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INTRODYOTION

The process of metal cutting is a subject of great importance to
the makers and users of machine tools. Extensive research has gone
into the subject but has still left most of the phenomena unexplained.
Tool 1life is the main interest and before any real improvement in this
factor can be made, the basic metallurgical factors governing the
interaction between tool and workpiece must be better understood. Such
improvement can be effected through control of the wear process since
both tool and workpiece are metallic and machining is a process of
metal flow which 1s associated with a serious wear problem. The absence
of exact knowledge has however hampered empirical and mathematical
approaches to the problem.

Basically all machining operations are considered as either oblique
or orthogonal cutting, the former requiring three dimensions to specify
the geometry of the cutting part of the tool and the latter two. The
basic metal cutting process to be considered is that which is common,
in one form or another, to all metal cutting operations using a tool,
that of the wedge-shaped tool in fig. 1 (a=j) (1). Analyses of cutting
have been mainly concentrated on the relatively simple case of orthogonal
or two-dimensional cutting. Here the tool is so set that its cutting
edge is perpendicular to the direction of relative motion between tool and
workpiece and generates a plane parallel to the original work surface.

In doing this the tool removes a layer of material termed the chip.

One of the major objectives of metal cutting theory is the deter-
mination of machining forces, chip geometry, tool life, energy consumption
and surface finish from a knowledge of the physical properties of the
workpiece and tool material and the cutting conditions alone. If this
could be achieved, lengthy chip measurements, delicate dynamometry, tedious
and costly tool life tests and surface finish measurements might be dispensed
with.

CHIP FORMATION AND TYPES _9?.’_‘215151’

Among the earliest to carry out an investigation into metal cutting
were Rosenhain and Sturney (2). They differentiated between the types
of chip formed and classified them into the 'tear', 'shear' and 'flow'! types.
Later, by the use of high speed motion pictures and photomicrographs, Ernst
(3) made a basically similar exposition of three types of chip. These can
be described as follows: :

Type‘l. | The Dlggontlnggggnggin- In thls type of chip formatlon,
to take place ahead of the tool, 1eav1ng a rough and 1rfcgular surface.
Almost without exception, a discontinuous chip is formed in all machining
operations involving brittle materials such as brass or cast iron. Under
certain conditions this occurs also with ductile materials.




Type 2. The Continuous Chip: Here the metal deforms plastically
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to form a continuous ribbon.  This type of chip is obtained when cutting
a ductile material such as mild steel under favourcble conditions such as
good lubrication between chip and tool. The resulting machined surface

is smooth. Ernst concluded that this type of chip was produced through

shear across a narrow zone which may be approximated to a simple plane

extending from the tool edge to the work surface ahead of the tool.

a zone of highly deformed material adheres to the tool near the cutting
edge. This has been named the 'built-up-edge' and is usually found welded
to the tool after a machining operation. Ernst suggested that this type
of chip was formed as a result of the high value of tool-chip interface
friction which he therefore concluded was a deciding factor in determining
the type of chip formed.

Gladman (L) suggests that the built-up-edge is work-hardened material
and is one of the causes of bad finishes in machined surfaces; the built-
up-edge is not stable, but periodically builds up and breaks down and sonme
parts of it are carried away in the chip while other parts are left embedded
in the surface thus marring it. He adds that this type of chip is obtained
when machining ductile materials at low speeds.

A built-up-edge can also be produced when cutting a discontinuous chip
(l) despite statements to the contrary. There is agreement here with
Gladmen (L) that the built-up-edge should not be regarded as a disordered
heap of metal pressed together and welded to the tool tip but as a continuous
part of the workpicce and the chip which forms it. Especially when it is
large it will be unstable and will vary. in size from time to time at
different places along the cutting edge, parts of it sloughing off attached
th the workpiece or the chip.

