal force

X = s lsin a (Vol)

kP s
The first of these equations is compatible with the result of

Slender Body theory, as the latter merely implies that k'l may
be ignored for a slender body§ also, by integrating the surface

pressure distribution, given in equation (58), we can find (as

before) that to the same order of accuracy we may take kz =1,
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assuming that the body rotates sbout its centre of volume, A
longitudinal retardation is thus the chief effect of what may be
recognised as a kind of Coriolis force exerted by the fluid on
a slender body,.

We would expect these potential flow results;to be
mpdified in reality by viscous effects, in much the sanme way as
those relevant to a purely translational motion, but it is very
difficult to fornm any firm conclusions from the mneagre experis=
mental data, Some comparisons of the exact side force distribu=-
tion ebout a spheroid with measurements taken on a whirling arm
(Jones 1925) are shovm in figure 31, TFrom these it appears
that theory gives no agreement whatsoever with experiment, even
over the nose of the body; furthermore, increments due to
rotation for positive and negative incidences differ considerably,
in contrast with the result of potential theory,  The %otal
side=force measurements are also shown in figure 31, from which
it will be seen that as a consequence, the extra force introduced
by rotation changes sign with the incidence, a+ These are

unexpected and unexplained effects.

31e The Application of Potential Flow Theory to Ducted Bodies

The exact theory of potential flow about ducted bodies
hes only been developed to deal with the flow cbout toroidal
boundaries of circular, or ncarly circular cross-section, and
consequently the rcsults have only a limited significence in
practical aerodynamioé. There arc, however, various approxinate
methods availeble which ére applicable to the‘dcsign of useful
shapes of ducted bodies and these will be described in the
scctions which follow,

Before procecding with this, it is desirsble to draw
ettention to the methods used in simulating, within the framework
of potential theory, the cffect on the external strcom of external

forces dpplied‘qpon the fluid within the duct, For +he purposes
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of the present argument we shall suppose that the perturbation
potential for a duct of finite length is represented by a
vorticity distribution merely over its surfacej then it trans~
pires that it is possible to adjust this distribution in such
a way as to leave the duct a stream surface, but to alter the
interﬁal rate of volume flow through it. In generzal, any such
solution will imply 2 certain flow round the trailing-edge of
the duct, and in practice, if there were no external forces
applied upon the fluid, the action of viscosity would inhibit
this processy thus there would be one unique vorticity dis=
tribution, which would satisfy this physical condition on the
flow around the trailing-edge, and which would most closely
describe the actual flow of a &iscous fluid., In other words,
we are concerned with a flow in a doubly=-cormnected space, and
(as in two-dimensiocnal aerofoil theory) the Joukowski hypothesis
must be invoked to obtain a unique solutione

However most problems of practical interest arise
where the internal flow through the duct suffers some form of
external constraint - due, say, to the action of a fan, - which
will induce a greater (or smaller) internal rate of volume flow
than in its absence, Many investigators attempt to simulate
kths effect on the external stream by relaxing the trailing-edge
condition, and allowing the fluid to move round it, so that
the appropriate rate of volume flow through the duct is
reproduced, This has perhaps little physical reality, but
nevertheless provides a solution which has some relevance to
the flow near the leading-edge, or lip, of the duct, where the
effect of the unreal condition at the trailing-edge is more
remote, |

In particular, if the duct has head and tail portions
(of varying cross=section) each mounted on a long centre portion
of constant radiué, - say, of three or more dismeters in
length, = then experimental evidence suggests that variations

in the shape of the head portion produce changes in the surface

-
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pressure distribution which have negligible magnitude over the
tail portion, and vice versa. The pressure over the centre
is, in fact, roughly thét of the free-stream. In this event,
the flow over the head (or tail) portion may effectively be
considered by supposing it mounted on a cylinder extending
indefinitely downstresm (or upstream),

