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ABSTRACT 

 
The following paper describes a design of experiments investigation of the deep reactive of pillar structures on a silicon 
wafer. The etched wafers would subsequently be used as masters for the fabrication of nickel mould inserts for micro-
injection moulding. 
Undercuts occur when the pillar base has a smaller cross-section than the apex of the pillar. They therefore affect 
tolerances of the subsequent nickel mould, its strength and its de-mouldability from the silicon form.  
The response measured in these experiments was the degree of undercut of micro-scale (10 µm x 10 µm x 40 µm, 5 µm 
x 5 µm x 40 µm and 2 µm x 2 µm x 40 µm) 
The literature suggests that gas pressure, platen power, gas flow rate, phase switching times and mask size can all affect 
the degree of undercut. After examination of this literature, and of manufacturers guidelines, three parameters were 
selected for experimental testing: platen power, C4F8 gas flow rate during the passivation phase and switching times. 
Switching times was found to be the only statistically significant parameter for both 10x10 μm and 5x5 μm pillars. The 
2x2 μm pillars were not successfully replicated and could therefore not undergo statistical evaluation. 
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1. INTRODUCTION 
Undercuts, where the dimensions of the features are smaller at the base than at the apex, to surface features are an issue 
which needs to be examined when fabricating surfaces designed to be used in further processes. For example if the 
surface is to be used as a mould insert then undercuts can affect the accuracy of the replicate and in extreme cases render 
the mould de-mouldable. 
 
Deep reactive ion etching (DRIE) is an anisotropic etching process used to fabricate surface features with vertical 
sidewalls in silicon. Using a time-multiplexed etching process 1; 2, in which a combination of etching and the deposition 
of a protective passivation layer is used, vertical etching of a sample can be controlled. This process is known as the 
Bosch process, in which the wafer is subjected to alternate etching and passivation phases and the silicon surface can be 
etched with micro-scale features with vertical sidewalls. The Bosch process produces these vertical sidewalls by 
continuously alternating between an etching phase and a passivation phase, resulting in an anisotropic etch pattern, 
Figure 1.  
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2. METHOD 
2.1. Experimental Design 

The deep reactive ion etching process was investigated using a design of experiment (DOE) approach. The DOE 
approach to process optimisation was developed as a statistical method capable of highlighting the interactions between 
various factors to determine the optimum levels required for experimental work 11. As well as being more practical 
regarding time and resources when compared to methods which focus on the alteration of a single factor per run, the 
DOE approach also provides a route to observe how various factors may interact to affect the response 12.  

 
The factor levels used for this DOE are displayed in Table 1. The criteria for the selection of these levels are explained in 
Table 2. 
 

Factor Low Level High Level 
Platen Power (W) 10 18 

C4F8 Gas Flow in Passivation 
Stage (sccm†) 70 100 

Switching times – Etching: 
Passivation (s:s) 5:5 9:5 

Table 1, Factor examined; high and low levels 

Factors Low Level High Level 

Platen Power (W) 

The minimum value at which ion 
directionality could be controlled for 
the scale of the features examined – 

taking into account equipment 
limitations 

The maximum value at which ions 
directionality could be controlled for 
the scale of the features examined – 

taking into account equipment 
limitations 

C4F8 Gas Flow in Passivation 
Stage (sccm) 

The minimum value for obtaining a 
sufficient passivation layer after 

consideration of the passivation layer 
required and system pressure – taking 

into account equipment limitations 

The maximum value at which deposited 
passivation layer would not hinder 

etching of features after consideration 
of the passivation layer required and 
system pressure – taking into account 

equipment limitations 

Switching Times – Etching: 
Passivation (s:s) 

The minimum level chosen due to 
feature dimensions and passivation 

layer thickness (if the etching time is 
too short, in comparison to the 

passivation time, it will not completely 
remove the passivation layer and the 

likelihood of the uneven etching 
increases) 

The maximum level chosen after taking 
into account the dimensions of the 

features and the effect on the 
passivation layer (if the etching time is 

too long, in comparison to the 
passivation time, it will quickly remove 

the passivation layer and begin to 
isotropically etch the silicon) 

Table 2, Reasons for DOE levels selected 

The DOE scheme used was devised using a full factorial 8 run design generated using Minitab®15. The order of the 
DOE runs, Table 3, was generated using a built-in randomizer function in Minitab. 

