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Abstract

A general modelling methodology has been developed to evaluate the effects of chemical
interdiffusion and misfit dislocations on the performance of heterojunction solar cells made
from highly mismatched materials. Results for the exemplar materials system CdS-CdTe are
contrary to the widely held belief that such interdiffusion is beneficial to photovoltaic
performance. In the model, recombination is presumed to take place at the cores of misfit
dislocations, with the distribution of these dislocations in the interdiffused layer being
calculated so as to minimise the total energy (an incidental result shows that the total number
of dislocations is independent of the diffusion profile). The model takes calculated chemical
profiles, optical absorption and dislocation distributions from which the photovoltaic
performance and recombination losses are evaluated. It was shown that for the realistic case
in which the interdiffused region does not extend beyond the space charge region, then
photovoltage losses dominate over any photocurrent gains. Methods to engineer mixed
junctions that may increase solar conversion efficiency are discussed.
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Arguably one of the last remaining challenges for thin film heterojunction photovoltaic (PV)
devices is the deficit in open circuit voltage (Voc) that they suffer in comparison to homo-
junction or lattice matched heterojunctions. For example, while GaAs achieves a Voc of ~80%
of its band gap value, the present world record CdTe (21.0% conversion) is restricted to 876
mV, this being ~58% of band gap [1]. Should this shortfall be corrected then it is expected
that CdTe PV devices will reach ~25% efficiency, i.e. comparable to the best wafer silicon.
Accordingly there has been a resurgence of interest in single crystal CdTe devices and non-
standard doping [2-3] in an attempt to realise higher Voc performances than is achievable in
polycrystalline thin films. However, for such highly mismatched systems the relative
importance of misfit dislocations and of interdiffusion between the layers has not been
estimated. Modelling the potential benefits of alloying and losses from recombination at
(diffusion modified) misfit dislocations is the subject of this paper. The methodology is
general and is developed for CdS-CdTe as an archetypal system. It has relevance to both
epitaxial and polycrystalline devices.

Sulfur diffusion in CdS-CdTe photovoltaics forms a CdSxTe1-x layer at the interface [4-8] and
is usually assumed to be beneficial [4,9] since it reduces the large (~10%) lattice mismatch
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between CdS and CdTe. Electrical losses due to recombination are therefore presumed to be
minimised. Furthermore, the variable band gap of CdSxTe1-x with respect to composition [10],
raises the intriguing possibility of producing a graded band gap device. Graded gaps are
utilised in Cu(In,Ga)Se2 photovoltaics [11] and the CdZnxTe1-x system has been proposed as
an alternative to CdTe [12], the main advantage being the enhanced carrier collection due to
the quasi-electric field [12]. A CdSxTe1-x graded band gap can be produced intentionally
either by sputtering [13], isothermal close space sublimation [14] or unintentionally via the
thermally induced diffusion from CdS into CdTe. In this letter numerical simulations of
diffusion are carried out to determine its impact on photovoltaic device performance. The
diffusion profile is calculated using diffusion coefficients for sulfur in bulk CdTe [15]. It has
been shown that this satisfactorily reproduces the diffusion profile measured in real devices
[8], so that the simulations are relevant to current device fabrication methodologies.
Furthermore, a strain relaxation model is developed to calculate recombination losses at a
chemically diffuse interface, which is applicable to other such structures as well. The findings
challenge the accepted belief that CdTe-CdS interdiffusion can increase solar energy
conversion efficiency in this device technology.

Figure 1 is a schematic of the device simulated and is based on the cell architecture fabricated
in one of our labs (Liverpool). It consists of the glass superstrate (modelled as SiO2; 3.2 mm
thickness)/ F-doped SnO2 transparent conducting oxide (TCO; 300 nm)/ ZnO barrier layer
(100 nm)/ CdS (150 nm) and CdTe (5 µm). Complex refractive index values for CdTe are
from [10] and the values for SiO2, ZnO, SnO2:F and CdS were obtained from ellipsometric
measurements using a J.A. Woollam M2000 spectroscopic ellipsometer, with the SnO2:F
values being extracted from a sample of commercial TEC15 glass. Figure 2a is a band
diagram for the CdS-CdTe interface under bias. The band shape and space charge width (W)
within CdTe were calculated assuming the depletion approximation [16] and material
parameters tabulated in the supplemental material [17]. For typical doping concentrations in
CdS and CdTe (i.e. 1018 and 1015 cm-3 respectively) the space charge region and band bending
is largely confined to the CdTe layer. In this particular example W has a value of 1.1 µm,
which is consistent with experiment [23].

The photocurrent density at a given bias is due to photon absorption within the space charge
region (SCR) as well as the minority carrier diffusion flux at the space charge edge [16]. For
a given sulfur diffusion profile the former is calculated numerically using the absorption
coefficient for CdSxTe1-x [10]. The current density due to diffusion is calculated from the
steady-state minority carrier distribution (n) within the CdTe quasi-neutral region (QNR)
[16]:
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The second term is the carrier generation profile due to absorption of light of energy with
z). I (z) is the Air Mass 1.5 light energy flux [24] within the

absorber layer after correcting for absorption and reflection from the preceding device layers.
Dn is the minority carrier diffusion coefficient and is the lifetime; the values for bulk CdTe
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(see supplemental material [17]) are used here since the sulfur diffusion profiles in this study
do not extend significantly into the QNR. This also means that there is no drift term in
Equation (1) due to the quasi-electric field of a graded band gap [12]. Equation (1) must be
solved consistently with the boundary conditions at the space charge edge and CdTe back
surface ([16]; see supplemental material [17]).