In a number of problems it is possible to construct
a more satisfactory representation of the flow, by extending
the vorticity distribution over the surface of a duct of finite
length downstream into the wekej even so, the basic assumptions
- that the flow is incompressible, irrotational and inviscid, -
linit the applicability of the results, and a greatly simplified
notion is required of the form of the extermal action on the
flows, DBecause the flow is irrotational and incompressible,
we must assume that the external forces applied are conserva=
tive, But as we are not concerned here with the precise
pressure distribution within the duct we have no need to
stipulate tﬁe actual process by which these forces are produced,
other than to suppose that they are confinéd at least to the |
flow within the duct, so that the issuing jet will have a
different (but constant) vélue of the total head from that of
the external stream, Acoordingly, the jet boundary must form
a free vortex sheet, whose shape and intensity will be deter=
mined by the condition that it lies on a stream surface of the
flow, and that the pressure on either side of the sheet is
identical, Because of the change in total head, this latter
condition implies that the difference in the kinetic energy
of the fluid on either side of thé vortex sheet is a constants
if the distufbancé'to the flow, and the external forces, are
sufficiently small, thiSAapprOXﬁnates to the condition that
the intensity bf surface vorticity on the jet boundary is a
constant, It will be appreciated that this free vortex ‘
sheet will in fact be unstable and break up into a growing

turbulent 'mixing zone', but the consideration of this is
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outside the scope of potential theory, and of the present

discussione

32 QuasinCylinder Theory of Thin Ducts with Prescribed

Pressure Difference
ByAa thin duct we mean to imply one with a thickness
so small that it can be represented with sufficient accuracy
by a plane surface, PFurther, the assumption of the 'Quasi~-
cylinder! theofy ié that the change in local radius (rW) of
the duct is small compared with its mean radius (EW’ say), in

other words a length Ew exists such that

-1
oy = rw%
W W ey

- ]
LTy

Provided that external forces are either zbsent, or at most
of small magnitude, then it follows that the disturbance to
the stresm due to the duct will also be small. Accordingly,
if we represent its effect on the flow by a vortex sheet over
its surface, the surface intensity of this sheet will be prop-
ortional to the (émall) velocity difference on either side of
the duct, and so also it will be proportional (to a first
approximation) to the (small) pressure difference across the
duct surface, Thus, if this pressure difference is prescribed
the surface vorticity distribution is known3 further, if we
are then toc find the shape of the duct, we may assume (to a
consistent order of approximation) that this vorticity is
distributed over the mean cylindrical surface of radius EW s
which Qf course only corresponds to the duct surface in the
limiting condition of vanishing disturbances, The approach
to this problem will be seen to bé analogous to that used
in the theory of two~dimensional flow over slightly cambered
aerofoils,

The Stokes Stream function for a vortex’ring of

radius a ebaut e axis r = 0 in the plane x = constant, may
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integrals of the first and second kinds with modulus k equal
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A distribution of such vortex rings over the cylinder r = }"v_
v

for  |xi L 1, say, in an axiel uniforn stream of speed Uy,

yields a flow described by the stream function
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K" = br o g/ t(fc-'b) + (r«z—rw)
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We can accordingly deduce the shape of the duct, kmowing s,
by evaluating the magnitude of the integral (which will be small)

on the mean surface r = f‘W, and finding the value of r= T

e

in the free-stream term —guﬁ r2 which will make M:f’” a constant,
as required, on the duct surface,

This approach is easily‘ extended to an iterative
method of finding the exact shape of the surface corresponding
to a prescribed vortex distributiony the value so found for
the duct radius is used as a first approximation L, (x) s S8Y,
and then by replacing r and Ew in the integrand of eqﬁa.tion

(59) by rw_,l(x) and r_,(t), we can find a second approximation

wl
rWZ(x), end so forth. The process is laeborious, but converg-
enty plainly, the surface of the vortex distribution is made

in the end to coincide with that of the duct, as feqﬁired. A
typical example is given in figuré 32 , where the shape of the

duct surface, corresponding to a uniform vorticity distribution,

is shown as calculated by quasi-cylinder theory, and as more
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accurately determined by successive approximations (Kuchemann
and Weber, 1948),  Although the iterative technique provides

an exact method, it is still of limited value, in relation to
the problem originally posed, as the vortex distribution is
only known approximately from the prescribed pressure differenée;
but no doubt this approximation could be improved at each step
of the iterative process if necessary, by finding the surface
velocitye.