It is found in practice however that though these three types of chip
are clearly different, small changes in the cutting conditions can cause a
transition from one type to another or produce a chip that 1s a combination
of more than one kind. For example, when machining a ductile material, a
decrease in rake angle &, Fig. 1(a), an increase in depth of cut t or a
decrease in cutting speed can cause a transition from a continuous to a
discontinuous chip. ‘

The analysis of the mechanics of metal cutting is usually restricted
to orthogonal cutting where the cutting edge is perpendicular to the
direction of motion of the tool. Most of the investigations are concentrated
on the continuous type of chip rather than the more complex process of
discontinuous chip formation. ‘

THE SHEAR PLANE THEQO
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The Continuous Chip. Many theories of metal cutting have used the
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concept of the shear plane. This is represented in Fig. 1(a) by line

AB inclined at angle ¢ to the direction of cutting; this angle is called
the shear angle.  All shear strain is assumed to be acquired as a particle
crosses this line. 2 '

The significance of the shear angle lies in the fact that it indicates,
to some extent, the machinability properties of the work material. The
machinability of a material is described in terms of the magnitude of
cutting forces, the effective cutting life of the tool and the properties
of the machined surface. Machinability investigations normally take the
form of cutting tests in which such parameters as cutting speed, feed and
tool rake angle are varied, and the cutting forces, tool wear and surface
finish are measured. The optimum tool geometry and cutting conditions for
tool life, surface finish etc., can then be found. High values of
shear angle are associated with large ranges of continuous chip and good
surface finishes. -~ At low values chips tend to become discontinuous and
surface finish to deteriorate.

The best known of the shear angle solutions is by Ernst and Merchant
(5) who, assuming that ¢ would attain such a value as to give a minimum
expenditure of work in cutting, obtained the equation:

(1)
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where X is the mean angle of friction along the tool-chip interface.

Using ideal slip-line theory, Lee and Shaffer (6) developed the

relationship
¢ = % + O - A ‘ (2)

The above equations suggest that an increase in rake angie or a
decrease in friction angle will give an increase in sghear angle; they
also suggest a unique value for ¢ for a given value of A - Q.
Experimental values of ¢ by various researchers (7), (3), (9), (10), (11),
(12), (13) have proved this to be untrue and also shown that ¢ varies with
material and cutting speed, factors not taken directly into account by
equations (1) and (2).

Merchant (7) modified his earlier equation by considering the properties
of the work material and obtained the relationship:

20 = C + O -« A ‘ (3)

where C is constant for a given material and represents the dependence of
shear strength on the normal stress.

Kobayashi and Thomsen (14) introduced a quantity called 'effectiveness'




into their analysis of the shear angle propblem. Thus their solution
corresponds to Eqn. (1) vhen effectiveness is unity and gives a lower

¢ for a given A - O, when effectiveness is taken below unity. This
gquantity however appears to be constant for a given material and cutting
speed, thus there is no apparent fundamental relationship between
effectiveness and work material propertlies or speed.

Sata (15) developed a relationship:

_ -1 | Cot 8 Cos @
¢ = Cot [S""l‘.""n (‘b- +—-"CX) KL (h)

where 6 is the angle between the resultant cutting force and the shear
plane, K is the ratio of the shear stress on the rake face to that on the
shear plane and L is the ratio of the tool-chip contact length to the
depth of cut.

Another attempt at the solution of the shear plane problem was made
by Oxley (16). He provided an analysis for cutting with restricted tool-
chip contact and stated that for given contact length and tool rake, shear

angle and friction angle can be predicted. The analysis predicts an
increase in shear angle ¢ and a decrease in friction angle M for a decrease
in contact length. By considering the stress boundary conditions at A and

B, Fig. 2, the normel stress acting on the shear plane AB at these points
can be expressed in terms k (yield stress along AB), ¢, @ and X as follows

. T :
py=x{iea G- (5)
. Jcos 2(¢ =) .. \
Py = k-{ Tor - Sin (¢ - azf (6)
and by assuming a linear stress distribution between A and B,
| D, + D |
A 3
A = ————
Tan o (7)

where 6 is the angle of inclination of the resultant cutting force to the
shear plane.

From the geometry of the figure
0 =0+ -0 (8)
These values of ¢ agreed reasonably well with experimental observations.

