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Abstract

Static “self-optimising” control is an important concept, which provides a link be-

tween static optimisation and control (Skogestad, 2000). According to the concept,

a dynamic control system could be configured in such a way that when a set of cer-

tain variables are maintained at their setpoints, the overall process operation is au-

tomatically optimal or near optimal at steady-state in the presence of disturbances.

A novel approach using constrained gradient control to achieve “self-optimisation”

has been proposed by Cao (2004). However, for most process plants, the informa-

tion required to get the gradient measure may not be available in real-time. In

such cases, controlled variable selection has to be carried out based on measurable

candidates. In this work, the idea of direct gradient control has been extended to

controlled variable selection based on gradient sensitivity analysis (indirect gradi-

ent control). New criteria, which indicate the sensitivity of the gradient function

to disturbances and implementation errors, have been derived for selection. The
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particular case study shows that the controlled variables selected by gradient sen-

sitivity measures are able to achieve near optimal performance.

1 Introduction

Chemical process plants are always controlled in different layers. For example,

several local control layers are designed to maintain local controlled variables at the

desired operating point whilst a plantwide optimisation layer is responsible to ad-

just the setpoint to the local layers according to different situations (disturbances).

Traditionally, these two layers are designed separately for different (economic and

dynamic) objectives although they need working together. However, these two lay-

ers can be linked together via the concept of “self-optimising control”, which can

date back to the work of Morariet al. (1980) about “feedback optimising control”,

and has been revisited recently by Skogestad (2000). Self-optimisation is a control

strategy where by controlling certain specially selected variables at their nominal

setpoints, the overall system automatically achieves the optimal (or acceptable)

operating conditions without re-optimisation even in the presence of disturbances.

The optimality of a self-optimising control system is strongly related to the

control structure, particularly the controlled variables selected. For controlled vari-

able selection, Morariet al. (1980) proposed a second-order derivative criterion,

whilst Skogestad (2000) derived a criterion using the minimum singular value in-

dex. Both works are based on a common assumption that the first-order gradient of

the cost function is zero at optimal point. However, this assumption is questionable.

Firstly, the gradient of cost function may not equal to zero at a constrained local

optimum. Secondly, without directly control, the gradient will vary away from

zero in the presence of disturbances even if it is zero under a nominal condition. In

spite of this deficiency, the concept of “self-optimising” control has successfully
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been applied to several chemical processes such as the Tennessee Eastman process

(Larssonet al., 2001) and the evaporation process of Newell and Lee (Govatsmark

and Skogestad, 2001).

To overcome the above deficiency, Cao (2004) has derived a dimension reduced

expression for the gradient of a constrained cost function, and used it as the con-

trolled variable to achieve self-optimising control. In this work, the usefulness of

the dimension-reduced gradient function is scrutinised further. It is shown that the

sensitivities of the gradient function to disturbances and to implementation errors

for a set of controlled variables (maintained at constant) are effective and reliable

criteria for controlled variable selection. By applying these measures to the evapo-

ration process of Newell and Lee, a new controlled variable is identified to be the

best and simplest one for self-optimising control. The effectiveness of this new

controlled variable is demonstrated through simulation.

The paper is organised in a self-contained way: The reduced-dimension gra-

dient of the constrained cost function as a combination of the first-order deriva-

tives of the cost function and nonlinear model functions is represented in section

2. Then the sensitivities of the dimension-reduced gradient to disturbances and

to implementation errors for a set of controlled variables are derived in section 3.

A general structure of “self-optimising” control is discussed in section 4, where a

special cascade control structure is proposed to cope with conditionally active con-

straints such that both optimality and constraint conditions are satisfied in the same

system. The sensitivity measures as criteria for controlled variable selection are

applied to the evaporation process in section 5, where several controlled variables

are identified as the best and simplest solutions. A comparison based on static and

dynamic simulation performed for different controlled variable configurations is

presented. Finally, the paper is concluded in section 6.
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2 Active constraints and dimension-reduced gradient

Consider the following optimisation problem:

min
x,u

J = φ(x,u,d) (1)

s.t. f (x,u,d) = 0

g(x,u,d)≤ 0

wherex ∈ Rnx, u ∈ Rnu and d ∈ Rnd are state, input and disturbance variables

respectively. For a given disturbance,d, the solution of the above optimisation

problem is denoted as,x∗ andu∗. Assume that at the optimal point, the following

equalities hold:

F(x∗,u∗,d) =

 f (x∗,u∗,d)

g1(x∗,u∗,d)

 = 0 (2)

where f (·) and g1(·) are vector-valued functions with dimensions ofnf and n1

respectively. Ifm= (nx +nu)− (nf +n1) 6= 0, then according to the Kuhn-Tucker

conditions, there arem first-order optimal conditions. Denoteu=[uT
1 uT

2 ]T with

u2 ∈ Rm, z= [xT uT
1 ]T andv = u2. Then the optimisation problem (1) can be re-

stated as:

min
z,v

J = φ(z,v,d) (3)

s.t. F(z,v,d) = 0

The first-order optimal conditions of the above optimisation problem are:

Jv = φv +
∂z
∂v

φz = 0 (4)

Fv +
∂z
∂v

Fz = 0 (5)
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If the Jacobian matrix,Fz is not singular, then the second condition (5) gives:

∂z
∂v

=−FvF
−1
z (6)

Inserting (6) into the first condition (4) leads to the following m-dimension optimal

condition:

G(z,v,d) := φv−FvF
−1
z φz = 0 (7)

Normally, the left-hand-side of the above condition is a function ofx, u (u1, andu2)

andd. For a given disturbance,d, equation (7) corresponds to an unique solution

of v∗ = u∗2, from which all rest system variables,x∗ andu∗1 can be determined.

If F(x∗,u∗,d) = 0 is the only active constraints for all possible disturbances,

then it is clear thatG(z,v,d) = 0 is the only condition which must be maintained to

ensure the process operation is optimal. In other words, if conditionG(z,v,d) = 0

is retained by the control system (direct gradient control), then optimal operation

can be achieved without re-optimisation for different disturbances, i.e. the plant is

self-optimising controlled.

3 Gradient sensitivity measures

Direct gradient control requiresG(z,v,d) available online. However, the gradient

normally is a function of the system’s states, inputs and disturbances. Some of

these variables may not be measured in a real plant. Hence, direct gradient control

cannot be implemented in such a system. In this case, a set of measured variables

as the substitute of the gradient has to be selected for “self-optimising” control.
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3.1 Sensitivity to disturbances

When other variables rather than the gradient itself are retained by a control system,

the gradient in (7) is a function of disturbances and will not always be zero. The

magnitude of the gradient indicates the optimality of the operation. Therefore, it

is desirable to select controlled variables, which make the gradient as insensitive

to disturbances as possible. The sensitivity of the gradient to disturbances depends

on whichm controlled variables selected. Assumem controlled variables selected

correspond tom equations denoted as,H(z,v,d) = 0, then the sensitivity can be

derived from the following equation set:

δ = G(z,v,d) (8)

0 = F(z,v,d) (9)

0 = H(z,v,d) (10)

Sensitivities of (9) and (10) to disturbances are zero, i.e.

∂z
∂d

Fz+
∂v
∂d

Fv +Fd = 0 (11)

∂z
∂d

Hz+
∂v
∂d

Hv +Hd = 0 (12)

SinceFz is not singular, equation (11) leads to

∂z
∂d

=−
(

∂v
∂d

Fv +Fd

)
F−1

z (13)

Inserting (13) into the second equation (12) leads to:

∂v
∂d

=−
(
Hd−FdF−1

z Hz
)(

Hv−FvF
−1
z Hz

)−1
(14)
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Replacing∂v
∂d in (13) with (14) gives:

∂z
∂d

= −FdF−1
z + (15)(

Hd−FdF−1
z Hz

)(
Hv−FvF

−1
z Hz

)−1
FvF

−1
z

Using the results in (14) and (15), the sensitivity ofδ to disturbances can be yielded

as follows:

δd =
∂z
∂d

Gz+
∂v
∂d

Gv +Gd (16)

=
(
Gd−FdF−1

z Gz
)
−

(
Hd−FdF−1

z Hz
)

(
Hv−FvF

−1
z Hz

)−1(
Gv−FvF

−1
z Gz

)
whereδd ∈ Rnd×m. WhenH = G, δd = 0. This corresponds to direct gradient

control. For other controlled variables,H 6= G, normally δd 6= 0. The i-th row

norm ofδd matrix indicates how sensitive of the gradient to thei-th disturbance for

them controlled variables selected. Therefore, the row norm ofδd can be used as

a selection criterion to rank different controlled variable combinations.