Some examples of the application of quasi-cylinder
theory have been given by Warren (1945) with a specified vortex
distribution over a duct of finite lengths the results may be
readily generalised to include the effects of the vortex wake
‘on the jet boundary, where the internal flow has a different
total head, merely by addition of the flow due %o uniform dis=
tribution of vorticity over a semi-infinite cylinder downstream,
the vorticity being of course contiruous across the trailing-edge

with that on the surface,

33, Thin Ducts of Prescribed Shape

The problem of finding the pressure distribution
about thin ducts with a given variation of radius is again
amensble to approximate treatment in a few particular cases.
For short ducts (i.e. those with small fineness ratios of the
duct length to its maximum diameter), the method of Dickmann
(1940) is most appropriates this is based on the 'quasi-
cylinder' approximation., The integral in (59) is evaluated
for r = fw, with the vortex distribution expressed as a
Fourier series in terms of the angle whose cosine is (x%/1),
and with the kernal of the integral expanded in ascending
powers of (x~t)/f‘w. Provided the duct is sufficiently
short, so that l/f'W is small, this latter expansion need
be taken only to the first few termsy use of simply the

first term yilelds the same result as would be obtained by
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treating the flow @bout the duct section as two-dimensicnal,

To evaluate the vorticity distribution corresponding to a given
shape, Dickmann also suggests including only the first few
terms of the Fourier series describing its shape, whose coeff=-
icients can then be evaluated by comparing with the known
radius or slope of the duct at an appropriate number. of
stations,

On the other hand, if the duct is long compared with
its diameter, it is possible to relax the assumptions of
'quasi~-cylinder' theory, and to deal with a duct whose radius
varies by large factors, and the internal flow through which
is subjected to large forces, The method of approach to be
used in this case is an extension of Slender Body Theory}
with the effects of the vorticity on the jet boundary included,
it is shown by anweiler (1955 b) that the pressure distribu-
tion over the exterior of the duct is identical in form with
that found for closed bodies, but with the addition of a term

which behaves, sufficiently far downstream of the nose, as

§ ~%,8(0)
Lp = N )
27 X
- L}’ﬁ

2
2PV,

ety ot A

P,

Here é is the rate of volume flow through the duct, o is
the free-stream speed, and S(x) dis the cross-sectional area
of ‘the duct at a distance x from the nose, Additionally,
the theory shows that the internal flow is given to a first

approximation by the one-dimensional continuity law, that the

longitudinal velocity

u = é/S(X) -ctoeonuaoot(éo)

It will be seen that the pressure induced on the
external surface by the flow through the duct, as given above,
vanishes only if the intake velocity equals the free stream
speeds on the other hand, if it is smaller, a suction is
induced which attains a large magnitude near the nose

(figure 33 )e In fact there will be, in general, a finite
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longitudinal force on the nose due to the local singularity in
the pressure distribution, which is analogous to the suction
force at the leading-edge of a flat plate,

According to Slender Body Theory, the jet‘leaves the
duct with a speed which is, to a first approximation, equal to
that of the free stream if no external forces act on the bodys
if such forces do exist, however, the jet will be bounded by
a vortex sheet of approximately constant intensity, and of
constent radius, so that from equation (60) sbove, the jet
velocity is constant, - again, of course, to a first approxi-

mations

3he The Theoretical Representation of the Effects of Duct

Thickness

We have so far considered the duct as a thin sheil,
without thickness. No exact treatment has been so far
suggested by which potential theory may be applied to derive
the effects of the actual thickness of the duct on the flow,
However, an approximate treatment, is, at least, well known
in principle, Provided that the thickness is everywhere
sufficiently small to justify the assumption that the dis-
turbance to the flow it engenders is likewise small, then the
direct effects of thickness may be simulated by a distribution
of sources or source-rings on, say, thé mean surface of the
duct, whose intensity is proportional to the change in area
of the so0lid annular cross-section of the duct., Thus it is
possible to construct, on the basis of quasi-cylinder theory,
the shape of duct having a prescribed thickness and vorticity
distribution, and one such example is shown in figure 3k .
The method of derivation follows along precisely similax
lines to that stated in section 32, except of course that
an expression for the increment in the Stokes Stream function

due to a distribution of source rings must be added.
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However, in relation to the direct prcblem of
finding the f£low due to a duct whose shape is prescribed, it
will be seen from the figure that a source distribution (alone)
induces a distortion or camber of the mean duct surface, which
can of course be corrected by an additional vcrtex ring dis-
tributiont to determine its intensity it would be necessary
to apply one of the two methods discussed in the preceding
section = depending on whether the duct can be adequately
described as short, or long (end slender),