Modelling the strain distribution across the CdSxTe1-x layer is now discussed: figure 2b is a
schematic of a chemically abrupt CdS-CdTe interface, where interfacial misfit dislocations
are present to relieve the lattice mismatch. For this particular example the orientation

relationship is CdS (0001) || CdTe (111) and CdS [ 0211 ] || CdTe [ 011 ], so that for every ten

CdTe atomic planes across the interface an extra half plane is present on the CdS side. Figure
2c is the equivalent diagram for a chemically diffuse interface drawn on a continuum scale.
Because the mismatch is now spread out over the sulfur-diffusion distance, some of the misfit
dislocations are swept further into the CdTe layer. The total energy (E) consists of the

dislocation self energy ( ) and the strain energy due to lattice mismatch, the latter offset by
the deformation (i.e. Burgers vector magnitude, b) required to create the dislocation [25]:
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where µel is the elastic modulus and the mismatch parameter (z) = [d(z)/dCdS]-1, with d(z)

being the local atomic planar spacing and dCdS the value for bulk CdS. The dislocation
density distribution (z) must minimise the energy E and is given by (see supplemental
material [17]):

dz

d

b
z

1
)(

It is assumed that relaxation takes place within the CdTe layer and not CdS, which is justified
by the fact that the elastic moduli are larger for the latter [26]. The experimental lattice
parameter values for CdSxTe1-x [21] are used to calculate (z) via Equation (3) for a given
sulfur diffusion profile. Importantly it can be shown that the total number of dislocations is
conserved and is independent of the sulfur diffusion profile (see supplemental material [17]).
The physical reason for this is illustrated in Figures 2b and 2c. The Burgers circuit drawn
across Figure 2b has no closure failure when transferred to a perfect bi-crystal and a similar
principle applies to the chemically diffuse interface (Figure 2c). In each case the lattice
mismatch between bulk CdS and CdTe is offset by the net dislocation strain field. The CdTe
absorber layer in real devices is polycrystalline with a typically columnar structure [8, 23], so
that the above situation is still applicable within the grain interiors, despite the presence of
grain boundaries.

The recombination current density is calculated using the Shockley-Read-Hall (SRH)
recombination rate (R) [16]:
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where q is the electronic charge, V the applied bias and kT has its usual meaning. is
assumed here to be -section valid for uncharged defect states
(i.e. 10-15 cm2; [16]), th is the thermal velocity, (n,p) are the local electron, hole
concentrations and Nt(z) is the density of defect states at position z. Only atoms along the
dislocation core are assumed to be SRH recombination centres, so that Nt(z) can be calculated
directly from (z). (nt,pt) are the electron, hole concentrations when the Fermi level is aligned
with the defect energy level, which is taken to be in the middle of the local band gap. The
final term in Equation (4) is the intrinsic carrier concentration (ni), which is given by ni

2 =
(NcNv)exp(-Eg/kT), where Nc, Nv are the local density of states in the conduction and valence
band respectively and Eg is the local band gap.

The recombination current density is determined by integrating Equation (4) over the space
charge width W. It is useful to describe how the spatially varying parameters (e.g. ni(z), n(z)
etc) in Equation (4) are modified by sulfur diffusion. The permittivity, electron affinity and
Nv for CdSxTe1-x are assumed to be identical to CdTe, since the values for bulk CdS and CdTe
are similar (see supplemental material [17]). A constant permittivity means that the space
charge width W and electrostatic potential are unchanged. The latter governs the shape of the
vacuum energy level (Evac; Figure 2a). The conduction band minimum is therefore also
unchanged due to the constant electron affinity. The valence band maximum however does
change due to a variable CdSxTe1-x band gap [10]. The quasi-Fermi levels within the SCR are
as indicated in Figure 2a, which together with the band edge energies determine the local
electron and hole concentrations (i.e. n, p, nt and pt; Equation (4)). The electron effective
mass for CdSxTe1-x [19] is used to determine Nc. The variable band gap and Nc values mean
that ni in Equation (4) is a function of position.