The sensitivity measure,δd is a second-order derivative,Jvd of the constrained

cost function. At the nominally optimal point, as explained in (Skogestad, 2000),

the first-order derivative of cost function is zero. Second-order derivatives must

be used to compare different controlled variable combinations. However, the mini-

mum singular value measure, proposed as a selection criterion in (Skogestad, 2000)

is only part of a second-order derivative. Therefore, it can only give a biased pre-

diction. In contradiction to the minimum singular value measure, the sensitivity

measure introduced here is a complete second-order derivative and can provide

unbiased comparison for alternatives. Another important feature of the sensitivity

function,δd is that it is independent of the scaling of controlled variables. There-

fore, a comparison based onδd is more objective than that based on the minimum
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singular value measure, which is scaling dependent.

3.2 Sensitivity to implementation error

Similar sensitivity analysis can also be applied to evaluate the gradient sensitivity

to measurement noise, to model uncertainties and to implementation errors. As an

example, the gradient to implementation error is considered in this section.

Denote implementation errors,ε ∈ Rm, which associate withm controlled

equations as:

0 = H̃(z,v,d,ε) = H(z,v,d)− ε (17)

It leads toH̃z = Hz, H̃v = Hv, H̃d = Hd andH̃ε =−I . In equation (16) replaced with

ε andH with H̃ respectively and considerFε = 0 andGε = 0 (process equilibrium,

active constraints and theoretic gradient are independent ofε). Then, the gradient

sensitivity with respect to the implementation errors is derived as follows:

δε =
(
Hv−FvF

−1
z Hz

)−1(
Gv−FvF

−1
z Gz

)
(18)

whereδε ∈ Rm×m. Particularly, when,H = G, δε = I , i.e. δ = ε.

3.3 Sensitivity calculation

For a small system, the gradient function,G(z,v,d) can be derived analytically.

Therefore, the sensitive measures,δd andδε can be calculated by linearisation of

the plant model. Assume the nonlinear model equations and the gradient function
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are linearised around the nominally optimal point as follows:

ẋ = Ax+B1u1 +B2u2 +B3d (19)

y1 = C1x+D11u1 +D12u2 +D13d (20)

y2 = C2x+D21u1 +D22u2 +D23d (21)

δ = C3x+D31u1 +D32u2 +D33d (22)

wherey1 corresponds to active constraints ofg1(x,u,d) = 0 andy2 is controlled

variables selected for self-optimising control. Then the Jacobian matrices required

to calculateδd can be obtained from the above system matrices by using the fol-

lowing equalities:

Fz =

 A B1

C1 D11


T

Fv =

 B2

D12


T

Fd =

 B3

D13


T

Hz =
[
C2 D21

]T

Hv = DT
22 Hd = DT

23

Gz =
[
C3 D31

]T

Gv = DT
32 Gd = DT

33

Particularly, for systems without active constraints,i.e. n1 = 0, matricesB1, C1,

D11, D12, D13 and D21 are empty. Denote steady-state gain matrices between

different signals at the nominally optimal point as,Lyv = D22−C2A−1B2, Lyd =

D23−C2A−1B3, LGv = D32−C3A−1B2 andLGd = D33−C2A−1B3. Then the sensi-

tivity measures can be simplified as:

δ
T
ε = LGvL

−1
yv (23)

δ
T
d = LGd−LGvL

−1
yv Lyd (24)

The above equations clearly show how sensitivity measures are associated with the

minimum singular value measure,σ(Lyv) = 1/‖L−1
yv ‖. If the system has no active
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constraints, or all active constraints have been implicitly included in equilibrium

equations, and manipulated variables have been properly scaled such thatLGv = I ,

thenδε is equivalent to the minimum singular value measure. Further more, only

when LGd = 0 (no explicit dependence of gradient on disturbances) and distur-

bances are also properly scaled such thatLyd = I , then equivalency betweenδd and

the minimal singular value measure is true. Otherwise, ifLGd 6= 0, the minimal

singular value measure can only partially predict self-optimising properties.

For a large or complicated process, it may not be possible to get analytical

expression of the gradient function. In that case, the sensitivity measures,δd and

δε can still be numerically calculated as the second-order derivatives,Jvd andJvε of

the constrained cost function. For this purpose, the recently developed automatic

differentiation techniques (Griewank, 2000) can play an important role.