In addition, the position of the resultant cutting force calculated from
the shecar stress distribution was shown to be consistent with the position

calculated by assuming a constant state of plastic stress along the tool-

chip interface.



One disadvantage of this method is that cutting tests have to be
made first to measure A bhefore ¢ the shear angle can be calculated. The
most convenient way of making a quantitative comparison between theoretical
and experimental results 1s to compare the shear angles and friction

angles. The experimental and theorebvcal values were plotted agalnst a
paramcter %'where h is the natural contact length % can be calculated

by dividing the normal force by the normal stress to obtain

n_ Sin A ' (9)
t = Sin @ Cos(¢ + X - ) Cos 2(¢ = ) 9

If h is now reduced below the value it would have vhen cutting with
a normal tool, Fig. 3, then % is known for given ¢; ¢ and A can then be

calculated. By seclecting ¢ and M to satisfy Eqns. (5), (6) and (7)
and using Eqn. (9) to calculate = ) graphs of ¢ and X against 2 T were plotted

for each rake angle. The graphs showed that the experimental values
were of the same order as the theoretical though the actual differences
were rather large.

The foregoing are unique~valued solutions of the shear angle. Other
single-valued solutions are attributed to Christopherson (17) and Zorev (18).

Hill (19) criticised these shear plane solutions on the grounds that
they were directed towards determining a unique steady state configuration
for given tool rake angle and suggested that many steady states of the single
shear plane type were possible for different initial conditions. He
considered some of the main reasons for the disagreement between theory and
practice to be:

(a) unrealistic basic assumptions, e.g. isotropy, absence of work-hardening,
infinite shear modulus, constant friction angle, no thermal effects.

(b) inadequate experimental procedure, the geometry of the distribution
being difficult to determine during motion and under plane strain
conditions.

(c) unsound theory, even within its self-imposed limits.

He suggested that there may be inifinitely many steady state config-
urations of a given type and provided a plot showing a region of permissible
values of ¢, partly bounded by the Ernst and Merchant (5) and the Lee and
Shaffer (6) solutions. Hill's conclusions which follow from a train of
reasoning based on a non-workhardening material have been substantiated
by Enshoro (15), using worksmaterial whose properties approached those of a
rigid non-workhardening material, he found that the shear angle values are
dependent on rake angle, depth of cut and cutting speed; the values of shear
angle fell within Hill's permissible region in the case of cold rolled mild
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steel and aluminium alloy HE-10-WP whose properties approached those
of a rigid non-workhardening material, Fig. L.

The Discontinuous Chip: The shear plane concept has also been
used extensively to investigate discontinuous chip formation.  Cook,
Finnie and Shaw (20) classified the discontinuous chip into two types;
they distinguished between the cracks that are just visible under the
microscope in machining ductile materials and the completely discontinuous

chip where the material is removed in the form of separate segments.

Field and Merchant (21) noted that the discontinuous chip was formed
during the machining of brittle materials like cast iron or when cutting
ductile materials at low speeds without cutting fluids. As in the
Merchant continuous chip analysis, they applied the principle of minimum
energy to give

05 =0y =N+ 0O + C (10)

where ¢; is the shear angle at rupture, ¢, is the shear angle when the
shear plane meets the surface left by the previous segmented chip and C
is analogous to that in the continuous chip analysis.

The same obJjections to the application of the shear plane theory
to the solution of continuous chips are relevant with respect to dis-
continuous chip formation.

THE SHEAR ZONE THEORY

. Bad e o G W Y Y D e N S SR

?§§_999E23299§_9E22= There is substantial experimental evidence from
does not take place on a single shear plane but over a Tfinite zone. The
concept of a flow region used by Okushima and Hitomi was reported by Hitomi
(22). It is a region which exists between the rigid zone of the workpiece
and the plastic region of the chip. The flow region is shown in Fig. 5.
It was assumed for simplicity that the boundary lines are straight lines
extending from the tip of the cutting tool to the starting and end points
of the flow region on the free surface. Considering the flow region and
chip, theoretical equations for angles of inclination of the boundary lines
were deduced in the above paper.