525 C isothermal sulf
200, 300, 400 and 500 mins, using experimental diffusion coefficients for sulfur in bulk CdTe

[15]. 525 C/10 mins corresponds to the close space sublimation deposition conditions for
CdTe in one of our labs (Liverpool). For these devices sulfur diffusion largely take place
during -deposition chlorine activation
being comparatively smaller [8]. It is known from experiments [8] that for CdTe deposited at

a higher temperature of 625 C for 60 mins, the increased sulfur diffusion consumes part of

the CdS layer, so that these conditions represent an upper limit for practical device

fabrication; indeed the most extreme condition of 525 C/500 mins in our simulations gives a

diffusion profile similar to the experimental result for 625 C/60 mins. Representative sulfur
diffusion profiles are shown in Figure 3 and indicate that the CdSxTe1-x layer does not extend
beyond the SCR. For example a CdS0.05Te0.95 composition is obtained at 57, 181,
257, 314, 363 and 406 nm diffusion distance
and 500 mins respectively.
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Figure 4 shows simulated device parameter values as a function of annealing time, in
particular the short circuit current density (Jsc; Fig 4a), open circuit voltage (Fig 4b), fill
factor (Fig 4c) and efficiency (Fig 4d). The efficiency decreases monotonically with sulfur
diffusion, by as much as 3.4% after 500 mins. According to Equation (4) there is no

recombination current at zero bias, so that the change in Jsc is due to photo-absorption within the

CdSxTe1-x layer. However, Fig 4a indicates that this is a relatively small change, i.e. Jsc

increases by only 0.6 mA/cm2 after 500 mins. More appreciable changes are observed in the
Voc and fill factor, i.e. up to 87 mV and 8.2% decrease respectively, which suggests that the
efficiency decrease is primarily due to recombination losses in CdSxTe1-x. The recombination
current density (Jrec approximated as:

mkT

qV
JJ r exp0rec

... (5)

where Jr0 is a constant and m is the ideality factor. The latter has a maximum value of two for
a defect level in the middle of the band gap and equal electron, hole concentrations
throughout the SCR. On the other hand m = 1 for defects localised at a chemically abrupt
CdS-CdTe interface (see supplemental material [17]). Figures 4e and 4f plot the Jr0 and m-

There is a rapid increase in Jr0 and the ideality factor
approaches the maximum value with increased sulfur diffusion. This has the effect of
reducing Voc and fill factor (Figs 4b and 4c).

The increase in Jr0 and m can be explained with the aid of the band diagram in Fig 2a. For no
sulfur diffusion the misfit dislocations are localised at the CdS-CdTe interface, where the
local electron concentration is significantly higher than the local hole concentration, leading
to a relatively small SRH recombination rate. Sulfur diffusion does not reduce the total
number of dislocations, but instead shifts the misfit dislocations further into the SCR where
electron-hole concentrations are more equal and the SRH recombination rate is higher. The
band diagram for a diffuse interface is somewhat different to Figure 2a, but the numerical
results suggest that the overall trends are nevertheless still valid. The calculations also
assumed a mid-gap defect energy level, although in practice it may vary during strain
relaxation. Simulations were therefore also carried out with the defect energy set to shallower
levels for the 525oC/ 500 mins anneal, where sulfur diffusion, and hence strain relaxation, is
greatest. Device efficiency showed very little improvement until the defect level had shifted
by as much as 60% towards the conduction band edge (see supplemental material [17]). This
degree of relaxation is however considered unlikely, particularly along the dislocations cores,
where SRH recombination is assumed to occur in our model.

Thus unless the defect energy levels are shifted by more than 60% the conclusions in this
letter, namely that sulfur diffusion is undesirable, holds true. It is worth mentioning however
that time, which represents
typical device fabrication conditions. For a sufficiently broad sulfur diffusion profile, such
that some of the misfit dislocations are moved out of the SCR, the efficiency should start to
increase due to decreasing recombination losses. Figure 3 shows that this cannot be
practically achieved through natural diffusion from CdS, although there is still the possibility
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of engineering a wider CdSxTe1-x layer through sputtering or isothermal close space
sublimation. This could be explored experimentally.

In summary it has been shown that sulfur diffusion cannot improve device efficiency, despite
minimising lattice mismatch at the CdS-CdTe interface. This is because the number of misfit
dislocations is conserved, and sulfur diffusion shifts the dislocations further into the SCR,
where the SRH recombination rate is higher. The effect is however predicted to be small for
typical close space sublimated devices.

Acknowledgements

EPSRC funding for BGM (EP/I028781/1), KD (EP/J017361/1) and DWL (EP/F029624/2) is
gratefully acknowledged. Raw data can be accessed at
http://dx.doi.org/10.15128/xs55mc046.

Figure captions

Figure 1: Schematic of the simulated CdTe device with layer thicknesses indicated (figure
not to scale).

Figure 2: (a) CdS-CdTe interface band diagram showing vacuum (Evac), conduction band
minimum (Ec) and valence band maximum (Ev , Eg are the electron affinity
and band gap respectively. The electron and hole quasi-Fermi levels (EFn and EFp) are split
due to the applied bias and are approximately equal to the Fermi level (EF) within the
respective bulk semiconductors. (b) and (c) are atomic and continuum-scale diagrams of the
misfit dislocation distribution at a chemically abrupt and diffuse CdS-CdTe interface
respectively. The CdS layer is at the bottom, while CdTe is on the top. The outer solid line
represents the Burgers circuit.

Figure 3: Sulfur diffusion profiles at 525

Figure 4: Simulated values for (a) short circuit current density, (b) open circuit voltage, (c)
fill factor, (d) efficiency, (e) Jr0

525 C.
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Figure 2

Figure 3
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