4 Conditionally active constraints

Controlled variables in a self-optimising plant should include: stabilising variables

related to plant unstable modes, active constraint variables included ing1 = 0 in (2),

self-optimising variables,G or those with smallδd andδε . However, active con-

straints of a process plant may not always be the same. Some output constraints,

such as temperature and pressure limits may becomes active under certain circum-

stances. Traditionally, for safety reasons, these variables are always selected as

controlled variables. However, by controlling these variables at their nominal set-

points, the plant operation will not be optimal at most times.

To satisfy both requirements of self-optimisation and operating constraints, a

cascade control structure is proposed as shown in Figure 1. In Figure 1, an inner

loop is closed for constraint control. The setpoint of the inner loop is determined

via a saturation block by the outer loop, which is designated for self-optimising
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control by maintaining the self-optimising variable at constant. Within the feasible

range of the process constraint, the setpoint of the inner loop is floating as a ma-

nipulated variable to perform self-optimising control. However, when disturbances

cause the process towards outside of the constraints, the saturation block will limit

the setpoint within the constraint so that the controlled variable of the inner loop

will be kept within feasible range. In this way, the self-optimising control and con-

straint control loops alternatively become active and inactive to achieve constrained

self-optimisation.

5 Evaporator case study

5.1 Gradient function

The new controlled variable selection approach is applied to an evaporation process

(Newell and Lee, 1989), shown in Figure 2.

This is a “forced-circulation” evaporator, where the concentration of dilute

liquor is increased by evaporating solvent from the feed stream through a vertical

heat exchanger with circulated liquor. The process variables are listed in Table 1

and model equations are given in Appendix A.

The economic objective is to minimise the operational cost [$/h] related to

steam, cooling water and pump work (Heathet al., 2000; Wang and Cameron,

1994):

J = 600F100+0.6F200+1.009(F2 +F3) (25)

The process has the following constraints related to product specification, operation
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safety and design limits:

X2 ≥ 35+0.5% (26)

40 kPa≤ P2 ≤ 80 kPa (27)

P100 ≤ 400 kPa (28)

F200 ≤ 400 kg/min (29)

0 kg/min≤ F3 ≤ 100 kg/min (30)

Note a 0.5% back-off has been enforced onX2 to ensure the variable remaining

feasible for all possible disturbances. The process model has three state variables,

L2, X2 andP2 with eight degrees of freedom. Four of them are disturbances,F1,

X1, T1 andT200. The rest four degrees of freedom are manipulable variables,F2,

P100, F3 andF200. The optimisation problem of (25) with process constraints, (26)

to (30) has been solved under nominal disturbances:

d =
(

F1 X1 T1 T200

)T

=
(

10 5 40 25

)T

(31)

The minimum cost obtained is 6178.2 $/h and corresponding values of process

variables are shown in Table 1.

At the optimal point, there are two active process constraints,X2 = 35.5% and

P100 = 400 [kPa]. These two constraints will keep active within whole disturbance

region, which is defined as±20% of the nominal disturbances. Physically, the first

active constraint is because a higher outlet composition requires more solvent to be

evaporated, therefore needs more steam, cooling water and pump cost. For the sec-

ond constraint, since heater duty,Q100 is determined by both steam pressure,P100

and circulating flowrate,F3, reducingP100 will increaseF3 due to energy balance.

However, the sensitivity to steam cost ofP100 is much lower than that ofF3. Hence,

an optimal operation should keepX2 at its lower bound andP100 at its higher bound.
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These two active constraints plus the separator level, which has no steady-state

effect on the plant operation, but must be stabilised at its nominal setpoint, con-

sume three degrees of freedom. Therefore, the optimal condition has one degree of

freedom. Choose cooling water flowrate,F200 asv and rest manipulated variables

and state variables asz, i.e.

z=
(

L2 X2 P2 F2 P100 F3

)T

By using (7), the following gradient function is obtained:

G = 0.6−0.5538
T201−T200

F200
× (32)(

6.306
0.16(F1 +F3)+0.07F1

T100−T2
+

42F1

36.6

)

5.2 Self-optimising variable selection

The nonlinear gradient function, (32) requires both disturbances,F1 andT200 mea-

sured online. If one of them, or both of them are not measured in real-time, then

an alternative measurement need to be selected to achieve self-optimisation. It can

be selected from the set of all measurable and manipulable variables. The process

has twelve measurements and four manipulated variables. Three of them,L2, X2

andP100 has already been selected for stabilising and constraint control. Amount

the rest variables,F2, F4, F5 have to be determined by the equilibrium of the system

andT2, T3, P100, Q100 andQ200 are dependent on some other variables. Therefore,

only five variables represent independent alternatives:P2, F100, T201, F200 andF3.