Ky A, Q
¢l""2 _2 2 (ll)
_K A
bz =37 -5+ 3 (12)
where ) _ 5
‘ K, = Sin l-{ K Sin A + Sin (A - ai} ‘

Ko = Cos™t {% Sin ) - Cos x}



and

kl.&'

Sector angle or size of flow region

: a X K
T & S - (13)

Two other Japanese workers Takeyama and Usui, using this flow regibn
concept diccovered the importance of tool-chip contact area, they employed
a special cutting tool with an artificially controlled contact area, and
discovered that friction force was directly proportional to tool-chip contact
area. They deduced an equation for the shear angle ¢o in terms of rake
angle @ and contact area A,

k A

1l -8inC 0 0O
¢o T Cos Q + o Aé Cos O (12)

where Al is the area of uncut chip, k, 1s a constant nearly equal to the
shearing strength - of the material and Ts is the shearing stress in the
shear planec.

Further experimental evidence (8), (23) suggests that cutting takes
place over a plastic zone of the shape shown in Fig. 6. One of the
assumptions made in the shear plane type of analysis is that the work
material is an ideal plastic-rigid material, that is, the shear flow stress
of the material is assumed constant.

In a detailed analysis of an experimentally observed shear zone Palmer
and Oxley (25) found that neither the shape of the shear zone nor the
position of the resultant cutting force were consistent with the concept
of an ideal plastic-rigid material and could only be explained if the shear
flow stress of the work material was considered to vary.

Tmplicit in all shear plane solutions is that the normal (hydrostatic)
stress is constant along the length of the shear plane. That this is not
so for a material having a variable flow stress can be seen by considering
an element of a shear zone lying between two adjacent slip lines, Fig. 7.
As the material passes through the shear zone its flow stress will alter as
a result of work-hardening, temperature, strain rate etc. If the shear
flow stress along CD is taken as k -é§§ and along EF as k +‘gk so that

the change in flow strcss across the element is Ak, by resolving forces
parallel to CD, it can be shown that

Ak
AP = Re;

. DSo : ‘ : (13)

where Ap is the change in hydrostatic ctress across the element, AS; is
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the width of the element and AS, is its length.

In cutting, it is found that the chip is harder than the work
material so that the term 8K ig positive, indicating that the normal

1 ‘
stress along the shear zone has its highest value at the outer free
surface and becomes less compressive towards the tool point.

If, as in a recent enalysis by Oxley and Welsh (24), the shear
zone is idealised into a parallel sided zone, inclined at angle ¢ to
the direction of cutting, as shown in Fig. 8, then Eqgn. (13) can be
integrated along the slip-line AB to give the expression

£ | |
PA"Pg = AS, * Sin o (14)

fﬁ%— is assumed constant, Py is the hydrostatic stress at A (the free
1

surface), Py is the hydrostatic stress at B (the tool point) and Qiz 3
is the length of AB.

For a constant value of‘é%%— along AB, the forces per unit area
o1

tangential (Ft) to and normal (F,) to AB, are given by

£

P =K STn o (15)
and
p, + D
L
Fo= T2 -Sineé (16)

From the above, the angle 6 made by the resultant cutting force with
AB is given,as in the shear plane analysis by Oxley (16), by

F P, t P
n A B
Tan 6 = F, = 5 4 (7)

It is convenient to find the hydrostatic stress at A from the
condition of the free surface between C and A. In Fig. 9 a shear line
A1A-AsBq is shown adjacent to AB with AszB; parallel to AB. In order to
satisfy equilibrium AjAsAsBy, as a line of maximum shear stress, must meet
the free surface at 45° and the hydrostatic stress in the zone A;A-Az must
be equal to the shear flow stress (k). By taking moments about A, the
equilibrium of the element A;ApAs is given,as in the shear plane analysis (16),
by ' :

PA?k[l*z(ﬁ""’)] (5)

The change in hydrostatic stress along the shear zone can now be
found by substitution in Egn. 14. If the stress strain curve of the work



material is idealised into a straight line, as shown in Fig. 10, then
Ak = my | - @an

where m is the slope of the stress-strain curve at the mean strain rate

and 7 is the mean strain given by the change in velocity tangential to AB
divided by the velocity normal to AB across the zone.

i.e. 7 = Cot ¢ = Tan (¢ - &) ‘ _ ' {18)

From the geometry of Fig. 8 the angle 6 can be expfesSed in terms of the
frictional condition along the tool chip interface and if this is described’

by a mean angle of friction X, then as in the shear plane analysis (l ),
again

D=0+ -0 _ o (8)

For a given value of A and O the angle ¢ can be calculated from Eqns.