 

 

 

                                                            
† sccm: standard cubic centimetre per minute 
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Run Platen Power 
(W) 

C4F8 Gas Flow in 
Passivation Stage (sccm) 

Switching Times – 
Etching: Passivation (s:s) 

1 - + - 
2 + + - 
3 - + + 
4 - - + 
5 + - + 
6 + + + 
7 + - - 
8 - - - 

Table 3, Randomised 8 run full factorial DOE sequence 

The response examined was the undercut of the features, Figure 3, and was calculated using equation 1. Where W1 is the 
width of the pillar apex, W2 is the width of the pillars base and U is the degree of undercut. For each run, 10 pillars were 
measured and the average of these was taken as the response value. 

 
Figure 3, Schematic of pillar undercut 

W1 – W2 = U (1) 

The experimental data gathered was analysed using main-effects plots, Pareto charts and normal probability plots 
generated using Minitab®15.  

2.2. Experimental Procedure 

Silicon wafers underwent photolithography to pattern the wafer surface prior to DRIE. The photolithography process 
coated the wafer in a positive photoresist layer which was then exposed to UV light through a photomask. Areas of the 
photoresist which were exposed to UV light through gaps in the photomask were dissolved during development leaving 
areas of the wafer surface susceptible to etching during the DRIE process. Areas of the photoresist not exposed to UV 
light were not removed during development and acted as a protective layer from the etching process.  
 
The wafers were first placed in a Polaron PT7160 RF plasma barrel etcher for a time of 120 s , and then placed on a hot-
plate (115o) for 120 s, to ensure the wafer surface was clean. The wafers were then placed in a hexamethyldisilazane 
environment for 15 minutes before being coated with S1818 positive photoresist in a spin-coater with a rotational speed 
of 4000 rpm for a duration of 60 se. The wafers were then placed back on the hot-plate for 90 s. 
 
The wafers were placed in an MS56 mask aligner and exposed to UV light through a chrome-on-glass photomask, using 
a hard contact exposure programme, to pattern the resist surface with the features to be etched. Each wafer was exposed 
for 25 seconds. 
 
The wafers were placed in a developer solution of MF319 for 25 seconds, and then rinsed in distilled and deionised 
water. 

W1 

W2 
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The wafers were then placed back into the plasma barrel etcher for a further 120 s.  
A deep reactive ion etcher was used to process the experimental runs. Each run consisted of 100 cycles, and due to the 
various switching times not all runs took the same amount of time, Table 4. 
 

Run Samples Name Switching Time (s:s) Total Run Duration (min) 
1 DOE 1 5:5 16:45 
2 DOE 2 5:5 16:45 
3 DOE 3 9:5 23:29 
4 DOE 4 9:5 23:29 
5 DOE 5 9:5 23:29 
6 DOE 6 9:5 23:29 
7 DOE 7 5:5 16:45 
8 DOE 8 5:5 16:45 

Table 4, Duration of each DRIE run 

The surface of each wafer was imaged, post etch, using an optical microscope. Wafers then underwent Oxygen plasma 
cleaning to remove any remaining photoresist, in order that the features could be examined in a field emission gun 
scanning electron microscope (SFEG-SEM). The conditions of cleaning are shown in Table 5.   
 
Wafers were then re-examined using an optical microscope so a comparison of the features, pre and post Oxygen plasma 
cleaning, could be made. Upon comparison it was noted that there was no difference between the pre and post Oxygen 
plasma cleaned samples. 
 

Pressure (mTorr) 45.0 
O2 Gas Flow (sccm) 45 

Coil Power (W) 800 
Platen Power (W) 0 
Cycle Time (min) 5 

Table 5, O2 plasma cleaning Parameter settings 
 

The pillar features on the wafer surfaces were imaged and examined using an SFEG-SEM. The width at the base and the 
apex of the pillars were measured and compared to determine the degree of undercut the features obtained in each DOE 
run using equation 1. 
 