The authors of (Govatsmark and Skogestad, 2001) have considered another con-

trolled variable,F200/F1. In addition, a new controlled variable,T201−T200 is also

considered in this work. The gradient sensitivity measures to four disturbances

and to implementation errors are calculated (see Table 2) using (16) and (18) with
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disturbances and controlled variables both scaled by 20% of their nominal values.

Table 2 shows that if neitherF1 norT200 is measured online, thenT201 andF200

are two most promising choices.T201 is better whenF1 andX1 are main distur-

bances, butF200 becomes better whenT200 is the dominant disturbance. However,

when eitherF1 or T200 is available in real-time,F200/F1 or T201−T200 are the best

controlled variables with minor difference. Implementation error is the dominant

factor affecting optimality for these two choices. It is also expected that choosing

eitherT201−T200 or F200/F1 will be as good as controlling the gradient.

5.3 Simulation results and comparison

Top four most promising controlled variables listed in Table 2 plus the gradient

function in (32) are compared with constantP2 control by static and dynamic sim-

ulation. For static simulation, 1000 sets of disturbances are randomly generated

within feasible range. Static responses to these disturbances for the six control

schemes are obtained. The mean value of the corresponding costs are calculated

and shown in the first column of Table 5.

For dynamic simulation, all six control schemes are implemented in a decen-

tralised cascade structure:L2 controlled byF3, X2 controlled byF2, one of the five

controlled variables controlled by the setpoint ofP2, which is in turn controlled by

F200 to satisfy both the self-optimising and conditionally active constraint control

as shown in Figure 1.

Three loops are controlled by PI controllers with parameters shown in in Ta-

ble 3, whilst self-optimising variables in all schemes are controlled with constant

static gains: 1000 forG andF200/F1 loops, 20 forT201−T200 andT201 loops, and

10 forF200 loop.

In the simulation, all disturbances are modelled as a step signal passing through

a first-order delay. The amplitudes of step changes are randomly produced within
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the±20% range of the nominal values. The changing intervals and time constants

of the first-order delays are different for different disturbance variables shown in

Table 4.

With the above configuration, simulation for a 20-hour operation is performed.

The total operation costs of the six schemes are shown in the second column of

Table 5.

It is shown in Table 5 that costs of all four most promising schemes are very

close to the cost usingG in both static and dynamic simulation. This demonstrates

the concept of self-optimising control,i.e. optimal or near optimal plant operation

can be achieved by selecting certain controlled variables to be controlled at con-

stant setpoints. The relative ranking of alternative controlled variables is almost

coincident with the prediction of the sensitivity measure (Table 2) except that in

Table 5 the schemes usingF200/F1 is slightly better than usingT201− T200. To

explain the difference between these two configurations, the dynamic simulation

results of three best schemes, usingG, usingF200/F1 and usingT201− T200 are

compared in Figure 3.

From Figure 3 it can been seen that the cascade control structure works well in

all three schemes. When pressure constraint ofP2 is inactive, self-optimising con-

trol is active, the gradient response has very small deviation in all three schemes.

However, whenP2 reaches 40 [kPa] at 3.5 and 19.5 hour, out control loops become

inactive, hence large deviations of self-optimising variables are observed. Partic-

ularly, the scheme usingT201−T200 has larger offset than the one usingF200/F1

whenP2 constraint is active. The offset in scheme usingT201−T200 is also more

sensitive to controller gain than the one in scheme usingF200/F1. Therefore, con-

trol gain of the former has to be much smaller than the one of the latter to limit the

maximal deviation. However, the smaller the control gain the larger the average

deviation,i.e. the larger the implementation error. Therefore, the loos of objective
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function usingT201−T200 is larger than the one usingF200/F1 due to different im-

plementation error although the gradient sensitivity to implementation error is the

same for both schemes.