(14) - (28), (5), (7) and (8) such that the stress distribution along

AB and the tool~chip interface are consistent for the direction of the
resultant cutting force.

Tt is evident from Eqns. (14), (7) and (17) that the less a material
work hardens (smaller values of m), the larger will be the value of the
angle 6, Similarly the larger the shear flow stress k, the larger will
be the anﬂle 8, with a correspondingly smaller difference in hydfostablc
stress between A and B.

It is generally considered that as strain rate increases the initial
flow stress increases and stress-strain curves tend to flatten off, Drucker
(25), as in Fig. 11. 1In cutting, the mean strain rate 7 can be calculated
by dividing the mean strain (Eqn. (18)) by the time taken for a particle
to cross the shear zone, and is given by the expression

. U Cos & .
7 = AS1Cos(6 <) (19)
where U is the cutting velocity. Thus strain rate is increased by aﬁv

increase in cutting speed, an increase in rake angle, or a decrease in the
depth of cut (assuming geometrlcal s1m11ar1ty3‘A S; will be proportlonal to
the depth of cut).

As an illustration of this, Fig. 12 has been prepared; it shows
theoretical values of ¢ plotted against A - & for a material in which the
shear flow stress and work-hardening parameter have been considered to vary
with strain rate. :

The Dlscontlnuous Chlp It is known in practlce that decreasing the

- o -
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continuous Lo a discontinuous chip with the initiation of cracks in
the region of the tool point.

Using the strain-hardening slip-line theory to examine discontinuous
chip formation, Enahoro and Oxley (26) carried out an investigation into
the hydrostatic stress distribution in the plastic zone. Various depths
of cut were taken covering the range of chips from continuous to dis-
continuous and keeping all other conditions constant. The hydrostatic
stress was found to vary from compressive at the outer free surface to
tension near the cutting cdge. They suggested that the occurrence of
a discontinuous chip depended on the magnitude of the tensile stress at
the tool point. Further work on these lines by Foot (27) has since
confirmed the above.

It is not possible from a knowledge of a given state of stress,
strain and strain rate whether a material will crack or not but it seems
reasonable to assume that the higher the compressive stress in a material,
the more likely it is to crack. In Fig. 13 the hydrostatic stress (pB)
at the tool point calculated for the theory of Oxley and Welsh (24) for
two values of ¢ over a range of depths of cut are shown, illustrating the
way in which the stress is predicted to fall with an increase in depth of
cut. A similar effect, in agreement with practice, is found when the
cutting speed is varied.

Tt can be seen from the above that the inclusion into the analysis
of variable flow stress and strain rate dependent properties of the work
material enable a qualitative explanation to be given for the observed
effects of speed and depth of cut hitherto unexplained by the simpler shear
plane model of cutting. ‘

Machinability. In the foregoing theory it was shown that a small
value oF Ehe ratio B leads to the formation of thin chips (large values of ¢)
and a large compres%ive stress at the tool point suggests the likelihood
of cracking. The thinner the chips formed in cutting, the lower the
cutting forces which should give longer tool life and the less the cracking
that ocecurs in the material in the region of the tool point the better should
be the surface finish.

Tt would appear_ therefore that the ratio of the fundamental work
material properties should give some indication of the machinability of
the material. Unfortunately the strain rates involved in metal cutting
are very high, being of the order 10% per sec., and there is yet no
experimental technique of obtaining values of f at these strain rates.

As a Tirst approximation, however, it seems reasonable to assume that
a material having a high value of - measured by a conventional materials
test should have a correspondingly high value of % at a high strain rate.