On the basis of Slender Body Theory (Nomweiler, 1955 b)
it can be domonstrated that the expressions for the pressure
over the external surface stated earlier are still applicable
provided that the ducht cross-sectional area, S(x), is teken
to include that of the solid annular cowling as well., Thus
the external flow cen be said, to this approximation, to be
indepenﬁént of the shape of the internal ducting, The
addition of a centre~body, within the duct, has likewlse no
important effect on the external flow (figure 35 ), and this

general conclusion is supported by experimental evidences

35e Thick Fairings with Uniform Pressure

An ingenious experimental technique of obtaining
the shape of ducts having a uniform pressure over their
external surface is due to Riechardt (1944). If a cylindrical
tube is inserted in a stream of liquid and the flow through
it is adjusted by a porous screen, or some such device, some
of the liquid will spill round the nose of the tube, and
haviﬁg its pressure sufficiently depressed, it will form a
cavitatidn'bubble, extending downstream from the inlet
(figure 36 )e = The boundary of this bubble will be a
constant pressure surface and also a streamlineg hence it
satisfies the requirements for the outside fairing of duct,

over which the pressure is constant. The method is obviocusly
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limited to this particular problem, and even in relation to
this it has ifs limitations owing to the collapse of the
bubble downstreams

Application of the momentum theorem to the flow
about a semi=infinite duct with a cylindrical imner surface
(figure 37 ) shows that the longitudinal forwerd force on the
curved ocuter face equals

I
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where '“Vl is the 'intake velocity's If this force is due to
the action of a uniform suction over the duct outer surface, we
mey easily calculate that the external velocity (VX‘N,) is

related to the annuler frontal area of the duct (sn) and the

intake area, S by the expression
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The experimental observations (figure 38 ) on fairings deduced
from this cavitation method are seen to be in good agreement

with this law,

364 Experimental Measurements of the Flow sbout Ducts

Most of therexperimental work hags concerned itself
with conditions existing over inteke or exit portions of ducts,
mounted on what may be assumed to be, effectively, a semi~
infinite cylinder. Only a few isclated results are available
for ducts of finite lengths The work on intakes has been
largely concemed with the deduction of shapes having a
roughly constant external pressure distribution. In practice,
however, the results given by the quasi~cylinder theoryy or
the oavi’cé‘cion technique just described, which are of applica=

tion to such a problem, sre of limited significance for it
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is evident that the duct has to operate under not one, but a
veriety of conditions of inteke velocity ratio, and incidence,
and the duct lip has to be designed primarily to avoid flow
separations Nevertheless, although it is not capable of
describing conditions over a duct at incidence, theory does
show reasoneble agreement in axial flow (figure 39 ).

On the other hand, the theory of the flow over the’
curved after~bodies of ducts in the presence of an emerging
Jjet could hardly be expected %o show complete agreement with
experimental results (figure LO ) as viscous effects will
modify to an important extent both the state of the flow near
the surface, and over the jet boundary, which is represented
in theory as a vorbex sheef. The disparity between theory
and experiment, of course, becomes more apparent as the
intensity of this free vorticity increases, Turbulent
nixing between the jet and the surrounding air casuses an
additional inflow towards the jet, due to much the same causes
as the ‘'sink-effect', or the decrease in displacement thickness
of a wake., The modification to the airflow brings about a
change in the surface pressure distribution, particularly near
the exit plane. The results of figure LO  suggest that the
effect is relatively slight, causing a pressure change at the
exit which varies linearly with the jet exit velocity Kfé, ieCe

yC_ == 0,01 (»—‘—ﬂ - ‘HE
? s S
In other words, with Vo>V, the 'sink effect! tends to

accelerate the flow over the rear of the duct,
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LIST OF NOTATION

radius of source or vortex ring (in plene
x = constant)