3. RESULTS 
3.1. Appearance of features 
 
Figures 4a and 4b (run 3 and run 4) show examples of severe undercutting achieved on 5x5 μm features. The degree of 
undercut is such that no pillars could be observed standing on these samples. In contrast, figures 4c and 4d (runs 1 and 2) 
show examples where the undercut is either positive or minimal.  
 
Figures 5a to 5c (runs 2, 1 and 8) show examples of uneven etching, where features are present between the pillars.  For 
contrast an example of an evenly etched surface is shown in Figure 5d (run 7). A potential mechanism for the uneven 
etching observed for runs 2, 1 and 8 is the incomplete removal of the passivation layer during the etching phase. Residual 
particles of the passivation layer will act as randomly placed nano-scale masks resulting in the uneven etching pattern13; 

14. In extreme cases this can result in the “black silicon” effect, shown in Figure 5c (run 8) where the uneven etching of 
the surface has become gradually rougher through the etching cycles so that “black silicon” has been formed. (“Black 
silicon” is a needle-like surface structure comprised of silicon spikes which absorbs light reducing the reflective 
properties of the silicon surface 14.) 
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Upon examination of the 10x10 μm features it was noted that incomplete etching of the wafer surfaces was observed for 
the same runs as those displayed for the 5x5 μm pillars. It should also be noted that the runs which resulted in the 
severely undercut 5x5 μm pillars also resulted in 10x10 μm pillars with large undercuts, although all the 10x10 μm 
pillars remained standing, 

 
3.2. Measured undercuts 
 
Table 6 shows the average undercut for the 10x10 μm and 5x5 μm pillars. None of the 2x2 μm pillars were successfully 
etched.  
 

Run Platen Power (W) C4F8 Gas Flow in Passivation 
Stage (sccm) 

Switching Times – Etching: 
Passivation (s:s) 

Undercut Averaged from 10 
pillars 

10x10 μm 5x5 μm 
1 - + - 0.028 -0.349 
2 + + - 0.354 0.441 
3 - + + 1.271 - 
4 - - + 1.572 3.986 
5 + - + 2.545 - 
6 + + + 1.800 - 
7 + - - 0.087 0.444 
8 - - - -0.729 -1.091 

Table 6, Average undercut for 10x10 μm and 5x5μm Pillars 

3.3. Statistical analysis 
 
Figures 7-9 show the main-effects plots and Pareto charts for the 10x10 μm and 5x5 μm pillars.  
 
Figures 6 and 8 are Pareto charts which display the significance of either an individual factor or of factor interactions 
using a bar chart. The bars are ordered in descending magnitude according to the effect on the response. The vertical line 
on the plot represents the point beyond which a factor becomes statistically significant; the value of alpha (α - 0.05) 
indicates a chosen confidence limit of 95%. The following symbols were used to represent the various factors on the 
Pareto charts: (A) platen power, (B) C4F8 gas flow and (C) switching time.  
 
Figures 7 and 9 are main-effects plots of each factor and display the factors’ affect on the magnitude of the average 
undercut.  
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 Figure 7, Main-Effects Plot for 10x10 μm pillars 
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 Figure 9, Main-Effects Plot for 5x5 μm pillars 
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4. DISCUSSION 
 

The 2x2 μm pillars were not successfully replicated. This is most likely due to the feature limitations of the photomask 
and the etching limitations of the DRIE.  
 
For both the 5x5 μm and 10x10 μm pillars it was found that the switching time was the only statistically significant 
factor.  
 
A possible mechanism for the observed significance of switching time is the rate at which the passivation layer is 
removed during the etching phase. The longer the etching phase the greater the silicon etch rate, which results in a more 
negative etch profile. Whereas for a shorter etching phase less time is available for the passivation layer to be completely 
removed prior to the silicon etching. This can result in an uneven etch surface and the black silicon effect. 
 

5. CONCULSIONS 
 

In this paper the effect of DRIE factors on feature undercut has been examined for three pillar dimensions: 2x2 μm, 5x5 
μm and 10x10 μm, using undercut as the measured experimental response. 
 
A deign of experiment approach was used to evaluated the degree of feature undercut in correlation to the process 
factors. It was shown that switching times was the only statistically significant factor affecting the undercut of both 5x5 
μm and 10x10 μm pillars. The 2x2 μm pillars were not successfully replicated. 
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