6 Conclusions

The concept of self-optimising control has been scrutinised. Based on the direct

gradient control described in (Cao, 2004), the sensitivities of the gradient func-

tion to disturbance and to implementation error have been derived and proposed as

criteria for controlled variable selection in self-optimising control system design

(indirect gradient control). The sensitivity measure is a second-order derivative of

the cost function and is independent of measurement scaling. Therefore, it can

provide objective and unbiased comparison for controlled variable selection. The

gradient sensitivity can be calculated from the linearised model when the gradient

is available analytically, or numerically calculated by applying the newly developed

automatic differentiation techniques. The evaporator case study demonstrates the

effectiveness of this new selection measure. Two better controlled variables are

able to be identified by using these sensitivity criteria. The case study also demon-

strates the success of using cascade control to cope with conditionally active con-

straints.
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A Model equations

dL2

dt
=

F1−F4−F2

20
(33)

dX2

dt
=

F1X1−F2X2

20
(34)

dP2

dt
=

F4−F5

4
(35)

T2 = 0.5616P2 +0.3126X2 +48.43 (36)

T3 = 0.507P2 +55.0 (37)

F4 =
Q100−0.07F1(T2−T1)

38.5
(38)

T100 = 0.1538P100+90.0 (39)

Q100 = 0.16(F1 +F3)(T100−T2) (40)

F100 = Q100/36.6 (41)

Q200 =
0.9576F200(T3−T200)

0.14F200+6.84
(42)

T201 = T200+
13.68(T3−T200)
0.14F200+6.84

(43)

F5 =
Q200

38.5
(44)

18



Constraint Control

Self-Optimising Control (Gradient)

K
1

K
2 P

u

d
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deviation ofF200/F1 and−(T201−T200) from nominal steady-state.
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Table 1: Variables and Optimal Values
Variable Description Value Unit
F1 Feed flowrate 10 kg/min
F2 Product flowrate 1.41 kg/min
F3 Circulating flowrate 23.05 kg/min
F4 Vapour flowrate 8.59 kg/min
F5 Condensate flowrate 8.59 kg/min
X1 Feed composition 5 %
X2 Product composition 35.5 %
T1 Feed temperature 40oC
T2 Product temperature 91.22oC
T3 Vapour temperature 83.61oC
L2 Separator level 1 meter
P2 Operating pressure 56.42 kPa
F100 Steam flowrate 10.02 kg/min
T100 Steam temperature 151.52oC
P100 Steam pressure 400 kPa
Q100 Heat duty 366.63 kW
F200 Cooling water flowrate 230.54 kg/min
T200 Inlet cooling water temperature 25oC
T201 Outlet cooling water temperature 45.5oC
Q200 Condenser duty 330.77 kW
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Table 2: Sensitivity measures of alternative controlled variables against distur-
bances and implementation errors

C.V. δF1 δX1 δT1 δT200 δε

T201−T200 0.0124 0.0167 0.0005 0.0064 0.2426
F200/F1 0.0124 0.0231 0.0005 0.0064 0.2426

T201 0.0124 0.0167 0.0005 0.2895 0.5385
F200 0.2550 0.0231 0.0005 0.0064 0.2426
P2 1.1324 0.2044 0.0005 0.5854 0.6772
F3 1.9840 0.3753 0.0878 0.5854 0.8516

F100 12.326 1.8600 0.8544 0.5854 11.1936
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Table 3: PI controller parameters
Loop Gain Integral time [min]

(L2,F3) 200 5
(X2,F2) 36.74 4.6619

(P2,F200) 200 6.667

24



Table 4: Disturbance model parameters
Disturbance Interval [min] Time constant [min]

F1 120 20
X1 6 2
T1 15 5

T200 15 5
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Table 5: Alternative controlled variables and operating costs
self-optimising c.v. Static Mean [$] 20h Dynamic cost [$]

G 6139.80 120,823
F200/F1 6139.83 120,826

T201−T200 6139.82 120,828
F200 6141.08 120,854
T201 6142.42 120,857
P2 6162.57 121,561

26


	Introduction
	Active constraints and dimension-reduced gradient
	Gradient sensitivity measures
	Sensitivity to disturbances
	Sensitivity to implementation error
	Sensitivity calculation

	Conditionally active constraints
	Evaporator case study
	Gradient function
	Self-optimising variable selection
	Simulation results and comparison

	Conclusions
	Model equations