limiting x-coordinates of doublet distribution

two~dimensional drag coefficient of circular
cylinder

mean cross=flow drag coefficient
maximum diemeter of body
coefficients of metric

argument of elliptic functions

coefficients of longitudinal and lateral
virtual mass ,

half length of body
half distance between foci of spheroid
point source intensity

total source intensity upstream of plane
x = constant

longitudinal and lateral virtual mass

distance measured along outward nbrmal to body
unit outward normal

pressure’

source intensity per unit length in plane
x = constant

radial coordinate in cylindrical polars measured
perpendicular to body axis

pbsi’cion vector

mean radius of body

distance (general)

perameter of integration

£luid velocity component along x-axis
perturbation velocity component along x-axis
£1luid velocity component along y=axis

fluid radial velocity component

speed of fluid relative to body

inteke speed
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fluid velocity component along z-axis

(potential flow) longitudinal coordinate in
cartesians and cylindrical polars measured
dovnstrean along body axis, with origin half
way between nose and tail

(boundary layer flow) coordinate measured
along surface downstream from nose in meridian
plane : .

dx, in Mengler's Transformation of boundary layer

equations

(potential flow) cartesian coordinates in plane
perpendicular to body axis; z being teken to
lie in plane of (translational) motion and
positive in direction of free-stream component

(boundary layer flow) coordinate system with
7z measured nornal to surface and y in surface

side area of body

= (moment) /%p~k2 (Vol), pitching moment coefficient positive

if nose-up

pressure coefficient

drag

complete elliptic integral of second kind with
moduius k :

side force, token by convention in direction of
Z~2aX1s

external force exerted on body to sustain
motion through fluid

'erowth parameter' in boundery layer momentum
equation

external couple exerted on body to sustain
motion through fluid

virtual moment of inertia

complete elliptic integral of first kind with
nodulus k

Legendre associlated function of first or second
kind

point doublet intensity

momentum of perturbed fluid flow

moment of momentum of perturbed fluid flow
Iegendre associated function of the first kind

volume occupied by fluid (general)



80w

Qﬁ(t) Tegendre associated function of the second kind

®

Q rate of volume flow through duct

R, :%%(Vol)‘l/ 3 /v, Reynolds number

R, ="V, (21) /v, Reynolds mumber based on body length

S area (general)

S(x) cross=sectional area of body in plane x = constant
Smax maximum cross-sectional area of body

Si intake area of duct

T total kinetic energy of perturbed fluid flow
U,U(x) velocity component at, and parallel to, outside

of boundary layer

V,V(x) body volume contained upstream of plane
x = constant

velocity vector of body relative to undisturbed

kSl

fluid

(Vol) total volume of body

W) velocity component at, and parallel to, body
surface

X longitudinal force m direction of x-axis

a incidence of body, taken by convention as a

positive rotation sbout y-axis

B = ton™ ! ( erf’; slope of body surface relative to body axis

dx
v'e strength of infinitesimal horseshoe vortex
62:& momentum thickness of body in axial flow
Z semimelliptic coordinate defined in equation (1)

of text

6 = tﬁm“‘l (," ‘Z-} s cylindrical polar coordinate (measured from
z=axis as datum) in positive sense about

x=axis
eo value of © on axis of rotation of body
1) viscosity
v semi=elliptic covrdinate defined in equation
(1) of text
v kinematic viscosity
density of fluid
0‘,l disglacement area of boundary layer or weke
(=0 &, )
Oy mome?‘tum area of boundary leyer or wake
(= ¢ 8, a)

W
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shear stress at wall
velocity potential
perturbation velocity potential

coefficients in expansion of potential function

~circulation

circulation per unit length in plane x = constant

Stokes stream function defined in equation (10)
of text

angular speed of rotation of body relative to
undigturbed stream

angular velocity vector of body relative to
undisturbed stream,
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Streamlines due to a semi-infinite vortex ring_distribution of constant
strength _in a uniform stream parallel to the axis. Broken fines
show_streamlines due ko vortex diskribubion on the circular cylinder
r=a. Full lines show skreamlines due to same vortex distribution
on a stream surface originakting ak x=0, r=a.
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Control surface and sgmbo?s for momentum theorem
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