Fig. 1 shows effective-stress/effective~strain curves obtained by
Kobayashi, Hertzog et al (28) for four conditions of SAE 4135 steel with a
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hardness of Rc35, a hardness of Re26, as received, and annealed, their
corresponding &£ values being 0.06, 0.09, 0.21 and 0.21 respectively. -

In estimating %hese values of E’ k was taken at an effective strain of

0.5, and m as the mean slope apove an effective strain of 0.2. The
corresponding experimental values of ¢ were plotted against A-O given in
Fig. 15; they confirm that the higher the values of % the lower is the value
of ¢. . o

In machining, the cutting force against which work is done is in
the direction parallel to the cutting velocity and is given by the
expression ' ’

_ twk Cos ()

¢ = Sin ¢ Cos 6 (21)

where w is the width of cut.

This equation shows that besides variations in ¢, the cutting force
is dependent on the flow stress k of the work-material, and thus from
the point of view of power consumption and stress acting on the tools,
it is necessary to consider the magnitude of k as well as %,'

Discussion. The analysis of the shear zone presented above, taking
into account variable flow stress and strain rate effects, has explained
in qualitative terms the effects of changes of speed and depth of cut on
chip thickness and the formation of discontinuous chips. In addition
good agreement has been shown between values of 2 estimated from a conven-

tional materials test and the shear angles obtai%ed during cutting.

It was suggested therefore, by Oxley and Welsh (29), that the value
of the ratio of & together with the value of k, which are fundamental
material properties, should be taken as an indication of the way in which
a material machines. Materials having high valuss of % and k are expected
to machine with large cutting forces, thick chips and résult in poor
surface finishes.

As both = and k are bulk properties of a material, they would not
indicate machining characteristics such as hard inclusions or free machining
additives affecting tool-chip interface friction, nor do they take into
account any metallurgical or chemical interaction between tool and work
material. But being directly related to the cutting process, B and k
would be expected to give better indications of the way in whic% a material
‘machines than such parameters as hardness or Ultimate Tensile Strength.

The shear angle has been used as a factor in estimating machinability.
High values of shear angle indicate large ranges of continuous chips, good
surface finishes and low cutting forces. Low shear angle values are
associated with small ranges of continuous chips, poor surface finishes and
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large cutting forces. The shear plane type of deformation is however
not encountered in normal metal cutting processes. Shear tends to
occur over a Tinite zone hence the shear angle is not an accurate
practical test for machinability since the shear plane gsolutions do not
generally take account of such important factors as material properties
and cutting speed. _

The use of 2 and x gives a bﬁtter guide to the machinability properties
of a material. kLarge values of — result in thick discontinuous chips and
poor surface finishes while, if k'is also large, the forces and therefore
the stresses acting on the tool are large and will tend to give a short
tool life. Small values of both — and k are however consistent with
continuous chips, good surface finishes and low cutting forces. Hence
Oxley and Welsh (29) suggest that a compression test, carried out to
evaluate — and k, should become an important addition to any investigation
on machinability.
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FIG.10

IDEALIZED STRESS-STRAIN CURVE
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FIG.12

INFLUENCE OF CUTTING SPEED ON SHEAR ANGLE
Broken lines theoretical curves fo:c‘J 0. 010 in, depth of cut, cutting speed

1000 £t/ min, rake angles from -10° to 40°,

Unbroken lines theoretical

curves for similar cutting conditions but 1 in, / min cutting speed.
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FIG. 13

INFLUENCE OF DEPTH OF CUT ON THE HYDROSTATIC STRESS Py



EFFECTIVE STRESS IN 1000 psi
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FIG. 14
EFFECTIVE STRESS-STRAIN CURVES (KOBAYASHIET AL)18
1. SAE 4135 RC-35
2. SAE 4135 RC-26
3. SAE 4135 AS REC.
4. SAE 4135 Annealed
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FIG.15

SHEAR ANGLE VALUES FOR MATERIALS SHOWN IN FIG. 14.
a = 0° U= 334 £.p. m,

SAE 4135 RC-35 A
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